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Representations of Weyl groups and their Hecke
algebras on virtual character modules of
a semisimple Lie group®

By

Kyo NISHIYAMA**)

§0. Introduction.

Let G be a connected semisimple Lie group with finite center and g its Lie
algebra. In the preceeding paper ([16]), we defined a Weyl group action on virtual
character modules with regular infinitesimal characters (recall that a virtual character
is by definition a linear combination of irreducible characters on G). There, the
representations of Weyl groups were completely decomposed by means of induced
representations. However, in the case of singular infinitesimal character, represen-
tations of Weyl groups cannot be canonically realized on virtual character modules.

In this paper, we will define representations of Hecke algebras on virtual
character modules with singular infinitesimal characters. These representations are
natural ones and can be considered as the “limits’’ of the representations of Weyl
groups.

Here we explain why we study the representations of Weyl groups or Hecke
algebras on virtual character modules. The irreducible admissible representations
of G were classified by R. Langlands ([11]) modulo tempered representations.
Since irreducible tempered representations were classified by A. W. Knapp and
G. J. Zuckerman ([10]), the classification of irreducible admissible representations
of G is now complete. However, their parameters attached to each irreducible
representation are very complicated, and do not make unitarizability or primitive
ideal or its Gel’fand-Kirillov dimension etc. clear. We want to classify the irreducible
representations of G into some different classes which make the invariants of repre-
sentations as listed above much clearer. To achieve this, it is convenient to consider
the Weyl group actions or Hecke algebra actions on virtual characters mentioned
above.
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Let us explain our definition of representations of Hecke algebras. The defini-
tion has three different interpretations which are interrelated each other.

Let H be a Cartan subgroup of G and Ae b} an infinitesimal character not
necessarily regular. We make some assumption on A (see Assumption 2.1). This
assumption is not essential, since it is satisfied for appropriate multiple of A by a
positive integer. Let 1oeb¥ be a dominant regular infinitesimal character which
satisfies: (1) u=A4,—4 belongs to the root lattice of (g¢, be). (2) u satisfies
Assumption 5.3. Such a 4, always exists. Then the representations of the Hecke
algebras have three different constructions explained below.

Construction 1. Let 7 be the representation of the integral Weyl group Wy(4,)
on Vy(4,) defined in [16]. Here, Wy(4,) is a certain subgroup of the complex
Weyl group W= W(g., b¢), and Vy(4,) is a subspace of the virtual character module
V(A,) with infinitesimal character 1,. We have

V(/lo)= Z$ VH(AO)»
[H]eCar(G)
where Car (G) is the set of all the conjugacy classes of Cartan subgroups of G and
[H] denotes the class of H. Put W,={we W|wl=A4}, the fixed subgroup of A in W.
Then W, is a subgroup of Wy(d)=Wy(4,) and we can define a Hecke algebra
H(Wy(A), W,) (see §3 for precise definition). Since #(Wy(1), W,) is isomorphic
to a subalgebra e;C[Wy(A)]e; (where e,=(#W,)"'3  .w,s) of the group ring
C[Wy(A)], #(Wy(A), W,) has natural action on Vy(4,). We can prove

Theorem A (Theorem 4.2). The vector space Vy(A) is isomorphic to the vector
space t(e;)Vy(4o) and we can define the representation of H#(Wy(), W) on the
space Vy(A)~1(e;,)Vi(Ay) naturally.

This theorem is valid in purely algebraic situation (Proposition 3.5).

Construction 2. The above space Vy(4) is isomorphic to a certain subspace of
analytic functions on H. We denote this space by €(H; A). For a canonical basis
of €(H; A), we can define an action of s#(Wy(4), W,) analogous to the definition of
the representation © of Wy(4) (Theorem 4.2). This is the second construction of
the representations.

Construction 3. Let ¢=¢% and Y=y be Zuckerman’s translation functors
(see §5.1 for precise definition). These functors play an important role in repre-
sentation theory ([10], [18]). We define an action o of e;we, € #(Wy(d), W,)
on Vy(A) by

a(e,we)v=(¥W;)"Yot(e,we;)op(v),

where we consider t as a representation of the group ring C[Wy(A)]= C[Wy(4,)]-
This action turns out to be a representation of s#(Wy(4), W,) (Theorem 5.6).

Since  is considered to be a ‘“‘limiting’’ functor which sends a regular para-
meter to singular one, we can characterize o as the “limit’’ of 1.
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Theorem B. The representations of H#(Wy(R), W,) constructed in the above
three ways coincide with each other.

We denote this representation by o.

Theorem C. If the infinitesimal character A is integral, we have Wi{1)=W
for each Cartan subgroup H. Therefore we can define a representation ¢ of a
Hecke algebra s#(W, W,) on the whole virtual character module V(A).

Now we comment about applications of our theory. Using the equivalence of
three definitions of &, we can reproduce some results of D. Vogan about t-invariants
(see [19]), and get some new results. We think our representation o will clarify
Gel'fand-Kirillov dimensions of irreducible representations of G and some other
invariants associated with primitive ideals of U(gc) (see [9]). These subjects are to
be treated in future papers.

Our theory may supply a number of examples for representations of Hecke
algebras. We carry out explicit calculations for the group G=U(3, 1).

Now we explain the contents of this paper briefly. After some preparations in
§1, we review the definition of the representation 7 of integral Weyl groups Wy(4)
shortly in §2 (see [16]). §3 is devoted to a general theory of Hecke algebras s#(W,
D), where Wis a finite group acting on R" faithfully and D is a subgroup of W. The
algebraic part of the proof of Theorem A is contained in this section. In §4, we
give the definition of the representation o of #(Wy(4), W,). Main theorem,
Theorem 4.2, says Constructions | and 2 are equivalent. We study the com-
mutativity of Zuckerman’s functors and Hirai’s method T of constructing invariant
eigendistributions in the first half of §5 (Propositions 5.1 and 5.2). These results
take an important part in the following theory. The main theorem in §5 is
Theorem 5.6 which states Construction 3 is equivalent to Construction 2 (and
hence to 1). Thus we establish Theorems B and C in this section. In §6, we apply
our results to study t-invariants and get several results. Some of them are already
obtained by D. Vogan ([19]). In the final section §7, we give an example of the
representations of Hecke algebras in case of G=U(3, 1). Essentially, G=U(n, 1)
(n=2) can be treated in the same way.

Hirai’s method T is explained in Appendix A because it is an important tool
for our theory. And, in Appendix B, we discuss Assumptions 2.1 and 5.3. One
can conclude these assumptions are not essential.

The author is grateful to Professor T. Hirai for his constant encouragements
and useful discussions.

§1. Notations and preliminaries.

1.1. Let G be a connected semisimple Lie group with finite centre. We always
assume G is acceptable (see below). Let g be the Lie algebra of G and U(gc) its
enveloping algebra. In the following, we denote Lie groups by Roman capital
letters and its Lie algebras by corresponding German small letters. The complexi-
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fication of a Lie algebra will be denoted with the subscript C. Let H be a Cartan
subgroup of G. Then the complexification g, of g has a root space decomposition
with respect to h.:

8¢=bc® asZA Gu»

where 4 is the set of roots of (g¢, b¢) and g, is the root space corresponding to a.
We fix a positive system A+ and put p=3 a/2 (0 € 4*). Define an analytic function
¢, (aed) on H by Ad (W X,=¢,(h)X, (he H), where X, is a non-zero root vector
for a. We call G acceptable if there exists a connected complex semisimple Lie
group G, with Lie algebra g, which has the following two properties. (1) The
canonical injection from g into g, can be lifted up to a homomorphism of G into
G¢. (2) Let H be the analytic subgroup of G corresponding to be.  Then £ (exp
x)=exp p(x) (x € h¢) defines a character of H. into C*.

We denote the Weyl group of 4 by W=W(4) and call it the complex Weyl
group. Let B be a subgroup of G and D be a subset of G (or of g;). Then we
define W(B; D)= Ng(D)/ZgD), where Ng(D) denotes the normalizer of D in B and
Zg(D) the centralizer. We call W(B; D) a Weyl group of D in B.

Let Aebh¥ be a linear form on h,. The complex Weyl group W acts on h¥
and consequently acts on [ in a contragredient manner. Let W, be a fixed subgroup
of Ain W:

W,={weWlwi=21}.

We call A regular if W,={e} and otherwise call it singular.
We introduce an integral Weyl group Wy(2) for H and A after [16]. Let Wx(1)
be a subset of W defined by

Wh(A)={we W| &, (exp x)=exp wA(x) (x € })) defines a character of H,},

where H, denotes the connected component of H containing the identity element e.
Then Wy(A) is by definition the largest subgroup of W which leaves Wpy(4) stable
under the right multiplication (cf. [16, Prop. 1.5]). Let H, be a connected com-
ponent of H. Then an element we W(G; H,) normalizes h. Therefore we W(G;
H,) determines an element w of W(G;bh)c W. Similarly, for we W(G; H), the
element we W(G; b)) can be defined. We remark that Wj(1) is stable under the
left multiplication by the elements of W(G; h). For se W(G; H,) (or se W(G; H))
and t € W(4), we write st e Wi;(4) instead of §¢ for simplicity.

1.2. Invariant eigendistributions. We review the facts about invariant eigen-
distributions (IEDs) and characters on G briefly.

Let (m, ) be an irreducible representation of G on a Hilbert space $. We
assume 7 be admissible, i.e., K-multiplicities are finite. Then = has a character
@, which is a distribution on G:

0.(N)=Trace | _flg)n()dg (feCF(G)),
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where CZ(G) is the space of C*-functions with compact supports. The irreducible
character @, has the following remarkable properties.

(1) It is invariant under the inner automorphisms of G.

(2) It is a simultaneous eigendistribution of two-sided invariant differential
operators (Laplace operators) on G.

(3) Essentially, it coincides with a locally summable function f, on G which is
analytic on the open dence subset G’ of regular elements of G.

Definition 1.1. We call a distribution @ on G invariant eigendistribution (IED)
if it satisfies the properties (1)-(2) above.

The property (3) follows from (1) and (2) (see [3, Th. 2]).
Take an [ED ©@. Then O is an eigendistribution of Laplace operators:

z0=x(2)0 (zeJ),

where J is the centre of U(gc) (identified with the space of Laplace operators).
The algebra homomorphism y of 3 into C is called the inifinitesimal character of ©.
Let H be a Cartan subgroup of G. We give a local expression of ® on H. By
the Harish-Chandra map n we can identify 3 and U(h.)", the space of W-invariant
polynomials on . Then y defines an element of Hom,,, (U(he)?, C)~b¥/W:

3. T U
xaN /165"5
C

Corresponding element A€ b is also called an infinitesimal character of ® and we
denote this by y=yx,. Remark that y,=y,,, for any we W.
Let he HN G’ be a regular element. Then we have for a sufficiently small
xebh,
DO(hexpx)= 3 c(w, h; x)exp wi(x).

weW

Here,

Dlhy=&,(h) 11 (1=&5(h)

is called the Weyl denominator. The coefficients ¢(w, h; x) are polynomials in x.
If all the coefficients can be taken as constants in x for any w, h and any Cartan
subgroup H, we call © a constant coefficient IED.

1.3. Virtual characters and IEDs. A virtual character is by definition a linear
combination of irreducible characters. The space of all the virtual characters
with infinitesimal character A is denoted by V(1). We proved the following
in [14, 15].

Proposition 1.2. The space V(1) of virtual characters coincides with the space
of constant coefficient 1EDs with infinitesimal character A.
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By this proposition, virtual characters and constant coefficient IEDs are
identified. Let us introduce the results on IEDs obtained by T. Hirai ([5, 6]).
Let H be a Cartan subgroup of G and take an infinitasimal character Aeh%. Define
a family of analytic functions on H as

B(H; )={C]|{ is analytic on H, satisfying the following conditions (1) and (2)}.
(1) (s an eigenfunction of U(hc)" with eigenvalue A.
(2) (s e-symmetric under W(G: H), i.e.,

{(wh)=¢(h; w){(h) (heH,we W(G: H)),
where e(h; w) is defined as follows:

e(h; wy=(— 1N ;‘([w) sgn (&w-1,(h)),

Nw)=#{ae 4% |a is imaginary and w™'a <0},
R(w)={aed* |ais real and w™la<0}.

We say a root aed is real (or imaginary) if it takes real (respectively, purely
imaginary) values on . The function &(h; w) is locally constant on H, with values
in {+1}.

Each element { € B(H; A) can be written as

{(hexpx)= 2 a,(h;x)expwA(x) (xeb, he H),
weW
where a,(h; x) is a polynomial function in x depending on h andw. If a,(h;x)can
be taken as constant in x for each h and w, we call { of constant coefficients. Put
C(H; A)={CeB(H; 1)|{ is of constant coefficients} .

Theorem 1.3 (T. Hirai). (1) There is a canonical linear isomorphism T of
B(H: A) into the space of IEDs W(4) with infinitesimal character 2. Let Ny(1)=
T(B(H; A)). Then

A() =3 ®Ay(2)
H
is a direct sum, where H runs through all the representatives of conjugacy classes of

Cartan subgroups of G.
(2) Let Vi(A)=T(C(H; A)). Then

V)=32 Vy(h)
gives a direct sum decomposition of the space of constant coefficient 1EDs (or the

space of virtual characters).

The definition of the linear map T is described in [6, §3]. We explain the con-
struction of T in Appendix A for later use.
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§2. The representations of integral Weyl groups Wy(4).

2.1. Let Car (G) be the set of all the conjugacy classes of Cartan subgroups of
G. Take [H] e Car(G), where [H] denotes the conjugacy class of H.

At first, we describe generators of the space €(H; 1). Let {H;|0<i<I/} be a
complete system of representatives of connected components of H under the inner
automorphisms of G (we take H, as the connected component of e). For te Wi(4),
0<i<! and a;e H;, we define an analytic function {(a;, tA; h) on H as follows.
Define {(a;, tA; h) first on H,. Putfor he H;, -

(2.1 {ay, tA; h)=sew(2‘ , &(a;: s)eulai'(sh)),
where £,, is an analytic function on H, defined by &,;(exp x)=exp tA(x) (xeb). On
W(G; H)-orbit of H;, we put {(a;, tA; h) as

La;, tA; wh)y=¢e(h; w)l(a;, tA; h) (he H;, we W(G; H)),

and for h e H outside of W(G; H)-orbit of H;, put {(a;, tA; h)=0.

Easy calculations tell us that {(a;, tA; *)e €(H; 1). Moreover, one knows
that {l(a;, tA; *)|0<iZ], te Wi(4)} spans &(H; A) for a fixed set {a;|a;e H,
0<i<l).

In the following of this paper, we assume that {a;} can be taken nicely for A.
More precisely, we put the following assumption on A.

Assumption 2.1. For each Cartan subgroup H of G, there exists {a;} such that
(0) a;eH;(0<iZl)and ag=e.
(1) ¢&,(a7'(sa))=1 for any te W5(4) and se W(G; H)).

, Remark 2.2. For a special G, Assumption 2.1 is satisfied for any A. For
example, if G=SL(n, R), Sp(2n, R), SOy(p. q) (p+q=2n) or a complex Lie group,
then the assumption is satisfied. In general, if we replace A by mA for some positive
integer m, the assumption above is satisfied. More detailed discussion is given
in Appendix B.

2.2. In the following of this section, we assume that A is regular. Then it is
known that B(H; A)=C(H; A) and V(1)=A(A). We recall the definition of the
representations of integral Weyl group Wy(4) on Vy(2) (see [16, §3]).

Since B(H; )=C(H: 2)={{(a;, th; *)|0<i<l, te W()> (linear span over
C) and Vy(A)=T(B(H; 1)), we may identify B(H; A) and Vy(A) by T. Then we
Wy(A) acts on {(a;, tA; *) as

Z(W)(a;, th; *)={(a;, tw™'4; *).
An element w € Wy(4) acts on T{(a;, tA; *) as
t(w)(Tl(a;, tA; %)= T(R(w){(a;, tA: *)).

Assumption 2.1 assures that this definition of 7 is well-defined. We can decompose
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the representation (z, V(1)) of Wy (1) completely in terms of induced representations.
Let us explain this. Let I';c Wj(4) be a complete system of representatives of a
coset space W(G; H)\Wp(1)/Wy(A) and put

WG, y)=Wu(A)ny'W(G; Hyy (yel),
e(i, y: wy=ela;; ywy™") (a;e Hi, we W(i, y)).
Then &(i, y; *) is a character of the group W(i, y).

Theorem 2.3 ([16, Th. 5.1]). The representation t of Wy(A) on Vy(A) given above
is decomposed into a direct sum of induced representations:

(1, Va(A) = ’0@ YO Ind (e(i, y: %) Wi, 1) 1 Wi(2),

i yely

where Ind (e; A t B)=Ind Be.

Now we remark the connection between our representations and the represen-
tations of Weyl groups which Zuckerman defined ([10, Appendix], see also [1]).
In the case that A is integral for G, i.e., W, (A)=W for any H, our representation of
W is defined on the whole space of virtual characters V(4)=Y.§ V,,(1). This repre-
sentation is equivalent (under Assumption 2.1) to Zuckerman’s one. But for general
2, his definition is only applied to a subgroup

Wo={we W|wi—AeQ[4]}

of W, while our definition can be applied to a larger subgroup than W,. Remark
that Zuckerman’s representation of W, and ours restricted to W, are almost equi-
valent (in fact, replacing A by mA for some integer m>0, we can prove they are
equivalent).

§3. Generalities on Hecke algebras.

This section is devoted to explain general properties of Hecke algebras and their
representations. We use notations independent of the other sections here.

3.1. Hecke algebras. Let W be a group (infinite or finite) and D its subgroup.
We assume that

3.1 [D:Dnx"'Dx]< o0 for any xe W.

Let M={DxD|xe W} be the set of double cosets, and we denote by s#%(W, D) a
free abelian group generated by M. For 4, B, Ce M, put u§ ;=#(D\A"'CNB)<
and define the product 4B by

AeB= 3 u§C.
CeM

The algebra s#%(W, D) with the above product o is called the Hecke algebra of (W, D)
over Z([7, 8]). We simply call s#(W, D)=#%(W, D)® ; C the Hecke algebra of
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(W, D) in this paper.

Now we assume that Wis a finite group. Remark that (3.1) is always satisfied.
In this case we have more convenient interpretation of s#(W, D). Let C[W] be a
group ring of Wand put

_ 1

Then the subalgebra e, C[W]e, of C[W] is isomorphic to s#(W, D) as an algebra.
As a consequence, s#(W, D) is a semisimple algebra. Since e, is idempotent, (W,
D)~e,C[W]ep, has a unit element e;,. In the following, we always regard s#(W, D)
as the subalgebra e, C[W]e, of C[W].

Take a representation © of W on a finite dimensional vector space V. Then
there corresponds a representation of the group ring C[W] naturally. We denote
it also by n. Since # (W, D) is a subalgebra, we can get a homomorphism

| #w,p): (W, D)— End (V).

But it does not send the unit element ej, to the unit element 1, of End (V). To avoid
this situation, we decompose V as

V=V,®V, (direct sum of D-modules),

where V;=V?={ve V|n(d)v=v for any de D} and V, is the complement of V,.
Since n(ep)V="V,, we have

and n(ep)=1y,. Therefore we get a representation of s#(W, D) on V; from a repre-
sentation (7, V) of W. We call this representation of s#(W, D) the reduction of
(m, V) to s#£(W, D) and denote it by Red J'n. The representation space of Red }'n
is V, = V]V, as described above.

Lemma 3.1. If n is irreducible, then Red J'n is irreducible.

Proof. It is easy to see that every vector of V| except O is cyclic, and consequently
Red J'nis irreducible. Q.E.D.

3.2. The representations of the Hecke algebra s#2(W, W,).
Let us consider the following case. Take a finite group W' acting on R" faithfully.

(*) For a subset W~ of W', let A and W be subgroups such that Ac{ae W’'|
aW~=W~} and W={beW’' |W~b=W~}. Then there exists Ae R" such that
W,={we W'|wil=1} is a subgroup of W.

Now we treat the Hecke algebra s#(W, W,) and their representations. Take
a character y of A. Define an element of the group ring of R" by

C(t9 )“0)= a;{ X((l) exp at'lo (t € W~) >

and put B(Le)=<L(t, Ag)|te W~ (linear span over C), where A,€ R" is a regular
element, i.e., W, ={we W'|wly=1} ={e}.
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Lemma 3.2. Linear transformations ©(w) (w e W) on B(1,) defined by
™(w): (1, Ag) — L(tw™", 4o)
give a representation (t, B(4y)) of W.

As described in 3.1, we get a representation Red }}, 7 of s#(W, W,) from (z, B(4,)).
In the following, we will give another interpretation of Red }} .7 in the above situation.
This is achieved by translating regular parameter A, to singular one. Returning to
A€ R"in (), we define {(t, 4) (te W~) and B(4) as {(t, 4,) and B(J,), using 4 instead
of Ay. Define a linear map P of B(4,) to B(A) by

PC(’s XO)ZC(L A)

Remark that P is onto but not injective in general.

We construct a representation ¢ of s#(W, W,) on the space B(4) as follows.
Recall that o#(W, W,)=e,C[W]e,, where e,=(#W,) 'Y, w,s. For e,we,e
H (W, W,), we put

(3.2 a(e;we)C(t, )= P(t(e;we,){(1, Ao)) .

Lemma 3.3. The linear operators a(e;we;) (we W) define a representation of
the Hecke algebra s#(W, W,).

Proof. At first we prove o(e;we,) is well-defined. That is to say, we prove that
if

> ol =0,

teW~

then it holds

(33) P(s(ewe;) 3 et 20)=0
for any we W. We use the following lemma.

Lemma 3.4. Let B(4,), be the space of all the W,-fixed vectors and B(Ly), the
complement in B(A,) as W)-module. Then we have Ker P=B(1y),.

We will prove this lemma after the proof of Lemma 3.3.

Now apply Lemma 3.4 to the element Y ¢,{(t, 4,). Since it belongs to Ker P
by assumption, it generates a W,-module that contains no non-zero fixed vector.
So we have

we)( 3 allt, 2)=0

and we have proved (3.3).
To verify that ¢ defines a representation is now an easy task. Take wy, w, € W.
Then we have

o(e,we;)a(e,w,e;){(t, A)=a(e;w e) P(t(e;wze,)(1, A0))
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=P(t(e,w e;)t(e;we,){(t, Ay))
=P(t(e;w e;,w,e,)((t, A5))
=o(ewie;w,e){(t, 2). Q.E.D.

Proof of Lemma 3.3. At first we show that Ker P contains B(1,),. For any
se W,, we have

P(r(s™)L(t, A0)) = P(L(ts, o))
={(ts, )={(t, H=P(t, 4)).
Therefore, for any v e B(4y), We have t(e;)v=0 and

0=P(rle))=(FW)~! 3, P((s)0)=(W)™" 3 P(o)=P().

Thus we have P(v)=0.

Now we prove the reversed inclusion. Assume that P(v)=0. Decompose v=
vo@v, along the direct sum B(Ay)=B(Ag)oD®B(4y),. Since P(v)=P(vy)+ P(v,)=
P(v,) from the above, we can assume that v=v, € B(4;),. Let {t;|iel} bea complete
system of representatives of A\W~. Clearly, {{(;, 1o)|i€I} is a basis of B(4,).
So we can write

v= ,-§ cil(ti, Ag) (c;e C).
Using this expression for v, we rewrite the equality 7(s)v=v for any se W,. We have
(s Ho= iE cil(ts, Ao)= 'GZI ¢; aa x(a)exp at;si, .
If we write t;s=a(i, s)t € A{t;} = W~, then the above formula becomes
; ¢ ; x(a) exp aa(i, $)tyAo
= ; cix(a(i, s)™1) ; x(a) exp at;yAo
=3 eaali, 55 (o o).

This is equal to v=3_ ¢;{(t;, o). Therefore we have c¢;= x(a(i, s))c;, for any se W;.
Now, since

0=P()= T cl(ts H= ¥ & T @) exp at,

the coefficients of exp at;A must be zero. Remark that a,t;dA=a,t;A (a,, a, € A) is
equivalent to that there exists an se W, such that a,t;=a,t;s. Therefore the co-
efficients of exp at;/ is equal to

> Ci(s)X(aa(i’ N= 2 cxla)=EFW))cix(a),
seWa seW 4

where we used ¢;=c;yx(a(i, s)). Now we proved that P(»)=0 and ve B(4,), give
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¢;=0, and therefore v=0. Q.E.D.

Proposition 3.5. The representation (o, B(A)) of #(W, W,) is equivalent to
Red (7, B(4p)).

Proof. By Lemma 3.4, we have Ker P=3(4,),- Therefore P defines a linear
map of the representation space of Red i,z to B(4). Itiseasy to see that P intertwines
Red y,7 and 0. Q.E.D.

§4. Representations of Hecke algebras on virtual character modules.

4.1. After the general theory in §3, we now return to the notations and subjects
in §§1 and 2. Let H be a Cartan subgroup of G and {H;|0Zi<I} a system of
representatives of conjugacy classes of connected components of H under the inner
automorphisms of G. Let Aeh§ be an infinitesimal character not necessarily
regular, and W, its fixed subgroup in W. We choose 4 to be dominant with respect
to A* in the sense that Re (A, a>=>0 for e 4*. As is mentioned in §2, the virtual
character module V(A) with infinitesimal character 1 is decomposed as a vector
space over C:

V= 3® Vyd).
[H]eCar(G)
Each V() is isomorphic to the vector space €&(H ; 1) of e-symmetric A-eigenfunctions
on H which are of constant coefficients. Put €(H; A)={{(a;, tA; *)|te Wx(A)> and
Vi(A)=T(€(H; 2)). Then clearly it holds that

C(H; D= T C(H; D, VulD)= £ Vi)

Take a pe b such that (i) u belongs to the root lattice Q[4] and (ii) A=A+ pu
is dominant regular. Then we have the following lemma.

Lemma 4.1. (1) The subset Wy(4) coincides with W(Ag).
(2) The integral Weyl group Wy(A) coincides with Wy(2,).
(3) The subgroup W, is contained in Wy(A).

The proof is easy. So we omit it.

4.2. Now we apply the results of §3 to this case. Take a character ¢(a;; *)
of W(G; H,) and form an analytic function {(a;, tAy; *) (a;€ H;, te W(2)) on H; as
{a;, thg; a;expx)= 3 &a;; s)exp sthy(x).
seW(G;H;)

Then C(H; Ao)=<{(a;, thy: *)|te Wi(A)) is a Wy(d)-module as described in §2
(under the Assumption 2.1). Define a linear operator P: €(H; 4,)—»C,(H; 1) by
P({(a;, thy; *))={(a;, tA; *¥). Then we come to the situation of §3.2, if we replace
W', W, A, W~, W, and y in §3.2 by W, Wy(1), W(G; H,), Wi(4), W, and &(a;; *) in
this section respectively. We get the following.
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Theorem 4.2. (1) For e,we; € #(Wy(A), W,), put
o(e;we) Tl(a;, 1A h)y=#W,)™" 3 Tl(a;, tsw™'A; h) (heH).

seW

Then o is a representation of #(Wy(A), W,) which carries the unit element of
H(Wy(4), W,) to the unit element of End Vi(1). Denote again by o this repre-
sentation of #(Wy(L), W) on the virtual character module Vy(A)=3® Vi (A)
(0<i<)).

(2) The representation (o, V(L)) of the Hecke algebra s#/(Wy(), W,) is equi-
valent to the reduction (with respect to the subgroup W,) of the representation
(1, Vi(4o)) of Wi(Ao)=Wy(A), the integral Weyl group:

(0, Vig(A))~Red 2l (1, Viy(o)).

Using Theorem 2.3, we can decompose (o, V(1)) into a direct sum of “induced’’
representations. Namely, if we write

RI(¢; At Bl C)=Red 2Ind &¢,
we have the following.

Corollary 4.3. The representation (o, Vy(A)) of s#(Wy(L), W,) defined in the
above is decomposed as follows:

(0, V)= £B TERIG(. 73 )3 Wi ) T WD) L W),

i= yel;
where I';, W(i, y) and &(i, y; *) is given as in §2.2.
Let

(4.1) (@ Vuldo))= % myp

neWn() "

be the decomposition into irreducible components, where m, is the multiplicity of .
Remark that we can get (4.1) from Theorem 2.3 easily for explicit cases. We put

F(A)={ne Wy(A)" | n has non-trivial fixed vector for W,}
={ne Wy(A)" |[n; Ind (1; W, T Wy(4))]#0}.
Then we have

Corollary 4.4. The representation (o, Vy(1)) of #(Wy(R), W;) has the
decomposition into irreducible components:

(0, Vu(A))= ¥ m,Redjutio) y.
neF(4)

Proof. This is clear from Lemma 3.1 and the fact that Red n#(0) is equivalent
to ne F(4). Q.E.D.

In the case where 4 is integral, i.e., Wy(A1)= W for each Cartan subgroup H of G,
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we have the representation

(0. V(A= 39 ) (0, V()

[H]eCar(G

of #(W, W,). Then Corollary 4.3 is reduced to the following (see [16, Th. 5.2]).

Corollary 4.5. If A is integral, the representation (a, V(1)) of # (W, W,) is
decomposed as follows:

(0. V()= ¥© SORI(elas: »): W(G; H) 1 WL W)).
[H]eCar(G) i=0

Theorem 4.2 says that “if we know Wy(4,)-module structures completely for
arbitrary regular infinitesimal character A, then we know the s# (W, (1), W,)-module
structure for singular infinitesimal character A’°, by translating the regular parameter
Ao to the singular one 4. This theorem is useful to study the properties of the virtual
characters (or irreducible representations of G) at singular parameters. For example,
we have the following result about the dimension of V(4).

Corollary 4.6. Let 1 and A=A+ be as before. For a Cartan subgroup H,
put

n(H; Ay, A)=dim {v e Vy(4y) | 1(s)v=v for any se W,}.
Then we have

dim V()= X  n(H; Ay A).
[H]eCar(G)
Remark. Recall that dim V(4) is equal to the number of (equivalence classes
of) irreducible admissible representations which have infinitesimal character 4.

§5. Relation to Zuckerman’s translation functions: another interpretation of the
representation o.

5.1. Zuckerman’s functors. We use the notations of §4 (and, of course, we
suppose Assumption 2.1). Let ¢=¢% and Y=y be Zuckerman’s translation
functors (see [20]). Here we explain the properties of ¢ and y briefly for later uses.
Originally, Zuckerman defined them using the tensor products with finite dimensional
representations of G. Functors ¢ and ¥ are defined as

¢ =Proj (4o)°(F,®(-))Proj (1),
Y =Proj (D(Fi®(-))- Proj (o),

where F, is the irreducible finite dimensional representation of G with highest weight
u, and F} is its contragredient. Notations Proj (4) and Proj (4,) mean *projections’’
to the components with infinitesimal character A and A, respectively. So ¢ and ¥
are by definition the functors of categories of (g¢, K)-modules. Since both of
them are exact functors, they induce linear maps between the virtual character
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modules V(A) and V(4,). Here we denote these linear maps by the same letters ¢
and y:

@: V() — V(do). ¥: V(do) — V().

Take O, € V(4,) and [H] e Car(G). Then @, has a local expression arround
a regular element he H'=H N G’ as explained in 1.2:

DOo(hexpx)= 2 c.(h)exp wio(x) (xeb),
where c,(h) is a locally constant function on H'. By (3.8) in [20], we have

D(y©,)(hexp x)= Wgw ¢owuhe(h) expwA(x) (xeb).

Similarly, if we express © € V(4) as

DO(hexp x)= Zw a,(h)expwl(x) (xeb),

then by (3.7) in [20], we have
D(¢O®)(hexpx)= 3 % &uu(h)a,(h)expwtdy(x),

teWa weW

for he H and x€e}.

5.2. Relation to Hirai’s method 7. Let & be a linear map from B(H; Ay)=
G(H; Ay) to €(H; A) defined as follows. For 0<i<!and te W§(4,), put

Pl(a;, thos M)=&_,(a)l(a;, tA; h) (heH),
where u=A,— 4 is an element of Q[4].

Proposition 5.1. For any (e B(H; A)=C(H; 4y), we have Yy(T{)= T(2(()),
where the notation T means Hirai's method T (see [6] and Appendix A).

Proof. It is sufficient to show the proposition for {={(a;, tAg; *). Let D be
the Weyl denominator as in §1. Then for a;exp x € H; (x € h), we have

erDY(T() (a;expx)= 3 ) - s-uuae(a;s s) exp (14, 5x)

seW(G;H;
= & —tp(ai) 2 s(ai; S) exp (tl’ Sx) )
seW(G;H;)
by the results of [20] and the definition of T. Here we used
¢ s-ua)=¢_,(a) for any se W(G; H)).
This follows from Assumption 2.1. On the other hand, we have
erDT(2(0)) (a; exp x) = 2({) (a; exp x)
=¢_(a) X ela;; s)exp(td, sx).
seW(G;H;)

Thus we proved
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Y(T) |y =T(2O) 1y

Since Y(T¢) and T(#({)) are extremal IEDs of height H, we can prove Y(T{)|, =
T(2({))|, for another Cartan subgroup J inductively on the order on Car(G) as
given below. The proof depends fully on the construction of T. We explain about
T in Appendix A.

At first, we prepare notations. Let J, be a connected component of J and F
a connected component of Ji{(R)={heJ,|{,(h)#]1 for xedg}. Denote by X =
2(J,) the root system consisting of all the real roots a € 4(g¢, i¢) for which &,(h)>0
on J,. Let S=S(J,) be the subgroup of W(G: J,) generated by s, (x € X), where s,
denotes the reflection with respect to a. Put P(F)={aeX|{(F)>1}. Then P(F)
is a positive system in 2 and we denote by IT1=1I(F)={«,,..., o,} the simple system in
P(F). Let B®(1=m<=r)be a Cartan subgroup obtained from J by the Cayley trans-
form v, =v, with respect to the real simple root a,eIl. Then [B™]>[J] holds.
By the induction hypothesis, we have

(5.1 Y(TY) [gm=T(2(D)) |gn (1=m=r).

Put fm=DY(T()|gmn=DT(P({))|pn. We devide the proof for Y(T{)|,=T(2())|,
into two steps as in the proof of Theorem 4.3 in [16].
Step R. Put

Z,={heJ|¢, (=1},
2={heZ,|E(h)#]1 for any root a# +a,,}.

Then for ae X, nJ, and x €, we define
<Ram f"’) (a exp x)=f"(a exp v,(x)).

On the other hand, if we write g™ =D({T)|g as

gm(a exp x)= wg_;y ¢, exp wig(x) (c,eC),
then, by (5.1) and the results of [20], we have
5.2) f™(a exp x) =WEZW c & _wula) exp wi(x).
For a function g on J of the form:

glaexp x)= W§W ¢, eXpwio(x) (ael’, xej),

we define an operation ¥, by

Vig)aexpx)= 3 c.&-,u(a)exp wA(x).
Then, by (5.2) clearly it holds that

(53) lpJ(Ramgm)=Ramfm (lémér)
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Step S. For a function g on J, and se S, we define sg as sg(h)=g(s™'h) (he
J,). For each s,=s,, (1<m=r), we put

M(fm; sm)z(l _sm)(Ramfm)’
Each element s € S can be written in the form s=s; s;,---s;,. Then we put
A fry )= (f11; 5;)+5;,L(f125 5,)+ . +8;,80,...8, L% 5;,).

It can be proved «(f"',...,f"; s) is independent of a choice of expressions for seS.
Finally, we put

B(f',....fH=#9)""! SXE‘,S (f.. fr8).

Similarly, @(g'...., g") can be defined. Then, we have DT(2({))|r=2(f"..... ")
and DT() |p=%(g"'..... g"). Since DY(T)|p=y,(#(g',..., g")) holds, it is enough
to show that y,(@(g',..., g"))=%&(f'....,f"). But this is reduced to the fact that

Wy(s(R,,g™)=5(R,, ™).

Let us prove this. Taking (5.3) into consideration, it is enough to show

(5.4) v (sg)=s(4(9))

for an analytic function g on J, of the following type: for ae FnJ' and x €, g has
an expression

glaexp x)= w:;w ¢, exp wiy(x) (c,eC).
Put b=sa. Since
sg(bexp x)=g(aexps x)= wg’w ¢, €Xp sWAy(x),
We have for x €,
UA59) (B expX) = 3 Cul puulb) exp swilx)
= wg’w ¢ & _ua) exp swi(x).

In the equality (%), ¥, is applied to the expansion of sg at be FnJ’. On the other
hand, we have for the right hand side for (5.4),

s(4(9)) (b exp x)=y,(g)(a exp s~'x)
» Zw o (@) exp wi(s™1x)

= 5 cubo @) exp swA(x).

weW

Here, in the equality (%), Y, is applied to the expansion of g at the regular point
aeFnJ'. Thus we proved T(2(0) |r=¥(T{) |-
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Now, since F is arbitrary, we proved T(2({))|,=y(T{)|, and the induction
step is completed. Q.E.D.

Let 2 be a linear map of €(H; A) into €(H; 4,) (from singular A to regular A,)
defined by

20(a;, tA; h)=w§h Cowul@)l(a;, twhos h)
= 3 Cal@)Rv )y thot h).
Then we can prove the following, similarly as in the proof of the preceeding propo-
sition.
Proposition 5.2. For any { € €(H; 1), we have o(T{)= T(2({)).
We omit the proof to avoid the repetition of the same sentences.

5.3. Representations of Hecke algebras. To consider relations between
Zuckerman'’s translation functors and our representation o, there appears always
the trifling constants {£,,(a;)}. In the following, we want to consider the case where
these constants are all reduced to 1. We assume:

Assumption 5.3. For any te Wj(4) and 0<i</, &, (a)=1 holds.

This assumption is not essential. In fact, we can take p and {a;} so that
Assumption 5.3 holds (see Lemma B.4 in Appendix B).

Corollary 5.4. Under Assumptions 2.1 and 5.3. we have
Ker yto=Ker1(e;) on V(i).

Proof. By Proposition 5.1, we have Kery=T(Ker#). Since P in §3 is
equal to 2 by Assumption 5.3, we have

[H]eCar(G)

from Lemma 3.4. The subspace €(H; 4,), is given by
C(H; Ao)o={LeC(H; Ao)| Z(e;){ =0},

where # is defined as in 2.2. Clearly, it holds that T(C(H; 4y),)=Ker 1(e;) (in
Vu(4o)) and, summing up through [H] e Car (G), we have the corollary. Q.E.D.

One can prove the following lemma similarly as in the proof of Theorem C.2
in [10].

Lemma 5.5. For © € V(J,), we have
oY(O)= . ; U(s)O =(#W))1(e,) 0.

Using Lemma 5.5, we introduce another interpretation of the representation o
of the Hecke algebra s#(Wy(1), W,) in §4.
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Theorem 5.6. For e;we; € H(Wy(A), W,) and O € V,(1), put
(5.5) a'(e;we)O =(#W;)"'(Yot(e;we;)o9) (O).

Then (o', Vy(A)) defines a representation of the Hecke algebra s#(Wy(2), W), and
moreover g’ is equal to o.

Proof. Since ToP=T-2 is surjective, there exists {,€C(H; 4,) such that
T(2((,))=6. Then we have

(#W,)~ ot(eawez)op(T(2Lo))
=($W,) "Yot(e,we)-oY(TL,) (by Proposition 5.1)
= ($W,) " "Yot(e;,we)o(W,)t(e,) (T,) (by Lemma 5.5)
=yot(e,we;)(TEy).

The last formula and Proposition 5.1 tell us that this is equal to o(e we; ) T(P{y))=
a(e,we,)0O. Q.E.D.

§6. r-invariants for admissible representations.

In this section, we show some applications of representations of Weyl groups
or Hecke algebras to study admissible representations of G. Our representations
7 and ¢ are closely related to so-called t-invariants of an irreducible admissible
representation of G.

Let (m, ) be an irreducible admissible representation of G on a Hilbert space
9. We denote by (n, Hi) the corresponding irreducible (g, K)-module on the
K-finite vectors of . Then we can define a grobal character @(n) of (%, Hi) as in
§1. Here we suppose that @(n) has a dominant regular infinitesimal character i, €

be.
Definition 6.1. Let I be the simple system in A*. Then t-invariants &(r)
of (n, ) is a subset of IT defined as

P(n)= {oc ell ‘ %‘;—%Z € Z and ©(s,)0(m)= — @(n)},

where ( , > is an inner product on h¥ invariant under the action of W. Remark that
if a, Ay)/{a, &) is an integer, then s, € Wy(4,) holds for any H.

Remark. Our definition of t-invariants may slightly differ from that of Vogan’s
(see [19]). The difference between our representations of Weyl groups and Vogan’s
([1, 19]) is the cause of the difference of t-invariants. However, most of the results
obtained by D. Vogan are valid in our situation (for example, see Propositions 6.2
and 6.4).

Put p=(a, 4o)/{a, a))a. Let p be a positive integer such that £, (a;)=1 for
any i on each Cartan subgroup H ([H]e Car(G)). The existence of such a p is
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assured for a special choice of {a;} (see Appendix B).

Proposition 6.2 (D. Vogan). Take an aell such that {a, Ay>/<{a, a) e pZ.
Put A=2o—p, u=(a, Ao>/{a, a))a. Then W,={e.s,} and the following two
conditions are equivalent.

(1) Yi(O(n)=0.

(2) ae&L(n).

Proof. This proposition is essentially known (see [19, Prop. 3.2]). But here
we give a proof because it shows usefulness of our theory. The proof is very short,
if we use the results of preceeding sections.

We know from Corollary 5.6, Kery={ve V(4y)|t(e;)v=0}. The equation
7(e;)v=0 means (s, )v= —v because e,=(e+s,)/2. Q.E.D.

Example 6.3. (1) If n, is a finite dimensional representation, then F(n,)=11.
(2) If m, is a discrete series representation with Harish-Chandra parameter
Ao €bE, where b is a compact Cartan subalgebra of g. Remark that G has discrete
series representations if and only if G has a compact Cartan subgroup. Choose a
positive system 4% so that 4, is dominant regular with respect to 4*. Then we have

F(ny)={aell|ais a compact simple root}.
This is a deep result of W. Schmid ([17, Th. 9.4]).

Take a regular dominant infinitesimal character A, €b¥. If necessary, replacing
Ao by a multiple of 4, by some positive integer, we can assume:

(1) For suitable choice of {a;}, 4, satisfies Assumption 2.1.

(2) If Ca, Aoy, ape Z for an aell, then pu=({a, Ao>/{a, ad)o satisfies
Assumption 5.3.

This is clear from the argument given in Appendix B.

Let {©;|jeJ} be the set of all the irreducible characters of G with infinitesimal
character 4,. Take an a e IT such that {a, 4o)/{a, a) € Z. We put s=s,e W, the
reflection with respect to a and A(a)=24,—({a, Ag»/<a, ad)x. Then Wiw =16, s,} <
Wu(4o) and A(a) satisfies Assumption 2.1 for the same {a;}. Let J(s), s=s,, be the
subset of J defined as

Js)={jeJ|(s)0;=-0;}={jel|seF(O))}.
Proposition 6.4 (D. Vogan). (1) For ke J\J(s), we have

T(S)@k = @k + z zJ@j 5
Jed(s)
where z; (jeJ(s)) is a non-negative integer. Consequently, t(s)®, is a true
character.
(2) Ifwe put Vy(Ao)=2 ;s ZO;, then 1(s) preserves V z(A,).

Proof. The proof is carried out similarly as in the proof of Lemma 3.11 in
[19]. So we omit it.
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Now we return to the situation in §5, i.e., start from a dominant A not necessarily
regular and put 1,=A+ p dominant regular. Of course, we assume Assumptions 2.1
and 5.3. Put [I(A)={aeIl|{4, a)=0}. Then W, is generated by {s,|a € I1(1)}.

Theorem 6.5. (1) Put
V(Aos II(A)=<(0O;|je J(s,) for some aeII(A))|Z

generated as a Z-module. Then V z(4q; II(1)) is stable under the action of W,
and V(ig; I(A) =V z(Ag; I(A)® 7 C is the kernel of t(e;): V(Ay)— V().

(2) For an irreducible character O, it holds that Yyi(©)=0 if and only if
1(s,)@ = — O for some a € II(A).

Proof. (1) At first, we show that V ,(4,; II(1)) is stable under the action of
W,. It is enough to show that, for any jeJ(A)=\Uyens J(5,) and any a e II(2), it
holds that

1(s)0; € V(A3 11(2)) .
This is trivial, if jeJ(s,). Suppose j ¢ J(s,). Then we have from Proposition 6.4,

1(s)0;=0,+ Y 2,0, (z,eZ).
J J keJ(sx)

The second term of the right hand side of the above equation is contained in V z(1,;
II(A)) by definition. Since ©; is originally taken from V,(A,; II(1)), we proved
(500 ; € V5(4o; TI(A)), hence V z(Ay; T1(4)) is Wy-invariant.

Now we prove that V 4(4,; I1(1)) contains no non-zero fixed vector for W,. Put

Vi@ =(1+1(s))V (%),
Vo(@)=(1—1(s,))V(4o).

Then V(1g)=Vy()@ V() is a direct sum decomposition. From Proposition 6.4,
Vo(@) has a basis {@;]je J(s,)}. If © € V(4,)is a fixed vector for W,, @ is contained
in V(o) for every a € I1(4), that is to say
Oe N V().
aell(A)

Therefore, if we denote by ( , ) a W;-invariant inner product on V(4,), we have
(@, Vo(@))=0 for any aell(4). Consequently, (@, @;)=0 holds for any jeJ(4)
and we have (@, V(4,; I1(1))=0.

From the above, we see that V(4,; II(A))=Ker 1(e;). Remark that dim V(4,;
I1(2))=#J(A). From Proposition 6.4, we have for je J\J(A) and « € IT(A),

1(s,)@;=0; mod V(4y; I1(2)).

Since {©;|je J\J(A)} is linearly independent modulo V(4,; II(4)), the dimension of
the space of W,-fixed vectors is #(J\J(1)). Now, since the complement of Ker (e,)
is precisely the space of W,-fixed vectors, we have dim V(iq; H(A)=#J(A)=#J —
#(J\J(2))=dim Ker t(e;). Thus we proved V(4q; II(A))=Ker 1(e;).
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(2) is clear from (1) and Corollary 5.4. Q.E.D.

From this theorem, we know that the subspace Ker t(e;) of V(4,) (or equi-
valently, the direct sum of all the non-trivial representations of W, in V(4,)) has a
basis consisting of irreducible characters. This is a remarkable fact and maybe is
useful for picking up irreducible characters from the space of IEDs.

§7. The case of U(3,1).

In this section, we give some examples of representations of Hecke algebra on
the virtual character modules of G=U(3, 1) (cf. [16, §6]). The results of this
section is valid (with appropriate modifications) for U(n, 1) (n=2), however, we
restrict ourselves to the case n=23 for simplicity of notations,

7.1. Irreducible representations of U(3,1). Let G=U(3, 1) be the group of
“unitary’’ matrix with respect to the Hermitian form x;X,+x,X,+x3X;—x,X,.
That is to say, we put

G={geGL@4, C)|gJ'g=J},

1, 0
J= ,
0 -1

where 1, denotes the identity matrix of size 3. All the irreducible admissible repre-
sentations of G are classified by T. Hirai ([4]). We follow after his notations.
Irreducible representations of G are described as follows.

a) Irreducible principal series representations: D(a;cy, c,), where o=
(I3, 1) (I;>1,) is a row of integers and (¢,, ¢,) a pair of complex numbers such that
¢, +c¢,=an integer, and neither ¢, nor ¢, are equal to an integer, or else, both ¢, and
¢, are equal to some of integers I, [,. The infinitesimal character of D(x; ¢, ¢,)
is (I, 15, €15 €3)-

b) Irreducible subquatients of reducible principal series representations:
Di-J, where a=(ly, I, I,, I3) is a row of integers such that />, >1,>1; and (i, j)
is a pair of integers such that 0<i<j<4. The infinitesimal character of D/ is a.
The representations Di:i+! (0<i=<3) are discrete series representations and D% is
a finite dimensional representation.

c) The limit representations of the representations of type b). We denote these
representations by the same letters as in b), while the parameters are degenerate.

1 2 3 4

0| p* | p* | Dp* | Do
1 p* | p» | D
2 p* | Dp*
3 D*

Figure A.
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The representations with regular integral infinitesimal character belong to
the class b) and, in the following, we consider this class of irreducible representations.
Of course, irreducible representations of type c) and some of type a) naturally appear
when we consider the representations of Hecke algebras.

7.2. Representations of the Weyl group. Let W be the complex Weyl group,
then W~ &, (symmetric group of degree 4). Take a regular integral infinitesimal
character ag=(lg, I, 5, I3), lo>1;>1,>15. Then its integral Weyl group is precisely
W, and we realize the action of W~ &, on C*=0h% by the permutation of coordinates.
Simple reflections, which make o, dominant, are transpositions:

{s;,=(0, 1), s,=(1, 2), s3=(2, 3)}.

Since we only consider the virtual characters, we denote by the same letters D/ the
corresponding irreducible characters. We have, from 7.1,

V)=, 3® Dy,

0si<js
and the action of 1(s,) on V(a,) is given by
— DV if k#i,j
w(sy)Di=( D=L+ DI Dt if k=i
Dii—t4 D4 DLt if k=],
where D! is considered to be 0. This action of 1(s,) defines a representation of W.

The decomposition of t into the irreducible components is given in [16, §6]: V(ay)=
[14]®2[2-12]®[3- 1] (for notations see [13]).

Remark. The above formula of 1(s,) is valid for U(n, 1) (n=2) without modifi-
cations for regular integral infinitesimal character a,. In this case, simple reflections
are {s;=(i—1, i)| 1 =i<m} and the irreducible representations of G with infinitesimal
character a, are {D¥/|0<i<j<n+1} (see [4]). The decomposition of 7 is given by
(t, V(xo))=[1"*"]1@2[2- 1"~ 11®[3- 1""2] ([16, §61).

By the formula of (s,), we know the t-invariants of D'J.

1 2 3 4
0 S2 83 Sy S 51852 S1 8283
1 S3 Sz S2 83
2 Sy Sy 83
3 S1 82
Figure B.

We explain how to read Figure B. For example, #(D%%)={s,, s,} is the 7-invariants
of D°2 (we identify the simple system with simple reflections by usual manner).
From Figure B and Theorem 6.5, we know the irreducible characters with infini-
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tesimal character (ly, 13, [5, [3), lg=11>1>,>1;, are {Y(D¥)|i=1 or j=1}. The
other singular infinitesimal characters can be treated similarly.

From Proposition 6.5, we know

(i) The space Y® CDJ (i#1, j#1) is invariant under the action of W,=
{1, s;}. This space is a multiple of the sign representations of W;.

(ii) The space 3@ CDJ ((i, j)#(1, 2)) is invariant under the action of W,,=
{51, S0 ~S;. This space is decomposed as 3[13]@3[2 - 1] (for notations, see [13]).
The decomposition is calculated from [16, Lemma 6.2].

(iii) The space Y® CD'J ((i, j)#(1, 3)) is invariant under the action of W,;=
{8y, S39y=2S,xS,. This space is decomposed as 3(sgn®sgn)®3(sgn® 1D 3(1®
sgn).

7.3. Representations of the Hecke algebras. Essentially we have three different
types of Hecke algebras for G=U(3, 1).

(i) At first, we consider the case where the singular infinitesimal character is
of the form a; =(lo, Iy, 15, I3). Io=1,>1,>15. In this case, the irreducible characters
with infinitesimal character «, is given by {{/(D'/)|i=1 or j=1} as commented in
7.2. We denote also by the same letters degenerate characters. Then we have
V(a,)=<D°!, D'2, D'3, D'*5/C where D°' and D!'2 are limits of discrete series repre-
sentations. The fixed subgroup W, of «, is given by W, ={l, s,} and we put e, =
(1+5,)/2. Then a Hecke algebra s#(W, W,)=e, C[W]e, is of dimension 7 and for
the generators of #(W, W,) we can take {h,=e s,e;, hy=e;s;e;}. The relations
of generators are given as follows:

h%:%(l-{-hz), h3=1,
(h3hs)?=hyhahy 4+ (hshy — hhahs),

(h3h2)2 = h2h3hz +’;_(h2h3 —hshzha)-

The actions of generators on V(a,) are given as below:

—12 12 0 0

' 0 | 0 0
o(e;s e,)=
0 I —1/2 0
0 0 0 —1/2
—1 0 0 0
0 —1 1 0
o(e;s3€,)= ,
0 0 1 0
0 0 1 -1
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where the matrix is expressed with respect to the basis {D°', D'2, D'3, D4} in this
order. This representation is reducible and has three irreducible components.
Invariant subspaces are precisely,

<D01>/C, <D14>/C’ <D12+(D01_D14)/2’ Dl3_(DOl_3Dl4)/4>/C'
Corresponding to this basis, operators are diagonarized as
—-1/2
o(e s,e)= )
1 —1/2
—-1/2

ale;sse)=

(ii) Next, consider the case where the singular infinitesimal character is of
the form a,,=(ly. I;, 15, I3), lo=1,=1,>1;. In this case, the only irreducible
character with infinitesimal character o, is Y(D'2). This is a degenerate principal
series representation (type a) of 7.1) and, in the same time, is a limit of discrete series
representations. We write this irreducible character by the same letter D'2.  Since
the fixed subgroup W,, of a, is generated by s, and s,, the Hecke algebra s#(W, W,,)
has dimension 2. A generator of (W, W,,;) is hy=e,,5;¢,,, where e,;,=(1/6)-
2 sew,, 5. The relation of the generator is given by

3h3—2h,—1=0.

Non-trivial element e, ,s3e,, € #(W, W,,) acts on D'? as
a(elzs3e12)D‘2=—-—:l,’—D12.

(i) This case treats the singular infinitesimal character of the form a«,;=
(o, 14, 15, 13), ly=1,>1,=15. The only irreducible character with infinitesimal
character o, 5 is ¢(D'3). This is a degenerate principal series representation of type a)
in 7.1.  We write this character by the same letter D'3. The fixed subgroup of
is Wi3=(s,,s35~S,xS, and the Hecke algebra (W, W,;) has dimension 3.
Put e, 3=(1/4)X,.w,,s. Then the action of the generator e,;s,e,; of (W, W,;)
is given by

o(e;35,e13)D'?=0.
In this case, the relation of the generator h,=e,;s,€,3 is given by

2h3—h3—h,=0.
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Therefore one dimensional representations of # (W, W, ;) consist of three equivalent
classes. The other two classes are given by

1
o'(e;35,€,3)=— or |1

2
respectively, and do not appear in the virtual character modules.
The above three types (i), (ii) and (iii) correspond to (i), (ii) and (iii) in 7.2.

Remark. For G=U(n, 1) (n=2), one can claculate out the representations of
Hecke algebras using the formula of 7 in 7.2.  The details will be discussed elsewhere.

Appendix A.

This appendix is devoted to describe Hirai’s method T for the usage in §5.
For detailed arguments see [6, §3].

A.d. Let A(A) (A€ bh¥) be the space of all the IEDs with infinitesimal character
A. Since © € (1) is essentially a locally summable function on G which is analytic
on G', it is determined by the values on the set of regular elements G'. Moreover, @
is determined by the values on the finite system of Cartan subgroups {H|[H] e
Car (G)} because O is invariant under the inner automorphisms of G.

To understand Hirai’s method T, it is essential to consider some kind of order
on Car (G). Let us explain this order on Car (G) (see [5, §3]). Take [4] € Car(G),
where [ 4] means the conjugacy class of a Cartan subgroup A. For ae 4dg=4g(gc.
ac), let H be the element of a. for which a(X)=B(H,, X), where B( , ) denotes the
Killing form on g.. Take root vectors X,, X _, from g in such a way that [X,, X _,]
=H, and we put
2 2

H= 2o x,=V2 X

Tl

Let v=v, be the automorphism of g, defined by
v.—_vazexp{—\/—_l%ad (X,+X '_a)} ,

so-called Cayley transform with respect to a. Then b=vw(a;)Ng is a Cartan sub-
algebra of g not conjugate to a under any automorphism of g, and f=v(a) is a
singular imaginary root of b. We have

a=%,+RH,, b=ZX,+./—1RHp,
where Z, is the hyperplane of a defined by =0 and
Hy=v(H)={-1(X,—X",).

This relation between a and b is denoted by (a, &)—(b, B) or simply by a—»b. We
introduce the order < on Car (G) by defining [4] <[B] when a—b for an appropriate
choice of a representative B of the class [B], and extend it transitively.
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For © € A(4), we put
Supp (@)={[H] e Car (G)| O, =0},
Hght (@)= {[H] € Supp (O) | [H] is maximal in Supp (@)} .

and call [H] € Hght (@) a height of @. If O has the unique height [H], then © is
called an extremal I1ED of height [H] (or simply, H).
For a Cartan subgroup H, put

D) =¢, () T (1-C(h)7) (he H),

D(R)= TT (1-Ehy™) (heH).

aeAR
For a given IED @ on G we put
Cu(®)(h)=D"(h)@(h) (heH"),
Cu(@)(h)=eg(h)D*(N)O(h) (heH'),

where el (h)=sgn (DE(h)) (he H'). ,
Define a family of analytic functions B(H; A) as in §1.3. Then we have

Theorem A.1 (Hirai [5, Th. 1]). Let © be an IED on G with eigenvalue A.
If @ has a height [H] € Car (G), then Cy(©) can be extended to an analytic function
on the whole group H. Moreover, it belongs to B(H; 1).

A.2. Hirai’s method T is the method to construct an extremal IED with height
H from an element { € B(H; A). This is done by induction on the order on Car (G),
and has two different steps R and S. Roughly speaking, the step R corresponds to
boundary conditions to be satisfied by IEDs, and the step S corresponds to Weyl
group symmetry which assures the invaraince of IEDs. As is mentioned above, an
IED O is determined by the system of functions C,(®) ([J] € Car (G)). So, in order
to give an IED T¢ for { € B(H; A), it is sufficient to give functions C,(T{) for every
[J]eCar(G). T. Hirai gave necessary and sufficient conditions for the system of
functions C,(®) ([J] e Car(G)) obtained from an IED @ in his works ([3, 6]).
Using his results one can verify that constructed functions C,(T¢) ([J] e Car (G))
really determine an IED TY¢.

Let us explain the construction in detail. Take anelement { € B(H; 1). We put

Cy(TO)=¢eff - ¢ for H itself,
CATH=0 for [JIX[H].

Let A be a Cartan subgroup of G and assume that we have already constructed Cy(T¢)
for [B]>[A4]. Let A, be a connected component of 4 and F a connected component
of AJ(R)=A,n A'(R), where A'(R)={heA|{(h)#1 for any a € 4g}. Denote by
X=2(A,) the set of all the real roots o € A, for which £ (h)>0 on A,. Then X is a
root system. Let S=S(A4,) be the subgroup of W(G; 4,) generated by w,| 4, (x€X),
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where w, is the conjugation by an element gazexpé—n(X «—X_,)eG. We put

W,|4,=5,. Let P(F) be the set of a € X for which £,(F)>1. Then P(F) is the set of
all the positive roots of X with respect to a certain order of roots. Let IT=II(F)=
{ay,..., a,} be the simple system in P(F).

Step R. Denote by b™ a Cartan subalgebra obtained from a by the Cayley
transform v, =v, with respect to the real root a,, (I<m<r). By assumption, the
functions Cy.(T{) have been already determined. We write C,, instead of Cpn(T?)
for brevity.

We put

Z,={hed|f, (=1},
Zn={heZ,|E(h)#]1 for any root a# +a,,}.
Then for ae X, n A, and x € a, we put
(R, C.)(aexpx)=C,(aexpv,(x)).

Here v,,(x) may not be contained in b™, but C,, is locally a linear combination of the
form exp u(x) (u € (b)*) (or its multiple by a certain polynomial function), so C,(a
exp v,(x)) has natural meaning.

Step S. For a function f on A, and se S, we define sf as (sf)(h)=f(s"'h)
(he A;). For each s, =s, (1<m=r), we put

dsm =(1 _Sm)(RamCm) .

Each element s€ S can be written in the form s=s;s;,---s; (see, for example, [2]).
Then we put

d-v:ds“.l.dsiz.k...+silsi2...s R4

ic-1% siy *

It can be proved that 2 is independent of a choice of expressions for se S. Finally
we put

B=RB(C,, C,...,C,)=(45)"' Y ..

seS

Denote by E ,, the union of wA, over we W(G; A). Define C,(T{)on E,, n A'(R) by
C AT (wh)=det(w)@B(h) (we W(G; A), heF).

Let A, A,,... be a complete system of representatives of connected components
of A under the conjugation of W(G; 4). Then A is the disjoint union of E, E ,,....
Repeating the same construction for every A;, we get C(T{) on the whole A. Thus
we can define C,(T{) ([J]eCar(G)) inductively. We see that they altogether
define an IED T¢ by Hirai’s arguments.

Our proof of Proposition 5.1 is carried out along the above construction of T.
Steps R and § there correspond to the same parts of this appendix.
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Appendix B.

Here we remark about the Assumptions 2.1 and 5.3.

At first we prepare some notations. Let H be a Cartan subgroup of G. We
can choose a 0-stable Cartan subgroup from [H], where 6 is a Cartan involution
with respect to a maximal compact subgroup K. So, we may assume H is 0-stable.
Then the Lie algebra b of H is also #-stable and we define h* =((+ 1)-eigenspace of 0)
and b~ =((— 1)-eigenspace of ). Put

H*=HnK, H =exph~.

Then H=H*H~ (direct product) and H~ is connected. Denote the adjoint repre-
sentation of G by Ad: G—Int(g). The kernel of Ad is the centre of G. Put

r=ry=Ad-'(Ad(K)nexp(y/—1b7)).
Then we have the following lemma (see, for example, [12]).

Lemma B.1. (1) I is a finite group and commutes with Zy(H™),, identity
component of the centralizer of H™ in G.

(2) It holds that H=T'Hy=H,I and T'cH*.

(3) T is stable under the action of W(G: H).

Put M= n{Ker|xl|x: Zg(H ™ )— R*, a continuous homomorphism}. Then M
is a reductive subgroup of G containing a compact Cartan subgroup H*.

Lemma B.2. Let I'y=I'nH, Then we have

(1) The finite group I'y is contained in the centre of M, the connected com-
ponent of M containing e.

(2) Foroaed —tg\JAg and ael'y, {,(a)=1 holds.

Proof. (1) is clear from Lemma B.1 (1). Let us prove (2). For ae 4 =,
take a non-zero root vector X,. By the definition of I', Ad (a) (a € I') has the form
exp(y/—Tadx) (xeh~). We have Ad(a)X,=exp(y/—1ad x)X,=exp (/-1 a(x))-
X,=X,, since o(x)=0. So & (a)=1holds. The proof of {,(a)=1 (a € 4y) is carried
out similary, since a e H. Q.E.D.

Lemma B.3. For Aeb¥ and te W3(4), there exists a positive integer m such
that

Emi(@)=1 (ael,).
The integer m can be taken as m<rl,.

Proof. Since I'y, is a finite group, there exists an m such that am=e for any
ael,. Then &, (a™)=¢,,(a)=1 holds. Q.E.D.

Let {H;|iel} be a complete system of representatives of the conjugacy classes
of connected components of H, under the action of W(G; H). As for Assumptions
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2.1 and 5.3, we have the following lemma.

Lemma B.4. There exists a subset {a;|i€l} for each Cartan subgroup H
([H] € Car (G)) satisfying the following conditions.

(1) It holds that a;e H; for iel.

(2) For an arbitrary infinitesimal character y=y, (A€eb¥), there exists a
positive integer m such that

Cmi(ai'sa)=1 (te Wy(mi), iel, se W(G; H))).
(3) There exists a positive integer p depending only on G, such that

Ea)=1  forany neQ[4].

Proof. 1t follows from Lemma B.3 and its proof that there exist a positive
integer p depending only on G, and {a;|i eI} a subset of H such that

(a) It holds that a;e H; for ie .

(b) For any A€ bh¥, we have

Cparisa)=1 (te Wy(h), iel, se W(G: H))).

(¢) For any pe Q[4], it holds that £,,(a;)=1.

In fact, we can take p= [  #Iy and {q;|i €I} can be taken from I'y;.
[H]eCar(G)

By the definition of W(2), it is clear that Wy (pAd) < W3(4). Therefore, for some
positive integer r, Wy(p'A)=Wx(pr~'A) holds. Put A'=prA. By the above
argument, we have

(aatisa)=1 (teWy(p~'d),iel, se W(G; H))).
Since Wx(p~~'A)=Wpy(1'), we have
Eadarisa)=1 (teWy(X),i€l, se W(G; Hy).
Q.E.D.

Remark B.5. An integer m in Lemma B.4(2) can be taken as m< p" (r=¢W and
p as in the proof). This is clear from the above.

For an arbitrary A € h%, if necessary, take mA instead of 2. Then Assumption 2.1
is satisfied.

Also, we can take u e h¥ which satisfies Assumption 5.3 as follows. It is clear
that there exists a u' € Q[4] such that Ag=A+y' is dominant regular. Then it
holds that

Sula)=1 (te Wi(4), iel),

where u=py' e Q[4]. Clearly Ag=A+u is dominant regular and Assumption 5.3
is satisfied for this p.
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