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Finite multiplicity theorems for induced
representations of semisimpmle Lie groups II

—Applications to generalized Gelfand-Graev representations—

By

Hiroshi YAMASHITA

Introduction

This paper is the sccond part of our work o n  finite multiplicity property
for induced representations. We give in  this article finite multiplicity theorems
for generalized Gelfand-Graev representations of semisimple Lie groups, applying
the results of the first part [32] (referred a s  [I]  later on).

Let G  be a  connected semisimple Lie group with finite center. In  [ I ] ,  we
generalized th e  result of van den Ban [1] on finiteness of multiplicities in the
Plancherel formula associated to a semisimple symmetric space, developing the
theory of spherical functions in  a  much more general setting. Furthermore, we
gave there nice sufficient conditions for an induced representation of G  to have
finite multiplicity property. T h ese  c r ite r io n s en ab le  u s  to understand, in a
unified manner, many finite multiplicity theorems f o r  induced representations,
obtained in different situations ([2], [8], [26], etc.).

Among others, we are  interested in  the following important exam p le . Let
G=KA,N„, be an Iwasawa decomposition o f G .  Then N n i  i s  a maximal unipo-
tent subgroup of G . We showed in  [I]  that the induced representation Ind ,, i (e)
(differentiably (=C - -) o r  un itarily  (= V - )  induced) has fin ite m ultip licity
property f o r  any one-dimensional representation (=character) e o f N in .  (see
[I, 4 .2 ]) . As wes suggested in  Appendix of [I], the  study of such a n  induced
representation is reduced, to a  la r g e  e x te n t , to  th a t o f  Inn m (e )  w ith  a
non-degenerate character C. T h e  la tte r  representation is called a  Gelfand-Graev
representation (=-- GGR fo r  sh o rt) . According to Shalika [26], the GGRs have a
remarkable property :  the unitarily induced GGRs are of multiplicity one if G is
linear and quasi-split (cf. [I, Theorem 4 .5 ]) . These GGRs have been playing an
important role not only in  the  representation theory itself but also in the theory
of automorphic fo rm s. (For the historical background of the study of GGRs,
we refer to [31, 0.1].)

But, in the representation theoretical p o in t o f  v iew , GGRs a r e  not large
enough to understand all the  irreducible representations through them. In other
words, there exist numbers of irreducible representations of G  that never "occur"
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in GGRs (see e . g ., [9 ]) . It is by this defect that a  good generalization of GGRs
had been desired.

In this direction, N . K aw anaka  [13 ] constructed, f o r  reductive algebraic
groups over a  finite (or a local) field, a series of induced representations para-
metrized by the set of nilpotent classes of the Lie algebras, by making use of
th e  Dynkin-Kostant theory on  the  nilpotent c lasses. Such a  representation is
now called generalized Gelfand-Graev representation (=GGGR), since Kawanaka's
representations associated with the regular nilpotent classes coincide with the
original G G R s. He himself has been studying mainly the GGGRs o f  finite re-
ductive groups using their characters, a n d  has obtained nice results (e. g., a
complete proof of the Ennola conjecture) that show the utility of GGGRs in the
theory of group representations (see [13], [14], [15]).

We think that these GGGRs are the desired generalization of the original
GGRs which enables us to understand all the irreducible representations in con-
nection with the nilpotent orbits. But, unfortunately, the  GGGRs of semisimple
L ie  groups are in general fa r  from being of multiplicity finite, contrary to the
case of G G R s. This comes from the fa c t th a t th e  GGGRs a r e  induced from
representations of unipotent subgroups generally smaller than .1■1m .

So, in order to reduce infinite multiplicities to be finite (o r  to  b e  one) if
possible, we consider here a variant of GGGRs which we call reduced GGGRs
(=RG G G Rs). In the present article, we give finite m ultiplicity theorem s for
some important classes of RGGGRs (Theorems 6.5 and 6.6).

To be more precise, suppose that G be a simple Lie group of hermitian type.
Put / =rank (G / K ). Then we can construct explicitly (1-1-1)-number of nilpotent
Ad (G)-orbits w  (w = — w ,)  in  g =Lie G  with an important property :  the direct
sum  e0,,„.u-ri o f  th e  unitarily induced GGGRs L 2 -1", associated w ith w i

is quasi-equivalent to the  regular representation o f G  (see Theorem B  below).
W e prove finite multiplicity property fo r  RGGGRs com ing from  these [ ' i 's.
Every discrete series representation D  o f  G  is embedded into some L 2 -r i .
We can call this embedding a  "Whittaker model" for D.

Among these GGGRs F i T o  a n d  T i a r e  clo sely  re lated  to  the
holomorphic a n d  anti-holomorphic discrete series representations respectively.
We have multiplicity one theorem (Theorem 6.9) f o r  RGGGRs associated with

(i= 0 , 1). These two topics will be studied in  the subsequent paper [33].
Now le t us explain the contents of this article in more detail.
I n  §  1 , following K aw anaka , w e defin e  t h e  GGGRs o f  semisimple Lie

groups. T hen  w e c larify  th e  relationship between the original GGRs and the
generalized ones.

Let G  be a  semisimple Lie group as before. Let X  be a non-zero nilpotent
element of the Lie algebra g of G .  Denote by w the Ad (G )-orbit through X :
w =A d(G )X . W e want to define the GGGR 1",, associated with co. To do so,
it is convenient to proceed as fo llow s. F irst, by virtue of the Jacobson-Morozov
theorem, we can take a n  T2 -triplet (X , H, Y ) in g containing X :

(0.1) [H, X]=-- 2 X  , [H , Y ]=  — 2Y  , [X, Y ]= H .
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Assume that H  is a dominant element of a m  A ,  w ith  respect to  a  fixed
order o f  th e  root system of (g , (10 .  Then H  is determined uniquely by the
nilpotent Ge -orbit o -=- Gc•Xç- gc through X , where Gc  denotes the adjoint group
of the complexification g c  o f  g .  So we denote H  by H (o ) . One has a canonical
gradation of g b y  ad H (o): g=esEzg(s)o, where g(s)0  i s  t h e  s-eigenspace for
ad H(o). P u t  p0=es>0g(s)0, 10=g(0)0 and n o = e s ig ( s )o . Then Do is  a  parabolic
subalgebra of g, and po = l o e n o  g ives its Levi decomposition. Denote by P.=
L .N . w ith  L 0 =0 P0 n P 0 ,  th e  corresponding decomposition on the group level,
where O is  a Cartan involution of G  compatible w ith  th e  decomposition G=
K A N rn .

Define a  linear form X * on D  via

(0.2) <X *, Z>=B(Z, OX ) f o r  Zen o ,

where B  i s  th e  Killing form o f  g . L e t  ex  denote the irreducible unitary re-
presentation of the nilpotent L ie group /Vo  corresponding to X *  through the
K irillov  correspondence (see 1.3). W e consider t h e  induced representation
r(x. H,17)-1nciv o (e  x ) (unitarily or differentiably induced). Then the  equivalence
class of (x, H ,y) depends only o n  th e  nilpotent Ad (G)-orbit w=—Ad(G)Xço
through X .  So we may express it without any confusion as

(0.3) ro ,- ,- r(x .1 1 .Y )=In d ?v 0 (x ) .

We can thus attach to each nilpotent class w in g an induced representation
r w , which is called the generalized Gelfand-Graev representation associated to w.
Note that o n g  does not necessarily consist of a single Ad (G )-orb it. Nevertheless
the unipotent subgroup N . is common for any Ad (G )-orbit contained in  ong.
This fact is useful for later duscussion.

In  § 2, keeping in  mind the  Mackey theory for the  representations of group
extension, we construct reduced GGGRs, a  v a r ia n t  o f  G G G R s. Consider the
G G G R  F„,= Inn o (e x )  constructed above. T h e  L ev i subgroup L . acts on No,
hence it acts also on the unitary dual S/0 o f  No in  a  canonical w a y . L e t Ho (X)
denote the stabilizer of the equivalence class  [ e 1 ] E g o  of ex  in  L . .  Then Ho (X)
is a  reductive subgroup of L ., and it coincides with the centralizer Z L .(0X) of
OX  in  L o  (Lemma 2.1). T he representation ex  can be extended canonically to
a  unitary (projective, in general) representation -ex  o f  t h e  sem idirect product
subgroup H.(X )N .Ç.P. acting on the same Hilbert space.

We give in Proposition 2.2 a good sufficient condition for ex  to be extendable
to a  genuine (not just projective) representation -ex . Thanks to this criterion,
w e find  out that ex  admits an extension to a  genuine 'ex  f o r  any case studied
in  §§ 3-6. So, we assume here such property for e X  fo r  th e  sake of simplicity.

For an irreducible representation c  of 110 (X ), consider the induced represen-
tation

(0.4) r o , ( c ) = I n d .(x)No(tV .,y) w ith  r.= co]
where 1N 0 i s  th e  tr iv ia l character o f  No . W e  c a ll  P ( c )  the  reduced GGGR
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(=RGGGR) associated with (co, c). (See [1 5 , 2 .5 ] .)  T he unitary GGGR
is decomposed into a direct integral of RGGGRs L 2 -1".(c), cEH(X)=the unitary
dual of Ho (X ) (see (2.8)).

In case where the  parabolic subgroup P0 =L 0N0 is maximal, it often happens
that (L o , Ho (X )) has a structure of so-called reductive symmetric p a ir  (at least
on the  level of Lie algebras). In such a case, one can apply the  results of [I]
to RGGGRs r„ (c ).  In  §§ 3-6, we give the most important example of such case
for simple Lie groups of hermitian type, and prove finite multiplicity theorems
for RGGGRs.

In §3, we construct explicitly nilpotent orbits oh (0<i.</=dim a p =rank (G/K))
that define important kind of GGGRs r i = r ,  closely related to th e  regular
representation of G  (see supra). L e t g = f e p  be the Cartan decomposition of g
determined by O . From now on, w e alw ays assume th a t G  be a  connected
simple Lie group of herm itian type, with finite center. Then g has a compact
Cartan subalgebra f .  I  denotes the root system of (gc, le). C hoose a  posi-
tive system E+ of I  compatible with the G-invariant complex structure on G/K.
For each TEE, we can select a non-zero root vector X, of r  in  such a  way that

X r —X, , •N /-1  (X ,± X .„)E  fa v - i p  , a n d  [X ,, X_ T]

Here 11;, i s  th e  element o f  •N/— 1 t corresponding to the co-root r - =2 rg r , r>
through the Killing form of (lc.

Let (T„ 12, ••• , To be a  fundamental sequence of non-compact positive roots
(see 3 .1  f o r  th e  precise definition), and take a, as a p = E i< k i R./1k with Hk

=

X „ + X -r k .
Define nilpotent orbits o h  ( O i l )  in  g  a s  follows. F or 1S k<1, s e t  E k

=

2 - 1 -V-1(1/4— X. k +X_ r k ). Then E,, i s  a  nilpotent element of g corresponding
to - - V - 1 X 0 ,  through the Cayley transform rieG c  in  (3.8). For O i l ,  c o ,  is
defined to be the nilpotent Ad (G)-orbit through —E k,i E k+E.>i E.: co,
Ad (G )•A [i]. Then, among these orbits oh, there is the following relationship.

Theorem A  (Theorem 3 .1 3 ) . L e t o  denote the nilpotent C c -orbit through
E l z k s t X r k . Then, the intersection ong splits into a disjoint union of nilpotent
Ad (G)-orbits w 1 (0<i<l): ong=.1L0 iwi.

In the proof of this theorem, we utilize reductive symmetric pairs (To, fl')
with l)i ..=_Lie (W A C O )  (0•<i</) that play important roles also in the succedding
discussion.

In § 4, we study fundamental properties for (reduced) generalized Gelfand-
Graev representations associated with co, (0 i /). Consider the GGGRs

(0.5) T i = r i , I n d i )  with

where N-1\lo . Using the results of D uflo-R aïs [5] a n d  Nomura [2 0 ]  on the
Plancherel theorem for certain classes of exponential solvable Lie groups (includ-
ing the Iwasawa subgroup Ap Ar, of our G ), we can prove th e  following equi-
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valence of unitary representations of G.

Theorem B  (Theorem 4.2). The left regular representation A G  o f  G  is de-
composed as

(0.6)

where [00]•L 2 -1-% means the infinite m ultiple of  the unitary  GGGR

This theorem shows the importance of these kinds of GGGRs.
Now let us construct the  RGGGRs associated with uh. F o r  this purpose,

w e  prove, using Proposition 2.2, th at th e  irreducible representation of N
extends canonically to a genuine representation of the semidirect product sub-
group H i N.ÇP., where H i --=- H .(A [i]) i s  th e  stabilizer o f  RJEN-  i n  L . (see
Theorem 4.6). This enables us to define RGGGRs corresponding to wi  as

(0.7) Ft(c)=T.,.(c)=IndliiN(tV-0 w ith  e."--=c01 N

for irreducible representations c of W .
We list up here several facts which are useful for applying th e  results of

[I] to RGGGRs [JO .

(1) The subgroup N  is an  at most two-step nilpotent Lie group, and it is
canonically diffeomorphic to  th e  Silov boundary o f th e  S ie g e l domain which
realizes G / K .  Moreover, N  i s  abelian if and only if  G/K is  holomorphically
equivalent to a tube domain.

(2) The representations ei ( 0 i / )  are all one-dimensional o r  all infinite-
dimensional, according as N is  abelian or not.

(3) H°=1-1i=-Kr\L, a maximal compact subgroup o f L  (Lemma 3.5(3)).
(4) For any (L, H") has a structure of reductive symmetric pair at

least on the level of Lie algebras (Lemma 3.15).
(5) H  contains M --= Z (a ) for any i  (which follows from Lemma 3.5(3)).
(6) Making use of another type of realization p i  of ei , so-called Fock model,

one can describe explicitly a  genuine extension (Kr)H i )N--- fii (KnH i )N  of
et p i  (Theorem 4.13).

In §5, we study the representations 0 1 (c)-----(c1M)0(fi t iM )  of the compact
group M , f o r  irreducible representations o f  c  o f  H 1 . In order to apply the
results of [I] to  RGGGRs P i (c), we prove finite multiplicity property fo r 0,(c),
by examing separately each case of simple Lie groups of hermitian type . T he
results of § 5 are summarized in  Theorem 5.17.

In the last section, § 6, we give finite multiplicity theorems fo r  RGGGRs
F,(c), using the results o f [I ] and Theorem 5.17.

Firstly, for RGGGRs C--T i (c ) induced i n  C- -context, our m ain result is
stated as follows.

Theorem C (Theorem 6.5). L e t G  be  a  connected sim ple L ie group w ith
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finite center. Suppose th at  G/K is a hermitian symmetric space. Consider the
nilpotent Ad(G)-orbits w  (0 - ---,i_</=rank(G/K)) in  g  through the points A [i].
For an  irreducible admissible representation c  o f  H i, le t  C- -Ti(c)=C"-InGiN
,(eV i ) (induced in C- -context) be the RGGGR associated with (wi , c). Then one has

(1) C--T i (c ) has f inite m ultiplicity  property  fo r any 0 i 1  and any finite-
dimensional c.

(2) Suppose that c=su(p, 0 (1),1). Let c=c(0 ) be the irreducible admissible
representation of i)xsu(p-1) (p>1); i )  (p=i), with
highest weight OE -V - 1 1 "  (see 5.3.3 for the precise definition). Then, the RGGGR
C- -T i (c) is  o f multiplicity finite.

Secondly, we obtain our m ain result fo r  unitarily induced RGGGRs L 2 -['(c )
a s  follows.

Theorem D  (Theorem 6.6 ). (1 ) I f  i=0 or 1, then all the RGGGRs L 2 -['(c )
(c (K r1 L ) - )  have f inite m ultiplicity  property . Here (K ryL) -  denotes the unitary
dual of the compact group Kr1L=H°=IP.

(2 ) Suppose that G/K reduces to a tube domain. Then, the unitary represen-
tation  L 2 -[ '( c )  i s  o f  m ultiplicity  f inite f o r  any  i  and any finite-dimensional
unitary representation c o f W .

Theorems C and  D  are  the  m ain  results o f  th is  paper.
The original non-reduced GGGR r ,  is  fa r  from  being o f  multiplicity finite,

a n d  its study  is reduced  to  tha t of RGGGRs 1",(c). For i=0  o r  1, e v e r y  i (c),
c E (K n L ),  is  o f  m ultip lic ity  fin ite . Futhermore, some o f  these RGGGRs have
multiplicity free  property (Theorem 6.9), which will be proved in the subsequent
paper [33].

If  G  is  o f rea l rank  one , o r equivalently g - ' u(n, 1) (n _1), th e n  t h e  left
regular representation 2G is decom posed into a  d irec t sum  o f RGGGRs as

(0.8) 2 [00]• { ED (1- 2 -r o (c)EDL 2 -L o (c)*)}cE(KrIL) -

w here L 2 -T o (c)* is  th e  representation o f  G  contragredient t o  L 2 -T 0 (c). And
th e  constituents L 2 -r 0 (c) a n d  L 2 -T o (c)* a re  all multiplicity finite.

In  th e  present paper, w e  con cen tra te  o u r attension o n ly  o n  finiteness of
multiplicities in RGGGRs. Nevertheless, our method is applicable also for estimat-
ing multiplicities in  RGGGRs. More precisely, developing the  a rgum ent in  § 5,
one can describe multiplicities in  th e  representations 01(c) of M explicitly. Such
a description together w ith  th e  results o f  [ I ]  gives u s  a  n ice  upper bound for
multiplicities in  RGGGRs r i (c).

A t la s t, w e  propose here  a  very interesting problem . Notice that our simple
Lie groups adm it discrete series representations. In  view  o f  T heorem  B , any
discrete series representation occurs in  a  GGGR v - r ,  fo r  some i. O ur problem
is  a s  follows.

Problem EDS. Describe th e  embeddings o f  discrete series representations
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into the GGGRs r, cosiso.
In case of i= 0  or 1, this problem  is reduced to the following

Problem EDSbis. Describe the embeddings of discrete series representations
into reduced generalized Gelfand-Graev representations r ( c )  (i=0, 1; cE (KnL )).

W e will study these problem s in the forthcoming paper [33].
If this paper appears long, it is largely because w e have tried to make it as

self-contained as possible.

W e w ish to  express our gratitude to Professor Noriaki K awanaka for stim-
ulating lectures and kind suggestions on generalized Gelfand-Graev representa-
tions, w hich gave us a m otivation. W e would like to thank Professor Takeshi
Hirai for helpful advices and constant encouragement. W e are  very grateful to
P rofessor T akaak i N om ura  f o r  usefu l discussion on the present topic in con-
nection w ith his recent w ork [20].

§ 1 . Generalized Gelfand-Graev representations

Let G  be  a  connected real semisimple Lie group w ith finite  center, and g
b e  th e  L ie  a lgebra  o f  G .  T h e  purpose o f  th is  section is  to  d e f in e , a f te r
Kawanaka, a series of induced representations F „, of G  indexed by the nilpotent
Ad (G)-orbits (t) in g. „ is called the generalized Gelfand-Graev representation
(=GGGR) associated with w.

K aw anaka introduced in  [1 3 ] (see  a lso  [14], [15]) th e  GGGRs o f  reduc-
tiv e  a lg eb ra ic  g ro u p s o v e r v a rio u s  fields. S in c e  h is  articles are intended to
study the GGGRs for finite reductive groups, the definition o f  GGGR is g iven
for th a t case exac tly . T herefore , for our real case, we need to (and do) translate
his construction of the GGGRs, and give  the  precise definition.

For this purpose, w e prepare in  1.1 and 1.2 the Dynkin-Kostant theory and
some of its consequences about the classification of nilpotent c lasses o f a  com-
plex semisimple Lie algebra o r a  real form  o f  it .  In  1.3, a brief survey is given
on the Kirillov orbit m ethod for representations of nilpotent Lie g rou p s. A fte r
th e se  p re p a ra tio n s , w e  g iv e  in  1.4 the definition of the GGGRs o f G exactly.
The subsections 1.5 and 1.6 are devoted to clarifying the relation betw een the
original Gelfand-Graev representations and the generalized ones.

1.1. The Dynkin-Kostant theory on nilpotent classes.
Here, let gc  b e  a  complex semisimple Lie algebra. D enote by Gc  the adjoint

group of gc . Then, according to Dynkin and K ostant, th e  nilpotent G c -orbits
in  Oc a r e  param etrized by the w eighted D ynkin diagram s. A s our survey, let
us begin w ith the following

Definition 1.1. If th ree  non-zero elements X , H a n d  Y  in  gc  s a t i s f y  the
bracket relations
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(1.1) [H , .X ]=2X  , [H , Y ] -= —2Y , [X, Y ]=H ,

then 9- =(X , H , Y ) is said to be a n  I2-triplet in  gc . Moreover, H  (resp. X, Y)
is called the semisimple (resp. nilpositive, nilnegative) element o f g.

For any f2-triplet Er=(X , H , Y ), it follows from (1.1) that gc(g) --CXEDCH
EDGY forms a Lie subalgebra of gc isom orphic to  12(C ) .  Taking into account
the adjoint representation of gc(g) on gc, one finds out tha t H  is  a  semisimple
element of gc  and that the eigenvalues of ad H  on gc  a re  all integers. Moreover,
X  a n d  Y  a r e  nilpotent elements o f  gc . Conversely, for any given nilpotent
element of gc, the Jacobson-Morozov theorem tells us

Theorem 1.2 (Jacobson-Morozov, Kostant [17]). L e t XE g c  b e  a non-zero
nilpotent element. Then there exists an K 2 -triplet (X, H, Y) in gc  containing X  as
nilpositive element. Furthermore, i f  X  lies in a real f orm  g o f gc ,  both H and
Y  can be chosen from g.

Let g=(X , H, Y) be a n  12-triplet in  gc. S e t 0 :=- (ad X)gcnh c (X ), where
Soc (X )  i s  th e  centralizer o f  X  in  gc . If  one  denotes by gc(s) (sEZ ) the  s-
eigenspace for ad H on gc, e. is expressed as

(1.2) gAc' =3gc (X)r1 { gc(s)1

th a n k s  to  th e  finite-dimensional representation theory o f gc(2)=-A lz(C ). This
implies that gj- h a s  a structure of nilpotent Lie sugalgebra of gc . Let denote
the analytic subgroup o f Ge  corresponding to gZ,r. T h e  s e t  o f  f,--triplets con-
taining X  as nilpositive element are parametrized as follows.

Proposition 1.3 [17, Theorem 3.6 ]. Let g --=-(X , H, Y) be an K 2 -triplet in gc.
Then the map

(1.3) pg g (X , gH, gY )

sets up a bijective correspondence from Gj" to the set of a l l  f 2.-triplets in gc  con-
taining X  as nilpositive element.

Now let ic  b e  a Cartan subalgebra of gc . Denote by 4=4(gc, ic) th e  root
system  o f  gc w ith  respect t o  j .  T a k e  a positive system 4+ of J .  17 will
denote the set of simple roots in  4+.

Theorem 1.4 ([6 ], [17 ]). Let o be a non-trivial nilpotent orbit in gc. Then,
(1) there exists a unique dominant (with respect to 4+) element H(o)Ei c  such

that H(o) is the se;nisimple element of an )12-triplet (X, H(o), Y ) w ith XEo.
(2) Define a function f o on  17 by  f o(a) , a(H(o)) (o 17). Then, f 0(a)=0,1

or 2 fo r  an y  aE  .
( 3 )  The map gives a one-to-one correspondence from the  set o f non-

triv ial nilpotent classes of gc  in to  the set of functions on f l  with values in  {0, 1, 2}.
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Let D  be the Dynkin diagram of the root system (4 , 1-1). F o r  a  nilpotent
class o , the weighted Dynkin diagram D(o) is defined as the  graph D  with the
number f o (a) attached to the  node corresponding to a E ii. Theorem  1.4(3) tells
us that the weighted Dynkin diagrams D (o) parametrize th e  s e t  o f  nilpotent
Gc -orbits o (*(0)).

F o r th e  la ter u se , we prepare some additional no ta tions and  a  lemma.
Now let

(1.4) gc=  ED g C (S ) o
s e Z

b e th e  eigenspace decomposition o f  g c  w ith  respect to ad H(o), where gc(s)o
denotes the  s-eigenspace. Then we see easily that

(1.5) Cgc(s)., gc(001-g-gc(s+t)0 f o r  s, tEZ,

which implies in  particular that g (0 ) 0  is  a  Lie subalgebra of gc . Furthermore,
i f  Gc(0)0  denotes th e  analytic subgroup of C c  w ith  Lie algebra gc (0)0 ,  then
gc(s)o is stable under Gc(0)0  fo r  every sE Z.

Define a  subset g-c(2)0 o f gc(2)0  as

(1.6) ac(2)0= v gc(2)0 ; EV, gc(0)01=gc(2)01.

If (X , H(o), Y ) is an  ,ST2-triplet, then X  belongs to g'c(2)0 . Moreover one has

Lemma 1.5  [17, § 4 1. ( 1 )  g c ( 2 ) .  is an open, dense  and connected subset of
gc(2)0, and it forms a single Gc(0)0 -orbit in  gc(2)0.

(2) The nilpotent class o  is expressed as 0=Gcac(2)0.

1 .2 .  Nilpotent classes of real semisimple Lie algebras.
Let G  be a  connected semisimple Lie group with finite center. In this sub-

section, we concern ourselves with the classification of nilpotent Ad (G)-orbits
in  g=Lie G  in connection with that of such Gc -orbits in  gca--- gO R C . The latter
was expounded in  1.1.

Now le t g= fec ipen„ , be an  Iwasawa decomposition o f  g .  Take a maximal
abelian subalgebra fy' o f m=3 [ (ap). Here, for a subgroup H  o f G  and Lie sub-
algebras l and r  of g , we denote by Z.u(r) (resp. h(r)) the centralizer of r  in H
(resp. in  E)). Then, i - E)-1-(1)a9  is  a  maximally split Cartan subalgebra o f g . L e t
A=A(g, a p )  b e  th e  root system o f  g  w ith  respect to ap . Choose a positive
system A+ of A  so that n r„-= E 2 E A+g(a, ; A), where g(a, ; A) is the root space of
a  root A. H  denotes the set of simple roots in  A +. We keep to the notations
i n  1.1 for the complexification gc and ic  of g and j respectively, provided that
the positive system 4 +  o f  4=4(g c ,  k )  is chosen to  be compatible w ith  4 :
(4+ I ap)U(0)=A+U(0).

Lemma 1 .6 .  F o r any nilpotent Gc-orbit i n  gc , th e  element H(o)Ei c  i n
Theorem 1.4(1) lies in ,V-1VEDap. Furthermore, H(o) E ap  i f  a n d  only if  th e
orbit o  intersects with g.
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P roof. T h e  first assertion follows from Theorem 1.4(2) a n d  th e  fact that
A/-11)+3a 9

=IHEic ; a(H) E R  fo r all aEZII.
L et us prove the second statement. Suppose that g n o  is non-empty, and

take a n  X E g n o . From Theorem 1.2 there exists a n  ?,T2-triplet (X, H, Y) in g
which contoins X  a s  nilpositive element. Keeping in  mind the adjoint represen-
tation o f  RX (BRHeRY  -- M ,(R) o n  g , we find out that ad H is diagonarizable
over g. Such an H g is conjugate, under th e  a d jo in t  a c t io n  o f  G , to some
H'E a ),  dom inant w ith  re sp ec t to  A .  Thanks to our choice o f  A+, H ' is
dominant with respect to 4+, too. We thus conclude that H(o)=H'E a„ because
o f th e  uniqueness o f H(o) in  Theorem 1.4(1).

Conversely, suppose that H (o )E a .  Then g  has a structure

(1.7) e g(s)0 w ith  g(s)0=gc(s)0ng
sE Z

L et a  be the  complex vector space consisting of linear maps 7c(X)-(ad X)I gc(0).
(XEgc(2)0 ) from gc(0)0 to gc(2)0. Then nR=r(g(2)0) is a  real form of 8 1. Set
,A = r( a c ( 2 ) . ) ç a .  T h e n ,  f o r  a n  L E a ,  L  lies in A if  a n d  only if  th e  map
L : g c ( 0 ) 0 — > g c ( 2 ) 0  is  su rjec tiv e . T h e  la tte r  co n d itio n  is equivalent to F1(L )#0
fo r some 1_<.i.<N. Here F,(L )( l_ i_ N )  are the minors of L  of degree dim gc(2)0.
Note that L—>F,(L) are polynomial functions o n  n .  Since A is not empty
by Lemma 1.5 (1), Fi is ,  f o r  some i ,  not identically zero on a, whence so is on
th e  real form ,92R . T h is  means that gc(2)ong Ø .  From Lemma 1.5 (2), one
deduces ong 2 ac(2)0ng 0 a s  desired. Q .  E .  D .

Lemma 1.7. I f  o is a nilpotent Gc -orbit in gc , then one has ong =Ad (G)g(2).
with g'(2)0--= c.(2)ong.

P roo f. In  view o f  Lemma 1.5 (2), we may assume that o n g #  0 .  L et XE
o n g .  T hen , as in  the  proof of Lemma 1.6, there exists a n  12-triplet (X', H(o), Y)
containing a certa in  Ad (G)-conjugate X ' o f X  a s  nilpositive elem ent. Then it
follows that [X ', gc(0)0]=gc(2)0, o r equivalently, X'E§(2) 0 . We thus proved the
inclusion o n g  Ad (G)4(2).. The converse inclusion is clear from Lemma 1. 5 (2),
which completes th e  proof. Q .  E .  D .

Now suppose that o intersects with g. Clearly, ong is stable under Ad (G),
so it is expressed as a  disjoint union of some number o f nilpotent classes in g.
We shall establish in Proposition 1.9 a  one-to-one correspondence between these
Ad (G)-orbits an d  th e  se t o f all orbits i n  a(2)0 under th e  a d jo in t a c tio n  o f  a
reductive subgroup L O G.

F or this purpose, we need some m ore notations. Set

(1.8) Po= ED g(s)0 , I0 = g (0 )0  a n d  rt.= ED g(s) 0 .
820 sal

Then po =to eno  g iv e s  a  L e v i decomposition o f  a  parabolic subalgebra Po . Let
P.-- -ArG(no), th e  normalizer of no  i n  G, then it is t h e  parabolic subgroup o f  G
corresponding to po. It holds that Po =L o N . (a Levi decomposition) with L .=



Finite multiplicity theorems 393

ZG(H(o)) and No =exp no . H e r e  exp denotes the exponential mapping from g to
G .  The subspaces g(0). an d  g(2). are Ad (L 0 )-stable, whence so is d(2). by defini-
tion.

The following lemma is crucial for the succeeding Proposition 1.9.

L em m a 1 .8 .  For two elements X 1 , X2 Eg'(2)0 , X , is conjugate to X , under G
if  and only i f  they are conjugate under L..

Pro o f . Since X,e g2)0 ,'c(2 ) 0 for i =1, 2, by Lemma 1.5(1) there exists an
gf,-triplet (X,, H(o), Yz) in gc  containing X , and H(o) a s  nilpositive and semi-
simple elements respectively. Suppose th a t Ad(g)X,=- X, for some gE G . Then
(X 1 , Ad(g)H(o), Ad(g)Y 2)  as w ell a s  (X1, H(o), Yz) i s  a n  ?>12-trip let containing
nilpositive elem ent X ,  in  co m m o n . H en ce , b y  Proposition 1.3, they  are con-
jug a te  u n de r G P , the unipotent radical of Z G ,(X i ). Especially z•Ad(g)H(o)=
H(o) for some zE G P , w hich im plies that z - Ad(g)(110)c=(110)c. It follows from
(1.2) th a t the Lie algebra g p  of G p  is contained in (no )c . Therefore w e have
Ad(g)(no )c =(no )c ,  w hich m eans that gE P o .

Express g  as g=n l w ith  nENo  and /E Lo . T hen it is easily  seen  that

Ad (g)X 2 —= Ad (/)X 2( m o d .  e  g ( s ) . ) .
823

Keeping in m ind the assumption Ad(g)X2=X1Eg(2) 0 ,  we conclude that Ad (/)X2
= X , .  Consequently, X , and X , are Ad (L o )-conjugate.

The "if" part of the statem ent is obvious, thus we com plete the proof.
Q. E. D.

By Lemmas 1.7 and 1.8, w e obtain a  param etrization o f nilpotent Ad(G )
-orbits in o n g  by m eans of Ad (L 0 )-orbits in g'(2)0  a s  follows.

Proposition 1 .9 .  L et o be a nilpotent Cc-orbit in  gc  which intersects with g.
Then,

(1) every Ad (G)-orbit co in  ong intersects with "g(2)..
(2) The mapping 0),—*cor(2) 0  gives a bijective correspondence from the set of

Ad(G)-orbits in  ong to the set of  Ad(L 0 )-orbits in  gs (2)0.

1 .3 . The Kirillov o rb it  m e th o d . In order to  construct the GGGRs o f  G,
one needs irreducible unitary representations of nilpotent subgroups N o . For
th is purpose , w e shall survey  briefly  the Kirillov theory on representations of
nilpotent Lie groups.

In  this subsection, let N  be  a connected and simply connected nilpotent Lie
group. Denote by n the Lie algebra of N .  Let

 f n * ,
 t h e  d u a l sp a c e  o f n.

A subalgebra b of n is  sa id  to  be  a  real polarization a t  f  if b satisfies following
two conditions:

(1 )  f ( [ b, 15])=(0), ( 2 )  for an XEn, f ( [X , b])=(0) implies X I 5.

 a n y  fE n * , a real polarization 15 at f  always exists, moreover it holds that
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2 dim b =dim n+dim n(f), where n (f)=  XE n ; f ([X , n])=(0)}.
For a  real polarization b at 

f n * ,
 pu t H =exp b. Then, w e see from  (1)

that

(1.9) 2 7 f  ( e x p  Z ) = e x p  {  f (Z )}  ( Z E  b)

defines a  unitary character Y i f  of H .  Let us consider the  unitarily induced re-
presentation ( f , 1))= L 2 -I n d ( ) .  T h e n  e(f, f)) is irreducible. Moreover, its
unitary equivalence class a (f,b ) is independent of a  choice of the real polariza-
tion b . S o  one may express this as a (f) instead o f  a ( f , b ) .  W e thus get a
mapping a  from n *  to the set N' of equivalence classes of irreducible unitary
representations of N.

Let Ad* denote the coadjoint representation of N on n * . Then we see easily
that a(Ad*(n)f)=a(f) for any nEN and f En*. Thus a  induces canonically a
mapping, denoted again by a, fro m  n*/N to SI, w here n*/N is  the coadjoint
orbit space fo r n* . O n  this map a, the Kirillov theory tells us

Theorem 1.10 [ 1 6 ] .  The map a sets up a bijective correspondence from the
orbit space n*/N to the unitary dual SI.

This bijection a : n*/N—>A1 is called the Kirillov correspondence.

1 .4 .  Definition of generalized Gelfand-Graev representation (=GGGR).
Let G  be a  connected semisimple Lie group with finite center again. Keep

to  the  notations in  1 .2 . Using the facts in the provious sections, we can now
construct, after N. Kawnaka, the GGGRs of G  exactly.

Let w be a non-trivial nilpotent Ad (G)-orbit in  g .  We define the GGGR 1",o
in  the following procedure. Set o=o(w)=- = Go), the Cc-orbit containing co. For
this o, let g(2)., 1-1(0), Lo, No, ••• be a s  in  1 .2 . Take an X  from con(2) 0 ,  which
is assured to be non-empty thanks to Proposition 1.9(1). L e t u s  define X*En: by

(1.10) <X*, Z>=B(Z, OX) f o r  Z E n 0 ,

where B  denotes the  Killing form of g , and O the Cartan involution of g cor-
responding to the decomposition g= fea p Epn,,,. W e no te  th a t Oa(s)0=g(—s) 0

(sE Z) because 0 H(o)= — H(o) by Lemma 1 .6 . Since No is a connected and simply
connected nilpotent Lie group, we may attach a ([X *])E N 0  to  the Ad*(N0 )-orbit
[X * ] through X *, via the Kirillov correspondence a.

Take a  concrete irreducible unitary representation e x  o f  class cr([X*1). Let
us consider the induced representation Tx= Ind% (ex ). Here, Ind means either
the unitary induction (==L2-Ind) or the C--induction (=C - -Ind) defined in §§ 2
and 3 of the first part [32] of this paper (referred a s  [I]  later o n ) .  Clearly the
equivalence class [ [ ' s ]  o f  F x  does not depend on a realization ex .  Furthermore,
it is independent of a choice of XecoN(2) 0 ,  because wrA(2) 0  is  a single Ad (L0)-
orbit in g(2)0 by Lemma 1.8. So we may express F x  a s  without any con-
fusion.
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Definition 1.11. For each nilpotent Ad (G)-orbit w  (*(0)) in  g , the  induced
representation T , InG 0 (ex) (Xecon§(2)0) is called the generalized Gelfand-Graev
representation (=GGGR) associated with co. (For w=(0), the GGGR T (o) is de-
fined to be the left regular representation of G.)

For the later use, it is convenient to realize e x  explicitly a s  a  monomial
representation. This is done in the following way (see [13, (1.3.8)]). Set n(00
=E1)3i g(s). for Then n(i)0  i s  a n  ideal of n 0 =n(1) 0 . L e t  B (X ) b e  the
alternating bilinear form on no x n . defined by

(1.11) B(X)(Y , Z)=<X*, [Y, Z]> fo r  Y , Z -Œ- no•

It is easily seen that n(2)0 coincides with the radical of B(X):

(1.12) n(2)0= { Ye no ;  B(X)(Y , n0)=(0)}

T h is  implies that the restriction B(X)I(g(1)0Xg(1)0) is non-degenerate. Hence
there exists a  subspace t(X ) of g(1)0 satisfying

B(X)(D(X), u(X )i)=(0) and  2  dim (X) =dim g(1)0.

Put n(1.5, X)=-C(X) n(2)0 ,  then n(1.5, X ) is a  real polarization at X* by con-
struction. Therefore, from the Kirillov theory in 1.3, e x  can be realized as

(1.13) ex=L2-Ind'Xr7x)(nx),

where nx  is  a  unitary character of N(X) - --exp n(1.5, X ) given as

(1.14) 7)x(exp Z)=exp ,V-1<X*, Z> fo r  Z e n (1 .5 , X).

1.5. Gelfand-Graev representations; quasi-split case.
Let e be a  one-dimensional unitary representation of the maximal unipotent

subgroup N„i g G .  The induced representation Ind (E) is called a  Gelfand-Graev
represention (=GGR) if the unitary character e is non-degenerate : e I (exp g(a, ; 2))

for any 2E 11.
The rest of this section is devoted to clarifying th e  relationship between

these GGRs and GGGRs in 1.4. We deal with the case where G is quasi-split
in this subsection, and then, the non quasi-split case in the next 1.6.

Firstly, we recall some basic facts on regular nilpotent classes. An element
X eg is said to be regular if  dim l(X )=rank g, where rank g denotes the dimen-
sion of a  C artan  subalgebra  o f g . By a  regular nilpotent orbit (or class), we
mean an  Ad (G)-orbit in  g  consisting of regular and nilpotent elements.

If g  has a structure of complex L ie  algebra, then there exists a unique
regular nilpotent orbit in  g .  Even if  g  is not defined over C, g possibly admits
a  regular nilpotent class.

Lemma 1.12 [28, Corollary 3 .5 ] .  A  real semisimple Lie algebra g  contains
a  regular nilpotent Ad (G)-orbit if and only i f  g is quasi-split, that is, the cen-
traliz er m ..3k (c1,,) is  abelian.
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We now assume that g be quasi-split, and o ,. denotes the unique regular
nilpotent Gc-orbit in  gc . By Lemma 1.12 , o , intersects with g. Moreover, the
subset g'(2).,..ç g(2),,,, is described as follows.

Lemma 1.13. One has under the notation of 1.2,

(1.15) g‘(2)0,-.= { X = E  X 2, X 2  E  g (a p  ; 2)\(0)}
2E/7

w here  ( a ;  2 ) is  the root space of a root 2 A.

In order to prove this lemma, let us describe beforehand the spaces (a ;  2)
(2E/7) by means of simple root spaces gc(ic ; a) for am /7 with respect to  (gc,
ta). L e t  a  b e the conjugation o f gc  w ith  respect to  g. For a 19m j, set
(a*p)(H)=13(a(H)) (HE i c ), where the bar means the complex conjugation. Then

is  stable under a * .  Since g is quasi-split, any root in 4 does not vanish on
ap . The positive root system d+ is defined to be compatible with A + (see 1.2).
From these facts, we see that 4+ i s  a*-stable. Hence so is 17. Therefore,
there exist non-negative integers k and m  such that

o- *a i = a ,  (1 i k), (k < ik + m )

and k ± 2 m = t. Here cz,, a 2 , •-• , a t are the elements of 17 .  Since any simple root
2E H  is given by restriction of an aE 17  to ap, it holds that H = {21, 22, •-• }
with 2,-=a, I a, for 1 < i< r _-  k -Fm . Moreover, the simple ro o t sp ace  (a ;  2,)
has a structure

gc(ic ; a i )(1g if ,
(1.16)( a ;

{ gc(ic ; a i)e) gc(ic ; a*ai)} g if k

Proof  o f Lemma 1 .1 3 . Using (1.16) we can prove Lemma 1.13 in the following
w a y . Take a non-zero element X i E g(a, ; 2,) for each T h e n  X=E1,2,,.
Xi belongs to  6(2). r . In  fac t, from (1 .16), X  admits an expression such as
X = E a a  Y. w ith Ya e gc(ic ; a)\ (0) for any a E  / 7 . Hence one has

(ad X)gc(0)0,.=1X, 1c1= E gc(ïc; a)=gc(2)0,
exE r i

which means that XE ac(2)0 ,  by definition. Consequently, X E  (2 )0 ,-n g = 4 2 ).,
We thus proved the inclusion " in  (1.15). The converse inclusion clearly
holds by the definition of Q.Q. E. D.

Consequently, the set of open Ad (MA)-orbits in E 2 E 11 g(a p  ; 2) parametrizes
the regular nilpotent classes of g.

Now let a) be a  regular nilpotent orbit in g , or equivalently, an Ad (G)-orbit
contained in gno r . Then the GGGR r o , is realized as T , Ind,%(e x ) for some
x E § ( 2 ) 0 , n 0 ) ,  where e x  is  a  unitary character of the m axim al unipotent sub-
group N„=exp n„, of G  given as

(1.17) x(exp ,N/-1 B (Z , OX) f o r  ZEnm.



Finite multiplicity theorems 397

Thanks to Lemma 1.13, ex  is non-degenerate. Conversely, any non-degenerate
unitary character o f  N .  is o f th e  form x for some XE §(2). r . Keeping Pro-
position 1.9 in  m ind, we can summarize this a s  follows.

Proposition 1 .1 4 . Assume G be quasi-split. Then, for any regular nilpotent
class a) of G, the GGGR F. is realiz ed as a representation induced from a  non-
degenerate character o f N . ,  a member of G G R s. Conversely, any Gelfand-Graev
representation is equivalent to r,,, fo r  some regular nilpotent class a) o f g.

In conclusion, the GGGRs associated with regular nilpotent classes coincide
with the  GGRs of quasi-split semisimple Lie groups.

1 .6 . T he GGRs; n o n  quasi-split c a s e .  We now proceed to the case where
g is not necessarily quasi-sp lit. Also in  this case, do GGGRs give an extension
o f th e  GGRs? Although we have not obtained a  completely affermative answer
to this question, Wakimoto's result t e l l s  u s  t h e  following proposition which
generalizes the  first half of Proposition 1.14.

Proposition 1 .1 5 . The GGGRs associated with the principal nilpotent orbits in
g are necessarily the G G R s. Here, a nilpotent Ad (G)-orbit a) in  g  is said  to  be
principal if dim 3,(X )  (XEco), which is independent o f X Eco, is minimal among
those fo r  all nilpotent classes.

Pro o f . L et co be a principal nilpotent class of g, and put op=G c a). Accord-
ing to Wakimoto [28, Proposition 3 .3 ] , t h e  corresponding semisimple element
H(op ) a ,  is characterized by

(1.18) 2 ( H ( o p ) ) = 2  fo r all 2E // .

T his implies that the principal nilpotent classes of g  are  all conjugate under Gc
to each other. Moreover, one gets No p =N m  a n d  9(2).,=-E aEr/ 9(0 p ; 2). From
the  definition of 'd(2)0 p ,  we see easily that

(1.19) g ( 2 ) o p  {  X = 2 ;  X ;  X 2E ; 2) \ .

Using this inclusion relation, we can prove the assertion just as in  the  proof of
the  first half of Proposition 1.14. Q. E. D.

Conversely, can any given GGR be realized as  th e  GGGR associated with a
principal nilpotent c la s s ?  T h e  answer is "Yes" or "No" according as the equality
holds in  (1.19) or not.

§ 2 .  Reduced generalized Gelfand-Graev representations

We introduce in  this section a version of the GGGRs, which we call reduced
generalized Gelfand-Graev representations (=RGGGRs). These RGGGRs are
m ain  objects in  th e  present a r t ic le . In  th e  succeeding sections, we shall show
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that an important kind of RGGGRs have finite multiplicity property, making use
of the results of [I].

2.1. Definition o f RGGGRs. Let G  be as in  1.4 and keep to the notations
in  § 1. Consider th e  unitarily induced GGGR L 2 -1" =L 2 -InG 0(ex ), o=o(w),
associated with a  nilpotent Ad (G)-orbit w  in g.

The most fundamental problem in the study of group representations would
be to decompose a given representation into irreducibles explicitly. So, we hope
to settle this problem for the GGGRs 1-',»  in  fu tu re . Toward this end, we make
in this subsection an observation, keeping in mind th e  Mackey theory f o r  re-
presentations o f  group extension. This leads u s  naturally to the notion of
RGGGRs. Furthermore, the  problem of irreducible decomposition f o r  L 2 -1'0,  is
reduced mainly to those for RGGGRs associated with w.

Now, for an XE§(2)0(1w, let ex =L 2 -IndivN 7x)(72x) be th e  irreducible unitary
representation of No  in  (1.13). Since the Levi subgroup L . acts on No  through
the conjugation, it acts also on the unitary dual N.  v i a

(2.1) 1. R]=-[1. e] , (1. e)(n)=$(1 - ' n1) ( n  No )

f o r  1EL 0  a n d  [e]EN- .. Here [e ]  i s  th e  equivalence class of an irreducible
unitary representation e of N .  Let H.(X ) be the stabilizer of [ex ] in  L0:

(2.2) Ho(X )= flE L o ; 1. [e x ]=[$ x 11 .

Then one has

Lemma 2.1. T he subgroup Ho (X ) is reductive. M oreover it coincides w ith
the centraliz er Z a0X ) o f  OX  in  L o ,  w here 0 is the Cartan involution of  g.

Pro o f . First we show  the la tter assertion. For an  lE L 0 , w e see  easily
/. [exi=RAd (o o r ] , or equivalently, /.6([X*])=a([(Ad(8/)X)*1). Here, o : 11/N0
— >go is  the Kirillov correspondence, a n d  [Y*1 denotes th e  th e  Ad*(N.)-orbit
through Y*En'cr  (see 1.3). T h is  implies that 1 1-10(X ) if and only if  [X 4 ]--=
[(A d(01)X )*]. On the other hand, according to [13, (3.1.2)1, one has f o r  any
YE g(2)0,

(2.3) [ 1 7 * ] =  Y * H- g(1):.

Here the dual space g(1): of g(1)0 is canonically identified with the subspace of
consisting of all Z*Ent identically zero on n.(2).. We thus conclude that /E

110 (X ) if and only if  A d(1)0X =OX  as desired.
Secondly we prove that Ho (X ) is reductive. According to [4, Proposition

5.5.9], a( i .) ,(ex) is a  reductive Lie algebra, whence so is a  real form 3f 0 (0X) of
it. Consequently, Ho (X )  is reductive because o f the  la tte r  a sse rtion  proved
above. Q .  E .  D .

If  h E llo (X ), then two irreducible unitary representations it•ex  an d  ex  a r e
mutually equivalent. So, there exists a unique (up to scalar multiples) unitary
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operator ex (h) on the representation space ..gC(ex) of ex satisfying

(2.4) (h•ex )(n)=x (h)-1x (n)f x (h) for all nEAro .

B y  p u tt in g  - . x(hn)=-- x(h )ex(n) (hE110(X ), nEN0), w e thus obtain  in general a
projective unita ry  represen ta tion  x  o f  t h e  semidirect p rod u c t g ro up  S o (X)==-
110(X )x N„, which extends e x . N ev erthe le ss , un d er a certain kind of assumption
on co, w e find out th a t  e x  e x te n d s  to  a  g e n u in e  (n o t ju s t  projective) unitary
representation

Proposition 2.2. Suppose that the subspace g(1)0 admits an Ad (110 (X ))-invariant
complex structure j ,  that is, a real linear m ap j on  g(1). satisfy ing  (1 )  1 2

(I=the identity  operator) and (2) (Ad(h). joAd(h) - ')1 g(1).-= j  fo r  all hE H o (X).
Then e x  is ex tendable to a genuine unitary representation -e x  o f  S o (X )  acting on
the same Hilbert space SC(ex).

W e prove this proposition in the succeeding subsection 2.3.
As a direct consequence of th is  proposition, one obtains

Proposition 2.3. For an XE§(2) 0 rv o , the representation e x  can be extended
to a genuine representation o f  S o (X ) i f  either the followieg condition (1) or (2)
(on co or g) is satisfied.

(1) The nilpotent class c o  is even (i. e ., g(1)0=(0)),
(2) g is a complex semisimple Lie algebra.

Remark 2 .4 .  P rof. Kawanaka kindly  suggested  u s  t h a t  the assertion of
Proposition 2.3 (for the condition (2)) should be t r u e .  Thanks to his advice, w e
w e re  ab le  to  o b ta in  Proposition 2.2 w hich is very useful for la te r discussion
(see Theorem 4.6).

As w e saw  above, extensions of ex to genuine representations a re  pos-
s ib le  f o r  m any num ber of w . Moreover, for any  GGGR „, which we discuss
detailedly in later sections, the subspace g(1)0  w ith  o=o(w)=-- Gc w  always satisfies
the assumption of Proposition 2.2. Therefore, we henceforth restrict ourselves
to  the case w here e x  a d m its  an extension to  a  genuine representation. (Even if
Ç1  is  no t ex tendable  to  a  genuine representation, one  c a n  c o n s tru c t RGGGRs
analogously . But w e do n o t tre a t  it  h e re . S e e  [15, 2.5].)

Now we consider the  induced representation L 2 -Ind (ex), suggested by
the  isomorphism

(2.5)L 2 - f ' , .  L 2 -Indg0 (x)(L 2 -lndgg<x)(x)).

Lemma 2.5. One has an isomorphism of unitary representations

(2.6) L2-Incli7r )(e x )= - ja fx

where j(hn)-=0(h) (h 110 (X ), n E N .)  w ith the le f t  regular representation 0  of
Ho(X).
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Pro o f . Let _C be the Hilbert space of S(( )-valued B o re l functions f  on
I-10 (X ) such that

Ilf Ilf(h)112dh<+.,Ho ( x )

where dh denotes the  left Haar measure on H.(X ), and 11'11 the norm on JC(x).
Since the factor space So (X)/No  is canonically isomorphic to H.(X ), the represen-
tation L 2-Indffg( x ) (ex) can be realized on i n  t h e  following way : the action

of S 0 (X ) on _C is expressed as

l(h)f (h ')=, f(11 - 'h ')=0(h)f (h '),

2 (n)f (h ')=L (h ' - ')ex (n)L (h')f (h')

for fE_C , h. hi EH.(X ) and flE No.
Define a  unitary operator e on - L. b y  tf (h )=L'(h )f (h) (hE1-10(X )). Identify-

ing _C with L 2 (H0 (X ), dh)0SC(ex) in the canonical w ay, we may regard e as an
isometry from _C onto L 2 (H0 (X ), dh)agl(e x ). Then it is easily checked that
gives a  unitary intertwining operator from A to j V x . Q. E. D.

We now proceed to the GGGR L 2 -F .  Let

(2.7) 0- zc,dcr(z)

be a  desintegration of 0  over some measure space (Z , a) (see 3.1 of [ I ] ) .  Then,
in view of Lemma 2.5, L 2 -r a, is decomposed as

9
(2.8) z(g) z)da(z) with "ez=czOl-N o

where 1N 0  is  the trivial character of N . .  Suggested by (2.8), we introduce a
variant of the GGGR ,„ as follows.

Definition 2.6. Let co be a  nilpotent Ad (G)-orbit in  g ,  a n d  XE con§(2)0,
o-=o(w). Suppose that the  irreducible unitary representation e x  defined by (1.13)
extends to a  genuine unitary representation x of the semidirect product group
S0 (X)=1/0 (X)N0 .  Then, for an irreducible representation c of H.(X ), the induced
representation rco(c) ---Indgo (x)(c'O L )  with el=c01 N 0 , is called the reduced gener-
alized Galfand-Graev representation (-=RGGGR) associated with (0), c).

Remark 2 .7 . (1 ) In  the above definition, Ind means either C"-Ind or L 2-Ind
as before. When the  unitary induction is considered, c  i s  of course  assumed
to be unitary. But we need not (and do not) restrict c  to be unitary so far as
the  C"-induction is in mind.

(2 ) In general, all the  irreducible unitary representations of H0 (X ) are not
necessary to decompose 0  into irreducibles. Therefore, all th e  RGGGRs L 2

-Po (c) (ce H .- (X ))  a r e  not needed in  order to decompose L 2 -/"„ a s  in  (2.8).
Nevertheless, we do not exclude here, to define RGGGRs, L2 -r,„(c)'s which do
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not "occur"  in  (2.8).

A t th e  e n d  o f  th is  s u b s e c t io n , w e  re fe r  to  th e  problem  o f  explicit ir-
reducible decomposition o f th e  GGGRs In view  of (2.7) and (2.8), this
problem is reduced to the following (13 1) and (P2).

(P1) Decompose th e  regular representa tion  0  o f  110 (X )  into irreducibles
explicitly. I n  o th e r w o rd s, d esc rib e  a n  explicit P lancherel form ula for the
reductive group Ho (X ).

(P2) For any cE 1-1 (X ) (= th e  unitary dual of 110 (X )) which "occurs" in 0,
give the irreducible decomposition of the RGGGR L 2 -1-'„(c).

A s for (P1), Harish-Chandra established an  explicit P lancherel formula for
reductive Lie groups so-called o f  c la ss  (SC). (S e e  [2 7 ]  f o r  th e  definition of
groups of class (SC)). Therefore, if  Ho (X ) is  of class (JO , one g e ts  a  complete
answ er for (P 1) b y  ap p ly in g  H arish -C h an d ra 's  re su lt. A lth o u g h  w e  d o  not
k n o w  w h e th e r or no t any  110 (X ) is  of class (JO , this request w ould be a  mild
o n e . T hus our original problem for L2-1-0 , is reduced mainly to (P2).

2 .2 .  Oscillator representations o f unitary groups.
The re s t of th is section is devoted to proving Proposition 2 .2  by reducing

it  to  a basic fac t of J. A. W olf [30] on the oscillator representations of unitary
g ro u p s . In this subsection, we explain the resu lt of W olf, crucial for the suc-
ceeding 2.3.

Let V  be  a  finite-dimensional complex vector space with a  non-degenerate
herm itian form  h (not necessarily positive or negative definite). Then Arh

- V x R
has a structure of two-step nilpotent Lie group by  g iv ing  th e  product o f  two
elements (z i ,  x 1 )  and (z 2 , x 2 )  as

(2.9) (.21, x 1 )(z 2 , x2)-=(z1d-z2, x i+ x 2 -1-Im h(z i , z2)).

N h  is called the Heisenberg group of dimension 2n+1, w here n=dim  V .  Express
by  V R the space V  regarded canonically as a  real vector space. Since A =Im  h
gives a  non-degenerate alternating bilinear form on V R  X V iz , w e can define the
real symplectic group sp(T R , A) w ith  respect to  A  as follows :

(2.10) sp(7 R , A )=IgE G L (V R ); A (gv , gw )=A (v , w ) for a ll y, tvE VRl •

The "unitary" group w ith respect to  h:

(2.11) U (V , h)={ gEG L (V ); h(gz i , gz2)=.-h(z2, z2) for a ll z 1 , z ,EV I ,

forms a  closed subgroup of sp(v R , A).
sp ( R , A) acts on N n  a s  a  group of automorphisms via

(2.12) g•(z , x )=(gz , x ) f o r  gES p(V R , A )  a n d  (z , x ).1\T h .

So we may consider the semidirect product groups sp(v R , A )x  .7\Th  U ( V  , h)x
Let r  be  a non-zero real num ber. Then w e see by the Kirillov orbit method
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that there exists a unique (up to equivalence) irreducible unitary representation
e r  o f  N h  for which the central elements (0, x )  (x c R ) are represented by scalar
operators

(2.13) e r ( ( 0 ,  x ) )= e x p  - V - 1 r x I I  (I=-the identity operator).

These e r  w ith  r*0  are  infinite-dimensional. Furthermore, they exhaust all the
infinite-dimensional irreducible representations of N h .

For gESp(V R , A ), Put (g - er)(n)=-Er(g - l •n) (n N,,). Then g •e r  a s  well as
Cr is an irreducible representation of NI, satisfying (2.13). Therefore, analogously
to  our construction of &r in  2.1, er can be extended to a projective unitary
representation Cr o f  SP(VR, A) t.< NI,  in such a  way that

(g . er)(n)=7-(gY i e r(n ) ,(g ) ,  È 'r ( g n ) = , ( g ) e r( n )

for gESp(V R , A) and nENI.,.

Remark 2 .8 .  This r  can not be a  genuine representation till it is lifted to
the representation (denoted again by #r) o f  MP(V R , A )x  Ark in  th e  canonical
w a y . Here MP(V R , A ) is  the two-sheeted cover of sp(vR, A ) .  The restriction
of #r  to  the subgroup mp(vR , A) is called t h e  Weil, metaplectic, o r  harmonic
oscillator representation.

Contrary to the above case of Weil representation, a  result of Wolf tells us
the extension of e r  to  U(V,

Proposition 2.9 [30, Proposition 4 .1 6 ]. For any  rGI?\(0), C .  ex tends to  a
genuine representation of U(V , h) y N n . Such an extension, if restricted to U(V , h),
is called an oscillator representation of U(V , h).

2 .3 . Proof of Proposition 2 .2 .  We now prove Proposition 2.2 by using
Proposition 2.9 above. R eturn  to  the notations in 2.1, and assume that g(1)0
admits an Ad (H0 (X))-invariant complex structure j. Our proof consists of four
steps.

STEP I. If  g(1)0  reduces to (0), the assertion is clearly true because e x  i s
one-dimensional by construction. So, in the following we assume that g(1)0 *(0).
In this case, the representation e x = L 2 - I n d N N 7 x ) ( 7 / x )  constructed in  1.4 is infinite-
dimensional. Here n(X)=Lie N (X ) is a  real polarization at X* n'ok containing
n(2)0=8)8 g(s)0, and v x  i s  the  unitary character of N (X ) given a s  v x (exp Y)=
exp -/-1<X*, Y> (YEn(X)).

STEP II. S e t  U=(Ker 721 )nN (2) 0 with N(2)0 -=-exp n(2)0 , then U is a connected
normal subgroup of N . with Lie algebra u. - (Ker X*)(1n(2)0 . B y  th e  construc-
tion o f  ex, we see Ker e x  Q U .  Therefore, ex induces, through the canonical
map p: N0 ---4Ar0 /U, an  irreducible unitary representatione'x  of the factor group
No/U: V x(P(n))=ex(n) (nEN.).

By Lemma 2.1, U  is stable under 110(X ) .  So TUX ) acts on No /U , hence it
acts also on the unitary dual (No /U i n  t h e  canonical w a y .  Moreover, the
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unitary equivalence class [e'x ]  o f eX is fixed under the  ac tion  of I-10 (X ) because
so is [e x ]E N. . .. F ro m  th is  discussion , the  proof of P roposition  2.2 is now
reduced to showing that e'x  is extendable to a  genuine representation of the
semidirect product group Ho (X)x (N o /U).

STEP III. Now le t  V  denote the  complex vector space g(1). equipped with
the  complex structure j. S et fo r z i , z 2 E V

(2.14) h(zi, z2)1-=-2- 1 {X *([iz i, z z])+N /-1X *([z i,

Then h  gives a  hermitian form o n  V , which is non-degenerate because so is the
real bilinear form g(1)0 X g(1).B(xi, x2),—)X *([x i, x2])=2 Im h(x i , x2). F or th is V
an d  h ,  we consider the Heisenberg group N h  and  the  unitary group U(V , h) in
2.2.

F o r  n=exp(x+y)EN0 with xcg(1) 0 a n d  yEn(2)0 , put

yo(n)=(x, X * (Y ))E Nh •

Then z-2 : N.--->Nh  gives a surjective group homomorphism with Ker r o =U , which
induces canonically a n  isomorphism or: .1\l0 /U=›N 11. T h is  extends to a  group
homomorphism

1-10(X )v(N0/(1)---> U(V , h)t<N h

in  the  following w a y .  I f  /E /I.(X ), then 7r(/) - -Ad MI V  is  a  complex linear map
since j  commutes with r(l)  by assumption. M oreover, it leaves h  invariant,
which means that r(l)EU(V , h). Set "i-(lri)=. 7r(/)z- (Ti) (/EH0(X), FIE/V (1U). Then

is the  desired group homomorphism.
STEP IV . A t  la s t ,  we show  that eX admits an extension to a  genuine re-

presentation o f  1-10 (X ) x (N o l U ) .  Let be th e  representation of N h  given as
V I= X -r - '. Thanks to Proposition 2.9, el extends to a  genuine representation

-e'lf  o f  U(V, h)><N h . Then g i v e s  a  desired extension of . This com-
pletes th e  proof. Q .  E .  D .

§ 3. Sim ple Lie groups of hermitian ty p e  an d  nilpotent classes w,

In  th e  previous sections, we developed th e  generalities on  (reduced) gener-
alized Gelfand-Graev representations of semisimple Lie groups. We retain the
abbreviation GGGR (or RGGGR) in  order to express such a  representation. In
th e  sec tio n s starting w ith  th is § 3, we shall concentrate on  some important
types of (reduced) GGGRs of sim ple Lie groups G  o f  hermitian ty p e , closely
related to the regular representation o f  G , and  prove finite multiplicity property
fo r RGGGRs of such types.

Since th e  (reduced) GGGRs correspond to nilpotent c la s se s  o f  g , t h e  first
thing we should do is to determine th e  nilpotent classes which give the  above
im portant kinds of RGGGRs. T his is  the  m ain  purpose o f this se c tio n . To be
more precise, we recall in  3.1 refined s tru c tu re  theorems d u e  to  Moore [18],
fo r  s im p le  groups o f  hermitian t y p e .  We construct in  3.2 th e  nilpotent Gc -
orbit O c in  question , and  then describe completely th e  Ad (G) orbits contained
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in  ong (Theorem 3.13).

3.1. Moore's restricted root theorem ([18], see also [19], [24]).
L et G  be a  connected simple Lie group with finite center, and  K  a maximal

compact subgroup o f  G .  Hereafter, we always assume that G/K  has a structure
o f  hermitian symmetric space. Then the  center c of the  L ie  algebra f o f K  is
one-dimensional. L e t  g=feip  be a  C artan  decomposition o f  g, an d  0  th e  cor-
responding Cartan involution of G .  T h e  given G -invariant complex structure
o n  G /K  induces canonically a n  Ad(K)-invariant complex structure J on  p by
identifying p with the  tangen t space o f  GIK  a t the origin K .  Moreover, there
exists a unique Z oE C  such that

(3.1) j,(ad Zo) P •

Extend J  to a  map on  pc  by com plex linearity. Since J 2 =— I o ,  (/ =the
identity operator on  Pc), Pc is decomposed as

(3.2) Pc=13+EDI)-

where p , and  p_ a re  respectively t h e  -V-1 a n d  1,/ 1  eigenspaces fo r J on
Pc.

Let t be a  m a x im a l abelian subalgebra o f  I. N ecessa r ily , t contains c.
Furthermore, t itself is a (compact) Cartan subalgebra o f  g .  L et I=Z (gc , lc)
be the  root system o f  gc with respect to tc . For each a X, th e  corresponding
root space gc(Ic ; a) is contained either in  fc  o r  p c . In  the form er case (resp.
the  la tter case), the  root a  is said to be compact (resp. non-com pact). f t (resp.
2'0 will denote the set of com pact (resp. non-compact) roots.

L et us define a positive system I+ o f I  compatible with the decomposition
(3.2) a s  follows. Consider th e  lexicographic order (see 1.3 o f  [ I ] )  on
with respect to an  ordered basis (X i = Z o, X 2 , ••• , X p ) o f t containing Z o a s  th e
top  constituen t. I +  is the collection of positive elements in  I .  S et f t = f t nZ+
and  f - - =-- .2',,r1X+. Then one sees easily

(3.3) gc=p-Eptcap+,

(3.4) E  gc(tc  ; ±a ) , Ic= tce  E  gc(tc ; a).
ae,E + aE l",

Moreover, p , are  abelian subalgebras o f Oc because [p,, p,] fc np,=(0).
One may (and do) select, for every aE E , a  root vector XaŒ gc(tc ; a )  in

such a  way that

(3.5) Xa—X-a, -V-1(X„+X_a)Ete-V—lp a n d  [X „, X _,J=W „,

where H'c,=2a(H O 'H „ with H a  , V— lt determined by B(H, H,„)=a(H) for
all HE tc  (B=the Killing form o f  gc ).

A  root a  is said to be strongly orthogonal to  p E x  i f  neither a + p  nor
a— p belongs to 27U(0). Construct inductively a m axim al family (7,, 72, ••• , n)
of mutually strongly orthogonal roots in  Xi,' in  such a  way that, fo r  each j , r ,
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i s  t h e  la rgest non-com pact positive root strongly orthogonal to n+i, ••• 71.
Now we se t t- =E1,kstRH;, k g -V - 11. Denote by t+ the orthogonal complement
of t-  i n  t with respect to B .  F o r any r E t ,  p u t r(r)=-- r  * ,  th e  re str ic tio n  o f
r t o  * .  If  2,  is  id e n t ic a lly  z e ro  o n  t÷, then one may express n( r ) still a s  r
without any confusion . So are  the cases r=rk

L et us describe the  restric tions r (r ) (rE f+ ) explicitly, after [7 ] an d  [18].
F o r this purpose, se t  fo r  1- m < lz l

C k -=- {r E t; r(7 )=2 - i 7k} , Pk
=

{r E1
1-

;  r(7)=2 - 1 7k}
c k ={rEL'F; 7t(7)=2 - '(rk—r,,,)} , Pk„,=i7E2',1- ; r(r)=2 -Ark+7-.)},
c o =irE Z ,- ; r(r)=01 a n d  P r- 0— „i, , 7 ril •

According to Harish-Chandra, one has the  following

Proposition 3.1 [7, VI, § 6 ]. (1) T he subsets E ;' and Eir o f  I  are expressed
respectively as

(3.6) ft=CoU (i u i Ck)U( 1 ,,,y Ckm),k l  

(3.7) U  Pk )U P0U ( U  P km) ,ism<k5I

w here the unions are  disjoint.
(2) F o r an y  15m <k.<1 (resp. 1_<.1?,l), the map 7 -7 ,,± 1  (resp .

giv es a bijection from  C k t o  P k .  (resP. f ro m  C k t o  P k ) .

Based o n  this proposition, C. C. Moore determined which constituents in the
right hand sides of (3.6) and (3.7) may be non-empty, and  obtained th e  following
restricted root theorem.

Proposition 3.2 [18, Theorem 2 ] .  (1 )  T here are only  tw o possibilities f or
7r(I+) except f o r (0):
(CASE I) r(f +)U(0)=12'(r k ± r 77,); 1_m_</z<11,
(CASE II) 7r(f+)U(0)--- {2 - 1 (rk±7..); i<m,<k<t}v{2 - 'r k ;

(2 ) A ll the rk ( 1 S k <l)  hav e the same length.

We se t  ap.-=Eik iR H k  w ith Hk .--X r k -FX_ T h . Then a, is a maximal abelian
subspace o f  p .  Moreover, j==t+ea, is  a  maximally split C artan subalgebra of
g. L e t  p  denote th e  inner automorphism o f  gc  defined by

(3.8) p =e x p f rir ad(X r k —X_ r k )}- (Cayley transform).

T h e  p  carries jc  bijectively to tc  i n  such a  way that

p ( k ) =.M k (1 k</), whence p ( a ) = l ,
(3.9) tdui t+--.-the identity map on  t+.

Let 4 =4(gc, tc) denote t h e  root system  o f  gc  w i t h  re sp e c t to  jc . Put

7-7k-7)
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I F = ir ( t 1 ie );  7 E 2 9 , then ZI÷ gives a positive system o f  4 .  L et A = A(g, (1 )
be th e  (restricted) root system of (g, ap ). S e le c t a  p o s itiv e  system  A + o f  A
compatible w ith  4 :  4+1a, A+U (0 ). H  denotes the  set of sim ple roots in A .
The W eyl group of (g, ap )  is denoted by W .  S e t  2 k

 -=-7 1, 0 ( ft  ap) for
T hen (2k ) i s  an  o rthogona l basis o f at. T h an k s  to  Proposition 3.2, one may
describe A +, H  a n d  W by means o f this basis (2 k )  a s  follows.

Theorem 3.3 [18, Theorems 2' and 3 ] .  ( 1 )  There are two possibilities for
the positive sy stem  A :

(CASE I) A + -= {2 - 1 (1k-2m);1 m<k_.<1}u{2 - '(2k - F 2 ) ;1 m ._ < k l} ,
(CASE II) A + = {2 - 1 (2k—Am); 15.1n<k-.5-/}U1 2 - 1 2 k; 1 IzSilu12 - '(2k+2.);

(2) A ccording as (CASE I) or (CAsE II) above, H  is expressed as

(CASE I) II -= 2-1 (22-21), • •• , 2 -1 (2c-21-1)},
(CASE II) 1 7 ={ 2 - '2 ', 2 - '(22 - 21), ••• ,2 - 1 (21 - 21 - 1)}.

(3) W  consists o f all transform s o f th e  f o rm  21,,---÷± 2 ,(k ), w here a  is an
arbitrary  perm utation o f  1, 2, •-• , L  In  this sense, W is naturally isomorphic to
the semidirect product group S i v (Z 1 2 Z ) '.  Here the action o f  the symmetric group
S t o f  degree 1  on (Z/2Z) 1 -  {1, —1 }1 is given as (a • . 6 1 ,  6 2 ,  • • ' 6 1) = ( 6 a - 1 (1 ) ,  C o - 1 ( 2 ) ,

• • •  ,  sc -1 (i))  fo r  o•E i a n d  s k E l l ,  — 11 (1 _<k l).

T h e  (CASE I) happens if  a n d  only i f  G/K is  holomorphically equivalent to
a  tu b e  d o m a in . Moreover, non-compact simple Lie algebras g of hermitian type
a r e  classified (up to isomorphisms) a s  follows (see [11, Chap. X ] ) .  Under the
notation of Cartan,

q); p=q), C I(4 (n , R ) ) ,  BDI(Wp, q); q=2),
(CASE I)

DIII(o*(2n); n even) and EVII.

(CASE II) AIII(pt-q), DIII(n odd) and EIII.

3 .2 . A nilpotent Gc -orbit o in  gc . K eep to  the  no ta tions o f 1.1 an d  1.2
under the situation in 3.1. Let o be the nilpotent C c -orbit through 71--1 6 iXrk cp+.
We describe in  this section the Ad(G)-orbits co, in  ong, and  w e w ill s tu d y  in
th e  succeeding se c tio n s  th e  (reduced) GGGRs attached to these co:s.. These
kinds of GGGRs have the following im portant property : the direct sum of these
GGGRs 1,2 -1 " , (unitarily induced) is quasi-equivalent to th e  regular represent-
ation o f G (Theorem 4.2). T h is  is  one of the  reasons why we deal w ith this
orbit o.

Now le t u s  begin with th e  following

Lemma 3 .4 . (1 ) The dom inant elem ent H (o )E -■ / -1 rea , in  Theorem 1.4
is given by  H(o)=5 -1....15k51 11k  ( r = l + in the notation of 3.1). In particular, H(o)
is in ap.
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(2) The orbit o intersects with g: on g*O .

P ro o f . By th e  definition o f  X r , H  (y E Z ), (X ,, 11 , X _,) is  a n  ,312-triplet in

gc  f o r  a n y  T E X . S in c e  r k  ( 1 5 k < l )  a r e  m u tu a lly  stro n g ly  orthogonal,

(Ek Xrk , EkM - k , E k X_,,) is a n  ?,12-triplet, too. Notice that the Cayley transform
p carries E k H k  to k H ;• , .  We thus find out that E k H k ai ,  i s  a  semisimple
element o f a n  containing a n  element o f  o  a s  nilpositive element.
Moreover E k H k i s  dominant with respect to the positive system ZI+. By virtue
o f  Theorem 1.4(1), o n e  g e ts  H(o) , -- E k H k Ectp. W e h a v e  proved (1). The
assertion (2) follows from (1) and  Lemma 1.6. Q. E. D.

3.3 . Nilpotent Ad(G)-orbits co, in  o n g .  Hereafter, we are concerned with
th is  o rb it o  i n  gc and  Ad(G)-orbits in  o n g .  So, w e use the notations of § 1
without the  subscript o i f  there is no  danger o f confusion : w rite  g(s), I, n, ---
for o ( s ) ,  1, n 0 , •

Now l e t  g-=ED,E z  g (s) b e  t h e  eigenspace decomposition o f  g  fo r  ad H(o).
T hen , in  view  o f Theorem 3.3, th e  s-eigenspaces g ( s )  ( s  Z )  a re  described as

g(2 )=  E  g (a p ; 2- '(2k +2,0), g(1)=- g(cfp ; 2'2 k )  (possibly (0)),1g7n6ki 1 1z 1
(3.10)

g(0 )= 1=m 9ape g(ap 2 - '(2k — 2 ,0 ) with 1n=3i(ap),

(3.11) g(s)=Og(— s) (s Z ) ,  g(s)=- (0 )  if I s1 3.

T h e  parabolic subalgebra po=els a o g(s) i s  m ax im a l, an d  po = T en  g iv es  a
L ev i decomposition o f  pa . L e t P=L N  w ith L =PnOP=Z G(H(0)), denote the
corresponding decomposition o f th e  parabolic subgroup P  o f  G  w ith  the  L ie
algebra po. Then N  i s  a n  at most two-step nilpotent L ie  g ro u p . A n d  N  is
abelian if  a n d  only i f  g(1 )= (0 ). T his happens just in  th e  (CASE I)  o f  Theorem
3.3.

L e t(2 )= (2 ) 0 b e  the open Ad(L)-invariant subset o f  g(2) defined in  Lemma
1.7: §(2)= 1XE g(2) ; [X , g (0 )]=g (2 )}. T hen , thanks to Proposition 1.9, th e  pro-
blem o f describing Ad(G)-orbits in on is completely reduced to describing the
Ad(L)-orbits in  §(2). S o , in  the  fo llow ing, w e first settle t h e  la t t e r  problem.
F or this purpose, we make some preparations.

For 1 k l, s e t

(3.12) E k —2 'A/-1(11;- k X 7 -04 - X-7.0).

Then it is easily seen that EkEg(ap ; 2 )  a n d  that p - 1 (X 1 0 )= ,■ /-1 E 0 . Define
a  nilpotent element A g (2 )  by

(3.13) E  E k .
l‘k51

Lemma 3 .5 . (1 ) A E  (2 ), that is, it holds that [A , g(0)1=g(2).
(2 )  2B(Z 0 , X )=B (011, X ) fo r all XE g(2). Here B  is the Killing form of

g and Z o the central element o f f  in (3.1).
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(3) The centralizer Z L (A) of A in L coincides with K nL, a maximal compact
subgroup of L.

P ro o f. ( 1 )  A s  i n  t h e  p r o o f  o f  Lemma 3.4, (— lE k

A/-1E k X_,, k ) form s a n  f2 -trip1et in  gc. T he inverse  of the  C ayley  transform
p carries th is trip le t to  a n  ?)12 -triplet (A, H(o), p - '(A/-1EkX_, k )) in  g  (not just
i n  gc) because A, H (o)E g. T h is  im plies that AE W2) by  v irtue  o f th e  theory
o f finite-dimensional representarions o f  ?, 12 (C).

(2) L e t XE g(2). T h en  w e  have

2B(Z 0, X )=B(Z o , [H(o), X ])=B EZ0, k (X r k  ±X_,,)], X)

=-V -1E k B(Xr k —X_ r k , X ).

Here th e  last equality  fo llow s from  th e  f a c t  th a t  ad(Z 0 )11)±  = l ip  (Ip±=
th e  identity operator on  r± ). Moreover, since B(fc, Pc)=(0), one gets

A/-1E k B(X„—X_„, X)=-V-1E k B(Xr k —X_ r k , 2- '(X—OX))

= ,. ., -1E k B(—H;. k + X r k —X_,,2 - 4 (X—OX))

=B(A, OX—X).

N otice  t h a t  B(g(2), g(2))=-(0) a n d  t h a t  A, XE g(2). T h u s w e  con c lu d e  th a t
2B(Z 0 , X)=B(0 A, X ) (XE g(2)) a s  desired.

(3) L e t k E K n L . Then it follow s from  the assertion (2) proved above

B(0 Ad(k)A, X)=2B(Z 0 , Ad(k) - 'X)=2B(X, Z o )=B(X, OA)

fo r  a ll XE g(2). Since t h e  K illin g  fo rm  B  re s tr ic te d  to  g(2) x g(-2) is non-
degenerate, w e have Ad(k)A=A, w hich m eans that KnL.Ç z,,(A).

P u t  N = e x p n „ ,  w i t h  u m  = E2 E A+g(ap; 2). T h e n  G=KA,Ar„, and
L -- - (K n L )A ,(N .n L ) give respectively Iwasawa decompositions o f  G  a n d  L.
From this decomposition of L, we see Z L (A )=(KnL)Zs D(A), where So =Ap(N i n n L )
is  a  so-called Iwasawa subgroup o f  L .  S ince  So is  e x p o n e n tia l solvable, the
stabilizer Z 8 0 (A ) i n  So is  connected  (see  [3 , 1 -3 .3 ]). S o , in  order to complete
th e  proof, it sufficies to  p ro v e  th a t bo(A ) (={ 3 7 0; [A , =0})-=(0), where N
is  the  L ie  algebra o f  So . T h is  is done in the following w a y .  From  Proposition
3.1 and  Theorem 3.3, w e have dim g(2)=dim o . B y virtue of the assertion (1),
th e  m ap Ad(A) I g(0) : g(0)—>g(2) is  surjective, which implies that

dim Ker (ad (A)Ig(0))=- dim (0)—dim g(2)

=dim g(0)—dim ?, 0 =dim

On the other hand, there holds that fn ig  Ker (ad (A) I g(0)) because i f n z L (A).
W e thus obtain Ker (ad (A)I g(0))=fnf, o r 30 0 (A)=(0). Q. E. D.

T h e  subspace p n t a s  w ell a s  g(2) is stable under the adjoint action of KnL.
From Lemma 3.5, one gets immediately the  following
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Lemma 3 .6 .  The linear map ad A restricted to p n t gives a bijection from
p n t to g(2) commuting with the adjoint action of  KnL.

W e  n o w  d e sc r ib e  t h e  Ad(KnL)-orbits i n  pn t.  L e t
3/1 -3)2 • • • b e  a  c losed  W ey l cham ber o f  a ,  w i t h  respect to  th e  root
system o f (T, a p ).

Proposition 3 .7 .  For an  X E p n t, there exists a  unique HEa -, ,  such that
X =A d(k )H  f or some h e K n L .  Therefore, a parametrizes the set of  Ad (K ('L )-
orbits in pnt.

This proposition is w ell-know n (see e. g .  [ 2 ,  Proposition 1.3]). Neverthe-
le ss , w e  p ro v e  it h e re  b ecau se  it p lay s  an  essetial role fo r  our description of
nilpotent classes in o n g .  (Prof. T . H irai kindly showed u s  th e  ou tline  o f  th e
following proof.)

Proof of Proposition 3.7. L et XE pnt be  arb itra ry . T ake  a maximal abelian
subspace a ' o f  p n t containing X .  Since maximal abelian subspaces o f p n t are
all conjugate under K n L , X  is conjugate under K n L  to  som e X/E a,. M o r e -
over X ' is conjugate under the action of the W eyl group W'-==-Nicru,(ap)/ZKnL(a„)
o f (t, a p ), to some H E al,. W e thus conclude that X -=A d(k )H for som e kE K nL
and some H E ap,.

N ext w e show the uniqueness o f  H c a,. L et H( 1 ' an d  H ( 2 ) be two elements
o f  a-, such  tha t A d  (k )H ( ' ) =. H " ) f o r  som e k E K n L .  Denote by

(3.14) e t (r) (i=1, 2)

the  eigenspace decomposition of I  w ith  respect to ad 11“), w h e re  1" ) ( r )  i s  the
r-eigenspace fo r  ad H " ) on I. S in c e  H ( ' ) (i=1, 2) are dom inant, q -=--- a-zot ( i (r)“)
a r e  parabolic  subalgebras o f  f containing a  m in im a l  p a rab o lic  subalgebra

) 

m e a ,e (n .n 1 )  i n  com m om . O n  th e  o ther hand, w e  have Ad (k) q( 1)=q( 2 )  by
assum ption. These tw o facts im ply that

(3.15) a")= q(2) a n d  kE Q ")nK ,

w here  Q ) N i ,(q( i) )  is  th e  parabolic subgroup o f  L  corresponding  to  am . This
is because any two different parabolic subgroups o f  L  can never be conjugate
under L if they contain a minimal parabolic subgroup in common (see [27, p. 284]).

Notice th a t  the L e v i subgroup Q" ) n 0 Q ( 1 )  c o in c id e s  w ith  t h e  centralizer
Z L (a“ ) ), w here ao) is  the intersection of p n t w ith  the  center o f  10 )(0). Since
H m e a(l), w e have

Q (un eQ(1)= Z L(a")) -E- Z L (H") ).

(3.15) together with this relation im plies that k e  z  L (H (o )nK . We thus conclude
H ")=A d (k )H ")=H ( 1 ). Q. E. D.

F o r y-=(yi, y2, ••• , YL)E/V, set A (y )-=7 F g(2). T hen , the  subsetk -  k  -
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g+ (2 )--= — CA, g(2) is described as

(3.16) g+(2)= A(Y) ; 311 312 •••

I n  v ie w  o f  Lemma 3 .6 , w e  c a n  translate  P roposition  3 .7  to  describe
Ad (KnL)-orbits in  g(2) a s  follows.

Proposition 3 .8 .  The subset g'-(2)_ g(2) parametrizes the Ad(KnL)-orb its in
g(2): for an XEg(2), there exists a unique A (y )E (2 )  such that A (y )E A d (K n L )X .

Among th e  Ad (KnL)-orbits in  g(2), those contained in  the Ad (L)-invariant
open su b se t '(2) a re  characterized a s  follows.

Lemma 3 .9 .  Fer y=-- (371, Yz,••• ,y DER I , the representative A(y)=E1.5.1YkEk
is i n  (2 ) i f  and only i f  y k #13 f o r every 1.

P ro o f. Recall th e  root space decomposition o f  g(0):

g(0)= m@ap ktg(ap  ; 2 -1 (2 k — 270).

F o r any  y E R 1,  w e see easily that

[A (y ) ,  E g(ap ; 2-1 (2k E s(ap ; 2-1 (2k+2.))le*m. k>m

and
[A (Y ), H k ]= -2 y kE k (1 k.<1).

Moreover, Lemma 3.5(3) together w ith the  fa c t [m , g(ap ilk)] g(ap ; 2k )  implies
t h a t  [A (y ), m] , (0). T h e re fo re , if A ( y ) ( 2 ) ,  i . e . ,  [A (y ), g(0)]=g(2), then
Yk#0 fo r all

Conversely, suppose th a t  y kf o r  a ll k. Then w e easily  find a (unique)
K2 -triplet containing A (y ) an d  H(o) a s  nilpositive a n d  semisimple elements re-
spectively. H ence A (y ) is  in "d(2). Q. E. D.

Consequently, the set

(2)ne(2)--=-IA(Y); 3/k 0 fo r  a ll  k}

parametrizes th e  Ad (K (L)-orb its in 'd(2).
W e now  proceed to the description of Ad (L)-orbits in  g'(2). F o r  th is pur-

pose, the  following proposition plays an  essential role.

Proposition 3 .1 0 . For z=(€1, r2, ••• , el ) with sk E {1, —1} (1 k l),  le t  H '
be th e  centralizer o f  A (6 ) in  L : Hs -=Z L (A (6 )), and 1--R, its identity component.
Then L  admits a decomposition L -= (K n L )A p H g  f o r every fixed 6.

W e prove this proposition in the next subsection 3.4. Its proof is based on
the fact that the pair (f, ty) w ith  ly =-Lie FP has a structure of so-called reductive
symmetric p a ir .  T h e  above decomposition is th e  corresponding C artan  decom-
position o f  L.
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Under these preparations, we achieve th e  purpose o f this section.

Theorem 3 . 1 1 .  The subset 4(2).; g(2) splits into (l+1)-num ber of Ad (L )-orbits
(1 i l):a(2)=.11-osisi6i (disjoint union), w here ai i

-- A d ( L ) A [i] w ith A [i] ---=
A (e(i)), e(i)=— =(-1, ••• , — 1,1, ••• , 1).

1-i

Pro o f . First we show  that each E E ( 2 )  is conjugate to some  A [ i ]  under
Ad (L). I n  f a c t ,  b y  Proposition 3 .8  a n d  Lemma 3 .9 , E  is conjugate under
A d(K nL ) to some A (y ) such that

3'1 31 2 ••• -‹-Y 1 a n d  y k 0  fo r  every

L et i  be th e  largest integer such that y < 0 .  ( I f  y k > 0  f o r  a l l  k ,  p u t  i =0.)
Then A (y ) is conjugate to A [i] under A d  ( A ) .  We thus get g(2)= u 0 , 1 , 1,D,.

Secondly, le t  u s  prove that the union is d is jo in t . It follows from Proposition
3.10 that (0- , =A d ( ( K n L ) A p ) A [i].  O n the  other h a n d , th e  right hand side is
expressed as

Ad(Kr1L)1A(Y); .Y1-<Y2 ••• •••

I n  view  of Proposition 3.8 , we obtain r = = Ø  if  i *  j ,  which completes the
proof. Q. E. D.

Remark 3 .1 2 .  T h e  vector space 9 (2 )  has a  s t r u c tu r e  o f  Jordan algebra
equipped with t h e  product X • Y  o f  elements X , YE 9(2 )  g iv en  b y  X • Y=
2 - T [X , OA ], Y]. N a m e ly ,  t h e  bilinear m ap g(2)X g(2)D(X, Y )— X . Y 9(2)g(2)
satisfies t h e  following conditions :  X • Y= Y• X , X ' • (X • Y )= X• (X ' • Y ) ,  where
X 2 =X • X . (These a r e  easily verified.) Moreover, this Jordan algebra g(2) is
formally real, i. e ., JO-HI/ 2 =0 implies X = Y=0.

I. Satake [25 , Proposition 4 ]  described th e  orbits in  th e  se t 2  of invertible
elements o f 2  under the  action of (Str 2) ° ,  fo r  any simple, formally real Jordan
algebra 2 .  Here (S tr 2 ), is  th e  identity component of the structure group Str
(see [25 , p. 6 1 8 ]) .  In  case  o f 2=9(2), one has 3' = (1(2), a n d  (Str Zs•)k contains
t h e  identity component o f th e  group Ad (L)1g(2)E„GL(g(2)). So, if one applies
Satake's description to 2=9(2), one can get Theorem 3.11 m ore easily.

Nevertheless, we did not choose this way f o r  t h e  following two reasons.
O n e  is  fo r  th e  sake o f self-containedness. T h e  other is because, in  our proof,
we come to encounter reductive symmetric pairs (1, V) that play important roles
in  later sections.

In  view of P roposition 1 .9 , t h e  nilpotent Ad (G)-orbits i n  o n g  a r e  now
completely described as in

Theorem 3 .1 3 .  Let o  be the nilpotent Gc -orbit throv gh the point .51
Then, the intersection o n g  splits into (1+1)-num ber of nilpotent A d(G)-orbits

ong=11_0,i, l coi. Here, for each i ,  co,: denotes the A d(G )-orbit through
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3 .4 .  The stabilizers Hs, b". For s=- (si, 62, ••• , —11t, l e t  A(E)=
E is k ,-./E kE k  b e  a s  in  3.3. I n  this subsection, w e clarify the structure of the
stabilizer H  (resp. bs ) of A (s) in  L  (resp. in  f), and  then prove Proposition 3.10.
A t first, one should notice th a t, if  s= -1-1 w ith  1=(1, 1, •-• , 1), Hs and b ' have
been already described in  Lemma 3.5:

(3.17) H ''= K n L ,  vi= tnt.
This description for V I can be generalized fo r any  fy a s  follows.

Lemma 3 .1 4 . For any sE  {1, —11 1 ,  the stabilizer ty  has a structure as

(3.18) = rne E  {X+EkE n I O X ; XE gap ; 2 - 1 (2k — 2.))1 •m<k51

P ro o f. L et W E T . A cco rd in g  a s  t h e  root space decom position (3.10) of
I=g(0), express W  as

E  X 4 - H - 1 -  Y4- E ,k>nt k>m

w here XifmEg(ap ; -±2 - 1 (2k —Am )), YE m and H a p . P u t  [W , A (E)1=Ekam Z k .
w ith  Z k m Eg(ap ; 2 - 1 (2k  + 2 ,0 ). T hen, a  d irec t calculation yields

s m [X k - m , Em 1+s k [X,7m , E k ] (k >m ),
(3.19)

L. k (E Ek i - Filk(H)Ek) (k =m ).

B y virtue o f  Lemma 3.5(3), it holds that

(3.20) [X I I ,  E .]-= — [ 9X tepi, Ek ] (k >m ) a n d  [ Y, E k ]= 0 .

From  (3.19) and  (3.20), we obtain

Ek] (k >m ),
(3.21) Z k„,=

kJ k(H)E k (k =m ).

N o tic e  th a t  a d  (E k)I gap ; — 2 - 1 (2k - 27 )) ( k > m )  g iv e s  a b i j e c t i o n  from
g ap ; — 2 - 1 (2k —Am)) to g(ap ; 2 - 1 (2k +2.)) (cf. Proposition 3 .1 (2 )). Then we deduce
from  (3.21) th a t W E ly  if  and  only if  Xj7m=sks m 0X),-,,,, and  H = 0 .  T his proves
(3.18) a s  desired. Q .  E .  D .

Define a  linear m ap O. o n  I by

L. E

k s m OX (XEg(ap; 2 - 1 (2k — 2 .) ) , k m),
(3.22) 0,(X )=

OX (XE mGa p ).

T hen w e can  check easily  tha t 0 , gives an involution on f commuting with Olf.

Lemma 3 .1 5 .  ( 1 )  The stabilizers fy. an d  H ' are  0-stable,
(2) If coincides with the subalgebra o f  the fixed points of the involution 0,.
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P ro o f . The assertion (2) follows from Lemma 3.14 and the definition o f  0,.
Since 0 , commutes with 011, 1)' is 0-stable. L et u s  prove that H ' is 0-stable,
too, Using th e  bracket relation (3.5), w e can  ge t [E k , — O E,,]-- H ,, (1 <k l) .
Hence, (A(s), 0 A ( 6 ) )  i s  a n  f2 -trip1et in  g . I f  x E l -P=ZL(A (E)), then
(A (s), H(o), — 0 Ad (0 x)A(6)) is also a n  12-triplet containing A (6) a n d  H (o) as
nilpositive a n d  semisimple elements respectively. In  view of Proposition 1.3,
such a  trip le t is  unique, hence one gets A d (0 x )A (s)=A () , o r  0.7cE H ' .  This
means that OIP=Hs. Q. E. D.

T h is  lemma te lls  us that (I, ly) is a  "reductive symmetric pair" (cf. [2, § 1]).
A t th e  en d  o f this section, we now prove Proposition 3.10 which gives a

Cartan decomposition o f  L  with respect to (K nL ,

Proof  of Proposition 3 .1 0 . The assertion is proved just a s  i n  [12, p. 118].
L et 1=beecr be th e  eigenspace decomposition of t w ith  respect to 0„ where ty
and  g ' a re  respectively t h e  (+ 1)- a n d  (-1 )-e igenspaces. Since 0 ,  commutes
with Olt, I is decomposed as

(3.23) 1---frvfetnWEIDP(WEDPng'•
Moreover, by -)1) is a Lie triple system contained in  p n t ,  e .,  [X , [Y , Z ]]E b 'np
fo r any X, Y, Z E b sn p . Hence, by virtue o f  [10, Chap. VI, Theorem 1.4], we
have

(3.24) L--=(K nL)exp(pnqs)exp(pnbs).

L et I(s) denote the  subalgebra o f fixed points of the involution 0 0 „  Then 1(6)
is a  0-stable, reductive subalgebra o f I, and  1(6)= fnb 'epnq ' g ives its  Cartan
decomposition. Notice th a t apgipnqs, hence ap  i s  a m axim al abelian subspace
o f p n q s . Since all the m axim al abelian subspaces o f p n q ' a re  conjugate under
the  identity component (1-P n K ) 0 o f  11 'nK , we obtain

(3.25) e x p  (p n iis )E -(H e rv o o A p (H "n 1 0 0 .

(3.24) and (3.25) prove the proposition. Q. E. D.

§  4 . (Reduced) Generalized Gelfand-Graev representations associated with
th e  nilpotent classes co,

L et co, (0 < i/ )  be th e  nilpotent c la s s e s  o f  g  in  Theorem 3.13. Consider
the  GGGRs (see Definition 1.11)

(4.1) T„,,=-Ind with (N=No)

associated with w,. Here o is  th e  Cc -orbit containing co,. In  th is section , we
first clarify i n  4 .1  th e  relationship between L'-1"., (unitarily induced) and the
left regular representation 2G  o f  G  (Theorem 4.2). There, w e find o u t  that
the  d irect sum i s  q u a s i - e q u i v a l e n t  t o  2G . T h is  s h o w s  th e  import-
ance o f these kinds o f GGGRs.
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In 4.2, we construct reduced GGGRs (=RGGGRs) associated with co, after
Definition 2.6. But, in that definition, the following property for e t is supposed :

e t extends canonically to a genuine (not just projective) unitary representation
Ét: o f  th e  semidirect product subgroup H i Ng.P, where I--P=He" )  (se e  3.3)
i s  the  stabilizer of A [ i ]  in the Levi subgroup L =L , (H i  = Ho (A [ i ] )  in the
notation of § 2).

So we prove the above property by applying the criterion in Proposition 2.2.
In 4.3, we give another ty p e  o f  realization o f  ei , so-called Fock model,

w hich  is m ore convenient f o r  our later purpose than the Kirillov model et .
This new realization enables us to describe the extension É, explicitly.

4.1. Relation between GGGRs L 2 -1", and the regular representation AG .
Let S=--- A,N„, with N=exp{E2EA+9(ap ; A)} be an  Iwasawa subgroup of G.

Then, according to Duflo-Raïs [5] and Nomura [20], the  left regular represent-
ation of S is decomposed into irreducibles in  the following manner.

Theorem 4 .1 . (1 ) The unitarily induced representations 7c,._=_L2 -Ind
are irreducible f o r  all s-- -- (€1, €2, ••• st)E {1, — 11`, and they  are mutually in-
equivalent. Here A(s) and eA(,) is the irreducible unitary represent-
ation o f N  corresponding to the coadjoint N-orbit [A(s)*] through A(s)* (see 1.3).

(2 ) One can give the irreducible decomposition of the lef t regular represent-
ation A s  of S as

(4.2)A 8 ED [co l• re ,ceil, -11 1

where [c o ]• r , means the infinite multiple of 7r,.

N o te .  We comment here on the proof of this theorem. Let be the Lie
algebra o f  S , then it is expressed a s  ..=1.103in w ith  0 --=, a,,e)(n,„(11). Extending
each element of n* to a  linear form on t r iv i a l  o n  N, we identify n* w ith  a
subspace of T . Nomura described in [20, Proposition 1.4] the open coadjoint
S-orbits in the map s-->Ad*(S)A(s)* sets up a one-to-one correspondence from
{1, —1 }̀  onto th e  se t o f  o p e n  Ad*(S)-orbits in (H e gave  there such a
description more generally for exponential solvable Lie groups corresponding to
normal j-algebras.) Moreover, the irreducible represetation 7C, corresponds to
the orbit Ad*(S)A(s)* v ia  the  Kirillov-Bernat correspondence (see [20, proof of
Proposition 5.9]).

These two results of Nomura enable us to apply explicitly to our group S
th e  general theory o f  Duflo-Raïs [5, p. 132] o n  th e  Plancherel theorem for
exponential solvable Lie gro up s. A s  a  consequence, one  can  ge t th e  above
theorem.

I n  v iew  o f  Theorem 3.11, fo r  each s=(si, sz, {1, —11 1, A (s ) is
conjugate to A [i(s )] under Ad (L ), where i (s ) i s  th e  number o f  elements sk

such that k =  l. From this fact together with the stage theorem for unitarily
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induced representations, we obtain

(4.3) L2-Ind L24nd L2-Ind Ve i  ( 0 ) .

Moreover, keeping (4.2) in  m ind, w e find out that the left regular representation
2 , o f P  is decomposed as

(4.4) e ED [ co] - L2 - I n d ( e ) .

Consequently, inducing up th e  representations in  (4.4) to  G , one gets

Theorem 4 .2 .  The left regular representation A G  o f  G  splits into a  unitary
direct sum of the infinite multiples of GGGRs 20==ED01[00]•L2-Ti.

Recall that our simple group G  has a com pact Cartan subalgebra (see 3.1).
Therefore, according to Harish-Chandra, G  admits discrete series representations
(=irreducible subrepresentations of 2s ). So, w e deduce im m ediately  from  the
above theorem th e  following

Corollary 4 .3 .  Let D  be a discrete series rspresentation o f G . T hen , there
exists O S i l  such that D  occurs in the GGGR L 2 -F i  as a subrepresentation.

These theorem  and  corollary show th a t the  GGGRs L 2
- F , (13- i l )  a re  im-

portant in  connection with th e  regular representation, and , especia lly  w ith  its
discrete spectrum . M oreover, th e  ab o v e  co ro lla ry  n a tu ra lly  g iv es r ise  to  the
following

Problem EDS. Describe th e  embeddings o f discrete series representations
into GGGRs

In  the  forthcom ing paper [33], w e w ill trea t th is p roblem  fo r  holomorphic
( o r  anti-holomorphic) d isc re te  se r ie s  re p re se n ta tio n s  u s in g  t h e  m ethod  of
H ashizum e [9]. F o r ou r discussion there , the argum ent (but no t th e  result) of
Rossi-Vergne [24] plays an  im p ortan t role. W e  d e s c r ib e  t h e  embeddings of
such type of discrete series into F 's .

4.2. RG G G Rs F i (c). F o r  05i.<1, l e t  H i = H " i ) b e  t h e  centralizer of
A [i]= — E k iE k + E .> iE m  in  th e  L e v i subgroup L .  By Lemmas 2.1 and 3.15,
I / 2 coincides w ith th e  stabilizer o f the  equivalence class o f  e i  i n  L , denoted by
IL ,(A [i]) in  the  nota tion  of § 2. A s w as seen in  § 2, e i  extends generally  to  a
projective representation o f th e  semidirect product subgroup H iN  acting on the
same Hilbert space. M oreover, in Proposition 2.2, w e have given a  nice suffici-
en t condition for such  an extension to  b e  a  genunine representation. M aking
use of th is criterion, w e prove here  that e i  ex ten d s  to  a  genuine representation

fo r a n y  O i l .  F o r  this purpose, w e h av e  o n ly  to  c o n s tru c t  a n  Ad (H i )-
invariant complex struc tu re  on  g(1). T h is  is achieved in  th e  following way.

L et r  be  a  linear m ap from  ..=a p Ej)um  t o  ip defined by
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(4.5) r(X)=2-1(X—O X ) for

T h en , in  view o f th e  decompositions g = te p .- - f e ,  r  gives a  b ije c tio n . There-
fore, the  Ad(K)-invariant complex structure J  on  p (see (3.1)) is transferred to
a  complex structure J ' o n  through r :

(4.6)

We show  that the restriction j" .-T !g (1 )  is t h e  desired complex structure on
g(1).

Lemma 4 .4 .  ( 1 )  For any  1Sk_<l, the complexification g(ap; 2 - 1 2k)c  of  the
root space ( a ;  2 - 1 2k) is expressed as

(4.7) g(ap; 2 - 1 2k)c=i-i - 1 ( E gc(tc; r)),rep kUC k

where !..t is  the Cay ley  transform  in (3 .8 ), and  P k  an d  C  k  are  th e  subsets of
f = f ( g c ,  lc ) in Proposition 3.1.

(2) The subspaces g(ap; 2 - '2 k ) (1. k_<l) are stable under J'.
(3) Extend J ' to a  map on c  b y  c o m p le x  lin e arity . T hen, the (±—V-1)-

eigenspaces 17±(k) f o r J ' in  g(ap; 2 - '2 k)c  are described as

(4.8) V (k) 1{ E  gc(lc ; 7) } , V - (k)=P - 1 { E gc(tc; 7)}.
rEC k

Pro o f . The assertion (1 )  follows from Proposition 3 .2  a n d  Theorem 3.3.
I n  order to prove (2 ) and  (3), we calculate f ( p '( X r )) (TEPkUCk). Keeping
in  mind Moore's restricted root theorem (Theorem 3.3) an d  (3 .5 ), o n e  has for

rEPkUCk

E  a d ( X 7 7 n ,_ — X  ) X  = [ X T V
 X ]

'1 77

{ E X r]]= — [H ,, X r]=— X r .
lk m k l

Using these relations we see easily

p - '(X ,)=E  E  a d ( X  — X  )YXiz o  j ! 4  i s i r c t

=c0S 1--r X
r
 +Sin.--r [ X

- r  k 
, X

r 
] -= 1

 - (X
r -

F[X " '

 X ]) .
4 4 -V2 -

By virtue o f (4.9), ,r(p - 1 (X 1)) can be calculated a s  follows.
Case 1. If  TEPk ,  then one has (p '(X T))= — 1p - A X ,) . Indeed,

J'(p - 1 (X T))=2 - 1 1 2 (r - 1 .J.r)(X ,+[X _ r k , X 1]) (by (4.9))

J)(X T) (since Xr Ep c  a n d  [X_ T k , Xr]ETc)

-=2 - 1 /2 / -1 r - '(X1) (by (3.1))

=-N,/-1/1-1(X1).

rEP k

(4.9)
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Case 2. L et TE C k . A  calcu la tion  sim ilar to  tha t in  C a se  1  le ad s  u s  to

T hus w e have proved the assertions (2) and  (3) a t  th e  sam e time.
Q. E. D.

B y virtue o f  this lem m a, it becom es clear that th e  re s tr ic tio n  J "  actually
gives a  complex structure  on g(1).

Proposition 4.5. The complex structure J"  on  g(1) i s  invariant under the
adjoint action of L : Ad (x). J" oAd(x - ')= J" fo r  all

Pro o f . I t  sufficies to  p r o v e  th a t  t h e  eigenspaces .17 1 = E / 1 7 ± (k)_-Ç g(1)c
for (the complex linear extension of) J"  are  stable  under Ad ( L ) .  We see from
Lemma 4.4

(4.10) = g(1)cntt - 1 (14) , = g(1)cnic l (fc) •

In  view  of Proposition 3.1, one c a n  g e t  esaily t h a t  te(Te)çfc. (M oreover, the
equality  ho lds i f  a n d  o n ly  i f  g(1)=(0), w hich happens just in  th e  (C A SE  I) of
Theorem 3.3.) This inclusion implies that

(4.11)

w here K c  a n d  L c  deno te  respec tive ly  t h e  analytic  subgroups o f  Gc=Int (gc)
corresponding to fc• an d  lc . Notice that Ad (L ) is contained in  L c  a n d  t h a t  fc
and 13, are stable under the adjoint action of  K .  T h e n  w e  get from  (4.10) and
(4.11) the  desired reselt : Ad (x)17* ,  V  fo r  a ll  x E  L. Q. E. D.

T hanks to  th is proposition, one c a n  a p p ly  Proposition 2.2 successfully to
and  ge ts  th e  following

Theorem 4.6. For e a c h  0 i l , the rpresentation o f N extends to a genuine
unitary representation of the semidirect product group H i N  acting on the same
Hilbert space.

T hus, in  view  o f Definition 2.6, th e  RGGGRs F i (e) - T ( c )  associated to wi

are  constructed as

(4.12) F(c)=(L 2- o r  C- -)Inn iN ( tV i)  ( e = c 0 1 N ) ,

w here c  ranges over irreducible (unitary ; in case of L 2-induction) representations
o f th e  reductive group W .

For each th e  im p o rta n t ty p e  o f  GGGR L 2 -1"i  is  decom posed  in to
a  d ire c t integral o f th e  RGGGRs Lz-T i (c) (see (2.8)). Especially, i f  i= 0  o r  1,
then  th e  GGGR splits in to  a  d irec t sum  o f th e  corresponding RGGGRs :

(4.13) r z =  e  [dim c ] .  i (c) (i=0, 1),ce(xnL).-

since H°--=H t.-- K n L  is  a com pact group.
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Henceforth, we concentrate on these RGGGRs P (c )  (0_i.<_/), a n d  g iv e  in
§  6  finite multiplicity theorems fo r  them by applying the  results of [I]. For
this purpose, we make some preparations.

4 .3 .  The Foek model p , .  In the definition of the GGGRs o(ex)
(o=Gc•w, Xem, XE§(2)0; see Definition 1.11), we constructed the irreducible
unitary representation ex of N . making use of a real polarization at X * .  But,
in our specified case co=o,„ X=A[i], it is convenient for the laetr use to adopt
another type of realization of e,.=EAM, so-called Fock m odel. H ere, we explain
such kind of realization mainly after [20].

We first construct a positive polarization at A[i]*.
Let Q  be a  linear form on the Iwasawa subalgebra . -=apla t m given as

(4.14) Q(X)=B(Zo, X )  (X e ) ,

where Z o is  the central element o f in  (3 .1 ). T hen , according to Rossi-Vergne,
Q  has the following property :

Proposition 4.7 [24, p . 372]. It holds that for any  X, YE.,
(1) Q(ErX, FY1)=Q(CX, Y7),
(2) Q ([J 'X , X ]).<0. M oreover, the equality  holds i f  and only  i f  X=0.

Here J' is the complex structure on i n  (4.6).

Remark 4 .8 .  Using this proposition, one can show that the triplet (s, Q, J')
has a  structure  of norm al j-a lgebra  (see Definition 1.1 o f  [2 0 ]) . Therefore,
Nomura's results in  [20] fo r so lvab le  L ie  groups associated with normal j-
algebras can be applied to our situation.

For any 0 i l , le t  J 7  be the complex structure on g(1) defined by

—J"(X) if XE g(a, ; 2 - '20),
k5i

(4.15) J'AX)= J "(X) if X E E  g(a, ;m>i

Notice that and J7= —J". Extend J7 to a complex linear map on g(1)c.
Then, the (± 4,./-1)-eigenspaces VI for J7 are described as

(4.16) V t =(21/ R--(k))({)(p» V  t = V T  ,

where the bar means the complex conjugation in g c  w ith  respect to  th e  real
form g.

Proposition 4 .9 .  For each 0 i l , the alternating bilinear form

(4.17) (X, Y)1--> A[i]*([ J' X , Y ])=B (0A [i], [FIX , Y ])

on g (1 )x (1 ) is negative definite. M oreover it holds that

(4.18) A[i]*([[',1X, J',1 7 ])-=A [i]*([X , Y ]) for a l l  X, YEg(1).
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Pro o f . The assertions for A=A[0] follow from Lemma 3.5 and Proposition
4.7. For general we can check easily

Il[i]*([ R  X , Y ])=A *([J"X , Y ]) (X, YE g(1)),

which proves (4.17) for any i. To prove (4.18), express X , Y  a s  X =EkX k ,
Y =-E k Y k  w ith  XI?, k E e C t p ;  2 - 1 2 0 .  Then the left hand side o f (4.18) is
calculated as

A [i]* ([R X ,R Y ])= — A *([J"X k , J"Y k]) -Fm i A * ([J"X ., J"Y n i ])

=— i .11*(EXk , Yk1)--E 7n i A *([X ,„ Y i r t ])

=A [i]*([X , Y ]).

For the second equality, we used (4.18) fo r A = .4 [0 ] (already proved). This
completes the proof. Q. E. D.

Now we put for each 05i.1</,

(4.19) u,= V (2 ) ..

Then a, is a  complex subalgebra of nc  because g(2)c is an ideal of nc.

Proposition 4.10 [2 0 , 2 .2 ]. The subalgebra u i gn c  i s  a totally  complex, posi-
tive polarization at A U rE n * . Namely, it satisfies the following three conditions:

(1) ui  i s  a  maximally totally  isotropic subspace (=a  L agrangian subspace)
with respect to  the skew-symmetric form b i : (X, Y ) ,-4A [i]*([X , Y ]) on ncXnc,

(2) the hermitian form  h i : (Z, W )— >V -A [i]*([Z , W ]) on ui x u i  is positive
semidefinite,

(3) ui - Fifi=nc.

Pro o f . We prove here this proposition in order to clarify our arguments.
(1) Let X, YEu i . Then, they are expressed uniquely as

Y=Y1-F-V4RYI+Y2

with X i ,  YI E g(1) and X2, Y2E g(2)c. Then, a simple calculation leads to

A [i]*([X , Y ])= A 1iJ * ( [X I , Y 1 ] — [ F," X i ,  J'!Yi])

+-V -1ACir(Exi, .17)7 11+[ J;,' X i ,  Y 1 ]) .

The right hand side is equal to 0 thanks to (4.18). This means that b,(Eiti ,
=(0), i.e ., u , is  a  totally isotropic subspace for bi . On the other hand, we see
easily that the radical of bi  coincides with 0 (2)c. So, the dimension of any
Lagrangian subspace must b e  equa l to  2 - 'clim g(1)c-Edim g(2)c = dim  u ,. This
proves that ui itself is a  Lagrangian subspace.

(2) Let XOEtti be as above. Then h i (X , X ) is calculated as

h i (X , X )= h i( X i + A / - l in X i ,
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—1A[i]*(IXI-P-V
= - 2 , 4[i]*([n Xi, X1]).

B y virtue of Proposition 4.9, h i  i s  positive semidefinite.
( 3 )  follows from (4.16). Q. E. D.

T h e  general theory for holomorphically induced representations (see e. g.
113, Chap. VIII]) te lls us how  to construct th e  irreducible unitary representation
o f N  corresponding to A [i]* through th e  K ir illo v  correspondence, by making
u s e  o f  th e  p o s it iv e  polarization u 1 . T h is  is done in  th e  following w a y .  We
identify th e  enveloping algebra U(n) of n c  w ith  the algebra of left N-invariant
differential operators o n  N  via

R (X )f (n )= 
dt
d   f(n exp tX )  t=0 (n E N )

fo r  X E n  a n d  fE  C "(N ) . Denote by N , the  center o f N : N2=expg(2). L e t
be  th e  space of C"-functions f  on  N  satisfying

(4.20) R (Y )f=— V -111Cii*(Y )f fo r  all Y E l l i

(4.21) f
N / N 2

1 f(1)1 2 clii <+.0 ,

w here N n —>geN/N 2 d e n o te s  th e  canonical homomorphism, a n d  d it th e  N -
invariant measure on  the  fac tor group N /N 2 .

One should note  the  following p o in t .  Since N 2  is simply connected, (4.20)
implies that

(4.22) f(nn2)— )21(nz) f(n) (n E N , n 2 E  N 2 )

where 77 i, is  th e  unitary character o f N 2  given as

77i (exp Y )=exp { A/-1.4[i]*( Y )1 ( Yc g(2))

By virtue of (4.22), th e  function i/H  f (h )I  is w ell-defined o n  N /N 2 . S o , the
integral (4.21) has a  meaning.

In  th e  present case, one can show th a t SCi  h a s  a structure of H ilbert space
w ith  t h e  inner product induced  from  th e  norm  11.11. (W e need not take the
com pletion.) T h e  group N  ac ts  on N i  un ita rily , th rough  th e  le f t  translations,
so  w e  th u s  g e t  a  unitary representation (T i , s( i )  o f  N  by  pu tting  T (n )f (n ')=
f (n - 'n ')  (n E N , f c N i ). T hen , T i  is irreducible a n d  i t  corresponds t o  A [i]*
through the K irillov correspondence :

W e  n o w  re a liz e  th e  representation T i  in  a  m o re  exp lic it m anner. Notice
th a t the  exponential map exp : It—>N gives a  d iffeo m o rp h ism . Therefore, w e
can identify n=c4(1)6)0(2) with N  through this map :

(4.23) n=0(1)(B9(2)B(X, Y) n(X , Y )e x p (X , Y  )c N .

T h en , in  v ie w  of the  C am pbell-H ausdorff form ula , the  g ro u p  la w  o n  N  is
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rewritten as

(4.24) (X1, Y1)•(X2, 17 2)=(XH- X2, Y1+37 2±2 - 1 [XI, X2]).

Moreover, we can identify canonically the factor space N/N2 gith g(1)=1(X, 0)1
ç n ,  a n d  th e  N-invariant measure dh with the  Lebesgue measure dX (suitably
normalized) on the vector space g(1).

Define a  bilinear form ( , ), on g(1) by

1(4.25) (X i, X 2 ) i= - -
4

{A[i]*([ri'XI, X2])-F-V-1./1D1*([XI, X2])}

for X 1 ,  X 2  g(1). We denote by (g(1), J'Z) the complex vector space g(1) equipped
with the complex structure Then one has

Lem m a 4.11. (1) ( , ) i  giv es a hermitian inner product on (g(1), J;').
(2) The group K n il i  L  acts, through the adjoint action, on the complex

finite-dimensional Hilbert space (g(1), ( , ) i )  as a group o f unitary operators.
Namely, one has fo r  any  kEKnH i ,

(4.26) Ad (k). J'io Ad (k - ') =-- P i ' ,

(4.27) (Ad (k)X, Ad(k)X') i =(X, X ') i ( X ,  X 'g (1 ) ) .

Pro o f . (1 )  It is easily checked that ( , ), g ives a  sesqui-linear hermitian
form on (g(1), J " ) .  Moreover, it is positive definite thanks to Proposition 4.9.

(2 )  W e first prove (4.26). Recall the expression (3.18) o f  th e  L ie  algebra
b1 =ty( 1 )  of H .  Then, lnbi is described as

(4.28) fnb1=r1nfeK2ntem (as vector spaces)

with
g i =  E  {gap ; 2- 1 (2k - 2.))+0g(ap; 2- 1 (2k —2.))}

g 2 =  E gap ; Vk — 2.))+ 0 g(ap ; 2 - 1 (2k — 2.))1
i < ra < k  k

Consider t h e  decom position g(1) -- - _12)1), w ith  t).- --=-Ekig(ap; 2 - 1 2k) and
Em>ig(ap ; 2 ' 2 . ) .  B y the definition of J.7, we have 11)±=±,r11),_. It follows
from  (4.28) that both th e  spaces t), and IL. are stable under ad ( t r l i ) .  More-
over, they are stable under Ad(M ), M = Z K (ap), too. I n  v iew  of Proposition
4 .5 ,  w e  co n c lu d e  ad (X ).R = J/ o ad (X ) a n d  Ad(m). J . A d ( m )  f o r  all
xE fn b i and a ll ni M .  This implies that (4.26) holds for a ll  k 111(K nH i )o=
K nH i .

The equality (4.27) follows from (4.26) and the definition of H .
Q. E. D.

L et g i  b e  the space o f  holomorphic functions 0  o n  th e  complex vector
space (g(1), J ) satisfying

(4.29) 11011/iA(010(X)12exP(-211X117)dX<+co,
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where II X H=(X, X ) , .  T h e n , g ,  is com plete with respect t o  t h e  n o r m  •
h e n c e  it  h a s  a  struc tu re  o f H ilbert space indced from  th is n o r m . W e call g ,
the Fock space of (g(1), R ) .  Since the function exp(- 2X ) is  rap id ly  decreasing
a s  11X111--->00, g„: con ta ins t h e  space of polynomial functions on (g(1),
Moreover, if  E l denotes, f o r  a n  in t e g e r  q 0 ,  t h e  subspace o f  homogeneous
polynomials o f degree q , th en  g i  is decomposed as

(4.30) g i= g l (orthogonal direct sum).
a ao

W e can realize th e  representation T i  o n  th e  Fock space g i  a s  follows.

Proposition 4 .1 2 .  (1 ) For any fE 11 1 ,  define a function c f  on g(1) by

(4.31) f ( X)= f (X) exp X 11D (XE g(1)).

Then, c gives an isomorphism of Hilbert sp o ces  from  ,41i  onto g 2 .
(2 ) Let p i  denote the unitary representation o f N on g i  transferred from T i

through the isometry c :  p i (n )= coT i (n)oc - '  ( n E N ) .  Then, the operators p ,(n ),
n= n(X o , Y 0 )E N , are described as

(4.32) p i (n)Ø (X )=exp  2 (X , X0) —  X0N -  I —V —1A[i]*(Y 0 )1 0(— X0 + X )

fo r  X Eg(1) and O E g i .

One can show th is  proposition by a sim ple ca lcu la tion . F o r th e  proof, w e
re fe r  to  [20, 2.21.

A s w e saw  fo r  p i t h e  representation p i  can  be  ex tended  to  a  genuine
unitary representation fi i  o f the  semidirect product group H i N .  T h e  realization
p i  enables u s  to  w rite  d o w n  exp lic itly  ii i (x )  f o r  x E (K n H i )N .  W e  se t fo r
k E K nH i

(4.33) fie(k )0(X )= 0(A d(k)-iX ) (0 E g 1 , XE g(1)) .

T hen , thanks to Lem m a 4.11(2), w e have

Theorem 4 .1 3 .  The map (K 1 H 1 )N 3kn ,—, 51 (k n )-i5 1 (k)p 1(n ) gives a unitary
representation o f (K n H i)N  on the Fock space g' i ,  which extends p i .

Remark 4 . 1 4 .  ( 1 )  I f  i= 0  o r  1, th e n  i t  h o ld s  th a t  K n H i = l -P = K n L .
T herefore , in  th is case , the  above theorem gives a  complete description of the
extension

(2 )  For each integer g the finite-dimensional subspaces (01<i /) are
stable under (31 (K n H 1 ).

4 .4 .  The adjoint representation of M  on S .
For the la te r use, w e realize here the adjoint representation o f  M  o n  th e

com plex  vector space  (g(1), J 7 )  (see (4.15)) i n  a  d iffe ren t m anner. F o r th is
purpose, we first claim
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Lemma 4 .1 5 .  The C ayley  transform  p E G c= In t(g c )  commutes w ith  Ad (k)
fo r all k E K n L : Ad (k)op= poAd(k).

Pro o f . L e t k E K n L .  B y virtue o f Lemma 3.5(3), one has Ad (k)A=A and
hence Ad(k)9,4=0A, where

A=2 - Y - 1  ,A (11;,— X ,,-FX _„) a n d  OA=2 - Y - 1

This implies that

Ad ( k ) t —1Ad (k)(A—OA)= ,A(X0 ,—X_ r k ).

From  th e  definition o f  p  in  (3.8), w e obtain th e  desired result. Q. E. D.

Now se t S(k)=E r Eck gc(lc ; r)g gc (1 _ < k l) .  F or 0 i_</, define a  complex
vector space S i  b y

(4.34) Si =( ktS (k ))G )(2 i S(m)t).

H ere , fo r a  v e c to r  sp a c e  X  o v e r  C , X t i s  t h e  sp ace  X  eq u ip p ed  w ith  the
complex structure  x,--.>—A,/- 1x (xE X ) instead o f  .x,— *A/-1x. W e w ill denote
b y  X px ,—*xt.=. x E X I th e  identical anti-linear isom orphism . T hen, taking into
account th e  definition (4.15) of a n d  Lemma 4.15, we obtain immediately from
Lemma 4.4(3) the  following

Proposition 4.16. (1) The map

(4.35) : g(1)DX p(X+-V —1J" X) AS(k)

gives rise to an isomorphism o f complex vector spaces from (g(1), PZ) onto S i  fo r
any Here, J "  is  the restriction of the complex structure J '  in (4.6) onto
g(1).

(2) The subspaces S(k)Sgc (1_< k5l) are stable under Ad (M ) .  Equip S(k) 1

w ith  a structure of M -module through m•st=-(Ad(m)s)/ M ,  s E S ( k ) ) .  Then,
( (1), ri) is isomorphic, as an M -m odu le, t o  Si=Ek,iS(k)EDEni>iS(m) 1 through
the map r.

This proposition gives another realization S i  o f  t h e  M-module (g(1),
w hich is useful fo r our later calculation in  5. 3. 6 fo r type  EIII.

§  5 . Finite multiplicity theorems for ( c  M )® (  M )  in  connection
with RGGGRs F t (c)

Let gi) (O i l )  be th e  irreducible unitary representations o f  (K nH i )N
constructed in  4.3. F o r  irreducible representations c  o f H i, consider the  repre-
sentations Oi (c) - -----(c1 M )0(fi 1 1M) of M .  In this section, we give finite multiplicity
theorems fo r  these representations. (Our results o f  th is section  is summarized
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in  Theorem 5 .17 .) These theorems combined with th e  results o f  [1 ] enable us
to produce finite multiplicity theorems fo r  RGGGRs r z (c), given in  the  succeed-
ing  section.

5 .1 . A central element Z j  o f  I =Lie L.
Firstly , w e study  th e  multiplicities in 0,(c) fo r  i= 0  o r  1. F o r this purpose,

w e construct here a  central elem ent Z -t, o f I contained in  th e  m a x im a l abelian
subalgebra 1+ o f  m . T h e  element Z'o- reduces to  0  if  and  only  if  G/K i s  holo-
morphically equivalent to a  tu b e  d o m a in . We describe the adjoint action of the
one-parameter subgroup C+ e x p  R Z j M on the complex vector space (g(1), J"),
w hich is given in  4.2.

W e keep to the notations in  § 3. L e t Z o E f b e  the  cen tra l element o f  f in
(3.1). Express Z , a s  Z0=2.1,- + Z  w ith  Zt,EI + , ZPE A/-1 t , according as the
decomposition f=i+ED,v-1 t-  of the compact Cartan subalgebra f. T hen one has

Lemma 5.1. (1) Z,•=2 - 1 -‘,/
(2) For any positive root TEX+, the values r(Z t) are given as

2 - Y— 1

(5.1) r(z)= i f  TE C k
15 1k5

0 otherwise.

i f ï c U P k .vP .
1 s in.<1

(5.2) 1 (Z )= 2 - Y - 1 if 7 y,i(Ckt-)Pk),
0 otherwise.

(3) Z 'o- reduces to 0  if  and only i f  g(1)= (0). This happens just in the (CASE
I) in  Theorem 3.3.

P ro o f. ( 1 )  Put Z = 2 " / - 1 w ith  ak R .  T h e n , fo r  an y  1.- k

:=53, w e have rk(Zo)=-rk(Z)=-V 1 1 ak because 7k(1-1 )=26km (see (3.5)). On the
other hand, (3.1) and  (3.2) im ply  that rk(Z0)= ,V -1 , w hence a,,-=1 for

(2) (5.2) follow s im m ediately from  the expression of  Z  in  (1). Keeping
in  mind

1(Z- ) -F1(ZT,)=1(Z0)=
A/-1 if  r E f -p„

1 0 i f  rE f t  ,

w e obtain (5.1) from  (5.2).
(3) The assertion (3) is  a  d irec t consequence o f  (5.2) because Pk=Ck=95

fo r a ll  k if  and  only i f  g(1)=(0). Q. E. D.

Thanks to this lem m a, w e can deduce th e  following propositions.
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Proposition 5 .2 . Z -t  i s  a central element o f  =Lie L . M oreov er, the one
parameter subgronp C± =exp RZ1,-  ( M L ) is contained in the center of L.

Pro o f . Recall the restricted root space decomposition (3.10) of f=g(0). Then,
in view of Moore's restricted root theorem (see 3.1), the complexification fc  is
expressed as

(5.3) Ie=p-iftceEr(gc(te ; r)EDge(tc ;

where, in  th e  above summand, r runs through the roots of (Oc, ic) in  CoU
(Uk>.0 k .). Notice that re - i(Z -0=Z;,- because the Cayley transform p  is identity
on I+ (see (3.9)). Then we get

Ic1=72 - 1 (EZ, icEDE r(gc(ic ; r)egc(tc ; —r))1)=(0)

by virtue of (5.1).
The latter assertion follows from the former one, since Ad (L) 1c is con-

tained in the adjoint group of fc  (see the proof of Lemma 2.7 of [II. Q .E.D.

Proposition 5.3. The adjoint action of Z 4
0
- on  g(1) is described as

(5.4)
1ad (Z - )1 g(1)= J" .

So, the one-parameter subgroup C+  acts on the complex vector space (g(1), J") in
such a way that

(5.5) Ad (e(s))I g(1)=expA/ —1 s. I fo r  e(s)=exp (2sZ -t) ( s e R ) ,

w here I is the identity  operator on g(1).

Pro o f . By virtue of Lemma 4.4(3), the (-± A/-1)-eigenspaces V g (1 ) c  fo r
J "  are expressed as

r iV + =p1
r E . k gc(ic ; "V- = p - 1 { ± E gc(tc ; r)}

k = 1  T E C k

Then, (5.1) together with the fact p ' ( Z -t)=Z+, implies (5.4). Furthermore, (5.5)
is a direct censequence of (5.4). Q. E. D.

5.2 . Finite multiplicity property for 0,(c); i=0, 1.
Thanks to Proposition 5.3, we can show that the restriction sbz(e)I (i=

0, 1), and hence O (c)  itself has finite multiplicity property fo r any irreducible
unitary representation c  of H °= H I= K nL . This is done as follows. Let i=0
or I. It suffides to study the case i=0 only, because fi i = fit, the contragredient
representation of fio. By Proposition 5.3, we have for each integer q 0

(5.6) o(e(s))I '̀ ,1 =exP( — / - 1  sq)• ,

where is the identity map on the subspace a l  (see 4.3). In view  of the de-
composition (4.30), we conclude
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Theorem 5.4. The restriction of :60 t o  the one-parameter subgroup C , is
decomposed into ir r ed u c ib le s  as

(5.7) f i o  ED " D q ]  • e - -/=fq ,

where D'i dim 2g, and e - /̂=i q denotes the unitary  character o f  C ,  such that e (s )
.—>exp (--N/-1qs) ( s E R ) .  Especially, the restrictions fiiI C+ (i=0, 1) are of multi-
plicity finite.

From  this theorem , one gets im m ediately th e  following finite multiplicity
theorem.

Theorem 5 .5 .  I f  i = 0  or I, then the representation ç b 1 (c )= - (c 1 1 1 1 )0 (f i1 IM )  o f
M  has finite multiplicity fo r  any irreducible unitary representation c  of the com-
pact group H°:=Hl=KnL.

This is  a  complete result for i= 0 , 1.

5 .3 .  Finite multiplicity property for 0 1(c); i*O, 1.
L e t  u s  n o w  p ro c e e d  to  the cases i* O , 1. Then, the reductive subgroups

HLcL are non-compact. So, irreducible admissible representations c  of H 1 a re
infinite-dimensional in  general, and it is unreasonable  to  expect that the repre-
sentations 0,(c) are of multiplicity finite for a ll c. Therefore, in  the following
w e  put some reasonable assumption on c ,  and give finite multiplicity theorems
for 01(c). For this purpose, we study separately each type of simple Lie groups
of hermitian type (see 3.1 for the classification of such groups).

5 .3 .1 . (CASE I) in 3.1. This is just the case w here G/K is holomorphically
eq u iv a len t to  a  tube  dom ain , o r equivalently, g(1)=(0). Then, i s ,  by con-
struction, a  one-dimensional unitary representation of 1-11 1\1 for each i. There-
fore , if  a  representation c  of H 1 is finite-dimensional, then O1(c) is finite-dimen-
sional, too, and in particular, of multiplicity finite.

In th is  case, w e can not hope any more result in genera l. H ow ever, in the
special case G=SU(p, p) (1=p), 0,(c) has finite multiplicity fo r any irreducible
admissible highest w eight representation c  o f  Hir- SU(i, p—i). This property
is proved in  the next 5.3.2.

5 .3 .2 . Case of type AIII(&t(p, q ) ;  p _ q ) .  For positive in teg e rs  p, q  such
tha t p q, l e t  g  be the Lie algebra of the special unitary group SU (p, q) with
respect to  a  hermitian fo rm  o n  Cn X Cn (n=p+q ) w ith  s ig n a tu re  (p, q). We
realize g in the following manner. Define a  m atrix  4,, of degree n by

/ 0„ Oo r

(5.8) 0 „ Jr 0 „ (0„ o= th e  zero m atrix of size  a xb)

\ a , 0„ 0 „  /

w ith  r=p—q, I ,.= (rX r)-iden tity  m atrix , and
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I 0
(qX q  matrix).

\ 1 10

Then, g consists of complex matrices X  of degree n  satisfying

(5.9) XP,--E4,,tX=0 a n d  tr X = 0 ,

w here tr X  (resp. ' X , X) denotes the  trace  (resp . the  transpose , the  complex
conjugation) o f  a  m atrix  X .  T h e  real linear m ap X—>--eX gives a Cartan in-
volution of g  denoted by 0 ,  and the subspace

ap = {H-=diag (h g , ••• , hl, 0, , 0, —hi, ••• , œh,); h k E R  (1 .k < q )}

i s  a  m axim al abelian subspace of p=IX Eg;  OX= — X }. T herefore , the  real
ran k  1 of g  coincides with q. T h e  genera l e lem ent X  o f th e  centralizer m=
gt(a p )  is expressed as

—1951

(5 .1 0 ) in :

(rX r  matrix),

; 9 5 k  R  (1.51?_/),

tr X--- -0.

O lr Ott

Y Or/

O lr

A r --795, L

O rt

O lt

V -L7f.g5/

So, one gets a  canonical isomorphism of Lie algebras

(5.11)
f -V-1 RieNit(r) (r*O) ,

1 -V-1 (r=0).

W e may choose elements H(o) and A [ i]  (0 5 i< l)  respectively as

Il

O 0 T r

0 0

(5.12) H(o)=

0

From  this choice, the  subalgebra f and the subspaces g(1) and g(2) are expressed
as
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X , 0 0
t _ E gt(/, C)

t(/ , C )(N u(r) (r 0),
0 Y 0

7

tr X=0
,l(1, C)(1)1? (r= 0),

0 0

0 Z 0

0 O t2 0 't ; Z  1X r complex matrix }

 - - - -- - t  - - - - - - 

0 0 0

0,, 01 ,. W -

{-0(2)=O n 0 „ O n
;  T r y , w }  .

0, /0 1 , 0, /_

428

(5.13) 1=-

(5.14) QM =

and

(5.15)

H ere  w e  p u t , fo r  a  m atrix  V  of degree a ,  7' V=a at V a . .  Moreover, for each
the root space g(a p  ; 2 - '2 k )  is described as

(5.16) g(a„ ; 2 - 'A .)= {2E(1);  Z =(z L r j r  w ith  z i p-=0 if  i =1-10.

Now we suppose that r = 0 , i. e ., g (1 )= (0 ) . T h e  natural complex structure
o n  th e  space M ,,,(C) CrX  ••• X Cr (l.-copies) o f  /X r  complex matrices gives
rise to the complex structure J" on g(1) through the map Z - 2 .  So we identify
them . U nder this identification, one has for each 0 i l

(5.17) (g (1 ), Jn -.•L, f(Cr)tX  •-• x(Cr)tXCTx •-• xCr
/-i

w here  (C r ) t  i s  th e  complex vector space conjugate to Cr as in  4 . 4 .  Further-
more, the adjoint action of n i on (g(1), J")  is written as

(5.18) ad (y - 1  0, Y)• z2, •-• , v(95)1Fzi, • • • , V-1 1)(0)/ Fzi)

for (Y - 1 0 ,  Y )E ,V -1  /VIEDit(r) - - m and z k EC'r (1<k_.<1). Here we put

(5.19) 1)(95)k=951,4-2K-1 E Oh' for ¢=(01, ••• , 0 / )G R I

W e see easily that the linear map 0 ,—>i)(0)=(1(,0) 1 , ••• , 1., (0) 1)  on is non-
degenerate. One thus obtains the  following

Proposition 5 .6 . L et (1-= (p, q)(n=p+q, p_. -_q=1) w ith  r=p— q=0 . Then,
f o r  e ac h  0 il, th e re  e x is ts  a unique 0 [i]e R l such that
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(5.20) ad (A/ —195[i], 0) I g(1)=ri •

Moreover, the element K i]G .R 1 is expressed as

— (r+41-4i)In
(5.21) OD] k =

(r+4i)In (k> i).

T hanks to  th is proposition, w e deduce, just as in the case of 1=0 or I  (see
5.1 and 5.2), the  following finite multiplicity theorem.

Theorem 5 .7 .  Let g be as above. Then, for any  i  and any finite dimensional
representation c  o f H ', the representation Oi (c)=-(c! M )0 (fi i !M ) has f inite m ulti-
plicity property.

5 .3 .3 . Interesting infinite-dimensional c .  Furtherm ore, in case of i# 0 , 1,
th e re  ex is t ve ry  in te resting  ex am ples  of infinite-dimensional admissible repre-
sentations c  o f H i, for w hich O (c ) are still of m ultiplicity  finite . Such c 's  are
given in the following way as irreducible admissible highest weight representa-
t io n s .  Suppose th a t  c=su(p, q) (p_q= 1) for simplicity, and consider the cases
i# 0 , 1. T h en  the subgroups M , 11" (M gH i) are described as

M x SUM  U (1— i , i)x SU (r)af H i  ( r # 0 )
(5.22)

M ,=_, T1-1  SU (1 -i, (r=0) ,

w here  T denotes the one-dim ensional torus. So, in particular, H i is  a  reductive
group of hermitian ty p e  fo r  each i. T ake  a central element Z+ of fn b i (bi=
Lie Hi) w hich gives an Ad (KnH i)-invariant com plex struc tu re  on  p n b i. By
virtue of (5.21), w e can  (and do) choose ZT as

(5.23) Z+=2-'(-V-195[i1, 0)Et rn

in  c a se  o f  r # 0 .  I n  a n y  case , Z t  i s  in t+g In. Notice th a t  t+ is  a compact
Cartan subalgebra of I .  Let E(Ik) denote the root system  of kk w ith  respect
to  q•. W e  se le c t  a s  in  3.1 a positive system  E+(f0 of / ( 1 )  compatible with
the above complex structure on p n b i. Then, by definition, one has

(5.24) r(ZI)<0

for any  non-compact positive ro o t rEE+(4).
Now le t 0GA/-1 t+* be a  (KnH i )-dominant, integral element :

(5.25) (0 , 2, ) 0 for a ll positive compact roots r 2 '+ (f0  ,

(5.26) t+B exp<0, X> gives a  unitary character of
compact Cartan subgroup Ti- -- exp I+ of H .

H ere, ( , ) deno tes th e  inner product o n  -‘/-1 1 -1-*  defined through the Killing
form  of gc . T h e n , a c c o rd in g  to  Harish-Chandra [7, IV , T heorem  21,  there
exists a unique (up to isomorphisms) irreducible admissible (1),, K('H1)-module



430 Hiroshi Y amashita

1(0) with highest weight 0 4,./-1  w ith  respect to  X (). F u rth erm o re ,
1(0 )  extends to an  irreducible admissible representation c(0 ) of H i on a Hilbert
space gC(0), in  such a  way that 1(0) coincides with th e  (f) , KnHi)-module of
(KnH i )-finite vectors for c(0 ).

The restrictions of c (0 )  and fi, to the one-parameter subgroup C=expRZT
Ç_T+ a r e  described a s  follows. L e t 720 be the smallest positive number such
that exp (720ZT)--=- 1. Then, for any integer m,

(5.27) e (m )(e x p  2 )Z T )= e x p { 2 7 r/  — 1  m w '}  (v E R)

gives a  unitary character e(m ) of C .  M oreover, th e  map in—e(m ) defines an
isomorphism of abelian groups from Z  to the dual group ( C i ) "  of

Proposition 5 .8 .  T he  restrictions c(0 ) 1 C  and fi C  are  decomposed into
irredu cib les as follows respectively.

(5.28) c(0)I e  [D„,]•e(m),
in sm ,(0 )

fiiI C [D ]• e (m ) .
m O

Here m (0) is the integer such that e(m (0))= (exp  <0, •)') l C , and the multiplicities
D .  and D'm  are  all finite. ( I f  r=0, CI_ is the  one-dim ensianal trivial repre-
sentation.)

Pro o f . The decomposition (5.28) follows from (5.24) a n d  th e  admissibility
o f  th e  highest weight representation c ( 0 ) .  We deduce (5.29) from Proposition
5.6, keeping in  mind the decomposition (4.30) of the Fock space g , (= the  repre-
sentation space of fi i ). Q. E. D.

From this proposition, we obtain immediately the following finite multiplicity
theorem for Oi (c(0)), with irreducible highest weight representations c(0 ).

Theorem 5 .9 .  Suppose that G=su(p, q) (p q = l ) .  For let c= c(0 )
be the irreducible admissible representation of i)XSU(r) (r=P— q#0);

i)  (r=0), with highest w iegh t 0 E -V -1  t+*. Then, the restriction of
O1 ( c )  to the one-parameter subgroup Cfr--exp RZI is of  m ultiplicity  f inite. So, in
particular, the representation O (c) itself  has finite multiplicity property.

5 .3 .4 . Irreducible representations o f  S U (n ) . Before proceeding to other
types of simple Lie groups, we recall here theory of finite-dimensional irreduci-
ble representations for SU(n) and ,f(n , C)

Let (ir, V) be a  finite-dimensional representation o f  S U (n ) . Then, the dif-
ferential of the group action naturally gives rise to a  representation of the Lie
algebra t(n, C)=1.1(n)(BA/-1 .1.1(/1) o n  V, which is denoted again by 7 .  Suppose
that Ir be irreducible. T h e n , there exists a unique (up to constant multiples)
non-zero vector vE V satisfying following two conditions :

(5.29)

(5.30) 7c(Xi 1 )v-=0 for 1 5 i< jS n  ,
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(5.31) 7r(Xk k — Xk +1, k+i)v=- --tek•v for some non-negative
integers 11 k ( 1 5 k n  —1).

Here, for j S n ,  w e  put X,,=(x ik 2 )1% ,,,.. w ith  x = 1  if  (i, l)= (k , n i);
o th e rw ise . The sequence ti ( f i  )k A s k s n - 1  is said to be the highest weight

for 7C and y the highest w eight vector.
W e can  thus attach, to  an irreducible finite-dimensional representation r  of

SU (n), its h ighest w eight p .  Moreover, this assignment sets up a  one-
to-one correspondence from the set of equivalence classes of irreducible finite-
dim ensional representations of SU (n) onto (Z + )n - ' ,  w here Z + = {0 , 1 , H .  For
p= --(p k )E (Z + r - ' ,  w e w ill denote by R [,u]= R [ti1 , p2, ••• , p n _ l] the (equivalence
class of) irreducible representation of SU(n) (o r 1(n, C)) w ith highest w eight p.

For an integer g  -(), let g a q ( y )  denote the space of homogeneous polynomials
of degree q  on C .  .q(n) h a s  a structure of SU(n)-module, denoted by cl,(n),
through

(5.32) clg(n)(g)0(z)=--0( e z ) (gE SU (n), 95E 2q(n)).

One c a n  check easily  that  d 2 ( n )  is  an irreducible representation with highest
w eight (0, ••• , 0, q).

For the la te r use, w e now  give the irreducible decompositions of the tensor
product representations dp(n)Odr(n) (q, rE,Z+).

Proposition 5.10. F o r integers q ,  r  such  that q r - 0 ,  the representation
cl,(n )O d r (n )  is decomposed into ir r ed u c ib le s  as

(5.33) c/g(n)Ocir(n):-' p o R[O, ••, 0, j ,  q + r -2 j ]  .

Pro o f . For a sequence (a- k  1  k of non-negative integers a,,, d e f in e  a
homogeneous polynomial ç5(a)=0(o, a2, ••• , aii)E2 k 7 I (n ) w ith  la I = E i,k sna k  by
0(a)(z1, z2, ••• , z n )=z7142 ••• zgn. Then, {OW  ; a I -=--9 } fo rm s  a  basis of p 2 (n)
for any q . 0 .  Moreover, making use of this basis, the representation operators
c l,(n )(X „ ) (1 < i*  j_ n ) are described explicitly as

(5.34) cl,(n)(Xii)0(6)=—  a i g5 (a -5 i +3 ; ) ,

w here 3,-=-(ô.) w ith  3 ,4 = 0  (k i ) ;  a ik = 1  (k = i) .  H ere w e understand that the
right hand side is equal to  0  if  a,=0 .

Using this description, one can determine easily all the highest weight vec-
to rs  in awl(n)0a)r(n) as fo llo w s . For an integer 0_< j r ,  set

To).=  :9i 0 ( - 1 )P ( 0 0 (0 , ,  0 , q -0 )0 0 (0 , ,O , j— P, r— j+ 0),

w here ( ) = j ! /  ! ( ( j - 1 3 ) ! .  Then T ( I) E 2 q (n )(8 )r(n ) is a highest weight vectors

w ith  h ig h e s t  w e ig h t (0, ••• , 0, 1 ,  q + r - 2 j ! .  C onversely , any highest w eight
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vector in  2q(n)Ofer(n) is  a  scalar multiple of some To ) . T h is  p roves t h e  as-
sertion. Q. E. D.

5 .3 .5 .  C ase  o f type  D III (c)*(4n-F2)). L e t  g=?A)*(4n+2)=W 2n+1, H )  be
the L ie algebra of special orthogonal group of degree 2n-F1 over the quaternion
field H .  In  th is case, the  rea l rank  /-=dim a , is  equa l to  n .  By realizing g, as
in  the case of type AIII, as a Lie algebra of matrices explicitly, one can describe
the adjoint action of in o n  (g(1), J")  as fo llo w s . For each 1 k l , the complex
vec to r space  (g(a, ; 2 - '2 k ), J " )  is  tw o-d im ensiona l. S o , w e m ay identify  th is
space w ith C 2 . The Lie subalgebra In is isomorphic to (hence it can be identified
with)

11(2) X • • • X ..11(2)x ,s,/ —1 R .

Under this identification, the adjoint action of In on  (g(1), J" )  is described as

(5.35) ad(Y i , ••• , Y/, V - 10)•(z1, ••• , •••, -V -10z1±Y 1z1),

w here (Y 1 , • , Y / , V -1 0 )E m  w ith  Y k  .11 (2 ) fbE R , and (z 1 ,  ••• , z 1)E
g( 1 )  w ith  z k E C 2 .

L et M ' denote th e  analytic subgroup of M corresponding to  il.(2)X •-• X  u(2)
(1-copies). T hen , M ' is identified canonically with SU(2)X  ••• xSU(2), and  the
a d jo in t a c tio n  o f  M ' o n  (g(1), J" )  coincides w ith its natural action on C 2 x •••
x C 2 . The restric tion ( ) ,IM ' is decomposed into irreducib les a s  follows.

Proposition 5 .1 1 .  For any 0 i l , one has an isomorphism o f unitary repre-
sentations o f AP =SU(2)x  ••• X SU(2) (l-copies) as

(5.36) fii El) 4(2)(2)4 2 (2)(2) ••• (N ,,( 2 ) ,
q 1, q2,•••,q1 0

where d 2 (2) is the irreducible representation of SU(2) given as in (5.32). Especially,
M ' i s  o f  multiplicity  free, and its unitary equivalence class does not depend

on i.

Pro o f . I n  v ie w  o f  (4 .3 0 ), t h e  F o ck  sp a c e  g ,  o f (g(1), J 9  is decomposed
canonically into an orthogonal direct sum  o f M '-m odules as

E ' (g) N2)) 1.8 ••• ( g )2 1 (2)) t a g a g i+1(2 )a a g ' q t(2).qi, (12, q/ o

H ere  (2 2 (2 ))t i s  t h e  SU (2)-m odule contragredient to  a , 'q(2). B ut, in  th is case,
(2 2 (2))t is equivalent to gaq(2) a s  a n  SU(2)-module, which proves (5.36). Q.E.D.

From  this proposition, we can deduce immediately th e  following

Theorem 5 .1 2 .  Suppose that g= -1)*(4/± 2). Then, for any 0 i l  and any
finite-dimensional representation c  of H ,  the restriction (cI M ')0 ("t6i 1M ') and so
0 1(c) have finite multiplicity property.
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5 .3 .6 . Case of type E III. We now proceed to th e  last case of type EIII.
Then, the Satake diagram of g  (see [11, p. 534]) is given as

   

(5.37) a, a2

 

a,

This diagram should be understood as follows. L et H ' denote th e  totality of
simple roots in  E+=- 2'+(gc , ha). F irst, consider the Dynkin diagram of the root
system  I of type E , .  Each node of this graph expresses an  element of H ':
H '= fa k ; 1 T h e  elements in  11 11'nC, (i. e . ,  cr2, a ,  a n d  a4 )  are
denoted by black circles, and the others (i. e., a,, a, and a , )  b y  w hite circles.
If a, AEH'\11,', are such that a 1*=-- 431* ,  then a and a r e  jointed by a  curved
arrow (This is  the case of a ,  and a,.)

From the diagram (5.37), one sees that g is  of real rank 2: 1 = 2 .  In view
of Theorem 5.5, we have only to study the cases i = 0, 1, so the case i= 1  here.
In  th e  following, we give the  irreducible decomposition of 5 , M ' on  the  Fock
space where M 'g M  is the  analytic subgroup of M  w ith  L ie  algebra
[n t, m ]. A s  a  consequence, we will find out that 01(c)-=(e1 M)0(fi1 I M ) is  of
multiplicity finite for any finite-dimensional representation c  of H'.

First, le t us describe the adjoint action of nt' on the complex vector space
(g(1), J/ ) , which is equivalent to such action on the space S , constructed in 4.4.
F o r  this purpose, we realize th e  complex simple Lie algebra fic = fig R C  with

I] explicitly as a  L ie algebra of matrices.
It follows from Theorem 3.3 that H ' splits into a disjoint union of subsets

as

(5.38) H'=HLv(H'nC2,)v(HinCi)v(11'nPi).

In  th e  Satake diagram, the unique element of 11'nC, is jointed with the ele-
ment of 11'nP, by a n  a rro w . So we may assume without loss of generality

(5.39) H'nCi-= fa i l a n d  H'n13 1--- - ia61.
Moreover, we get

(5.40) H'nC 2i= 1 ad .

This implies that the Dynkin diagram of the root system f f o f  (* , fc ) with t' =
In f ' is of type D,:

(5.41)

a,
Therefore, f'c  is isomorphic to (and hence we identify it with) the  L ie  algebra
o(10, C ), consisting of complex matrices X  of degree 10 such that X=—TX.

Under this identification, we may assume that
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(5.42) {h =diag ••• , 12 5 , —12 5 , ••• , —12 1) ; h k E C  ( 1_-< k 5 ) }

and that

(5.43) ak=--ek—ek+, a5=e44-e5.

Here, for 1 1z. 5 , e k deno tes the linear form  on t'c g iv e n  as e k (h )=- h k (hEle).
T h en  the subsets C o ,  C21, C , and C 2  of El- a r e  expressed respectively as fol-
lows:

{

C o =f e r — e,; 2 r<s_51, C21=le,--1--es; 2r<s_.<51,

C i ={ e i — e,; 2.<s 5}, C 2 = {e 1 - F e 3 ;  2 .s . 5}.

Moreover, the subalgebram f', is isomorphic to ?,f(4, C )  and it is described as

(5.44)

o lo i o o

I — T Y  o Y  4 x 4  matrix
(5.45) 1fl 17 -=

0 1 0  1 Y

01 0  10 0

tr Y=0

Therefore , w e can take a compact rea l form  m' of nq, as

(5.46) ru'-=.1r7E ; tY=—

L et Si ,--- S(1)eS(2)t w ith  S (k )= E r E c k g c ( l c ;  r )Z *  b e  th e  complex vector
space  in  4.4. The adjoint m'-action on S ,  is described as fo llo w s . The sub-
spaces S(1) and S(2)4 a re  identified with C4 respectively through the maps

Z i

z ,

0
1

01

tzo.

4 1
0 1 0

0 I 01 01
C4 pz= 1_--

— I —r
ES(1) ,

23 0 0 I 0
I - - - - - - - 

Z4 0 0 1 0 0,
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1
W I 0 0 0 I a,

C 4W --= 17) =7
1 S(2)t.

W3 0 0 1 0 10
- - 1 - - - + - - - i - - -

W I 1
0 0 1 0 1 0

U nder this identification, the adjoint action of in ' on S1 =C 4(1)C4 is expressed as

(5.47) ad (1s;)•(z, w)=(Yz, Yw) for Y E &t(4) and z , w EC 4 .

In view  of Proposition 4.16, w e deduce  im m edia te ly  from  th is description
the following

Lemma 5 .1 3 . The analytic subgroup M 'gM  with Lie algebra m'=[m, in ] is
isomorphic to SU(4): M' SU(4), because of the action (5.47) of in' on S 1 . Through
th is  isomorphism, th e  adjoint representation o f M ' on (9(1), J'I) is equivalent to
(a, C4 )ED(a, C4 ), where a  is  the natural representation o f SU(4) on C4 .

Let us now decompose the representation fi z I M ' on the Fock space g j  in to
irreducibles. Iden tify  M ' w ith  SU(4) as in  the above  lem m a. Then, keeping
(4.30) in  m in d , o n e  gets im m edia te ly  from  L em m a 5.13 a  decomposition of
fiz M' as

(5.48) IM '=  (I) d,(4)0d,(4).
12, T20

This equivalence together w ith Proposition 5.10 yields the  following

Theorem 5 .1 4 . K eep  to  the notation in 5.3.4 f o r  representations o f M '=
S U(4). Then, the representation is decomposed into irreducibles as

(5.49) [1?-1-1]•R[0, in, h].
1m, kb

In particular, [id A I' has finite multiplicity property.

F ro m  th is  th eo rem  and  Theorem 5.5, one gets immediately a  finite multi-
plicity theorem for 0 4(c) as follows.

Theorem 5 .1 5 . Suppose th at  g  i s  o f  ty pe EIII. T hen the representation
sbi (c)=(cIM)0(fi i 1M ) is o f multiplicity finite fo r  any  i: 0 i 2 , and any finite-
pimensional c.

Remark 5 .1 6 . In any  case of type AIII, DIII and EIII, w e have proved that
the representation sbi (c) has finite multiplicity property for any  i and any finite-
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dimensional c  (Theorems 5.7, 5.12 and 5.15). B u t, th e  proofs fo r  theese three
c a s e s  a re  quite different from each other. In  case of type AIII, we can con-
struct a  one-parameter subgroup CilS T+=exp t+ such that sb,(c), restricted to
C t  is already of multiplicity finite. On the other hand , in  the  la tte r two cases,
the restriction sbi (c)1 T+ is  no longer of multiplicity finite i f  i#0 , 1. Actually,
it contains th e  tr iv ia l character with infinite multiplicity. In  these cases, we
can not prove finite multiplicity property f o r  0,(c) until we study 0,(c) itself
detailedly.

5.4. Finite mutipllicity theorems fo r  0,(c)=(c M )0 (fi M ).
We summarize th e  results o f this section as follows.

Theorem 5.17. For 0._<i i=dim a , and an irreducible admissible representa-
tion  c  o f  th e  reductive subgroup H 'g L ,  consider the representation O(c)=
(c1M )0(f iiiM ) of  M-=Z K(ap). Then one has

(1) O(c) has finite multiplicity property for any i and any finite-dimensional c.
(2) S uppose that G=su(p, I) w ith p l .  F o r  0 <i<1 , le t c=c(0) be the

irreducible admissible representation o f  Hi w ith highest weight OE ,V — 11" (see
5.3.3). Then the representation O(c) is o f multiplicity finite

Remark 5.18. Notice that (L , H ') is a  reductive symmetric p a r t  at least
on  the  level of L ie algebras (see Lemma 3.15). So, we can apply th e  results of
[I] to RGGGRs r i (c)=Inc170,N(e."0 ) .  T h e  above theorem enables u s  to prove
finite multiplicity property for RGGGRs, which will be discussed in  the  succeed-
ing section.

Remark 5.19. O ne can describe, developing the  argum ent in  this section,
th e  multiplicities in 0,(c) explicitly, although we do  not carry  ou t it here. Us-
ing such description, w e can  g ive  a  nice upper bound f o r  multiplicities in
RGGGRs T i (c).

§ 6 . Finite multiplicity theorems fo r  RGGGRs r%(c)

We now come to the  c lim ax of the present a rtic le . In  this final section, we
give finite multiplicity theorems fo r RGGGRs T i (c) associated with th e  nilpotent
classes oh=A d(G)A [i] (see Theorem 3.13), using th e  results of [I], summarized
in  6.1, and  those in  th e  previous sec tions. O ur results fo r 1=0 o r  1  are com-
p le te : a ll t h e  RGGGRs associated with th e  nilpotent classes wi (1=0, 1) have
finite multiplicity property. Also i n  other cases : 1#0, 1, w e can prove the
finiteness o f  multiplicities in  differentiably induced RGGGRs C- -I",(c), i f  c is
finite-dimensional.

Moreover, even fo r  infinite-dimensional c's, there a r e  interesting examples
fo r  G=su(p, q) (P_q) such that the RGGGRs C- -T i (c) a re  o f  multiplicity finite.
Such c's are  given a s  highest weight representations.

Theorems 6.5 and 6.6 are  the m ain  results o f this p a p e r .  We treat in  this
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paper finite m ultiplicity property only. N evertheless, the method of this series
of papers is applicable also for estimating multiplicities in  RGGGRs.

A t the end of th is  section, w e  w ill a n n o u n c e  a  m ultiplicity one  theorem
(Theorem 6.9), proved in  the subsequent paper [ 3 3 ] .  T h is  theorem asserts that,
under some reasonable assumptions on G  and c, the reduced generalized Gelfand-
Graev representations r i (c) have multiplicity free property for i=0 or 1.

6.1 . A  summary of the results o f  [ I ] .  In this subsection, le t G be a con-
nected semisimple Lie group  w ith  fin ite  cen ter. W e sum  up  here  the results of
[ I ]  on (finiteness of) multiplicities in induced representations of G.

Let K  denote a maximal compact subgroup o f G , and 0 a Cartan involution
of G  such that K -= {g E G ; 0 (g )= g }. D enote by g=feT) the Cartan decomposi-
tion  of g=Lie  G  determ ined by O .  Let P '= L N  w ith  L-- -- OP'n13 '  be a Levi de-
composition of an arbitrary parabolic subgroup P ' of G .  Then a=3 t np i s  the
split com ponent of the L ie algebra I of L , w here a, expresses the center of T.
Consider an involutive automorphism a  of T with following two properties :

(i) a  commutes w ith  0 restricted to  T,
(ii) I a=  —/a , /o =the identity m ap on a.

Let 1=berr be  the eigenspace decomposition of I  w ith  respect to a, where I and
ct are respectively (+1)- and ( -1)-eigenspaces. T h en  (T, b) h a s  a structure  of
so-called reductive sym m etric p a ir .  T ake  a  closed subgroup H  of L  w ith  Lie
algebra b, and consider the  semidirect product subgroup H N = IN N  of G.

Extend a  to  a maximal abelian subspace apg __ a  o f  p n g .  W e  s e t  M k h =

Z K n H (a „ ) ,  the centralizer of a „  in KnH.
In the previous paper [I], w e studied m ultip lic ities in o r  L 2 -induced

representations InnN(C) o f  G , generalizing th e  theory of spherical functions
developed by Harish-Chandra [8] and van den Ban [1 ] .  W e gave nice sufficient
conditions fo r a  representation o f  H N  th a t Incl N(C) has finite multiplicity
property.

Remark 6.1. In  [ I ] ,  an assum ption stronger than the  above one is imposed
on a and H .  N am ely, w e supposed there that (1) a  extends to  an involution of
the Levi subgroup L  (denoted again by a), and th a t (2) H satisfies the inclusion
relation (I, a ) o ç Hç_. L . , .  Here L  is the fixed subgroup of a, and (L ,,) 0 its identity
com ponent. But these additional assumptions are n o t u sed . T h e re fo re , a ll the
results o f [I] rem ain  true  in  the  present setting.

6.1.1. Case of C - -induced representations.
F irs t, let us consider the representation C- -IndYIN(C)=( 7%, C (G ;C )) induced

in C- -context (see  [I, 2.1] for the precise definition o f  C- -induced representa-
tions). H ere  i s  a  continuous representation of HN on  a  Fréchet s p a c e . The
differential of the G -action gives on the representation space C- (G ;C) a  com-
patible ( a c , K)-module structure, denoted again by rc . Then we obtain a  criterion
for the finiteness of multiplicities in  7rc as follows.



438 Hiroshi Y amashita

Theorem 6.2 [I, Theorem 2.121. The induced representation rc=C "-IndgiN(C)
has f inite multiplicity  property, i f  so does the restriction of t o  the compact
subgroup M k h . Namely, i f  dim Homm k h (v, C)<+ co fo r any finite-dimensional ir-
reducible representation v o f M k h , then every irreducible admissible (gc , K)-module

K  (see [I, 2.1]) occurs as a submodule o f  C- (G ;C ) w ith at m ost f inite m ulti-
plicity , i.e., dim Hom,c _K(MK, C- (G ; C))<+

6.1.2. Case of unitarily induced representations.
We can relate the multiplicities in  unitarily induced representations to those

in the corresponding C"-induced representations. T o  b e  m ore precise, fo r a
unitary representation C  o f  a  closed subgroup Q  o f  G ,  l e t  V-IndF2(C) ,

(cUc, LA G; C)) denote the representation of G  induced unitarily from C. Accord-
ing to Harich-Chandra, th e  connected semisimple L ie  group G  i s  o f  ty p e  I.
Therefore, the unitary representation ciic admits a unique factor decomposition
on the unitary dual C o f G, equipped with th e  usual Borel structure (cf. [I,
Lemma 3.5]):

re e s
(6.1) c u c ' = "  0.`uc( 7r)dttc(r), L 2 (G ; O , 4C(C, 2r)d Pc(r).

Here pc is a Borel measure on 6, and the representations (cUc(rc), SC(, r)) are,
for almost evey (=a.e.) 2r C w ith  respect to pc, factor representations of type
7r: c (T C ) .-  [1 1 1 { (7 0 1  •  r .  The function r.-4mc(r) is said to be the multiplicity func-
tion for V . (T h is  is  a Borel function on C .) Then, using th e  results o f  R.
Penney on desintegrations o f C"-vectors for unitary representations, we get

Theorem 6.3 [I, Theorem 3.12]. Suppose that be f inite-dim ensional. Then,
the multiplicity function »lc fo r  clic admits an upper bound as

(6.2) n i c ( 7 0 d im  H o m w _K (ir ic, 7%) w ith  rc=C°°-Ing(C)

for a. e. 7rE 6. Here, for an irreducible unitary representation r of G, n-K  denotes
the irreducible admissible representation o f (gc , K ) acting on the space of K-finite
vectors fo r  7.

From Theorems 6.2 and 6.3, one obtains

Theorem 6.4 [I, Theorem 3.13]. Let be a f inite-dim ensional unitary  re-
presentation o f H N . Then, the unitarily  induced representation cUc = L 2 -Inai N (C)
has f inite m ultiplicity  property : the m ultiplicity  function 7,—>mc ( z )  takes finite
values for a. e.

6.2. Application to RGGGRs P , ( c ) .  Return to our original objects in §§3-5
and keep to the notations th ere . Put cr=8,, i )  a n d  H=Hi (0_,<.i.<1; see 3.2 and
3.3). Thanks to Lemma 3.15, the pair (8, m , Hi) satisfies the assumption for
(a, H) in 6.1. In this case, the subspace a „ coincides with the maximal abelian
subspace a-p =

E is k s t  RHk of 1:1 in 3.1. Moreover, each H i  contains M=Z K (ap).
Therefore we have M ,, ,,=M . We can thus apply the results o f [I], quoted as
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Theorems 6.2-6.4, to RGGGRs ri(c)=InniN(E(Vi) associated with the nilpotent
classes w 1. In the succeeding subsections, we present th e  results a n d  prove
them.

6.3. Finite multiplicity theorems for C"-E,(c).
First, le t us consider the RGGGRs C"-T,(c) induced in C- -context. Thanks

to Theorems 5.17 and 6.2, we immediately obtain our first main result, on finite-
ness of multiplicities in  C- - r t (c), as follows.

Theorem 6.5. Let G  be a connected simple Lie group o f  herniitian type,
w ith f inite center. Denote by  wi (0_<i.<I=the real rank of G) the nilpotent Ad (G)-
orbits in  g =Lie G  defined in  Theorem 3.13. Consider the RGGGRs C - -F i (c)=
C- -Incl'hiN (eV i )  (induced in  C- -context) associated w ith w . T hen one has

(1) C"-r i (c) has finite multiplicity property in the sense o f  Theorem 6.2 for
any and any finite-dimensional representation c o f H i.

(2) Suppose that G=SU(p, 1) ( p i ) .  Let c=c(0) be the irreducible admissible
representation of i ) x s u ( p — l)  (p#I); i) (p = 1 ) with
highest weight 0E-V -1t+*, constructed in 5.3.3. Then, the representation C--
r i (c) is o f multiplicity finite.

6.4. Finite multiplicity theorems for L 2 - r 1 (c).
Secondly, we study the multiplicities in the unitarily induced RGGGRs. Our

result for these representations is stated as follows, which is our second main
result of this article.

Theorem 6.6. Let G  be a simple Lie group as in Theorem 6.5. For an  ir-
reducible unitary representation c of tbe reductive subgroup H 1 , consider the unitary
RGGGR L 2 -.1"i (c)= iN (t(D i). Then,

(1) i f  i=0  or I, then all the RGGGRs L 2 - r 1 (c) (c (K(11..)^) associated with
wi  have f inite multiplicity  property in the sense o f  Theorem 6.4. H ere (KnL)
denotes the unitary  dual of the compact group KnL=H°=1-1 1 .

(2) Suppose that G/K  reduces to a tube domain. Then, the RGGGR L 2 - r 1(c)
is o f multiplicity finite fo r  any  i  and any finite-dimensional c.

6.5. Proof o f Theorem 6.6. First, notice that the representations 1 (0
.</) are all one-dimensional i f  G/K  reduces to a tube domain. So, the assertion
(2) follows from Theorem 6.4.

In the following, we show the assertion (1) by reducing th e  proof to the
case of C- -induced representations. (Since E1 is infinite-dimensional in general,
one can not apply Theorem 6.4 d irectly . In order to prove (1), we need get
back to  th e  a rg u m en t in  [I , § 31 which proves Theorems 6.3 and 6.4.) Our
proof consists of four steps.

STEP I. Throughout this proof, we always assume th at i= 0  o r  I. Let
(p i , g i ) and (T i , s i ) be two kinds of realizations of [ 1 ] fi  constructed in 4.3,
where g i  is the Fock space of (g(1), P ) .  Denote by c the  intertwining operator
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from  A ' onto  g i  in  P roposition 4.12. Extend (p i ,  9 )  to  a representation (fi i , g i )
o f  HiN as  in  Theorem  4.13, and define a  representation Ti  o f  Hi N  b y  Ti =
c1o5o.. B y  m a k in g  use  of these realizations fi, and  T  th e  unitary RGGGRs
associated with wi a r e  constructed as

(6.3)L 2 - [ ' ( c ) =  L2 -Inn  N ce -fi L 2 -Inarip(iOri)

fo r irreducible unitary representations (c, E c ) o f  IP = K n L .
W e identify th e  tensor product Hilbert space  E sS g i  c a n o n ic a lly  w ith  the

Hilbert space consisting o f  E s -valued holomorphic functions 0 on  (g(1), i n  such
that

(6.4) 1195112=.f 110(X):1exP( - 2(X117)dX<±co ,
g (1 )

w h e r e  •  denotes th e  norm  on E .  (C o m p a re  w ith  (4.29).) T h e n , th e  repre-
sentation C:=-"e0fi i  o f  Hi N  o n  E c O g i  is described as

(6.5) J
 C(k)0(X)=c(k).¢(Ad(k) -  X) (k  H t)

C(n)= I c Opi(n) (nE N ; /=the identity m ap o n  Ec)

fo r  0E E cOg i .
W e adopt the  sam e kind of identification of E cOsC i w ith  th e  space  o f  E c -

valued C"-functions on  N  satisfying (4.20) and (4.21; rep lace  th e  absolute value
I • I in  the  integrand b y II • Ilc). P u t  C'="e(0 ' „  th e n  a n  e lem en t kEH i  i s  r e -
presented by C' as

(6.6) C'(k)f (n)=c(k)f(k - 'nk) (nE A r, fEEcOsci).
STE P  II. W e  p u t  (Vc, L 2 (G ;C)) --.E.L 2 -E,(c)=L 2 -Indg,i N (C ) w i t h  C = e 0 .

T h en , in  view  o f Lemma 3.9 o f  [ I ] ,  the  subspace L 2 (G;C) -  is contained in the
space C- (G ;C ) consisting o f  SC(C) ( E Ø 9 )-v a lu e d  C"-fuctions F  o n  G  such
that F(gz)--=- C(z) - T (g ) (gE  G, zE Hi N ) .  Here, for a unitary representation (V , .q()
o f  G, ci.1.0 denotes the  corresponding smooth representation o f  G  and  gc  o n  th e
space s c -  o f  C"-vectors fo r  V , equipped with th e  usual Fréchet space topology.
Moreover, th e  linear map

L 2 (G ; cr sc(c), 60)(F)=F(1)

is continuous, where 1 expresses the unit element o f  G.
W e se t 6 2 ) (0)= 95(0)E E fo r  0ESC(C). T h en , 6 2 ) gives a  continuous linear

m ap from  s i ( )  to  E . T o  verify  th is , w e  m ay  assume without loss of generality
that c=1 H i, the trivial character of H .  T hen  it ho lds tha t s(C )=g i . T ake an
orthogonal basis XI, X2, ••• X , of the  complex Hilbert space (g(1), T , ( A) (see
Lemma 4.11), and express XEg(1) as z,X, with z ,E C . The Lebesgue
measure d X o n  g(1) in  (6.4) is described as

dX=b1rIdz,d2 1f o r  some positive constant b.
.7=1

F o r  OE gi, 0(X)-=EN a N z '  be  the Taylor expansion of the entire function 0,
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where z N =z 7,1 1z 7,12 ••• 4 ,  f o r  a  m u lt i- in d e x  N=(n i , n 2 , ••• , n r )  o f  non-negative
integers n,. Then, a  sim ple calculation yields

(6.7) 11951%=bEN I a NI 2(22)1 ni( k r t 2 , ;+ ie -
t ' d t ) ,j=1

where N  = n 1±n 2 + ••• +n r . This show s the continuity of 5( 2) because a(0,0,
=0(0)-=3 ( 2 ) (0).

Thus, we find out that the composition 3=6( 2 ).6 ( 1 )  gives a continuous linear
map from LA G ; CY° to E . Furthermore, 6  satisfies, by construction, following
three properties: fo r FE L 2 (G ; C) - ,  one has

(6.8) k(V c)-(Y )F)='N / — 1 A [i]*(Y )6(F) (Y ,

(6.9) 6((c1Jc).(k )F)=c(k ).5(F) (k G ,

(6.10) c).(G )F)=(0) implies that F=0.

Here, i t - = V T e i g ( 2 ) c  i s  th e  p o s it iv e  polarization at A [i]* E n *  i n  4.3. The
third property means that 0:  LA G; C) - - > E ,  i s  a  generalized cyclic map (see
[ 1 , 3.5]).

STEP III. Consider the  factor decomposition o f  c/Jc in  6.1. Then, by virtue
of Propositions 3 .7  a n d  3 .8  o f  [I ], th ere  e x is t ,  f o r  a. e .  7L- C ", linear maps
3;t : 51- (C, 7c)- - > E ,  w ith properties (6.8), ( 6 . 9 )  a n d  (6.10). (T here, replace
(cU(t), sc(t)) by (cU‘(7r), M(C, 7r).) A nd 6  is decomposed into a "direct integral"
of 3, 1s.

F or FEsC(C, 7r)", define a n  Er -valued C"-function A ( F )  o n  G  via

(6.11) A ,(F)(g)=6,(cU c(7r)(g - ')F) ( g  G) .

T his map A „ naturally gives rise to an injective, continuous intertwining operator
from 9.1c(r). to the  representation C"-IndiN(Ç + ). Here i s  a  representation
o f H W  defined a s  fo llow s. MT (.Q MO denotes the space of C"-functions f  on N
satisfying (4.20) o n ly . T h e  representation t i  on S C extends naturally to a  re-
presentation t t  acting on M t. W e set

In  the  same w a y , we can construct a  representation C + = ta ô t o f  H i  N
acting on E cO g t .  Then c: M i

2 -1g i is extended naturally to a n  isomorphism c+
o f HW-modules from MT onto 9- T. One thus gets a  com m uta tive  diagram of
HW-modules :

le 0 c +
E c OSC 4,   EcO t

(6.12)

Eca g c
I c e (

From th e  above discussion, we see that th e  multiplicity function 771c for the
RGGGR c1.1 c=1 , 2 -T i (c) is bounded as
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(6.13) mc(2r) dim HomG(n., C - -Ind?/ N(C+ )) dim Hornec -K(rx, C°-Ind N (C ))

for a. e .  rE 6 .
STEP I V .  T hus, in  order to complete the proof, it suffices to show that the

representation C- -Inn , m(C+) has fin ite  m ultip lic ity  property . T h is  is achieved
a s  fo llow s. T hanks to  T heorem  6.2, it is enough to  prove that the restriction
C+  M  is  of m ultip lic ity  fin ite . Let (y, V ) be an  irreducible unitary representa-
tion of M , and T  a non-zero intertw ining operator from  y to  C1- 1M . Then, the
central one-parameter subgroup C+  o f  M  in  5 .1  a c ts  o n  th e  subspace T(V)
E c e ) g T  by scalars, w hich im plies that all the elements in  T(V) are polynomials
on (g(1), P,'). Hence one g e ts  T( V )...E ,O g ,. T h is  m e a n s  th a t  Homm(y, C+)=
Homm(v, C). Consequently, C+1M  has fin ite  m ultip lic ity  p roperty  thanks to
Theorem 5.5. Q. E. D.

Remark 6 .7 .  In  the proof of the assertion (1), w e have m ade use  of the
Fock m odel realization of [,]E(1-/'/V) -  ( i= 0 , 1). B ut, if i*O , 1, then c o n -
structed in 4.3 can not g ive a  complete description of a genuine extension o f

T h is  is because , in such a case, the positive polarization tti = V T E D g (2 )c  a t
A[i]*En* is  no longer stable under the whole A d ( H i) .  F o r  th is  re a so n , one
can  no t genera lize  the proof of (1) directly  to  the case of arbitrary i. At the
present time, w e do not know  w hether o r  n o t  th e  u n ita ry  RGGGRs L 2 -E(c)
have finite multiplicity property fo r  i# 0 , 1.

6 .6 .  C ase of i = 0 , 1. Our results for th is  case are quite  satisfactory. W e
restate here them  and comment on them  in connection with Problem EDS (see
4.1).

Theorem 6 .8 .  A ll  the RGGGRs (V -  o r  C- -)T i (c) (cE (K r1L ) - )  associated
with the nilpotent class (D i  have f inite multiplicity  property fo r  i =0 or I.

The original non-reduced GGGR r, is  fa r  from  being o f  multiplicity finite
in  g en era l, a n d  i t s  s tu d y  is  r e d u c e d  to  th a t  o f  th e  corresponding RGGGRs
r i (c). Therefore, thanks to  our results, one c a n  a v o id  th e  difficulties in  the
study of GGGRs (i=0, 1), coming from the infiniteness of multiplicities in F t .

For instance, the discrete series representations of G  occur in  T i  generally
w ith infinite m ultiplicities (cf. [23 1). W e  b e lie v e  th a t, i n  su c h  a  c a se , our
RGGGRs are useful to settle Problem  EDS brought up in  4 .1 . T o be  more pre-
cise, in view  of (4.13) this problem for F  ( i -= 0, l) is reduced to  the following

Problem EDSbis. For i= 0 , 1, describe the em beddings of discrete series
representations of G  into RGGGRs F ,(c) (c (K r )L )) .

W e think that this problem  of reduced type is, thanks to our results, much
more manageble than  the original one.
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6 .7 . A  multiplicity one theorem and embeddings o f discrete series.
At the end of th is  paper, w e re fe r  to  the contents of the subsequent paper

[33].
Under some additional assumptions on G  and c, w e  c a n  show multiplicity

free property for RGGGRs r i (c) (i= 0 , 1).

Theorem 6.9 [ 3 3 ] .  Suppose that G/K is holomorphically equivalent to a tube
domain. Then, for any real valued character c of the compact subgroup KnL-=
H °=11 ', the unitary  R GGGR  1 , 2 -ri(c )=L 2 -Incl?KnL)Ar(t'V i )  ( i = 0  o r  1) i s  of
multiplicity one: the multiplicity  function for L 2 -['(c) tak es values 0  or 1  almost
everywhere on Ô with respect to the Borel measure giving its factor decomposition
(see 6.1). Here, one chooses an extension o f  the unitary character e i  o f  N  in
such a w ay  -

1 1(K nL )--=--- 1.

This theorem generalizes, in a certain sense, the result of Piatetskii-Shapiro
and Novodvorskii ([21], [22]) on the uniqueness o f  generalized Bessel models
for sp(4).

In [33], w e  s tu d y  a ls o  the embeddings o f  discrete series into (reduced)
GGGRs V -  o r  c--r, (r,(c)) (Problem s ED S and E D S bis). W e rem ark  here
tha t the re  is  a difference between the em beddings in to  un ita ry  G G G R s L 2 -1",
and th o se  in to  Ce-['(c) ( in  C - -co n tex t) . In  o th e r w o rd s , ev en  if a  discrete
series representation D  can  be  em bedded  in to  C- -1", a s  a  (gc , K )-m odule, D
does not necessarily occur in
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