J. Math. Kyoto Univ. (JMKYAZ) 26-4 (1986) 547-558

Homogeneous Kähler manifolds of non-positive Ricci curvature

By

Kazufumi NAKAJIMA

Introduction.

Let M be a homogeneous Kähler manifold. It is known that the Ricci curvature of M is negative if and only if M is biholomorphic to a homogenous bounded domain ([9] or [11]). Hano and Kobayashi [6] constructed a canonical fibering of a homogeneous complex manifold with an invariant volume element. In general, we know only that the fiber is a homogeneous complex submanifold and that the base space is a homogeneous symplectic manifold. In this paper, we shall prove that if the Ricci curvature of the homogeneous Kähler manifold M is non-positive, then the fiber is flat with respect to the induced Kähler metric and the base space admits a natural complex structure so that the canonical projection is holomorphic. Moreover, we can show that the base space is biholomorphic to a homogeneous bounded domain. Thus we obtain

Main Theorem. Every homogeneons Kähler manifold of non-positive Ricci curvature is a holomorphic fiber space over a homogeneons bounded domain and each fiber is a flat homogeneous Kähler manifold with the induced Kähler metric.

To prove Main Theorem, we use the fact that every homogeneous Kähler manifold of non-negative Ricci curvature is a product of a flat homogeneous Kähler manifold and a compact simply connected homogeneous Kähler manifold. This is essentially proved by Cheeger and Gromoll [3] for a simply connected homogeneous Kähler manifold. We state in Appendix the proof for general case.

Throughout this paper, for a Kähler manifold M, $\operatorname{Aut}(M)$ means the group of all holomorphic isometries of M and $\operatorname{Aut}^{0}(M)$ denotes its identity component. We denote by \mathbb{R}^{n} (resp. \mathbb{C}^{n}) the *n*-dimensional real (resp. complex) euclidean space.

§1. Preliminaries.

Let M=G/K be a homogeneous Kähler manifold of a connected Lie group G by a closed subgroup K. Let us denote by g and t the Lie algebras of G and K respectively. We also denote by π the projection of G onto G/K. There corresponds to the invariant complex structure J of M, an endomorphism j of \mathfrak{g} satisfying

(1.1)

$$j\mathfrak{t}\subset\mathfrak{t}, \quad j^{2}X\equiv -X \pmod{\mathfrak{t}}$$

$$\operatorname{Ad} k \circ jX\equiv j \circ \operatorname{Ad} kX \pmod{\mathfrak{t}}$$

$$[jX, jY]\equiv [X, Y]+j[jX, Y]+j[X, jY] \pmod{\mathfrak{t}}$$

$$\pi_{\ast} \circ jX_{e}=J \circ \pi_{\ast}X_{e},$$

for X, $Y \in \mathfrak{g}$ and $k \in K$, where e denotes the unit element of G.

For any $X \in \mathfrak{g}$, ad $jX - j \circ ad X$ leaves \mathfrak{k} invariant and therefore it induces an endomorphism of $\mathfrak{g}/\mathfrak{k}$. According to Koszul [8], we define a linear form $\psi_{\mathfrak{G}/\mathfrak{K}}$ on \mathfrak{g} by

$$\psi_{G/K}(X) = \operatorname{Tr}_{\mathfrak{g}/\mathfrak{l}}(\operatorname{ad} jX - j \circ \operatorname{ad} X) \quad \text{for} \quad X \in \mathfrak{g}.$$

We call $\psi_{G/K}$ the Koszul form of G/K. We then have ([8])

(1.2)
$$\psi_{G/K}([jX, jY]) = \psi_{G/K}([X, Y])$$
$$\psi_{G/K}(\operatorname{Ad} kX) = \psi_{G/K}(X)$$

where X, $Y \in \mathfrak{g}$ and $k \in K$. Moreover let us denote by R the Ricci curvature form of M. Then we have

(1.3)
$$\psi_{G/K}([X, Y]) = -2R(\pi_*X_e, \pi_*Y_e) \quad \text{for} \quad X, Y \in \mathfrak{g}.$$

In particular, $\psi_{G/K}([jX, X]) \ge 0$ for any $X \in \mathfrak{g}$ if and only if M is of non-positive Ricci curvature.

A real vector space W endowed with a complex structure j and an skewsymmetric bilinear form Ω is called *symplectic* if the following conditions are satisfied:

$$\begin{split} &\Omega(jw, jw') = \Omega(w, w') \quad \text{for} \quad w, w' \in W, \\ &\Omega(jw, w) > 0 \quad \text{if} \quad w \neq 0. \end{split}$$

Let Sp(W) denote the group of all linear transformations f of W satisfying $\Omega(fw, fw') = \Omega(w, w')$ $(w, w' \in W)$ and denote by K(W) the subgroup defined by $K(W) = \{f \in Sp(W); j \circ f = f \circ j\}$. The Lie algebra $\mathfrak{sp}(W)$ of Sp(W) consists of all linear endomorphisms f of W satisfying $\Omega(fw, w') + \Omega(w, fw') = 0$ and the Lie algebra $\mathfrak{t}(W)$ of K(W) consists of all $f \in \mathfrak{sp}(W)$ such that $f \circ j = j \circ f$. The homogeneous space Sp(W)/K(W) admits an Sp(W)-invariant complex structure which corresponds to the endomorphism I of $\mathfrak{sp}(W)$ given by

$$I(f) = \frac{1}{2}(j \circ f - f \circ j) \quad \text{for} \quad f \in \mathfrak{sp}(W).$$

With respect to this complex structure, Sp(W)/K(W) is biholomorphic to a symmetric bounded domain (cf. [7]).

Lemma 1.1. Let $p, q \in \mathfrak{sp}(W)$. Assume that

Homogeneous Kähler manifolds

$$p \circ j - j \circ p - q - j \circ q \circ j = 0.$$

Then $\operatorname{Tr}_W j \circ [p, q] \leq 0$ and the equality holds if and only if $p, q \in \mathfrak{f}(W)$.

Proof. From the condition, we have

$$\begin{aligned} \operatorname{Tr}_{w} j \circ [p, q] &= \operatorname{Tr}_{w} j \circ p \circ q - \operatorname{Tr}_{w} p \circ j \circ q \\ &= -\operatorname{Tr}_{w} q^{2} - \operatorname{Tr}_{w} (j \circ q)^{2} \\ &= -\frac{1}{2} \operatorname{Tr}_{w} (q \circ j - j \circ q)^{2}. \end{aligned}$$

We set $s=q \circ j - j \circ q$. Let *B* denote the positive definite symmetric bilinear form on *W* given by $B(w, w')=\Omega(jw, w')$. We then have B(sw, w')=B(w, sw'). Therefore $\operatorname{Tr}_{w} s^{2} \ge 0$ and the equality holds if and only if s=0. This implies $q \in \mathfrak{k}(W)$ and from the condition, $p \in \mathfrak{k}(W)$. q. e. d.

Cheeger and Gromoll [3] showed that every connected complete riemannian manifold M of non-negative Ricci curvature is isometric to $\mathbb{R}^m \times M'$, where M' does not contain any line. Moreover if M is homogeneous, then M' is compact. Clearly, if M is simply connected, then in the de Rham decomposition of M, \mathbb{R}^m is the flat factor and M' coincides with the product of the irreducible non-flat factors. Therefore for a simply connected homogeneous Kähler manifold, we already know the following

Theorem 1.2. Every homogeneous Kähler manifold of non-negative Ricci curvature is holomorphically isometric to a product of a flat homogeneous Kähler manifold and a compact simply connected homogeneous Kähler manifold.

We can show this theorem for general case by a simple observation about the action of the fundamental group (see, Appendix).

As an immediate consequence of Theorem 1.2, we have

Corollary 1.3.*) Every homogeneous Kähler manifold of vanishing Ricci curvature is flat.

§2. Hano-Kobayashi fiberings.

Let M=G/K be the homogeneous Kähler manifold and let R be the Ricci form of M. Hano and Kobayashi constructed in [6] a fibering of a homogeneous complex manifold with an invariant volume element. Applying their result to our case, there exists a unique closed subgroup L of G having the following properties:

(a) L contains K and L/K is connected. Consider G/K as a fiber bundle over G/L with fiber L/K. Then

^{*)} More generally, Alekseevskii and Kimel'fel'd [1] stated that every homogeneous riemannian manifold of vanishing Ricci tensor is flat.

Kazufumi Nakajima

(b) The restriction of R to each fiber is idetically zero.

(c) There exists a non-degenerate anti-symmetric bilinear form σ on G/L such that $\Phi^*\sigma = R$, where Φ denotes the projection of G/K onto G/L.

Let I be the Lie algebra of L. From the properties above, it follows

(2.1)
$$l = \{X \in \mathfrak{g} ; R(\pi_* X_e, \pi_* Y_e) = 0 \text{ for any } Y \in \mathfrak{g}\}.$$

In particular, l is *j*-invariant and hence L/K is a complex submanifold. But in general, G/L may not admit a G-invariant complex structure. The notations being as above, we shall prove the following

Proposition 2.1. Assume that the Ricci curvature of the homogeneous Kähler manifold G/K is non-positive. Then in the Hano-Kobayashi fibering of G/K, we have

(1) The fiber L/K is a flat homogeneous Kähler manifold with respect to the induced Kähler metric.

(2) The base space G/L admits a G-invariant complex structure such that the projection $\Phi: G/K \rightarrow G/L$ is holomorphic. With respect to this complex structure, $-\sigma$ gives a G-invariant Kähler form on G/L.

Let us define a closed subgroup \hat{L} of G by

$$\hat{L} = \{g \in G ; \psi_{G/K}(\operatorname{Ad} gX) = \psi_{G/K}(X) \text{ for any } X \in \mathfrak{g}\}.$$

From (1.2), (1.3) and (2.1), \hat{L} contains K and the Lie algebra of \hat{L} coincides with I.

Lemm 2.2. \hat{L} contains L.

Proof. Let L^0 be the identity component of L. Then $L^0 \subset \hat{L}$. Since L/K is connected, L^0 acts transitively on L/K. Now our assertion follows from

$$L/K = L^{\circ}/L^{\circ} \cap K \subset \hat{L} \cap L/K \subset L/K.$$
 q. e. d.

We now assume that the Ricci curvature of G/K is non-positive. Let us set $W=\mathfrak{g}/\mathfrak{l}$. The endomorphism j induces a complex structure of W in a natural manner which will be denoted by the same letter j and the form $\psi_{G/K}([X, Y])$ $(X, Y \in \mathfrak{g})$ gives a non-degenerate anti-symmetric bilinear form ω on W. Then (W, j, ω) is a symplectic space. For any $g \in \hat{L}$, Ad g leaves \mathfrak{l} invariant and therefore induces a linear transformation $\tau(g)$ of W. From the definition of \hat{L} , the correspondence: $g \rightarrow \tau(g)$ is a homomorphism of \hat{L} into Sp(W). Clearly $\tau(K) \subset K(W)$. Since $L \subset \hat{L}$ by Lemma 2.2, we get a mapping η of L/K to Sp(W)/K(W) by setting $\eta(gK) = \tau(g)K(W)$ for $gK \in L/K$.

Lemma 2.3. The mapping η is holomorphic.

Proof. From (1.1), we have for any $X \in I$,

(2.2)
$$\tau(jX) \circ j = j \circ \tau(jX) + \tau(X) + j \circ \tau(X) \circ j,$$

where we also denote by τ the induced homomorphism of I to $\mathfrak{sp}(W)$. This is equivalent to $I(\tau(X)) \equiv \tau(jX) \pmod{\mathfrak{k}(W)}$, proving that η is holomorphic. q.e.d.

We are now in a position to prove Proposition 2.1. For any $X \in I$, we have

$$0 = \psi_{G/K}([jX, X]) = \psi_{L/K}([jX, X]) + \operatorname{Tr}_{\boldsymbol{w}} \tau(j[jX, X]) - \operatorname{Tr}_{\boldsymbol{w}} j \circ \tau([jX, X])$$
$$= \psi_{L/K}([jX, X]) - \operatorname{Tr}_{\boldsymbol{w}} j \circ [\tau(jX), \tau(X)].$$

From (2.2) and Lemma 1.1, we have $\psi_{L/K}([jX, X]) \leq 0$. Therefore the Ricci curvature of L/K is non-negative. Hence by Theorem 1.2, L/K is biholomorphic to a product of a compact simply connected homogeneous Kähler manifold and a flat homogeneous Kähler manifold. Therefore $\eta(L/K)$ is a single point because η is holomorphic and Sp(W)/K(W) is biholomorphic to a homogeneous bounded domain. As a consequence, we have $\tau(L) \subset K(W)$. This imples

(2.3) $\operatorname{Ad} g \circ j X \equiv j \circ \operatorname{Ad} g X \pmod{1}$ for any $X \in \mathfrak{g}$ and $g \in L$

and by Lemma 1.1 again we have $\operatorname{Tr}_{W} j \circ [\tau(jX), \tau(X)] = 0$, whence

(2.4)
$$\psi_{L/K}([jX, X]) = 0 \quad \text{for any} \quad X \in \mathfrak{l}.$$

The equation (2.3) means that G/L admits a G-invariant complex structure such that the projection of G/K onto G/L is holomorphic. Clearly $-\sigma$ is a G-invariant Kähler form of G/L with respect to this complex structure. By (2.4), we know that the Ricci curvature of L/K is identically zero. It follows from Corollary 1.3 that L/K is flat, completing the proof of Proposition 2.1.

§3. Remarks.

Let M be a homogeneous complex manifold. If the universal covering space of M is biholomorphic to a homogeneous bounded domain, then M itself is biholomorphic to a homogeneous bounded domain (see, [7] or [10]). Similarly, if M is a homogeneous Kähler manifold whose universal covering space is compact simply connected, then M itself is compact simply connected because there exists a compact semi-simple subgroup of Aut(M) acting on M transitively ([2]). We now prove

Proposition 3.1. Let M be a homogeneous Kähler manifold. Assume that its universal covering space \tilde{M} is biholomorphic to a product of a homogeneous bounded domain M_1 and a compact simply connected homogeneous complex manifold M_2 . Then M itself is biholomorphic to $M_1 \times M_2$.

Let $G = \operatorname{Aut}^0(M)$ and let K be the isotropy subgroup of G. Let \widetilde{G} be the universal covering group of G and $\widetilde{K} = \phi^{-1}(K)$, ϕ denoting the projection of \widetilde{G} onto G. Let \widetilde{K}^0 be the identity component of \widetilde{K} . Then $\widetilde{M} = \widetilde{G}/\widetilde{K}^0$ and $M = \widetilde{G}/\widetilde{K}$. Let $\pi_1(M)$ be the fundamental group of M. Then $\pi_1(M) \cong \widetilde{K}/\widetilde{K}^0$ and every element of $\pi_1(M)$ represented by $k \in \widetilde{K}$ acts on \widetilde{M} holomorphically and isometrically in the following way

Kazufumi Nakajima

(3.1) $\widetilde{M} = \widetilde{G} / \widetilde{K}^{0} \ni g \widetilde{K}^{0} \longrightarrow g k \widetilde{K}^{0} \in \widetilde{G} / \widetilde{K}^{0}.$

Since M_2 is compact, every holomorphic transformation f of \tilde{M} induces an homlomorphic transformation f_1 of M_1 such that $f_1 \circ p_1 = p_1 \circ f_1$, where p_1 denotes the projection of \tilde{M} onto M_1 . Then there exists a connected closed subgroup \tilde{A} of \tilde{G} containing \tilde{K}^0 such that $M_1 = \tilde{G}/\tilde{A}$ and $M_2 = \tilde{A}/\tilde{K}^0$. Let $k \in \tilde{K}$. We denote by θ_k the holomorphic transformation of \tilde{M} defined by (3.1). Then $p_1 \circ \theta_k(\tilde{A}/\tilde{K}^0)$ is a single point. This means that for any $a \in \tilde{A}$, $ak\tilde{A} = k\tilde{A}$. Therefore for any $k \in \tilde{K}$, we have

$$k\widetilde{A}k^{-1} = \widetilde{A}.$$

Let g, f, and a be the Lie algebras of \tilde{G} , \tilde{K} , and \tilde{A} respectively and let j be the endomorphism of g corresponding to the complex structure of G/K. We have for any $k \in \tilde{A}$ and by (1.1) for any $k \in \tilde{K}$

(3.3) Ad $k \circ j X \equiv j \circ Ad k X$ (mod a) for all $X \in \mathfrak{g}$.

Lemma 3.2. \widetilde{K} is contained in \widetilde{A} .

Proof. Let \mathfrak{g}^c and \mathfrak{a}^c be the complexifications of \mathfrak{a} and \mathfrak{g} respectively and let \widetilde{A}' be the subgroup of \widetilde{G} consisting of all k of \widetilde{G} satisfying (3.2) and (3.3). We set $\mathfrak{g}_-=\mathfrak{a}^c+\{X+\sqrt{-1}jX;X\in\mathfrak{g}\}$. Let us denote by $\mathfrak{n}(\mathfrak{g}_-)$ the normalizer of \mathfrak{g}_- in \mathfrak{g}^c . Then the Lie algebra of \widetilde{A}' coincides with $\mathfrak{n}(\mathfrak{g}_-)\cap\mathfrak{g}$. On the other hand, since $\widetilde{G}/\widetilde{A}$ is a homogeneous bounded domain, its canonical hermitian form is positive definite. Therefore by a result of Hano [5], $\mathfrak{a}=\mathfrak{n}(\mathfrak{g}_-)\cap\mathfrak{g}$. Since $\widetilde{A}\subset\widetilde{A}', \ \widetilde{G}/\widetilde{A}$ is a covering space of $\widetilde{G}/\widetilde{A}'$. Clearly there exists a \widetilde{G} -invariant complex structure on $\widetilde{G}/\widetilde{A}'$ such that the projection of $\widetilde{G}/\widetilde{A}$ onto $\widetilde{G}/\widetilde{A}'$ is holomorphic. Consequently, $\widetilde{G}/\widetilde{A}=\widetilde{G}/\widetilde{A}'$ and hence $\widetilde{A}'=\widetilde{A}$. q.e.d.

Consider the homogeneous space \tilde{A}/\tilde{K} . As a complex submanifold of \tilde{G}/\tilde{K} , it has an \tilde{A} -invariant Kähler structure. Since $M_2 = \tilde{A}/\tilde{K}^\circ$ is a covering space of \tilde{A}/\tilde{K} , we can conclude that \tilde{A}/\tilde{K} is simply connected and hence \tilde{K} is connected. Therefore $\tilde{M}=M$, proving Proposition 3.1.

Corollary 3.3. Let G/K be a homogeneous Kähler manifold. Let g and t be the Lie algebras of G and K and let j be the endomorphism of g corresponding to the invariant complex structure of G/K. Assume that G acts almost effectively on G/K and assume that there exists a linear form ϕ on g satisfying

$$\begin{split} & \psi([\mathfrak{f}, \mathfrak{g}]) = 0, \\ & \psi([jX, jY]) = \psi([X, Y]) \quad for \quad X, Y \in \mathfrak{g}, \\ & \psi([jX, X]) > 0 \quad if \quad X \notin \mathfrak{k}. \end{split}$$

Then G/K is biholomorphic to a product of a homogeneous bounded domain and a compact simply connected homogeneous complex manifold.

Proof. From the conditions, the system $(g, \mathfrak{k}, j, \psi)$ is an effective *j*-algebra.

Therefore by [11], the universal covering space of G/K is biholomorphic to a product of a homogeneous bounded domain and a compact simply connected homogeneous complex manifold. Now Corollary 3.3 follows from Proposition 3.1. q. e. d.

§4. The structure of G/L.

Let G/K be the homogeneous Kähler manifold of non-positive Ricci curvature and let L be the connected subgroup of G as before. We keep the notations in §2. From now on, we assume that the action of G on G/K is effective.

Lemma 4.1^{*)}. There exists an ideal \mathfrak{l}' of \mathfrak{l} such that

l = l' + t(semi-direct).

Proof. Let $\mathfrak{f}(\mathfrak{l})$ be the largest ideal of \mathfrak{l} contained in \mathfrak{k} . Since L/K admits an L-invariant metric, we have $\mathfrak{t}(I) = \{X \in \mathfrak{t}; [X, Y] \in \mathfrak{t} \text{ for any } Y \in \mathfrak{g}\}$. By Lemma 1.2 of [10], there exists an ideal \mathfrak{h} of \mathfrak{l} such that

> l = h + t(l)(direct sum of ideals).

The universal covering space of L/K is a complex euclidean space C^n . Let $e(C^n)$ denote the Lie algebra of Aut (C^n) . It is easy to see that every semisimple subalgebra of $\mathfrak{e}(\mathbb{C}^n)$ is compact. Let H be the connected subgroup of Aut (C^n) corresponding to \mathfrak{h} and let \overline{H} be the closure of H in Aut (C^n) . Let H_0 and \overline{H}_0 be the isotropy subgroups of H and \overline{H} respectively. Since $\overline{H}/\overline{H}_0 = H/H_0$ $=C^n$, \overline{H}_0 is a maximal compact subgroup of \overline{H} . Let $\mathfrak{h}=\mathfrak{g}+\mathfrak{g}$ be a Levi-decomposition of \mathfrak{h} , where \mathfrak{x} is the radical of \mathfrak{h} and \mathfrak{s} is a semi-simple subalgebra. Let S be the connected subgroup corresponding to \mathfrak{s} . Since S is compact, there exists $g \in \overline{H}$, such that $\operatorname{Ad} gS \subset \overline{H}_0$. Since H is a normal subgroup of \overline{H} , we have $\operatorname{Ad} gS \subset H_0 \cap H = H_0$. Therefore we get $\operatorname{Ad} g\mathfrak{s} \subset \mathfrak{h} \cap \mathfrak{k}$. Thus we may assume $\mathfrak{s} \subset \mathfrak{h} \cap \mathfrak{k}$. Then $\mathfrak{h} = \mathfrak{x} + \mathfrak{h} \cap \mathfrak{k}$. Noting that $[\mathfrak{x}, \mathfrak{x}] \cap (\mathfrak{h} \cap \mathfrak{k}) = 0$, we can find an $\mathfrak{ad}(\mathfrak{h} \cap \mathfrak{k})$. invariant subspace c of r satisfying

$$\mathfrak{x} = [\mathfrak{x}, \mathfrak{x}] + (\mathfrak{x} \cap \mathfrak{k}) + \mathfrak{c}$$
 (vector space direct sum).

If we set l' = [r, r] + c, then l' satisfies the desired properties. q. e. d.

Let Ψ be the Kähler form of G/K and let $\rho = \pi^* \Psi$. Then ρ is a left invariant skew-symmetric bilinear form on G and hence it may be regarded as a skew-symmetric bilinear form on g.

Let i' be as in Lemma 4.1. We may assume that ji'=i'. By a result of Dorfmeister [4], I' is decomposed as

$$\mathfrak{l}' = \mathfrak{l}_0 + \mathfrak{l}_1$$
 ,

where I_0 is a *j*-invariant abelian ideal of I' given by $I_0 = [I', I']$ and I_1 is a *j*-

^{*)} The author was informed of this fact from J. Dorfmeister.

Kazufumi Nakajima

invariant subalgebra defined by $\mathfrak{l}_1 = \{X \in \mathfrak{l}'; \rho(X, Y) = 0 \text{ for any } Y \in \mathfrak{l}_0\}$. We note that both \mathfrak{l}_0 and \mathfrak{l}_1 is invariant under ad \mathfrak{k} . For any $X \in \mathfrak{l}_1$, we denote by D_X the semi-simple part of ad X. Then $\{D_X; X \in \mathfrak{l}_1\}$ is a commuting family of derivations of g. Since ad X is nilpotent on $\mathfrak{l}_1 + \mathfrak{k}$, we have

$$(4.1) D_X(\mathfrak{l}_1+\mathfrak{k})=0.$$

We also know from [4] that $D_X|_{t_0}$ has only purely imaginary eigenvalues and

(4.2)
$$D_X \circ jY = j \circ D_X Y \text{ for any } Y \in \mathfrak{l}',$$
$$\rho(D_X Y, Z) + \rho(Y, D_X Z) = 0 \text{ for any } Y, Z \in \mathfrak{l}'.$$

Let us denote by τ the linear isotropy representation of 1 on g/1. We already know that τ is a unitary representation. Therefore $\tau(X)$ is semi-simple and its eigenvalues are purely imaginary. Furthermore

$$\tau(\mathfrak{l}_0)=0\,,$$

because i' is solvable and $I_0 = [i', i']$. Now it is clear that D_X has only purely imaginary eigenvalues and

$$(4.4) D_X Y \equiv [X, Y] (mod l) for any Y \in g.$$

Let B be the closure of the automorphism group of g generated by $\{D_X; X \in I_1\}$. Then B is a compact abelian group. We set

$$\tilde{\rho}(Y, Z) = \int_{B} \rho(bX, bY) db$$
 for $Y, Z \in \mathfrak{g}$,

where db is the normalized Haar measure of B. Using (4.1) and (4.2), we can see

$$d\tilde{\rho}=0, \qquad \tilde{\rho}(\mathfrak{k},\mathfrak{g})=0,$$

(4.5) $\tilde{\rho}(Y, Z) = \rho(Y, Z)$ for $Y, Z \in \mathfrak{l}$,

 $\tilde{\rho}(D_XY, Z) + \tilde{\rho}(Y, D_XZ) = 0$ for $X \in \mathfrak{l}_1$ and $Y, Z \in \mathfrak{g}$.

Let us set

$$\mathfrak{t} = \{X \in \mathfrak{g}; \tilde{\rho}(X, Y) = 0 \text{ for any } Y \in \mathfrak{l}\}.$$

Lemma 4.2. (1) g=t+t and $t \cap t=t$. (2) t is a subalgebra.

Proof. Assertion (1) follows from (4.5) and the definition of t. By (4.3), $[\mathfrak{l}_0, \mathfrak{g}] \subset \mathfrak{l}$. Therefore using $d\tilde{\rho} = 0$, we have $\tilde{\rho}([\mathfrak{t}, \mathfrak{t}], \mathfrak{l}_0) \subset \tilde{\rho}([\mathfrak{l}_0, \mathfrak{t}], \mathfrak{t}) = 0$. Moreover using (4.4) and (4.5), we have for any $X \in \mathfrak{l}_1$ and $Y, Z \in \mathfrak{t}$

$$\tilde{\rho}(X, [Y, Z]) = \tilde{\rho}([X, Y], Z) + \tilde{\rho}(Y, [X, Z])$$
$$= \tilde{\rho}(D_X Y, Z) + \tilde{\rho}(Y, D_X Z)$$
$$= 0.$$

proving $\tilde{\rho}(\mathfrak{l}_1, [\mathfrak{t}, \mathfrak{t}])=0$. Hence we get $[\mathfrak{t}, \mathfrak{t}]\subset \mathfrak{t}$. q. e. d.

Let $\mathfrak{f}(\mathfrak{t})$ be the largest ideal of \mathfrak{t} contained in \mathfrak{t} . By a result of [10] there exists an ideal \mathfrak{t}' of \mathfrak{t} such that $\mathfrak{t}=\mathfrak{t}'+\mathfrak{t}(\mathfrak{t})$ (direct sum of ideals). We then have $\mathfrak{g}=\mathfrak{t}'+\mathfrak{l}$. Let T' be the connected subgroup of G corresponding to \mathfrak{t}' . Then T' acts on G/L transitively and almost effectively. There corresponds to the invariant complex structure of G/L, an endomorphism j' of \mathfrak{t}' such that $j'X\equiv jX$ (mod \mathfrak{l}) for $X\in\mathfrak{t}'$. Then $(\mathfrak{t}',\mathfrak{t}'\cap\mathfrak{k},j',\psi_{G/K})$ is an effective j-algebra. Thus by Corollary 3.3, we have

Lemma 4.3. The base space G/L is biholomorphic to the product of a homogeneous bounded domain M_1 and a compact simply connected homogeneous complex manifold M_2 .

As before there exists a connected closed subgroup A of G containing L such that $M_1=G/A$ and $M_2=A/L$. Then A/K is a Kähler submanifold of G/K and the fibering: $A/K \rightarrow A/L$ is nothing but the Hano-Kobayashi fibering of A/K.

Lemma 4.4. The Ricci curvature of A/K is non-positive.

Proof. Let a be the Lie algebra of A and let $X \in \mathfrak{a}$. We then have

 $\psi_{G/K}([jX, X]) = \psi_{G/A}([jX, X]) + \psi_{A/K}([jX, X]).$

Since $\psi_{G/K}([jX, X]) \ge 0$ and $\psi_{G/A}([jX, X]) = 0$, we have $\psi_{A/K}([jX, X]) \ge 0$. q. e. d.

§5. Proof of Main Theorem.

Let G/K be a homogeneous Kähler manifold of non-positive Ricci curvature and let G/L be the base space in the Hano-Kobayashi fibering of G/K. For the proof of Main Theorem, it remains to prove that G/L is biholomorphic to a homogeneous bounded domain. To do this, by virtue of Lemmas 4.3 and 4.4, it is sufficient to prove the following

Proposition 5.1. Let G/K be a homogeneous Kähler manifold of non-positive Ricci curvature. Consider the Hano-Kobayashi fibering: $G/K \rightarrow G/L$. Assume that G/L is compact simply connected. We then have G=L.

It is sufficient to prove this proposition assuming that G acts effectively on G/K. Let I_0 , I_1 , D_X , t and t' be as §4. Since t' is the Lie algebra of a transitive subgroup of Aut(G/L) and since G/L is a compact simply connected homogeneous Kähler manifold, we know that t' is semi-simple. It follows that t is reductive and hence it is decomposed as

 $t=c+\mathfrak{g}$,

where c denotes the center of t and \mathfrak{g} is the semi-simple part of t. Note that c is contained in \mathfrak{k} . It is well known that there exists $Z_0 \in \mathfrak{g}$ such that

(5.1)
$$t = \{X \in t ; [[X, Z_0]] = 0\}.$$

Clearly, D_X leaves t invariant and hence it induces a derivation of \mathfrak{s} . Therefore for every $X \in \mathfrak{l}_1$, there exists \mathfrak{s}_X of \mathfrak{s} such that

$$(5.2) D_X Y = [s_X, Y] for any Y \in \mathfrak{s}.$$

Since $D_X Z_0 = 0$ by (4.1), we know $s_X \in \mathfrak{k}$ from (5.1) and (5.2). Let $\mathfrak{l}(\mathfrak{g})$ be the largest ideal of \mathfrak{g} contained in \mathfrak{f} . By (4.4) and (5.2), we have $X - s_X \in \mathfrak{l}(\mathfrak{g})$. From (4.3), we also know that \mathfrak{l}_0 is contained in $\mathfrak{l}(\mathfrak{g})$. Therefore we get

$$(5.3) \qquad \qquad \mathfrak{l} = \mathfrak{l}(\mathfrak{g}) + \mathfrak{k}.$$

Hence we may assume $j\mathfrak{l}(\mathfrak{g}) \subset \mathfrak{l}(\mathfrak{g})$. Let g' be the subspace given by

 $\mathfrak{g}' = \{X \in \mathfrak{g}; \rho(X, Y) = 0 \text{ for any } Y \in \mathfrak{l}\}.$

Using (5.3) and the fact that I(g) is a *j*-invariant ideal of g, we can see that g' is a *j*-invariant subalgebra and satisfies

$$g=g'+i$$
 and $g'\cap i=t$.

By the same arguments as for t, we can show that g' is reductive.

Lemma 5.2. For every $X \in \mathfrak{g}'$,

$$\operatorname{Tr}_{\mathfrak{l}/\mathfrak{t}}(\operatorname{ad} j[jX, X] - j \circ \operatorname{ad} [jX, X]) = 0.$$

Proof. Let us set $V=1/\mathfrak{k}$. Since $\mathfrak{g/g'}\cong 1/\mathfrak{k}$, the linear isotropy representation of \mathfrak{g}' induces a representation γ on V. The form ρ induces a skew-symmetric bilinear form ω on V. Then (V, j, ω) is a symplectic space. By the definition of \mathfrak{g}', γ is a symplectic representation. Let G' be the connected subgroup of Gcorresponding to \mathfrak{g}' . Then we obtain a holomorphic mapping of $G'/G' \cap K$ to Sp(V)/K(V). Since $G'/G' \cap K$ is biholomorphic to G/L and since G/L is compact, the image of $G'/G' \cap K$ is a single point. This means that $\gamma(X)$ commutes with j for any $X \in \mathfrak{g}'$. As a result

$$\Gamma \mathbf{r}_{\mathbf{v}} j \cdot [\gamma(jX), \gamma(X)] = 0.$$

It follows that

$$\operatorname{Tr}_{\mathfrak{l}/\mathfrak{l}}(\operatorname{ad} j[jX, X] - j \circ \operatorname{ad} [jX, X])$$

=
$$\operatorname{Tr}_{\mathfrak{l}}(\gamma(j[jX, X]) - j \circ [\gamma(jX), \gamma(X)]) = 0. \qquad q. e. d.$$

Let $X \in \mathfrak{g}'$. We then have from Lemma 5.2,

$$\psi_{G/K}([jX, X]) = \psi_{G/L}([jX, X]) + \operatorname{Tr}_{i/i}(\operatorname{ad} j[jX, X] - j \circ \operatorname{ad} [jX, X])$$
$$= \psi_{G/L}([jX, X]).$$

Since G/L is compact and simply connected, we have from [8], $\psi_{G/L}([jX, X]) \leq 0$ and the equality holds if and only if $X \in I$. From the assumption $\psi_{G/K}([jX, X]) \geq 0$ we then have $X \in \mathfrak{g}' \cap I = \mathfrak{k}$. Thus we get $\mathfrak{g}' = \mathfrak{k}$, proving Proposition 5.1.

We have proved the following theorem and completed the proof of Main Theorem.

Theorem 5.3. Let G/K be a homogeneous Kähler manifold of non-positive Ricci curvature. Then there exists a closed subgroup L containing K such that

(a) L/K is a flat homogeneous Kähler submanifold of G/K.

(b) G/L admits a G-invariant complex structure with respect to which G/L is biholomorphic to a homogeneous bounded domain and the canonical projection of G/K onto G/L is holomorphic.

Appendix.

We will give here the proof of Theorem 1.2. We first show the following

Lemma. Let M be a compact simply connected homogeneous Kähler manifold and let f be an element of Aut(M). Assume that there exists a connected subgroup G of Aut(M) such that

(a) G acts transitively on M,

(b) f commutes with each element of G.

Then f is the identity transformation of M.

Proof. We first note that the Lie algebra of a subgroup of Aut(M) acting transitively is compact and semi-simple. Define a compact subgroup C by

$$C = \{h \in \operatorname{Aut}(M); gh = hg \text{ for any } g \in G\}.$$

and put G'=CG. Both G' and G are compact semi-simple subgroups. We denote by g', g, and c the Lie algebras of G', G, and C respectively. We have g'=g+c(direct sum of ideals). Let K' and K be the isotropy subgroups of G' and G at a point of M. We denote by t' and t the corresponding Lie algebras. It is well known that there exists $Z \in \mathfrak{g}'$ such that $\mathfrak{f}' = \{X \in \mathfrak{g}'; [X, Z] = 0\}$. We then have $\mathfrak{t}' = \mathfrak{t} + \mathfrak{t}' \cap \mathfrak{c}$. Since dim $\mathfrak{g}'/\mathfrak{t}' = \dim \mathfrak{g}/\mathfrak{t}$, we get dim $\mathfrak{c} = \dim \mathfrak{c} \cap \mathfrak{t}'$. This means that c is contained in \mathfrak{k}' and hence $\mathfrak{c}=0$. It follows that G is the identity component of G' and C is a finite group. Moreover C is a normal subgroup of G'. In fact, let $g \in G'$ and $a \in C$. Since $gGg^{-1} = G$, we have for any $h \in G$, $gag^{-1}h$ $=gag^{-1}hgg^{-1}=gg^{-1}hgag^{-1}=hgag^{-1}$, proving $gag^{-1}\in C$. It follows that CK' is a compact subgroup of G' and M=G'/K' is a covering space of G'/CK'. The homogeneous space G'/CK' admits naturally a G'-invariant Kähler structure so that the projection: $G'/K' \rightarrow G'/CK'$ is holomorphic and isometric. Now G'/CK'is a homogeneous Kähler manifold on which a connected semi-simple Lie group acts transitively, holomorphically and isometrically. Therefore by Borel [2], G'/CK' is simply connected and hence we get K'=CK'. This means $C \subset K'$ and hence $C = \{e\}$, because G' acts effectively on M. q. e. d.

We now prove Theorem 1.2. Let M be a homogeneous Kähler manifold of non-negative Ricci curvature and let $G=\operatorname{Aut}^0(M)$. Then M=G/K, K being the isotropy subgroup. Denote by \tilde{G} the universal covering group of G and by ϕ the projection of \tilde{G} onto G. Let $\tilde{K}=\phi^{-1}(K)$ and let \tilde{K}^0 be the identity component of \tilde{K} . Then $\tilde{M}=\tilde{G}/\tilde{K}^0$ is the universal covering space of M and it has a natural \tilde{G} -invariant Kähler structure so that the projection is holomorphic and isometric. We already know from [3] that \tilde{M} is isomorphic to $\mathbb{C}^n \times M'$, where M' is a compact simply connected homogeneous Kähler manifold. Let $\pi_1(M)$ be the fundamental group of M. Let f be an element of $\pi_1(M)$. We express the action of f on \tilde{M} as

$$f(z, w) = (f_0(z, w), f'(z, w))$$

where $z \in \mathbb{C}^n$ and $w \in M'$. Since M' is compact, f_0 does not depend on w. For the proof of Theorem 1.2, it is sufficient to show that f'(z, w) = w for any zand w. We fix a point $z \in \mathbb{C}^n$. Define a map $f'_2: M' \to M'$ by $f'_2(w) = f'(z, w)$. We can easily see that f'_z is an element of $\operatorname{Aut}(M')$. Since $\operatorname{Aut}^0(\tilde{M}) = \operatorname{Aut}^0(\mathbb{C}^n)$ $\times \operatorname{Aut}^0(M')$, the group \tilde{G} acts \mathbb{C}^n and M' in a natural manner. Let \tilde{H} be the isotropy subgroup of \tilde{G} at the point z. We then have $\tilde{G}/\tilde{H} = \mathbb{C}^n$ and $\tilde{H}/\tilde{K}^0 = M'$. In view of (3.1), we can easily see that f'_z commutes with the action of \tilde{H} on M'. Therefore from Lemma, we have $f'_z = 1$, proving Theorem 1.2.

Department of Mathematics Kyoto university

References

- D. V. Alekseevskii and B. N. Kimel'fel'd, Structure of homogeneous Riemann space with zero Ricci curvature, Functional Anal. Appl., 9 (1975), 97-102.
- [2] A. Borel, Kählerian coset spaces of semi-simple Lie groups, Proc. Nat. Acad. Sci. U. S. A., 40 (1954), 1147-1151.
- [3] J. Cheeger and D. Gromoll, The spritting theorem for manifolds of nonnegative Ricci curvature, J. Diff. Geometry, 6 (1971), 119-128.
- [4] J. Dorfmeister, Homogeneous Kähler manifolds admitting a transitive solvable group of automorphisms, Ann. Sci. École Norm. Sup., 18 (1985), 143-180.
- [5] J. Hano, Equivariant projective immersion of a complex coset space with nondegenerate canonical hermitian form, Scripta Math., 29 (1971), 125-139.
- [6] J. Hano and S. Kobayashi, A fibering of a class of homogeneous complex manifolds, Trans. Amer. Math. Soc., 94 (1960), 233-243.
- [7] S. Kaneyuki, Homogeneous Bounded Domains and Siegel Domains, Lect. Notes in Math. 241, Springer, 1971.
- [8] J.L. Koszul, Sur la forme hermitienne canonique des espaces homogènes complexes, Canad. J. Math., 7 (1955), 562-576.
- [9] J.L. Koszul, Sur les *j*-algebras properes, 1966 (unpublished).
- K. Nakajima, Homogeneous hyperbolic manifolds and homogeneous Siegel domains, J. Math. Kyoto Univ., 25 (1985), 269-291.
- K. Nakajima, On j-algebras and homogeneous Kähler manifolds, Hokkaido Math. J., 15 (1986), 1-20.