J. Math. Kyoto Univ. (JMKYAZ)
28-3 (1988) 383-444

Finite multiplicity theorems for induced
representations of semisimpmle Lie groups II

—Applications to generalized Gelfand-Graev representations—

By

Hiroshi YAMASHITA

Introduction

This paper is the sccond part of our work on finite multiplicity property
for induced representations. We give in this article finite multiplicity theorems
for generalized Gelfand-Graev representations of semisimple Lie groups, applying
the results of the first part [32] (referred as [I] later on).

Let G be a connected semisimple Lie group with finite center. In [I], we
generalized the result of van den Ban [1] on finiteness of multiplicities in the
Plancherel formula associated to a semisimple symmetric space, developing the
theory of spherical functions in a much more general setting. Furthermore, we
gave there nice sufficient conditions for an induced representation of G to have
finite multiplicity property. These criterions enable us to understand, in a
unified manner, many finite multiplicity theorems for induced representations,
obtained in different situations ([2], [8], [26], etc.).

Among others, we are interested in the following important example. Let
G=KA,N, be an Iwasawa decomposition of G. Then N, is a maximal unipo-
tent subgroup of G. We showed in [I] that the induced representation Ind%_ (&)
(differentiably (=C=-) or unitarily (=L%-) induced) has finite multiplicity
property for any one-dimensional representation (=character) & of N, (see
[1, 4.2]). As wes suggested in Appendix of [I]. the study of such an induced
representation is reduced, to a large extent, to that of Ind% (&) with a
non-degenerate character §. The latter representation is called a Gelfand-Graev
representation (=GGR for short). According to Shalika [26], the GGRs have a
remarkable property: the unitarily induced GGRs are of multiplicity one if G is
linear and quasi-split (cf. [I, Theorem 4.5]). These GGRs have been playing an
important role not only in the representation theory itself but also in the theory
of automorphic forms. (For the historical background of the study of GGRs,
we refer to [31, 0.17.)

But, in the representation theoretical point of view, GGRs are not large
enough to understand all the irreducible representations through them. In other
words, there exist numbers of irreducible representations of G that never “occur”
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in GGRs (see e.g., [9]). It is by this defect that a good generalization of GGRs
had been desired.

In this direction, N. Kawanaka [13] constructed, for reductive algebraic
groups over a finite (or a local) field, a series of induced representations para-
metrized by the set of nilpotent classes of the Lie algebras, by making use of
the Dynkin-Kostant theory on the nilpotent classes. Such a representation is
now called generalized Gelfand-Graev representation (=GGGR), since Kawanaka’s
representations associated with the regular nilpotent classes coincide with the
original GGRs. He himself has been studying mainly the GGGRs of finite re-
ductive groups using their characters, and has obtained nice results (e.g., a
complete proof of the Ennola conjecture) that show the utility of GGGRs in the
theory of group representations (see [13], [14], [15]).

We think that these GGGRs are the desired generalization of the original
GGRs which enables us to understand all the irreducible representations in con-
nection with the nilpotent orbits. But, unfortunately, the GGGRs of semisimple
Lie groups are in general far from being of multiplicity finite, contrary to the
case of GGRs. This comes from the fact that the GGGRs are induced from
representations of unipotent subgroups generally smaller than N,.

So, in order to reduce infinite multiplicities to be finite (or to be one) if
possible, we consider here a variant of GGGRs which we call reduced GGGRs
(=RGGGRs). In the present article, we give finite multiplicity theorems for
some important classes of RGGGRs (Theorems 6.5 and 6.6).

To be more precise, suppose that G be a simple Lie group of hermitian type.
Put /=rank(G/K). Then we can construct explicitly (/41)-number of nilpotent
Ad(G)-orbits w; (w;=—w,_;) in g=Lie G with an important property: the direct
sum Posis; L%17; of the unitarily induced GGGRs L*["; associated with w;
is quasi-equivalent to the regular representation of G (see Theorem B below).
We prove finite multiplicity property for RGGGRs coming from these I7;’s.
Every discrete series representation D of G is embedded into some LI ;.
We can call this embedding a “Whittaker model” for D.

Among these GGGRs I'; (0<:<!), I’y and I', are closely related to the
holomorphic and anti-holomorphic discrete series representations respectively.
We have multiplicity one theorem (Theorem 6.9) for RGGGRs associated with
w; (=0, [). These two topics will be studied in the subsequent paper [33].

Now let us explain the contents of this article in more detail.

In §1, following Kawanaka, we define the GGGRs of semisimple Lie
groups. Then we clarify the relationship between the original GGRs and the
generalized ones.

Let G be a semisimple Lie group as before. Let X be a non-zero nilpotent
element of the Lie algebra g of G. Denote by w the Ad(G)-orbit through X:
w=Ad(G)X. We want to define the GGGR I, associated with w. To do so,
it is convenient to proceed as follows. First, by virtue of the Jacobson-Morozov
theorem, we can take an 8[,-triplet (X, H, Y) in g containing X:

0.1) [H, X]=2X, [H Y]=-2Y, [X Y]=H.
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Assume that H is a dominant element of a,=Lie A, with respect to a fixed
order of the root system of (g, a,). Then H is determined uniquely by the
nilpotent G¢-orbit 0=G¢- XSgc through X, where G¢ denotes the adjoint group
of the complexification g¢ of g. So we denote H by H(o). One has a canonical
gradation of g by ad H(0): 3=P;cz8(s)o, Where g(s), is the s-eigenspace for
ad H0). Put po=@;208(5), 1o=8(0)% and n,=@;;:8(s). Then p, is a parabolic
subalgebra of g, and p,=!,Pn, gives its Levi decomposition. Denote by P,=
L,N, with L,=6P,N\P, the corresponding decomposition on the group level,
where 6 is a Cartan involution of G compatible with the decomposition G=
KApN,.
Define a linear form X* on 1, via

0.2) (X*, Z>=B(Z, 6X) for Zen,,

where B is the Killing form of g. Let &y denote the irreducible unitary re-
presentation of the nilpotent Lie group N, corresponding to X* through the
Kirillov correspondence (see 1.3). We consider the induced representation
I x, uv=Ind% (£x) (unitarily or differentiably induced). Then the equivalence
class of I'¢x,u.v, depends only on the nilpotent Ad(G)-orbit w=Ad(G)XSo
through X. So we may express it without any confusion as

(0.3) [’mEF(X,H.Y):IndIGvO(EX)-

We can thus attach to each nilpotent class w in g an induced representation
I',, which is called the generalized Gelfand-Graev representation associated to w.
Note that oN\g does not necessarily consist of a single Ad(G)-orbit. Nevertheless
the unipotent subgroup N, is common for any Ad(G)-orbit contained in oNg.
This fact is useful for later duscussion.

In §2, keeping in mind the Mackey theory for the representations of group
extension, we construct reduced GGGRs, a variant of GGGRs. Consider the
GGGR I',=Ind§ (£x) constructed above. The Levi subgroup L, acts on N,,
hence it acts also on the unitary dual N, of N, in a canonical way. Let Hy(X)
denote the stabilizer of the equivalence class [éx]E N, of £x in L,. Then Hy(X)
is a reductive subgroup of L,, and it coincides with the centralizer Z; (0 X) of
60X in L, (Lemma 2.1). The representation &y can be extended canonically to
a unitary (projective, in general) representation &y of the semidirect product
subgroup Ho(X)N,E P, acting on the same Hilbert space.

We give in Proposition 2.2 a good sufficient condition for &y to be extendable
to a genuine (not just projective) representation £y. Thanks to this criterion,
we find out that &y admits an extension to a genuine &y for any case studied
in §§3-6. So, we assume here such property for &y for the sake of simplicity.

For an irreducible representation ¢ of H,(X), consider the induced represen-
tation

(0.4) Fw(C)EIndgou)No(f@éx) with =cQly,,

where 1y, is the trivial character of N,. We call I",(c¢) the reduced GGGR
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(=RGGGR) associated with (w, ¢). (See [15, 2.5].) The unitary GGGR L2-I",
is decomposed into a direct integral of RGGGRs L*-I",(c), c€ H;(X)=the unitary
dual of H,(X) (see (2.8)).

In case where the parabolic subgroup P,=L,N, is maximal, it often happens
that (L., Hy(X)) has a structure of so-called reductive symmetric pair (at least
on the level of Lie algebras). In such a case, one can apply the results of [I]
to RGGGRs I',(c). In §§3-6, we give the most important example of such case
for simple Lie groups of hermitian type, and prove finite multiplicity theorems
for RGGGRs.

In §3, we construct explicitly nilpotent orbits w; (0<7/</=dima,=rank (G/K))
that define important kind of GGGRs I";=I",,, closely related to the regular
representation of G (see supra). Let g=t@p be the Cartan decomposition of g
determined by . From now on, we always assume that G be a connected
simple Lie group of hermitian type, with finite center. Then g has a compact
Cartan subalgebra tSf. 2 denotes the root system of (g¢, t¢). Choose a posi-
tive system X+ of X compatible with the G-invariant complex structure on G/K.
For each y= 2, we can select a non-zero root vector X, of y in such a way that

X—X.,, V=I(X,+X_)et®v—Ip, and [X, X_]=H].

Here H; is the element of +/—It corresponding to the co-root 7~ =2r/<y, 1>
through the Killing form of gc.

Let (71, 72, ==+, 7.) be a fundamental sequence of non-compact positive roots
(see 3.1 for the precise definition), and take a, as a,= i, RH, with H,=
X7k+X-7k'

Define nilpotent orbits w; (0=<7</) in g as follows. For 1<k</, set E,=
2-'v/—=1(H;,—X,,+X-;,). Then E, is a nilpotent element of g corresponding
to —+v/—1X,, through the Cayley transform pg&Gc in (3.8). For 0<i</, w; is
defined to be the nilpotent Ad(G)-orbit through A ]1=— i Es+Sm>i Em: @;
Ad(G)-A[7]. Then, among these orbits w;, there is the following relationship.

Theorem A (Theorem 3.13). Let o denote the nilpotent Gc-orbit through
Sisest Xy, Then, the intersection oNg splits into a disjoint union of nilpotent
Ad (G)-orbits w; (0=i<!): oNg= L ogic; ;.

In the proof of this theorem, we utilize reductive symmetric pairs (Io, §*)
with §?=Lie(H,(A[7])) (0=<7/<!) that play important roles also in the succedding
discussion.

In §4, we study fundamental properties for (reduced) generalized Gelfand-
Graev representations associated with w; (0</</). Consider the GGGRs

0.5) I'i=r,,=Ind§ (&) with  &;=&,0,

where N=N,. Using the results of Duflo-Rais [5] and Nomura [20] on the
Plancherel theorem for certain classes of exponential solvable Lie groups (includ-
ing the Iwasawa subgroup A,N, of our G), we can prove the following equi-



Finite multiplicity theorems 387

valence of unitary representations of G.

Theorem B (Theorem 4.2). The left regular representation Ag of G is de-
composed as

0.6) 2o= ool LT,
where [o0]-L%-I"; means the infinite multiple of the unitary GGGR L*-T'..

This theorem shows the importance of these kinds of GGGRs.

Now let us construct the RGGGRs associated with w;. For this purpose,
we prove, using Proposition 2.2, that the irreducible representation &; of N
extends canonically to a genuine representation &; of the semidirect product sub-
group HINCSP, where Hi=H,((A[:]) is the stabilizer of [£&]JEN in L, (see
Theorem 4.6). This enables us to define RGGGRs corresponding to w; as

0.7) I')=T(c)=Ind%:x(¢®E)  with ¢=c®1y

for irreducible representations ¢ of H°.
We list up here several facts which are useful for applying the results of
[I1 to RGGGRs I'i(c).

(1) The subgroup N is an at most two-step nilpotent Lie group, and it is
canonically diffeomorphic to the Silov boundary of the Siegel domain which
realizes G/K. Moreover, N is abelian if and only if G/K is holomorphically
equivalent to a tube domain. '

(2) The representations &; (0<:</) are all one-dimensional or all infinite-
dimensional, according as N is abelian or not.

(3) H°=H'=KNL, a maximal compact subgroup of L (Lemma 3.5(3)).

(4) For any 0<:</, (L, H) has a structure of reductive symmetric pair at
least on the level of Lie algebras (Lemma 3.15).

(5) H? contains M=Z(a,) for any 7 (which follows from Lemma 3.5(3)). .

(6) Making use of another type of realization p; of §;, so-called Fock model,
one can describe explicitly a genuine extension &;|(KNH®)N=p5,|(KNH)N of
§i=p; (Theorem 4.13).

In §5, we study the representations ¢:(c)=(c|M)Q(5:|M) of the compact
group M, for irreducible representations of ¢ of H: In order to apply the
results of [1] to RGGGRs I'i(c), we prove finite multiplicity property for ¢.(c),
by examing separately each case of simple Lie groups of hermitian type. The
results of §5 are summarized in Theorem 5.17.

In the last section, § 6, we give finite multiplicity theorems for RGGGRs
I'i(c), using the results of [I] and Theorem 5.17.

Firstly, for RGGGRs C=-I';(¢) induced in C>-context, our main result is
stated as follows.

Theorem C (Theorem 6.5). Let G be a connected simple Lie group with
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finite center. Suppose that G/K is a hermitian symmetric space. Consider the
nilpotent Ad(G)-orbits w; (0=i<l=rank(G/K)) in ¢ through the points A[i].
For an irreducible admissible representation ¢ of H', let C=-I'j(c)=C=-Ind%:y
(6QE,) (induced in C=-context) be the RGGGR associated with (w;, ¢). Then one has

(1) C=-I'i(c) has finite multiplicity property for any 0<i<[ and any finite-
dimensional c.

(2) Suppose that G=SU(p, ) (p=1). Let c=c(D) be the irreducible admissible
representation of H'=U(—i, ))XSU(p—1) (p>1); H*=SUI—i,1:) (p=I), with
highest weight @& ~/—11** (see 5.3.3 for the precise definition). Then, the RGGGR
C=-I"i(c) is of multiplicity finite.

Secondly, we obtain our main result for unitarily induced RGGGRs L2-I"(c)
as follows.

Theorem D (Theorem 6.6). (1) If i=0 or I, then all the RGGGRs L*-I"(c)
(ce(KNL)") have finite multiplicity property. Here (KNL)" denotes the unitary
dual of the compact group KNL=H'=H".

(2) Suppose that G/K reduces to a tube domain. Then, the unitary represen-
tation L*I'i(c) is of multiplicity finite for any i and any finite-dimensional
unitary representation ¢ of H:.

Theorems C and D are the main results of this paper.

The original non-reduced GGGR ['; is far from being of multiplicity finite,
and its study is reduced to that of RGGGRs I';(¢). For /=0 or [/, every Iy (c),
ce(KNL)", is of multiplicity finite. Futhermore, some of these RGGGRs have
multiplicity free property (Theorem 6.9), which will be proved in the subsequent
paper [33].

If G is of real rank one, or equivalently g=38u(n, 1) (n=1), then the left
regular representation As is decomposed into a direct sum of RGGGRs as
(0.8) lcz[w]'{ce @L)A(LZ'FD(C)@LZ'LO(C)*)},

(KN

where L2-I"y(c)* is the representation of G contragredient to L2-Iy(c). And
the constituents L2-I"y(¢) and L%-I'y(c)* are all multiplicity finite.

In the present paper, we concentrate our attension only on finiteness of
multiplicities in RGGGRs. Nevertheless, our method is applicable also for estimat-
ing multiplicities in RGGGRs. More precisely, developing the argument in §5,
one can describe multiplicities in the representations ¢;(c) of M explicitly. Such
a description together with the results of [I] gives us a nice upper bound for
multiplicities in RGGGRs I':(c).

At last, we propose here a very interesting problem. Notice that our simple
Lie groups admit discrete series representations. In view of Theorem B, any
discrete series representation occurs in a GGGR L2-I'; for some 7. Our problem
is as follows.

Problem EDS. Describe the embeddings of discrete series representations
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into the GGGRs I'; (0<:<)).

In case of :=0 or [, this problem is reduced to the following

Problem EDSbis. Describe the embeddings of discrete series representations
into reduced generalized Gelfand-Graev representations /7;(¢) ¢=0,/; c€(KNL)").

We will study these problems in the forthcoming paper [33].

If this paper appears long, it is largely because we have tried to make it as
self-contained as possible.

We wish to express our gratitude to Professor Noriaki Kawanaka for stim-
ulating lectures and kind suggestions on generalized Gelfand-Graev representa-
tions, which gave us a motivation. We would like to thank Professor Takeshi
Hirai for helpful advices and constant encouragement. We are very grateful to
Professor Takaaki Nomura for useful discussion on the present topic in con-
nection with his recent work [20].

§1. Generalized Gelfand-Graev representations

Let G be a connected real semisimple Lie group with finite center, and g
be the Lie algebra of G. The purpose of this section is to define, after
Kawanaka, a series of induced representations /', of G indexed by the nilpotent
Ad(G)-orbits w in g. [, is called the generalized Gelfand-Graev representation
(=GGGR) associated with w.

Kawanaka introduced in [13] (see also [14], [15]) the GGGRs of reduc-
tive algebraic groups over various fields. Since his articles are intended to
study the GGGRs for finite reductive groups, the definition of GGGR is given
for that case exactly. Therefore, for our real case, we need to (and do) translate
his construction of the GGGRs, and give the precise definition.

For this purpose, we prepare in 1.1 and 1.2 the Dynkin-Kostant theory and
some of its consequences about the classification of nilpotent classes of a com-
plex semisimple Lie algebra or a real form of it. In 1.3, a brief survey is given
on the Kirillov orbit method for representations of nilpotent Lie groups. After
these preparations, we give in 1.4 the definition of the GGGRs of G exactly.
The subsections 1.5 and 1.6 are devoted to clarifying the relation between the
original Gelfand-Graev representations and the generalized ones.

1.1. The Dynkin-Kostant theory on nilpotent classes.

Here, let g¢ be a complex semisimple Lie algebra. Denote by G¢ the adjoint
group of gc. Then, according to Dynkin and Kostant, the nilpotent Gec-orbits
in g¢ are parametrized by the weighted Dynkin diagrams. As our survey, let
us begin with the following

Definition 1.1. If three non-zero elements X, H and Y in g, satisfy the
bracket relations
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(L.1) [H, X]=2X, [H Y]=-2Y, [X, Y]=H,

then 9=(X, H, Y) is said to be an 8l,-triplet in gc. Moreover, H (resp. X, Y)
is called the semisimple (resp. nilpositive, nilnegative) element of .

For any 8l,-triplet o=(X, H, Y), it follows from (1.1) that g¢(9)=CXPCH
@CY forms a Lie subalgebra of g¢ isomorphic to 8l,(C). Taking into account
the adjoint representation of g¢(9) on g¢, one finds out that H is a semisimple
element of g¢ and that the eigenvalues of ad H on g¢ are all integers. Moreover,
X and Y are nilpotent elements of gc. Conversely, for any given nilpotent
element of g¢, the Jacobson-Morozov theorem tells us

Theorem 1.2 (Jacobson-Morozov, Kostant [17]). Let X<gc¢ be a non-zero
nilpotent element. Then there exists an 8l,-triplet (X, H, Y) in gc containing X as
nilpositive element. Furthermore, if X lies in a real form g of g¢, both H and
Y can be chosen from g.

Let =(X, H,Y) be an 8l,-triplet in gc. Set g&=(ad X)gcN3(X), where
35c(X) is the centralizer of X in g¢c. If one denotes by gc(s) (s€Z) the s-
eigenspace for ad H on gc¢, ¢& is expressed as

(1.2) 3& =35(X)N{ @1 gc(s)}

thanks to the finite-dimensional representation theory of g¢(9)=81,(C). This
implies that g& has a structure of nilpotent Lie sugalgebra of gc. Let G¥ denote
the analytic subgroup of G¢ corresponding to g&. The set of 8&l,-triplets con-
taining X as nilpositive element are parametrized as follows.

Proposition 1.3 [17, Theorem 3.6]. Let T=(X, H, Y) be an 8l,-triplet in gc.
Then the map

1.3 GEag—>g9=(X, gH, gY)

sets up a bijective correspondence from G& to the set of all 8l,-triplets in g¢ con-
taining X as nilpositive element.

Now let ic be a Cartan subalgebra of g¢. Denote by d=4(gc, jc) the root
system of gc with respect to jc. Take a positive system 4* of 4. I will
denote the set of simple roots in 4*.

Theorem 1.4 ([6], [17]). Let o be a non-trivial nilpotent orbit in gc. Then,

(1) there exists a unique dominant (with respect to A*) element H(0)Eic such
that H(o) is the ser.m'sz'mple element of an 8l,-triplet (X, H(0), Y) with X<o.

(2) Define a function f, on II by fla)=a(H(0)) (acIl). Then, foa)=0, 1
or 2 for any acll.

(3) The map o—f, gives a one-to-one correspondence from the set of non-
trivial nilpotent classes of gc into the set of functions on IT with values in {0,1,2}.
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Let D be the Dynkin diagram of the root system (4, )i} ). For a nilpotent
class o, the weighted Dynkin diagram D(o) is defined as the graph D with the
number f,(a) attached to the node corresponding to a€ II. Theorem 1.4(3) tells
us that the weighted Dynkin diagrams D(o) parametrize the set of nilpotent
Gc-orbits o (#=(0)).

For the later use, we prepare some additional notations and a lemma.
Now let

(1.4) gc= s@z gc(8)o

be the eigenspace decomposition of g¢ with respect to ad H(o), where gc(s),
denotes the s-eigenspace. Then we see easily that

(1.5) [3c(S)o, Bc()o]S8c(s+1t)e  for s, teZ,

which implies in particular that g¢(0), is a Lie subalgebra of g¢. Furthermore,
if G¢(0), denotes the analytic subgroup of G¢ with Lie algebra g¢(0),, then
ac(s), is stable under G¢(0), for every s Z.

Define a subset §¢(2), of gc(2), as

(1.6) 3c2)o=1{VeEgc@)o; [V, 8c(0)e]=8c(2)o} .
If (X, H0), Y) is an 8l,-triplet, then X belongs to §¢(2),. Moreover one has

Lemma 1.5 [17, §4]. (1) §c(2), is an open, dense and connected subset of
8c¢(2), and it forms a single G¢(0)o-0rbit in gc(2)o.
(2) The nilpotent class o is expressed as 0=Gc¢§c(2)o.

1.2. Nilpotent classes of real semisimple Lie algebras.

Let G be a connected semisimple Lie group with finite center. In this sub-
section, we concern ourselves with the classification of nilpotent Ad(G)-orbits
in g=Lie G in connection with that of such Gc¢-orbits in gc=g®rC. The latter
was expounded in 1.1.

Now let g=tPua,Pn, be an Iwasawa decomposition of g. Take a maximal
abelian subalgebra §* of m=3(a,). Here, for a subgroup H of G and Lie sub-
algebras § and t of g, we denote by Z4(r) (resp. 3,(t)) the centralizer of r in H
(resp. in §). Then, i=)*@a, is a maximally split Cartan subalgebra of g. Let
A=A(g, ap) be the root system of g with respect to a,. Choose a positive
system A* of A so that n,=3;c4+8(ap; 4), where g(a,; ) is the root space of
a root 4. /I denotes the set of simple roots in 4*. We keep to the notations
in 1.1 for the complexification g¢ and jc of g and j respectively, provided that
the positive system 4+ of Ad=4(gc, j¢) is chosen to be compatible with 4+*:
(4% ap)\U(0)=A*(0).

Lemma 1.6. For any nilpotent Ge-orbit in gc, the element H(0)Eic in
Theorem 1.4(1) lies in ~/—16*@a,. Furthermore, H(o)Sa, if and only if the
orbit o intersects with g.
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Proof. The first assertion follows from Theorem 1.4(2) and the fact that
vV =19*@a,={HE]|c; a(H)ER for all ac4}.

Let us prove the second statement. Suppose that gMo is non-empty, and
take an XegnNo. From Theorem 1.2 there exists an 8l,-triplet (X, H,Y) in g
which contoins X as nilpositive element. Keeping in mind the adjoint represen-
tation of RXPRHPRY =5l,(R) on g, we find out that ad H is diagonarizable
over g. Such an Heg is conjugate, under the adjoint action of G, to some
H'ea, dominant with respect to A*. Thanks to our choice of A+, H' is
dominant with respect to 4*, too. We thus conclude that H(o)=H’'&a, because
of the uniqueness of H(o) in Theorem 1.4(1).

Conversely, suppose that H(o)ea,. Then g has a structure

(L.7) 9=366929(S)o with  g(s)o=gc(s)oMNg.

Let # be the complex vector space consisting of linear maps n(X)=(ad X)|gc(0),
(Xegc(2),) from gc(0), to gc(2)o. Then HMr=n(g(2),) is a real form of H. Set
MA=rBc(2)o)S M. Then, for an LeM, L lies in M if and only if the map
L :gc(0),—gc(2), is surjective. The latter condition is equivalent to Fy;(L)#0
for some 1</<N. Here Fi(L) (1<i<N) are the minors of L of degree dim g¢(2)..
Note that F;: L—F;(L) are polynomial functions on . Since M is not empty
by Lemma 1.5(1), F; is, for some 7, not identically zero on %, whence so is on
the real form M, This means that g¢(2)yN§# @. From Lemma 1.5(2), one
deduces oNg=2§¢(2)oNg+ @ as desired. Q.E.D.

Lemma 1.7. If o is a nilpotent Gc-orbit in gc, then one has oNg=Ad(G)3(2),
with @(2)0—_—'@0(2)0“9-

Proof. In view of Lemma 1.5(2), we may assume that oNg#@. Let Xe
oNg. Then, as in the proof of Lemma 1.6, there exists an 8[,-triplet (X’, H(0),Y)
containing a certain Ad(G)-conjugate X’ of X as nilpositive element. Then it
follows that [ X', gc(0)o]=8c(2)o, or equivalently, X'€§(2),. We thus proved the
inclusion oNgE Ad (G)3(2)o. The converse inclusion is clear from Lemma 1.5(2),
which completes the proof. Q.E.D.

Now suppose that o intersects with g. Clearly, oNg is stable under Ad(G),
so it is expressed as a disjoint union of some number of nilpotent classes in g.
We shall establish in Proposition 1.9 a one-to-one correspondence between these
Ad(G)-orbits and the set of all orbits in §(2), under the adjoint action of a
reductive subgroup L,SG.

For this purpose, we need some more notations. Set

(1.8) po:x@g(s)m l,=g(0) and no:s@g(s)o-

Then p,=1,Pn, gives a Levi decomposition of a parabolic subalgebra p,. Let
P,=Ng(n,), the normalizer of 1, in G, then it is the parabolic subgroup of G
corresponding to Ppo. It holds that P,=L,N, (a Levi decomposition) with L,=
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Zs(H(0)) and N,=expn, Here exp denotes the exponential mapping from g to
G. The subspaces g(0), and ¢(2), are Ad(L,)-stable, whence so is §(2), by defini-

tion.
The following lemma is crucial for the succeeding Proposition 1.9.

Lemma 1.8. For two elements X,, X,=§(2), X, is conjugate to X, under G
if and only if they are conjugate under L.

Proof. Since X;=§(2),&Sdc(2), for 7=1, 2, by Lemma 1.5(1) there exists an
8l,-triplet (X;, H(o), Y;) in g¢ containing X; and H(o) as nilpositive and semi-
simple elements respectively. Suppose that Ad(g)X,=X, for some g&G. Then
(X,, Ad(g)H(0), Ad(g)Y.) as well as (X,, H(0), Y,) is an 8&l,-triplet containing
nilpositive element X, in common. Hence, by Proposition 1.3, they are con-
jugate under G&!, the unipotent radical of Zs.(X,). Especially z-Ad(g)H(o)=
H(o) for some zeG#:, which implies that z-Ad(g)o)c=(1o)¢c. It follows from
(1.2) that the Lie algebra g&: of G&! is contained in (1,)c. Therefore we have
Ad(g)n,)c=(0)c, Which means that geP,.

Express g as g=nl with neN, and /e L,. Then it is easily seen that

Ad(g)X,=Ad()X. (mod. s%gg(s)o).

Keeping in mind the assumption Ad(g)X,=X,=g(2),, we conclude that Ad({)X,
=X,. Consequently, X, and X, are Ad(L,)-conjugate.
The “if” part of the statement is obvious, thus we complete the proof.
Q.E.D.

By Lemmas 1.7 and 1.8, we obtain a parametrization of nilpotent Ad(G)-
orbits in oN\g by means of Ad(L,)-orbits in §(2), as follows.

Proposition 1.9. Let o be a nilpotent Gc-orbit in gc which intersects with g.
Then,

(1) every Ad(G)-orbit @ in oNg intersects with §(2)o.

(2) The mapping w—wN§(2), gives a bijective correspondence from the set of
Ad (G)-orbits in oNg to the set of Ad(L,)-orbits in §(2)o.

1.3. The Kirillov orbit method. In order to construct the GGGRs of G,
one needs irreducible unitary representations of nilpotent subgroups N,. For
this purpose, we shall survey briefly the Kirillov theory on representations of
nilpotent Lie groups.

In this subsection, let N be a connected and simply connected nilpotent Lie
group. Denote by n the Lie algebra of N. Let fen* the dual space of n.
A subalgebra Y of u is said to be a real polarization at f if | satisfies following
two conditions:

1) £ D=0, (2) for an Xeu, f([X, §])=(0) implies X&.

For any fen*, a real polarization §) at f always exists, moreover it holds that
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2dim h=dim n+dim n(f), where n(f)={X<n; f([X, u])=(0)}.
For a real polarization § at fen*, put H=exph. Then, we see from (1)
that

(L.9) ns(exp Z)=exp{vV—1f(Z)} (Z<Y)

defines a unitary character 7, of H. Let us consider the unitarily induced re-
presentation &(f, §)=L*Ind¥(n,). Then &(f, 0) is irreducible. Moreover, its
unitary equivalence class ¢(f, §) is independent of a choice of the real polariza-
tion . So one may express this as g(f) instead of o(f, §). We thus get a
mapping ¢ from n* to the set N of equivalence classes of irreducible unitary
representations of NV,

Let Ad* denote the coadjoint representation of N on n*. Then we see easily
that o(Ad*(n)f)=0a(f) for any nN and fen*. Thus ¢ induces canonically a
mapping, denoted again by ¢, from n*/N to N, where n*/N is the coadjoint
orbit space for n*. On this map ¢, the Kirillov theory tells us

Theorem 1.10 [16]. The map & sets up a bijective correspondence from the
orbit space w*/N to the unitary dual N.

This bijection ¢ : n*/N—»N is called the Kirillov correspondence.

1.4. Definition of generalized Gelfand-Graev representation (=GGGR).

Let G be a connected semisimple Lie group with finite center again. Keep
to the notations in 1.2. Using the facts in the provious sections, we can now
construct, after N. Kawnaka, the GGGRs of G exactly.

Let @ be a non-trivial nilpotent Ad(G)-orbit in g. We define the GGGR I,
in the following procedure. Set o=0(w)=Gcw, the Gc-orbit containing w. For
this o, let ¢(2)o, H(0), Lo, No, --- be as in 1.2. Take an X from wN§(2),, which
is assured to be non-empty thanks to Proposition 1.9(1). Let us define X*eu¥ by

(1.10) (X*, Z>=B(Z, 0X) for Ze&n,,

where B denotes the Killing form of g, and # the Cartan involution of g cor-
responding to the decomposition g=t@Pa,Pun,. We note that 64§(s)e=g(—5)
(s€ Z) because §H(o)=—H(o) by Lemma 1.6. Since N, is a connected and simply
connected nilpotent Lie group, we may attach o([X*])e N, to the Ad*(N,)-orbit
[X*] through X* via the Kirillov correspondence o.

Take a concrete irreducible unitary representation £y of class ([ X*]). Let
us consider the induced representation I"x=Ind% (§x). Here, Ind means either
the unitary induction (=L%Ind) or the C>-induction (=C=-Ind) defined in §§2
and 3 of the first part [32] of this paper (referred as [I] later on). Clearly the
equivalence class [["x] of I"y does not depend on a realization &x. Furthermore,
it is independent of a choice of XewN§(2),, because wNj(2), is a single Ad(L,)-
orbit in §(2), by Lemma 1.8. So we may express I x as I', without any con-
fusion.
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Definition 1.11. For each nilpotent Ad(G)-orbit w (#(0)) in g, the induced
representation I",=Ind% (£x) (XEwN3(2)) is called the generalized Gelfand-Graev
representation (=GGGR) associated with w. (For w=(0), the GGGR I, is de-
fined to be the left regular representation of G.)

For the later use, it is convenient to realize &x explicitly as a monomial
representation. This is done in the following way (see [13, (1.3.8)]). Set n(i)o
=@,::4(s) for i=1. Then u@), is an ideal of n,=n(l)e. Let B(X) be the
alternating bilinear form on n,Xn, defined by

(1.11) BX)Y, Z)=<{X* Y, ZD for Y, Z&n,.
It is easily seen that u(2), coincides with the radical of B(X):
(1.12) n)o={Y n,; BXXY, 1,)=(0)}.

This implies that the restriction B(X)|(g(1)oXg(1),) is non-degenerate. Hence
there exists a subspace v(X) of g(1), satisfying

B(X)([o(X), o(X)])=(0) and 2dimb(X)=dimg(1),.

Put n(L.5, X)=v(X)Pn(2), then n(1.5, X) is a real polarization at X* by con-
struction. Therefore, from the Kirillov theory in 1.3, &x can be realized as

(1.13) £x=L"Indy%xy(7x),
where 7y is a unitary character of N(X)=expn(l.5, X) given as

(1.14) nx(exp Z)=exp vV —1KX*, Z>  for Zen(l.5 X).

1.5. Gelfand-Graev representations; quasi-split case.

Let & be a one-dimensional unitary representation of the maximal unipotent
subgroup N,SG. The induced representation Ind%, (&) is called a Gelfand-Graev
represention (=GGR) if the unitary character & is non-degenerate: &|(exp g(a,; 4))
=1 for any A1l

The rest of this section is devoted to clarifying the relationship between
these GGRs and GGGRs in 1.4. We deal with the case where G is quasi-split
in this subsection, and then, the non quasi-split case in the next 1.6.

Firstly, we recall some basic facts on regular nilpotent classes. An element
Xeg is said to be regular if dim 3,(X)=rank g, where rank g denotes the dimen-
sion of a Cartan subalgebra of g. By a regular nilpotent orbit (or class), we
mean an Ad(G)-orbit in g consisting of regular and nilpotent elements.

If g has a structure of complex Lie algebra, then there exists a unique
regular nilpotent orbit in g. Even if g is not defined over C, g possibly admits
a regular nilpotent class.

Lemma 1.12 [28, Corollary 3.5]. A real semisimple Lie algebra g contains
a regular nilpotent Ad(G)-orbit if and only if g is quasi-split, that is, the cen-
tralizer m=3,(a,) is abelian.
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We now assume that g be quasi-split, and o, denotes the unique regular
nilpotent Ge-orbit in ge. By Lemma 1.12, o, intersects with g. Moreover, the
subset §(2),,S8(2)o, is described as follows.

Lemma 1.13. One has under the notation of 1.2,
(1.15) @(2)0,.:{)(:1217)(1; Xaeglap; N0},
€
where gla,; A) is the root space of a root A< A.

In order to prove this lemma, let us describe beforehand the spaces g(a,; 4)
(A€ 1l) by means of simple root spaces gc(jc; @) for acs Il with respect to (gc,
ic). Let ¢ be the conjugation of gc with respect to g. For a B&i¥, set
(o*B)H)=PB(a(H)) (HE]c), where the bar means the complex conjugation. Then
4 is stable under o*. Since g is quasi-split, any root in 4 does not vanish on
ap. The positive root system 4* is defined to be compatible with A* (see 1.2).
From these facts, we see that 4+ is o¢*-stable. Hence so is 1. Therefore,
there exist non-negative integers 4 and m such that

ora;=a; (1Zi<k), a*ai=apn (B<iZk+m)
and k+2m=¢t. Here a,, a,, -+, a, are the elements of II. Since any simple root
A€ 1] is given by restriction of an a= Il to a,, it holds that IT={4;, A, ---, A;}

with 2;=a;la, for 1<i<r=Fk-+m. Moreover, the simple root space g(ap; 4;)
has a structure

gelic; adMg if 1<i<k,

(1.16) glap; Zi)z{ . ) ) )
{aclic; a)®aclc; o*a)tNg if k<i<Zr.

Proof of Lemma 1.13. Using (1.16) we can prove Lemma 1.13 in the following
way. Take a non-zero element X;=g(a,; 4;) for each 1=</<r. Then X=33,ci<-
X; belongs to §(2),,. In fact, from (1.16), X admits an expression such as
X=3acit Ve with Y.Egc(c; a)N0) for any a=I/. Hence one has

(ad X)gc(0)o,=[X, jc1= Z 8c(jc; @)=8c(2)o,

ag]]
which means that X&€§¢(2),, by definition. Consequently, X€§c(2)o,MNg=8(2)o,.
We thus proved the inclusion “2” in (1.15). The converse inclusion clearly
holds by the definition of §(2),,. Q.E.D.

Consequently, the set of open Ad(MA,)-orbits in X,cpga,; 4) parametrizes
the regular nilpotent classes of g.

Now let w be a regular nilpotent orbit in g, or equivalently, an Ad(G)-orbit
contained in gMo,. Then the GGGR I, is realized as I',=Ind% (£x) for some
Xe6(2)o,Nw, where &y is a unitary character of the maximal unipotent sub-
group N,=expu, of G given as

(1.17) Ex(expZ)=exp~/—1B(Z, 6X) for Ze&n,.
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Thanks to Lemma 1.13, £y is non-degenerate. Conversely, any non-degenerate
unitary character of N, is of the form &y for some X&§(2),,. Keeping Pro-
position 1.9 in mind, we can summarize this as follows.

Proposition 1.14. Assume G be quasi-split. Then, for any regular nilpotent
class o of G, the GGGR I', is realized as a representation induced from a non-
degenerate character of N, a member of GGRs. Conversely, any Gelfand-Graev
representation is equivalent to I',, for some regular nilpotent class w of g.

In conclusion, the GGGRs associated with regular nilpotent classes coincide
with the GGRs of quasi-split semisimple Lie groups.

1.6. The GGRs; non quasi-split case. We now proceed to the case where
g is not necessarily quasi-split. Also in this case, do GGGRs give an extension
of the GGRs? Although we have not obtained a completely affermative answer
to this question, Wakimoto’s result tells us the following proposition which
generalizes the first half of Proposition 1.14.

Proposition 1.15. The GGGRs associated with the principal nilpotent orbits in
g are necessarily the GGRs. Here, a nilpotent Ad(G)-orbit w in g is said to be
principal if dim3(X) (X€w), which is independent of X€w, is minimal among
those for all nilpotent classes.

Proof. Let w be a principal nilpotent class of g, and put 0,=Gcw. Accord-
ing to Wakimoto [28, Proposition 3.3], the corresponding semisimple element
H(opy)=a, is characterized by

(1.18) A(H(0p))=2 for all A<ll.

This implies that the principal nilpotent classes of g are all conjugate under G¢
to each other. Moreover, one gets No,=N, and g(2) »—21en8(0p5 4).  From
the definition of @(Z)OP, we see easily that

(1.19) (20, S{X= p2i Xa; Xasg(ap; ONO)}.

Using this inclusion relation, we can prove the assertion just as in the proof of
the first half of Proposition 1.14. Q.E.D.

Conversely, can any given GGR be realized as the GGGR associated with a
principal nilpotent class? The answer is “Yes” or “No” according as the equality
holds in (1.19) or not.

§2. Reduced generalized Gelfand-Graev representations

We introduce in this section a version of the GGGRs, which we call reduced
generalized Gelfand-Graev representations (=RGGGRs). These RGGGRs are
main objects in the present article. In the succeeding sections, we shall show
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that an important kind of RGGGRs have finite multiplicity property, making use
of the results of [I].

2.1. Definition of RGGGRs. Let G be as in 1.4 and keep to the notations
in §1. Consider the unitarily induced GGGR L*-I",=L*Ind%(éx), o=o(w),
associated with a nilpotent Ad(G)-orbit w in g.

The most fundamental problem in the study of group representations would
be to decompose a given representation into irreducibles explicitly. So, we hope
to settle this problem for the GGGRs I', in future. Toward this end, we make
in this subsection an observation, keeping in mind the Mackey theory for re-
presentations of group extension. This leads us naturally to the notion of
RGGGRs. Furthermore, the problem of irreducible decomposition for L%-I7, is
reduced mainly to those for RGGGRs associated with w.

Now, for an X€§(2)Nw, let §X=L2-Ind,’§°(x)(77 x) be the irreducible unitary
representation of N, in (1.13). Since the Levi subgroup L, acts on N, through
the conjugation, it acts also on the unitary dual N, via

2.1 (-[81=[i-€], (-&m)=&l'nl) (neN,)

for /L, and [£]eN,. Here [£] is the equivalence class of an irreducible
unitary representation & of N,. Let Hy(X) be the stabilizer of [£x] in L,:

2.2) Hy(X)={leLo; I-[{x]=[éx1}.

Then one has

Lemma 2.1. The subgroup Hy(X) is reductive. Moreover it coincides with
the centralizer Z,(0X) of 60X in L,, where 0 is the Cartan involution of g.

Proof. First we show the latter assertion. For an (€L, we see easily
[-[éx]=[&aaconrx], or equivalently, {-e(LX*])=0a([(Ad(81)X)*]). Here, :nf/N,
—N, is the Kirillov correspondence, and [Y*] denotes the the Ad*(N,)-orbit
through Y*en¥ (see 1.3). This implies that [ Hy(X) if and only if [X*]=
[(Ad(8)X)*]. On the other hand, according to [13, (3.1.2)], one has for any
Ye§(2)o,

2.3) [Y*]=Y*+g(1)3.

Here the dual space g(1)¥ of g(1), is canonically identified with the subspace of
n¥ consisting of all Z*<un¥ identically zero on u(2),. We thus conclude that /=
Hy(X) if and only if Ad(/)0X=6X as desired.

Secondly we prove that H,(X) is reductive. According to [4, Proposition
5.5.9], 3c,c(0X) is a reductive Lie algebra, whence so is a real form 3,,(6 X) of
it. Consequently, H,(X) is reductive because of the latter assertion proved
above. Q.E.D.

If he Hy(X), then two irreducible unitary representations i-£y and &y are
mutually equivalent. So, there exists a unique (up to scalar multiples) unitary
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operator &x(h) on the representation space #(£x) of &y satisfying
2.4) (h-&x)(n)=E& x(h)"*& x(n)é x(h) for all nEN,.

By putting £x(hn)=E&x(h)éx(n) (h€ Hy(X), nEN,), we thus obtain in general a
projective unitary representation &y of the semidirect product group So(X)=
H,(X)x N, which extends &x. Nevertheless, under a certain kind of assumption
on w, we find out that £y extends to a genuine (not just projective) unitary
representation &y.

Proposition 2.2. Suppose that the subspace g(1)o admits an Ad (Hy(X))-invariant
complex structure j, that is, a real linear map j on g(1) satisfying (1) ji=-—1I
(I=the identity operator) and (2) (Ad(h)-j°Ad(h))Ig(l)o=; for all he H(X).
Then &x is extendable to a genuine unitary representation £x of So(X) acting on
the same Hilbert space 9 (§x).

We prove this proposition in the succeeding subsection 2.3.
As a direct consequence of this proposition, one obtains

Proposition 2.3. For an X€3(2)oN\w, the representation &x can be extended
to a genuine representation of So(X) if either the followieg condition (1) or (2)
(on @ or @) is satisfied.

(1) The nilpotent class w is even (i.e., g(1),=(0)),

2) g is a complex semisimple Lie algebra.

Remark 2.4. Prof. Kawanaka kindly suggested us that the assertion of
Proposition 2.3 (for the condition (2)) should be true. Thanks to his advice, we
were able to obtain Proposition 2.2 which is very useful for later discussion
(see Theorem 4.6).

As we saw above, extensions of &y to genuine representations £y are pos-
sible for many number of w. Moreover, for any GGGR I', which we discuss
detailedly in later sections, the subspace g(1), with o=0(w)=Gc¢w always satisfies
the assumption of Proposition 2.2. Therefore, we henceforth restrict ourselves
to the case where &y admits an extension to a genuine representation. (Even if
&x is not extendable to a genuine representation, one can construct RGGGRs
analogously. But we do not treat it here. See [15, 2.5].)

Now we consider the induced representation L-Indfg¢¥>(éy), suggested by
the isomorphism

(2.5) LT = L*Ind%, (L Ind §2(E ).

Lemma 2.5. One has an isomorphism of unitary representations
(2.6) LtInd§¢ (6 x) =P REx

where gZ(hn)ng(h) (he H(X), nEN,) with the left regular representation ¢ of
Hy(X). :
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Proof. Let £ be the Hilbert space of 4(£x)-valued Borel functions f on
Hy(X) such that

113=1,, I IFdh<+oo,

where dh denotes the left Haar measure on Hy(X), and |-| the norm on % (£x).
Since the factor space So(X)/N, is canonically isomorphic to Hy(X), the represen-
tation L*Ind§3*>(éx) can be realized on . in the following way: the action
A of So(X) on £ is expressed as

A f(R)=f(h™"h)=¢(h) f(h"),
An) f(h)=Ex(h' =) x(m)E x(h") f(R)

for fe L, h.h"'eH(X) and nEN.,.

Define a unitary operator ¢ on .L by ¢f(h)=E&x(h)f(h) (he Hy(X)). ldentify-
ing .£ with L*(Hy(X), dh)®4(£x) in the canonical way, we may regard ¢ as an
isometry from £ onto L*(H,(X), dh)RHK(Ex). Then it is easily checked that ¢
gives a unitary intertwining operator from 2 to J®é&yx. Q.E.D.

We now proceed to the GGGR L2*I",. Let
@) = c.dotz)
. o= Zcz o(z

be a desintegration of ¢ over some measure space (Z, o) (see 3.1 of [1]). Then,
in view of Lemma 2.5, L2-I", is decomposed as

2.8) T, LIS, E.@Endoz)  with £,=c.®ly,,

where 1y, is the trivial character of N,. Suggested by (2.8), we introduce a
variant of the GGGR I, as follows.

Definition 2.6. Let w be a nilpotent Ad(G)-orbit in g, and XewN§(2)o,
o=o(w). Suppose that the irreducible unitary representation £y defined by (1.13)
extends to a genuine unitary representation £y of the semidirect product group
So(X)=Hy(X)N,. Then, for an irreducible representation ¢ of H,(X), the induced
representation I",(c)=Ind§ 0EREx) with ¢=c®1 N is called the reduced gener-
alized Galfand-Graev representation (=RGGGR) associated with (w, ¢).

Remark 2.7. (1) In the above definition, Ind means either C*-Ind or L%-Ind
as before. When the unitary induction is considered, ¢ is of course assumed
to be unitary. But we need not (and do not) restrict ¢ to be unitary so far as
the C=-induction is in mind.

(2) In general, all the irreducible unitary representations of H,(X) are not
necessary to decompose ¢ into irreducibles. Therefore, all the RGGGRs L*-
I',(¢c) (cEH{(X)) are not needed in order to decompose L®*-I", as in (2.8).
Nevertheless, we do not exclude here, to define RGGGRs, L*I",(c)’s which do
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not “oczcur” in (2.8).

At the end of this subsection, we refer to the problem of explicit ir-
reducible decomposition of the GGGRs L:-I',. In view of (2.7) and (2.8), this
problem is reduced to the following (P1) and (P2).

(P1) Decompose the regular representation ¢ of Hy(X) into irreducibles
explicitly. In other words, describe an explicit Plancherel formula for the
reductive group Hy(X).

(P2) For any ce H5(X) (=the unitary dual of H,(X)) which “occurs” in ¢,
give the irreducible decomposition of the RGGGR L2-I",(c).

As for (P1), Harish-Chandra established an explicit Plancherel formula for
reductive Lie groups so-called of class (4). (See [27] for the definition of
groups of class (4)). Therefore, if Hy(X) is of class (), one gets a complete
answer for (P1) by applying Harish-Chandra’s result. Although we do not
know whether or not any Hy(X) is of class (&), this request would be a mild
one. Thus our original problem for L%-I", is reduced mainly to (P2).

2.2. Oscillator representations of unitary groups.

The rest of this section is devoted to proving Proposition 2.2 by reducing
it to a basic fact of J. A. Wolf [30] on the oscillator representations of unitary
groups. In this subsection, we explain the result of Wolf, crucial for the suc-
ceeding 2.3.

Let V be a finite-dimensional complex vector space with a non-degenerate
hermitian form A (not necessarily positive or negative definite). Then N,=V XR
has a structure of two-step nilpotent Lie group by giving the product of two
elements (z;, x,) and (z,, x,) as

2.9) (21, 1022, X3)=(21+23, x:1+ x,+1Im h(z,, 2,)).

N, is called the Heisenberg group of dimension 2n+1, where n=dim V. Express
by Vg the space V regarded canonically as a real vector space. Since A=Im~h
gives a non-degenerate alternating bilinear form on ViyXVpg, we can define the
real symplectic group Sp(Vg, A) with respect to A as follows:

(2.10) Sp(Vg, A)={geGL(Vr); Algv, gw)=A(v, w) for all v, wsVg}.
The “unitary” group with respect to h:
2.11) UV, h)y={geGL(V); h(gz, gz.)=h(z, z,) for all z,, z,=V},

forms a closed subgroup of Sp(Vpg, A).
Sp(V e, A) acts on N, as a group of automorphisms via

(2.12) g-(z, x)=(gz, x) for g=Sp(Ve, A) and (z, x)EN,.

So we may consider the semidirect product groups Sp(Vg, AYx N,2U(V, h)X Ny.
Let » be a non-zero real number. Then we see by the Kirillov orbit method
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that there exists a unique (up to equivalence) irreducible unitary representation
&, of N, for which the central elements (0, x) (x&R) are represented by scalar
operators

(2.13) €., x))=exp{~/—1rx}I  (I=the identity operator).

These &, with »+0 are infinite-dimensional. Furthermore, they exhaust all the
infinite-dimensional irreducible representations of Nj.

For g&Sp(Ve, A), put (g-&,)(n)=&,(g™'-n) (nEN,). Then g-&, as well as
&: is an irreducible representation of N, satisfying (2.13). Therefore, analogously
to our construction of £ in 2.1, &, can be extended to a projective unitary
representation &, of Sp(Vy, A)X N, in such a way that

(g-&)(M)=E. ()¢, (mE (g), E(gn)=E.(g)t.(n)
for geSp(Vg, A) and nEN,,.

Remark 2.8. This &, can not be a genuine representation till it is lifted to
the representation (denoted again by £,) of Mp(Vg, A)X N, in the canonical
way. Here Mp(Vg, A) is the two-sheeted cover of Sp(Vg, A). The restriction
of &, to the subgroup Mp(Vg, A) is called the Weil, metaplectic, or harmonic
oscillator representation.

Contrary to the above case of Weil representation, a result of Wolf tells us
the extension of &, to U(V, h)X N,.

Proposition 2.9 [30, Proposition 4.16]. For any re R\(0), &, extends to a
genuine representation of U(V, h)X N,. Such an extension, if restricted to U(V, h),
1s called an oscillator representation of U(V, h).

2.3. Proof of Proposition 2.2. We now prove Proposition 2.2 by using
Proposition 2.9 above. Return to the notations in 2.1, and assume that g(1),
admits an Ad (Hy(X))-invariant complex structure j. Our proof consists of four
steps. '

STeEP I. If g(1), reduces to (0), the assertion is clearly true because &x is
one-dimensional by construction. So, in the following we assume that g(1),#(0).
In this case, the representation & X=L2-Indx‘{x,(77 x) constructed in 1.4 is infinite-
dimensional. Here u(X)=Lie N(X) is a real polarization at X*&u¥ containing
1(2)o=0D;228(s)o, and 7y is the unitary character of N(X) given as nx(exp V)=
exp v/ —1{X*, V) (Yeun(X)).

STEP II. Set U=(Ker 9 x)N\N(2), with N(2),=exp u(2),, then U is a connected
normal subgroup of N, with Lie algebra u=(Ker X*)"\n(2),. By the construc-
tion of &y, we see Ker £x2U. Therefore, &x induces, through the canonical
map p: No—N,/U, an irreducible unitary representation &% of the factor group
No/U : &5(p(n)=€x(n) (nENo). |

By Lemma 2.1, U is stable under Hy(X). So Hy(X) acts on N,/U, hence it
acts also on the unitary dual (No,/U)" in the canonical way. Moreover, the
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unitary equivalence class [£%] of &% is fixed under the action of H,(X) because
so is [Ex]€N,. From this discussion, the proof of Proposition 2.2 is now
reduced to showing that &% is extendable to a genuine representation of the
semidirect product group Ho(X)x (No/U).

StTEP III. Now let V denote the complex vector space g(1), equipped with
the complex structure j. Set for z,, z.&V

(2.14) h(z1, 22)=2""{X¥([jzi, D)+~ —1X*[2, 2D)}.

Then h gives a hermitian form on V, which is non-degenerate because so is the
real bilinear form g(1)oXg(1)o2(x1, %)= X*([x;, x.])=2Im h(x,, x;). For this V
and h, we consider the Heisenberg group N, and the unitary group U(V, h) in
2.2

For n=exp(x+y)EN, with xeg(l), and yen(2),, put
To(n)=(x, X*(y))E N.

Then 7,: No—N, gives a surjective group homomorphism with Ker r,=U, which
induces canonically an isomorphism 7: N,/USN,. This extends to a group
homomorphism 7:

Ho(X)X (No/U) —> U(V, h)X Ny

in the following way. If /€ Hy(X), then n(/)=Ad (/)| V is a complex linear map
since j commutes with (/) by assumption. Moreover, it leaves h invariant,
which means that z#())cU(V, h). Set Z(#)==n()r(n) (€ Hy(X), i€ No/U). Then
# is the desired group homomorphism.

STEP IV. At last, we show that &% admits an extension to a genuine re-
presentation &% of Ho(X)X(No/U). Let &% be the representation of N, given as
&4 =¢%+r7'. Thanks to Proposition 2.9, £% extends to a genuine representation
&% of U(V, h)x N,. Then &y=E%+7 gives a desired extension of £%. This com-
pletes the proof. Q.E.D.

§3. Simple Lie groups of hermitian type and nilpotent classes w;

In the previous sections, we developed the generalities on (reduced) gener-
alized Gelfand-Graev representations of semisimple Lie groups. We retain the
abbreviation GGGR (or RGGGR) in order to express such a representation. In
the sections starting with this §3, we shall concentrate on some important
types of (reduced) GGGRs of simple Lie groups G of hermitian type, closely
related to the regular representation of G, and prove finite multiplicity property
for RGGGRs of such types.

Since the (reduced) GGGRs correspond to nilpotent classes of g, the first
thing we should do is to determine the nilpotent classes which give the above
important kinds of RGGGRs. This is the main purpose of this section. To be
more precise, we recall in 3.1 refined structure theorems due to Moore [18],
for simple groups of hermitian type. We construct in 3.2 the nilpotent G-
orbit 0Sg¢ in question, and then describe completely the Ad(G) orbits contained
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in oNg (Theorem 3.13).

3.1. Moore’s restricted root theorem ([18], see also [19], [24]).

Let G be a connected simple Lie group with finite center, and K a maximal
compact subgroup of G. Hereafter, we always assume that G/K has a structure
of hermitian symmetric space. Then the center ¢ of the Lie algebra f of K is
one-dimensional. Let g=tPp be a Cartan decomposition of g, and & the cor-
responding Cartan involution of G. The given G-invariant complex structure
on G/K induces canonically an Ad(K)-invariant complex structure J on p by
identifying p with the tangent space of G/K at the origin K. Moreover, there
exists a unique Z,=c such that

@D J=@d Zy)lp.

Extend J to a map on pc by complex linearity. Since J*=-—1,. (/,,=the
identity operator on p¢), pc is decomposed as

(3.2) be=0.Dp-,

where p, and p_ are respectively the +/—1 and —+/—1 eigenspaces for J on
be.

Let t be a maximal abelian subalgebra of f. Necessarily, t contains c.
Furthermore, t itself is a (compact) Cartan subalgebra of g. Let 2=2X(gc, tc)
be the root system of gc with respect to t¢. For each a2, the corresponding
root space gc(lc; @) is contained either in ¥¢ or pe. In the former case (resp.
the latter case), the root a is said to be compact (resp. non-compact). ¢ (resp.
2,) will denote the set of compact (resp. non-compact) roots.

Let us define a positive system X* of 2 compatible with the decomposition
(3.2) as follows. Consider the lexicographic order (see 1.3 of [I]) on +/—It*
with respect to an ordered basis (X,=Z,, X,, ---, X;,) of t containing Z, as the
top constituent. X* is the collection of positive elements in Y. Set Y¥=3 N2+
and 3¢=X,NY*. Then one sees easily

(3.3) gc=p-BtcDp+,
(3.4) pe= 3 geltc; £a), fe=tcD EEZ ge(te; a).
aEsy

an;
Moreover, p. are abelian subalgebras of g¢ because [p., p.]1StcNp.=(0).
One may (and do) select, for every a2, a root vector X,=gc(lc; a) in
such a way that

(3.9) Xo—Xoo, V=1 X+ X DBV —1p and [X., X_-.]=Hb,

where H,=2a(H,)'H, with H,e+/—1t determined by B(H, H,)=a(H) for
all Hete (B=the Killing form of gc¢).

A root « is said to be strongly orthogonal to fe2 if neither a+f§ nor
a— B belongs to X\ (0). Construct inductively a maximal family (71, 72, ===, 70)
of mutually strongly orthogonal roots in X} in such a way that, for each j, 7,
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is the largest non-compact positive root strongly orthogonal to 7.y, -, 7.
Now we set t-=3,5,5 RH;,S+/—1t. Denote by t* the orthogonal complement
of t~ in t with respect to B. For any ret§, put =n(y)=rlts, the restriction of
7 to te. If y is identically zero on t*, then one may express m(y) still as y
without any confusion. So are the cases y=y, (1<k<)).

Let us describe the restrictions zn(y) (y&2'*) explicitly, after [7] and [18].
For this purpose, set for 1<m<k</

Cio={redt; n(p)=27"r:}, Pe={r€2%; n(1)=27"7:},

Cin={r€2t; 2(N=2""Gs—1a)}, Pin={r€2}; a(N=2"rv+72)},
Co={relt; n(r)=0} and Po={yi, 72 =, 7:}-

According to Harish-Chandra, one has the following

Proposition 3.1 [7, VI, §6]. (1) The subsets X+ and X3 of 2 are expressed
respectively as

(3.6) F=Cou( \) COU(_J, _Cin),
1sks! 1smksl

(3.7) Er=(\) POUPM(_\J _ Pin),
1sksl 1sm<ksl

where the unions are disjoint.
(2) For any 1=m<k=l (resp. 1Sk, the map y—ya+y (vesp. y—ri—7)
gives a bijection from Cim to Py (resp. from C, to Py).

Based on this proposition, C.C. Moore determined which constituents in the
right hand sides of (3.6) and (3.7) may be non-empty, and obtained the following
restricted root theorem.

Proposition 3.2 [18, Theorem 2]. (1) There are only two tossibilities for
n(2*) except for (0):
(CASE ) w(2H)UO)={2"(yrEyn); 1Sm=k<l},
(Case 1) a(ZHUO)={27'GFetrn); ISm=SkIPU{27,; 1SR

(2) All the v, (1=k=l) have the same length.

We set a,=3,5,RH, with H,=X,,+X_,,. Then a, is a maximal abelian
subspace of p. Moreover, j=t*@a, is a maximally split Cartan subalgebra of
g. Let p denote the inner automorphism of gc defined by

(3.8) y:exp{%k};,lad(X”—X_,k)} (Cayley transform).

The p carries j¢ bijectively to t¢c in such a way that

w(H)=H;, (1=k<l), whence p(a,)=t",

3.9)
pItt=the identity map on t*.

Let 4=4(gc, jc) denote the root system of gc with respect to je. Put
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Ar={yr-(¢lic); y€2*}, then 4* gives a positive system of 4. Let A=A(g, a,)
be the (restricted) root system of (g, a,). Select a positive system A* of A
compatible with 4%: 4*|a,S A*\U(0). II denotes the set of simple roots in A*.
The Weyl group of (g, ap) is denoted by W. Set A,=r.°(¢la,) for 1<k<L
Then (2,) is an orthogonal basis of a}. Thanks to Proposition 3.2, one may
describe A*, II and W by means of this basis (1,) as follows.

Theorem 3.3 [18, Theorems 2’ and 3]. (1) There are two possibilities for
the positive system A*:

(CASE I) A+*={27YAp—2An); 1Sm<EZP U2 A +2An); 1IEmZ kLY,
(CaSE II) A*={2"'Ap—2An); 1Em<ESIN U272, 1SESIBU27M A0+ An);
1€msk<l).

(2) According as (CASE 1) or (CASE lI) above, Il is expressed as

(Case I) IT={a, 274 (2:—A), =+, 27 (4 —4-0},
(CASE II) IT={27'4;, 27" 2—4y), -+, 27 (A — A1)}

(3) W consists of all transforms of the form Ay—=*2,4y, where ¢ is an

arbitrary permutation of 1,2, -, 1. In this sense, W is naturally isomorphic to
the semidirect product group &, X(Z/2Z)'. Here the action of the symmetric group
S, of degree | on (Z/2Z)'={1, —1}'is given as (e, &3, ***, €,)=(Eg-1013, Eo-1c2)

e Eam1y) for 6ES, and e {1, —1} (1<kLZD).

The (Cask 1) happens if and only if G/K is holomorphically equivalent to
a tube domain. Moreover, non-compact simple Lie algebras g of hermitian type
are classified (up to isomorphisms) as follows (see [11, Chap. X]J). Under the

notation of Cartan,
Alll(g=38u(p, q); p=q), Cl(&p(n, R)), BDI(zo(p, q); ¢=2),

(CAseE ) {
DIII(80*(2n); n even) and EVIL

(Cask 1) Alll(p#g), DIll(n odd) and EIIL

3.2. A nilpotent G¢-orbit o in g¢. Keep to the notations of 1.1 and 1.2
under the situation in 3.1. Let o be the nilpotent G¢-orbit through 5. X;, Ep4.
We describe in this section the Ad(G)-orbits w; in oNg, and we will study in
the succeeding sections the (reduced) GGGRs attached to these w;’s.. These
kinds of GGGRs have the following important property: the direct sum of these
GGGRs L*-I',, (unitarily induced) is quasi-equivalent to the regular represent-
ation of G (Theorem 4.2). This is one of the reasons why we deal with this

orbit o.
Now let us begin with the following

Lemma 3.4. (1) The dominant element H(o)e~/—19*@®a, in Theorem 1.4
is given by HO)=21crsiHe (§7=t* in the notation of 3.1). In particular, H(0)
S in ap.
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(2) The orbit o intersects with g:oNg+ @.

Proof. By the definition of X,, H; (y&2), (X,, H}, X_;) is an 3l,-triplet in
gc for any ye2X. Since 7y, (1Sk=/) are mutually strongly orthogonal,
(4 X,,, ZeH},, ZsX_,,) is an 8l,-triplet, too. Notice that the Cayley transform
o carries 33, H, to 2,H;,. We thus find out that 2, H.Eq, is a semisimple
element of an 8l,-triplet containing an element of o as nilpositive element.
Moreover 3),H, is dominant with respect to the positive system 4+. By virtue
of Theorem 1.4(1), one gets H(0)=X,H.=a,. We have proved (1). The
assertion (2) follows from (1) and Lemma 1.6. Q.E.D.

3.3. Nilpotent Ad(G)-orbits w; in oN\g. Hereafter, we are concerned with
this orbit o in g¢ and Ad(G)-orbits in oNg. So, we use the notations of §1
without the subscript o if there is no danger of confusion: write g(s), [, n, -
for g(8)o, Lo, 1o, =+ .

Now let g=@;czg(s) be the eigenspace decomposition of g for ad H(o).
Then, in view of Theorem 3.3, the s-eigenspaces g(s) (s Z) are described as

D= 9p; 2 A+ An), 8= 3 aap; 27'4) (possibly (),

(310) msksl
g(0)=1=n1@ap®lsm§kslg(ap; 27 (Ar—4n)) with m=3(a;),
(3.11) g(s)=0g(—s) (s&Z), g(s)=(0) if [s[=3.

The parabolic subalgebra p,=@,.,9(s) is maximal, and p,=IPn gives a
Levi decomposition of p,. Let P=LN with L=PNOP=ZsH(0)), denote the
corresponding decomposition of the parabolic subgroup P of G with the Lie
algebra p,. Then N is an at most two-step nilpotent Lie group. And N is
abelian if and only if g(1)=(0). This happens just in the (CASE I) of Theorem
3.3.

Let 3(2)=4a(2), be the open Ad(L)-invariant subset of g(2) defined in Lemma
1.7: 4(2)={Xeg@2); [ X, g(0)J=g(2)}. Then, thanks to Proposition 1.9, the pro-
blem of describing Ad(G)-orbits in oNg is completely reduced to describing the
Ad(L)-orbits in §(2). So, in the following, we first settle the latter problem.
For this purpose, we make some preparations.

For 1=k <, set

3.12) E.=27"'"v—-1(Hy;,— X, ,+X_,,).

Then it is easily seen that E,=g(a,; 4,) and that p"(X,k)zx/——lEk. Define
a nilpotent element A=g(2) by

(3.13) A= 3 E,.

1sksl
Lemma 3.5. (1) A€3j(2), that is, it holds that [A, g(0)]1=g(2).
2) 2B(Z,, X)=B(0A, X) for all Xeg(2). Here B is the Killing form of
g and Z, the central element of T in (3.1).
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(3) The centralizer Z (A)of Ain L coincides with KNL, a maximal compact
subgroup of L.

Proof. (1) As in the proof of Lemma 3.4, (—v—1Z,X;,, Z:Hj,,
V=12, X-,;,) forms an 8l,-triplet in gc. The inverse of the Cayley transform
u carries this triplet to an 8l,-triplet (A4, H(o), p™'(v/—12,:X_,;,)) in g (not just
in gc) because A, H(o)eg. This implies that A=g(2) by virtue of the theory
of finite-dimensional representarions of &[,(C).

(2) Let Xeg(2). Then we have

2B(Z,, X)=B(Z,, [H(0), XD)=B(Z,, Z:(X;,+X;,)], X)
=vVTISBX,,— X, X).

Here the last equality follows from the fact that ad(Z,)|p.=+~—1I, (I,,=
the identity operator on p.). Moreover, since B(fc, p¢c)=(0), one gets

VEIZBX,,— Xy, X)=V =12 B(X,,— X, 27(X—0X))
=VZISWB(—H},+X,,—X_,,, 27(X—6X))
=B(4, 6X—X).

Notice that B(g(2), g(2))=(0) and that A, Xeg(2). Thus we conclude that
2B(Z,, X)=B(#A, X) (X&g(2)) as desired.
(3) Let keKNL. Then it follows from the assertion (2) proved above

B(0 Ad(k)A, X)=2B(Z,, Ad(k)'X)=2B(X, Z,)=B(X, 6 A)

for all Xeg(2). Since the Killing form B restricted to g(2)Xg(—2) is non-
degenerate, we have Ad(k)A=A, which means that KNLE Z(A).

Put Np=expn, with 1,=2:es+g(ap; ). Then G=KA,N, and
L=(KNL)A,(N,NL) give respectively Iwasawa decompositions of G and L.
From this decomposition of L, we see Z(A)=(KNL)Zs,(A), where Sq=A,(N,NL)
is a so-called Iwasawa subgroup of L. Since S, is exponential solvable, the
stabilizer Zs,(A) in S, is connected (see [3, I-3.3]). So, in order to complete
the proof, it sufficies to prove that 3;,(4) (={YE&,; [4, Y 1=0})=(0), where &,
is the Lie algebra of S,. This is done in the following way. From Proposition
3.1 and Theorem 3.3, we have dimg(2)=dim&, By virtue of the assertion (1),
the map Ad(A)|g(0): g(0)—g(2) is surjective, which implies that

dim Ker (ad (A4)] g(0))=dim g(0)—dim g(2)
=dim g(0)—dim &,=dim fNI.
On the other hand, there holds that ¥N\ISKer (ad (A4)|g(0)) because KNL S Z(A).
We thus obtain Ker (ad (A) [g(0)=INI, or 3,,(A)=(0). Q.E.D.

The subspace pN\I[ as well as g(2) is stable under the adjoint action of KNL.
From Lemma 3.5, one gets immediately the following
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Lemma 3.6. The linear map ad A restricted to pN\I gives a bijection from
PN to g(2) commuting with the adjoint action of KNL.

We now describe the Ad(KNL)-orbits in pNI.  Let ab={Z ey He;
Y159, < .- £y,} be a closed Weyl chamber of a, with respect to the root
system of (I, ap).

Proposition 3.7. For an XepNl, there exists a unique He&a} such that
X=Ad(R)H for some ke KNL. Therefore, a} parametrizes the set of Ad(KNL)-
orbits in pNIL.

This proposition is well-known (see e.g. [2, Proposition 1.3]). Neverthe-
less, we prove it here because it plays an essetial role for our description of
nilpotent classes in oNg. (Prof. T. Hirai kindly showed us the outline of the
following proof.)

Proof of Proposition 3.7. Let XepNl be arbitrary. Take a maximal abelian
subspace a’ of pN! containing X. Since maximal abelian subspaces of pNI are
all conjugate under KNL, X is conjugate under KNL to some X'ea,. More-
over X’ is conjugate under the action of the Weyl group W/ =Ngnr(ap)/Z knrlap)
of (I, ap), to some Heaj. We thus conclude that X=Ad(k)H for some k€ KNL
and some H&aj.

Next we show the uniqueness of Heaj. Let H¢ and H be two elements
of a} such that Ad(k)H>=H for some k€ KNL. Denote by
(3.14) = GBRI“"(r) =1, 2)

re

the eigenspace decomposition of [ with respect to ad H‘®, where [‘“(») is the
r-eigenspace for ad H® on I. Since H'® (=1, 2) are dominant, q®=@,,,[()
are parabolic subalgebras of [ containing a minimal parabolic subalgebra
m@Pa,Bm,NL) in commom. On the other hand, we have Ad(k)q¥=q® by
assumption. These two facts imply that

(3.15) qP=q® and keQPNK,

where Q=N (q'”) is the parabolic subgroup of L corresponding to ‘. This
is because any two different parabolic subgroups of L can never be conjugate
under L if they contain a minimal parabolic subgroup in common (see [27, p. 284]).

Notice that the Levi subgroup Q®NEQ" coincides with the centralizer
Z(a?), where a‘” is the intersection of pN\! with the center of 1¢(0). Since
H®Mea®, we have

Q(l)moQ(l):ZL(a(l))g ZL(H(I)).

(3.15) together with this relation implies that k€ Z, (H")NK. We thus conclude
H®»=Ad(R)H"=HW™, Q.E.D.

For y=(y:, 2, -, yOER', set A(¥)=ice1V:E:€9(2). Then, the subset
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g*(2)=—T[A, a;1=4(2) is described as
(3.16) 8" @)={A); y1=y.= - Sy.}.
In view of Lemma 3.6, we can translate Proposition 3.7 to describe

Ad (KN L)-orbits in g(2) as follows.

Proposition 3.8. The subset g*(2)Sg(2) parametrizes the AAd(KNL)-orbits in
8(2): for an Xeg(2), there exists a unique A(y)Eg*(2) such that A(y)e AA(KNL)X.

Among the Ad(KNL)-orbits in g(2), those contained in the Ad(L)-invariant
open subset §(2) are characterized as follows.

Lemma 3.9. Fer y=(y,, ¥s, -+, Y1)ER!, the representative A(Y)=1cr1 Ve Es
is in §(2) if and only if y,#0 for every 1=k=I.

Proof. Recall the root space decomposition of g(0):
g(0)=meDa, D g(ap; 27 (2 —2m)).
For any yeR!, we see easily that
[AD), 2 605 27— 2] T 80055 27+ )

and
LA(), Hl=—2y.E, (I=k=)).

Moreover, Lemma 3.5(3) together with the fact [m, glay; .)]1=g(ap; 4,) implies
that [A(y), m]=(0). Therefore, if A(y)€a@2), i.e., [A(y), g(0)]J=g(2), then
¥, #0 for all 1=k

Conversely, suppose that y,#0 for all .. Then we easily find a (unique)
8l,-triplet containing A(y) and H(o0) as nilpositive and semisimple elements re-
spectively. Hence A(y) is in §(2). Q.E.D.

Consequently, the set
F2INGH2)={AW); M=y.= -+ Sy1, ¥.#0 for all k}

parametrizes the Ad(KNL)-orbits in §(2).
We now proceed to the description of Ad(L)-orbits in §(2). For this pur-
pose, the following proposition plays an essential role.

Proposition 3.10. For e=(e,, &, -+, &;) with e, {1, —1} (1=<kZ]), let H®
be the centralizer of A(e) in L: H:*=Z(A(e)), and H§ its identity component.
Then L admits a decomposition L=(KNL)A,H§ for every fixed e.

We prove this proposition in the next subsection 3.4. Its proof is based on
the fact that the pair ([, §*) with §*=Lie H* has a structure of so-called reductive
symmetric pair. The above decomposition is the corresponding Cartan decom-
position of L.
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Under these preparations, we achieve the purpose of this section.

Theorem 3.11. The subset §(2)Sg(2) splits into ({+1)-number of Ad(L)-orbits
@; (LI : §(2)= W osi5,@: (disjoint union), where @;=Ad(L)A[i] with A[i]=
A(G(Z)), G(Z)E('_‘]., Tty _1’ 17 Tty 1)~
[N A—) ——

i =i

Proof. First we show that each E<3§(2) is conjugate to some A[:] under
Ad(L). In fact, by Proposition 3.8 and Lemma 3.9, E is conjugate under
Ad(KNL) to some A(y) such that

Y15y, < - <y, and y,#0 for every 1Sk</.

Let 7 be the largest integer such that y;<0. (If y,>0 for all %, put =0.)
Then A(y) is conjugate to A[7] under Ad(A4,). We thus get §(2)=\Uosizi@:.

Secondly, let us prove that the union is disjoint. It follows from Proposition
3.10 that @;=Ad(KNL)A,)A[]. On the other hand, the right hand side is
expressed as

Ad(KNLYAD); 3159 -+ £9:<0<yin S - 3.}

In view of Proposition 3.8, we obtain @:N\a;=@ if i#j, which completes the
proof. Q.E.D.

Remark 3.12. The vector space g(2) has a structure of Jordan algebra
equipped with the product X-Y of elements X, Yeg(2) given by X-Y=
2°[X, 0A], Y]. Namely, the bilinear map g(2)Xg2)=(X, Y)—»X -Yeg(2)
satisfies the following conditions: X- Y=Y -X, X?.(X-Y)=X-(X*Y), where
X?=X-X. (These are easily verified.) Moreover, this Jordan algebra g(2) is
formally real, i.e., X*4+Y*=0 implies X=Y=0.

I. Satake [25, Proposition 4] described the orbits in the set J* of invertible
elements of 3 under the action of (Str3),, for any simple, formally real Jordan
algebra 3. Here (Str ), is the identity component of the structure group StrJ
(see [25, p. 618]). In case of J=g(2), one has I*=§(2), and (StrI), contains
the identity component of the group Ad(L)|g(2)SGL(g(2)). So, if one applies
Satake’s description to J=g(2), one can get Theorem 3.11 more easily.

Nevertheless, we did not choose this way for the following two reasons.
One is for the sake of self-containedness. The other is because, in our proof,
we come to encounter reductive symmetric pairs (I, §°) that play important roles
in later sections.

In view of Proposition 1.9, the nilpotent Ad(G)-orbits in oNg are now
completely described as in

Theorem 3.13. Let o be the nilpotent Ge-orbit throvgh the point Zigr<1X;,-
Then, the intersection oNg splits into ({41)-number of nilpotent Ad(G)-orbits w;
0=:<]): oNg=1logisiw:. Here, for each i, w; denotes the Ad(G)-orbit through
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AD]: —stiEk+2m>iEmo

3.4. The stabilizers H*, ). For e=(ey, &, -+, )= {1, —1}}, let A(e)=
Shersi6:E: be as in 3.3. In this subsection, we clarify the structure of the
stabilizer H¢ (resp. §*) of A(e) in L (resp. in I), and then prove Proposition 3.10.

At first, one should notice that, if e==+1 with 1=(1, 1, ---, 1), H¢ and % have
been already described in Lemma 3.5:
(3.17) H='=KNL, p'=tNlI.

This description for H*! can be generalized for any §° as follows.

Lemma 3.14. For any e {1, —1}', the stabilizer % has a structure as

(3.18) [)5=11169lsm2<]ksl{X+ekem0X; Xeglap; 27" A —2))} .

Proof. Let Wel. According as the root space decomposition (3.10) of

[=g(0), express W as
k>m k>m
where Xin€g(a,; £27'(A,—14n), YEmM and Hea,. Put [W, A(e)]=3rsnZin
with Z,n<g(a,; 27'(Ax+4)). Then, a direct calculation yields
em[X;—m; Em:l_l_ek[:Xk_my Ek] (k>nl)y
(3.19) Em—
ex([Y, Ex]+A.(H)E,) (k=m). .

By virtue of Lemma 3.5(3), it holds that
(3.20) [ Xin, Enl=—[0X}n, Ex] (E>m) and [Y, E,.]=0.
From (3.19) and (3.20), we obtain
e[ Ximn—erenbXim, Ex]  (R>m),
(3.21) ka:
erdp(H)E, (k=m).

Notice that ad(E.)lglap; —27'(Ae—4n)) (k>m) gives a bijection from
glay; —27%(Ap—2n)) to glay; 27'(Ax+2n)) (cf. Proposition 3.1(2)). Then we deduce
from (3.21) that Web® if and only if X;,=¢e,e,0X#, and H=0. This proves
(3.18) as desired. Q.E.D.
Define a linear map 6. on [ by

eremfX (X€g(ap; 27 A —2An)), k+m),
(3.22) 0.(X)=

60X (XemBay).

Then we can check easily that . gives an involution on ! commuting with 8][I.

Lemma 3.15. (1) The stabilizers §)* and H® are 0-stable,
(2) 9 coincides with the subalgebra of the fixed points of the involution ..
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Proof. The assertion (2) follows from Lemma 3.14 and the definition of §..
Since 6. commutes with @|{, §° is f-stable. Let us prove that H® is @-stable,
too. Using the bracket relation (3.5), we can get [E,, —0E,]J=H, (1=k=Z)).
Hence, (A(e), H(0), —0A(e)) is an 8l,-triplet in g. If xe H'=Z,(A(e)), then
(A(e), H(o), —0 Ad(0x)A(e)) is also an 8l,-triplet containing A(e) and H(o) as
nilpositive and semisimple elements respectively. In view of Proposition 1.3,
such a triplet is unique, hence one gets Ad(0x)A(e)=A(e), or OxeH:. This
means that 6 H*=H". Q.E.D.

This lemma tells us that (1, §¢) is a “reductive symmetric pair” (cf. [2, § 1]).
At the end of this section, we now prove Proposition 3.10 which gives a
Cartan decomposition of L with respect to (KNL, H§).

Proof of Proposition 3.10. The assertion is proved just as in [12, p. 118].
Let 1=9Pq° be the eigenspace decomposition of | with respect to 8., where }°
and q° are respectively the (+1)- and (—1)-eigenspaces. Since 6. commutes
with 8!, [ is decomposed as

(3.23) =N DEIN DN hDpNac.

Moreover, §*N\p is a Lie triple system contained in N, i.e., [ X, [V, Z]]leh Ny
for any X, Y, Zbh*np. Hence, by virtue of [10, Chap. VI, Theorem 1.4], we
have

(3.24) L=(KNL)exp(®Nag)expPNh?).

Let I(¢) denote the subalgebra of fixed points of the involution #6§.. Then I(e)
is a @-stable, reductive subalgebra of I, and l(e)=IN)PpNqc gives its Cartan
decomposition. Notice that a,SpNq°, hence a, is a maximal abelian subspace
of pNq°. Since all the maximal abelian subspaces of pN\q* are conjugate under
the identity component (H*N\K), of H*N\K, we obtain

(3.25) exp(PNQ)S(HNK )y A(HNK),.
(3.24) and (3.25) prove the proposition. Q.E.D.

§4. (Reduced) Generalized Gelfand-Graev representations associated with
the nilpotent classes w;

Let w; (0</<!) be the nilpotent classes of g in Theorem 3.13. Consider
the GGGRs (see Definition 1.11)

4.1) I=r,=Ind$(¢) with &=&;neEN (N=N,)

associated with w;. Here o is the G¢-orbit containing w;. In this section, we
first clarify in 4.1 the relationship between L%-I; (unitarily induced) and the
left regular representation A¢ of G (Theorem 4.2). There, we find out that
the direct sum Po<:,L%-I; is quasi-equivalent to Adg. This shows the import-
ance of these kinds of GGGRs.
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In 4.2, we construct reduced GGGRs (=RGGGRs) associated with w; after
Definition 2.6. But, in that definition, the following property for &; is supposed:

&, extends canonically to a genuine (not just projective) unitary representation
€; of the semidirect product subgroup H!NEP, where H'=H*® (see 3.3)
is the stabilizer of A[7] in the Levi subgroup L=L, (H*=H,(A[:]) in the
notation of §2).

So we prove the above property by applying the criterion in Proposition 2.2.

In 4.3, we give another type of realization of &;, so-called Fock model,
which is more convenient for our later purpose than the Kirillov model &,.
This new realization enables us to describe the extension £; explicitly.

4.1. Relation between GGGRs L2-I'; and the regular representation A;.

Let S=A,N, with Ny,=exp{Xics+g(ap; A)} be an Iwasawa subgroup of G.
Then, according to Duflo-Rais [5] and Nomura [20], the left regular represent-
ation of S is decomposed into irreducibles in the following manner.

Theorem 4.1. (1) The unitarily induced representations m.=L2-Ind$(€4cy)
are irreducible for all e=(ey, &, -, &)E{1l, —1}}, and they are mutually in-
equivalent. Here A(e)=3icr<16:Ew, and E4c 1S the irreducible unitary represent-
ation of N corresponding to the coadjoint N-orbit [ A(e)*] through A(e)* (see 1.3).

(2) One can give the irreducible decomtosition of the left regular represent-
ation s of S as
4.2) As=

e, eyt

[OO] ‘T,
where [co]-m, means the infinite multiple of =..

Note. We comment here on the proof of this theorem. Let § be the Lie
algebra of S, then it is expressed as 3=8,Pn with §,=a,P,NI). Extending
each element of u* to a linear form on & trivial on &, we identify n* with a
subspace of 8* T. Nomura described in [20, Proposition 1.4] the open coadjoint
S-orbits in §*: the map e—Ad*(S)A(e)* sets up a one-to-one correspondence from
{1, —1}* onto the set of open Ad*(S)-orbits in &* (He gave there such a
description more generally for exponential solvable Lie groups corresponding to
normal j-algebras.) Moreover, the irreducible represetation z. corresponds to
the orbit Ad*(S)A(e)* via the Kirillov-Bernat correspondence (see [20, proof of
Proposition 5.9]).

These two results of Nomura enable us to apply explicitly to our group S
the general theory of Duflo-Rais [5, p. 132] on the Plancherel theorem for
exponential solvable Lie groups. As a consequence, one can get the above
theorem.

In view of Theorem 3.11, for each e=(e, &, -+, e)E{1, —1}}, A(e) is
conjugate to A[#(e)] under Ad(L), where i(¢) is the number of elements ¢,
such that ¢,=—1. From this fact together with the stage theorem for unitarily
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induced representations, we obtain
4.3) L*-Ind §(w.)= L*-Ind §(& 4c.>) = L2-Ind 5oy -

Moredver, keeping (4.2) in mind, we find out that the left regular representation
Ap of P is decomposed as
4.4) Ap= @ [oo]-L*Ind&(m.)= @ [oo]-L2-Ind §(&:).

e -t 0s7s!

Consequently, inducing up the representations in (4.4) to G, one gets

Theorem 4.2. The left regular representation A¢ of G splits into a unitary
dirvect sum of the infinite multiples of GGGRs L*-I';: 2¢=®ogigi[00]- L2-I';.

Recall that our simple group G has a compact Cartan subalgebra (see 3.1).
Therefore, according to Harish-Chandra, G admits discrete series representations
(=irreducible subrepresentations of i;). So, we deduce immediately from the
above theorem the following

Corollary 4.3. Let D be a discrete series rspresentation of G. Then, there
exists 0<i<! such that D occurs in the GGGR L*:-I'; as a subrepresentation.

These theorem and corollary show that the GGGRs L2-I"; (0<:<!) are im-
portant in connection with the regular representation, and, especially with its
discrete spectrum. Moreover, the above corollary naturally gives rise to the
following

Problem EDS. Describe the embeddings of discrete series representations
into GGGRs [..

In the forthcoming paper [33], we will treat this problem for holomorphic
(or anti-holomorphic) discrete series representations using the method of
Hashizume [9]. For our discussion there, the argument (but not the result) of
Rossi-Vergne [24] plays an important role. We describe the embeddings of
such type of discrete series into I';’s.

4.2, RGGGRs ['i(c). For 0=Zi</, let H'=H<® be the centralizer of
Ali]l=—24siEv+En>:En in the Levi subgroup L. By Lemmas 2.1 and 3.15,
H? coincides with the stabilizer of the equivalence class of &; in L, denoted by
Hy(A[7]) in the notation of §2. As was seen in §2, &; extends generally to a
projective representation of the semidirect product subgroup H®N acting on the
same Hilbert space. Moreover, in Proposition 2.2, we have given a nice suffici-
ent condition for such an extension to be a genunine representation. Making
use of this criterion, we prove here that &; extends to a genuine representation
&, for any 0=/</. For this purpose, we have only to construct an Ad(H?)-
invariant complex structure on g(1). This is achieved in the following way.

Let » be a linear map from &=a,Pu, to p defined by
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(4.5) r(X)=2"Y(X—0X) for Xea.

Then, in view of the decompositions g=1Pp=1tP3s, » gives a bijection. There-
fore, the Ad(K)-invariant complex structure J on p (see (3.1)) is transferred to
a complex structure J’ on & through r:

(4.6) J/=rte Jor.

We show that the restriction J”=J’|g(1) is the desired complex structure on
g(1).

Lemma 4.4. (1) For any 1<k<(, the complexification g(ap; 27'Ax)c of the
root space g(ay; 27'2,) s expressed as

. -1 —_— .
4.7) glap; 2 Zk)c—,u l(rep%ckgcac N T)),

where p is the Cayley transform in (3.8), and P, and C, are the subsets of
X=2(gc, t¢) in Proposition 3.1.

(2) The subspaces glay; 27'2) 1=k <) are stable under J'.

(3) Extend ]’ to a map on 8¢ by complex linearity. Then, the (++/—1)-
eigenspaces V=(k) for J' in g(ap; 27'2x)c are described as

(4.8) VHk)=p {3 gclte; N}, V (R)=p7'{ 2 gclic; M}
1€P} r€C

Proof. The assertion (1) follows from Proposition 3.2 and Theorem 3.3.
In order to prove (2) and (3), we calculate J'(¢ (X)) (y€P:\UC,). Keeping
in mind Moore’s restricted root theorem (Theorem 3.3) and (3.5), one has for
TEPkUCk
> ad(X.,, — X ) X;=[X,,, 5],

1smsl

{ Zslad(X-rm_er)}er:—[X”, [X_“, Xr:]]:_[H;k, X]=—X,.

lsm

Using these relations we see easily

. _ 1l /m B i
4.9) # (XI)_E 7! 4 1s§slad (X—Tm XT"‘)> X
' . 1
=cos X, +sin L Xp,, X=X+ Xop, XD

By virtue of (4.9), J/(#7'(X,)) can be calculated as follows.
Case 1. If yP,, then one has J'(z /(X,))=+—1p *(X,). Indeed,
J(@ (X )=2"1(r""e Jor)(X,+[X-,,, X;1) (by (4.9)
=2""r-te J)(X,)  (since X,Epc and [X_,,, X,]1€)
=2"1%/—1r"%(X,) (by (3.1)
=+v—=1pY(X)).
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Case 2. Let y=C,. A calculation similar to that in Case 1 leads us to
J' (g (X))=—~—1p (X)).
Thus we have proved the assertions (2) and (3) at the same time.
Q.E.D.

By virtue of this lemma, it becomes clear that the restriction J” actually
gives a complex structure on g(1).

Proposition 4.5. The complex structure J” on ¢(1) is invariant under the
adjoint action of L: Ad(x)-J"Ad(x~")=]" for all x&L.

Proof. 1t sufficies to prove that the eigenspaces V*=3] s, Vi(R)Sa(l)c
for (the complex linear extension of) J” are stable under Ad(L). We see from
Lemma 4.4

(4.10) Vr=gDeNp'(ps), V =g)eNp ().

In view of Proposition 3.1, one can get esaily that p(lc)Stc. (Moreover, the
equality holds if and only if g(1)=(0), which happens just in the (CASE I) of
Theorem 3.3.) This inclusion implies that

(4.11) LeSp'Kep,

where K¢ and L. denote respectively the analytic subgroups of G¢=Int(ge)
corresponding to ¥ and I¢. Notice that Ad(L) is contained in L. and that I,
and p, are stable under the adjoint action of K. Then we get from (4.10) and
(4.11) the desired reselt: Ad(x)V*=V* for all x L. Q.E.D.

Thanks to this proposition, one can apply Proposition 2.2 successfully to
&:=8&,1:7, and gets the following

Theorem 4.6. For each 0=Zi<!, the rpresentation &; of N extends to a genuine
unitary representation &; of the semidirect product group H'N acting on the same
Hilbert space.

Thus, in view of Definition 2.6, the RGGGRs I'y(¢)=1T", (c) associated to w;
are constructed as

(4.12) Ie)=(L* or C=)Ind§in(ERE) (E=c®lw),

where ¢ ranges over irreducible (unitary; in case of LZ*induction) representations
of the reductive group H°.

For each 0<:<!, the important type of GGGR L2-I"; is decomposed into
a direct integral of the RGGGRs L*-I'i(c) (see (2.8)). Especially, if /=0 or I,
then the GGGR splits into a direct sum of the corresponding RGGGRs:
(4.13) ''= @ [dimc]-I'i(c) =010,

CECKNLY~

since H°=H'=KNL is a compact group.
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Henceforth, we concentrate on these RGGGRs ['y(¢) (0<:/<!), and give in
86 finite multiplicity theorems for them by applying the results of [I]. For
this purpose, we make some preparations.

4.3. The Fock model p;. In the definition of the GGGRs I',=Ind$ (éx)
(0=G¢ 0, Xew, Xe§2),; see Definition 1.11), we constructed the irreducible
unitary representation £x of N, making use of a real polarization at X*. But,
in our specified case w=w;, X=A[7], it is convenient for the laetr use to adopt
another type of realization of &;=& 7, so-called Fock model. Here, we explain
such kind of realization mainly after [20].

We first construct a positive polarization at A[7]*.

Let £ be a linear form on the Iwasawa subalgebra 8=a,Pn, given as

(4.14) 2X)=B(Z, X) (X€8),
where Z, is the central element of fin (3.1). Then, according to Rossi-Vergne,

£ has the following property:

Proposition 4.7 [24, p. 372]. It holds that for any X, YE8,

O QX J'YD=20CX, YD,

2) QCJ'X, X1<0. Moreover, the equality holds if and only if X=O0.
Here ]’ is the complex structure on & in (4.6).

Remark 4.8. Using this proposition, one can show that the triplet (s, 2, J/)
has a structure of normal j-algebra (see Definition 1.1 of [20]). Therefore,
Nomura’s results in [20] for solvable Lie groups associated with normal j-
algebras can be applied to our situation.

For any 0</</, let J# be the complex structure on g(1) defined by

—J"(X) if Xekag(a,,; 27124,

4.15 nX)=
( ) Ji{(X) j//(X) if Xemgig(ap;2—12m>.

Notice that Jy=J” and J/=—]”. Extend J{ to a complex linear map on g(1)c.
Then, the (++/—1)-eigenspaces V§ for J! are described as

(4.16) Vi=(@,V (BB, V=(m), vi=vy,

where the bar means the complex conjugation in gc with respect to the real
form g.

Proposition 4.9. For each 0<i<![, the alternating bilinear form
4.17) | (X, Y)— ALOXLJYX, YD=B@OAL[], [JIX, YD
on g(1)Xg(l) is negative definite. Moreover it holds that
(4.18) AL TYX, JiY D=AUIXIX, YD)  for all X, YE().
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Proof. The assertions for A=A[0] follow from Lemma 3.5 and Proposition
4.7. For general 0</</, we can check easily

AGIJIX, YD=AX[J"X, YD) (X Yegd),

which proves (4.17) for any i. To prove (4.18), express X, Y as X=3,X,,
Y=Y, with X., Y.Eg(ap;27'2,). Then the left hand side of (4.18) is
calculated as

AGTCTEX, JEY == Z AN X, J"YaD+ Z AT X, J" Y D)
== DA Xs, YiD+ DA X, Yu))
=ALTHLX, YD)
For the second equality, we used (4.18) for A=A[0] (already proved). This

completes the proof. Q.E.D.

Now we put for each 0=i=/,

(4.19) u,;=ViDg@)c.

Then u; is a complex subalgebra of ne because g(2)c is an ideal of nc.

Proposition 4.10 [20, 2.2]. The subalgebra w;Suc is a totally complex, posi-
tive polarization at AliJ*€n*. Namely, it satisfies the following three conditions:

(1) w; is a maximally totally isotropic subspace (=a Lagrangian subspace)
with respect to the skew-symmetric form b;: (X, Y)—ALJ¥[ X, Y]) on necXue,

(2) the hermitian form hy:(Z, W)y—~—1A[IX[Z, W]) on u;Xu; is positive
semidefinite,

3 wtu=nc.

Proof. We prove here this proposition in order to clarify our arguments.
(1) Let X, Y€u;. Then, they are expressed uniquely as
X=X,+vV—1]!Xi+X,, Y=Y+v=1]J{Y+Y,
with X, Y,=g(1) and X,, Y,=¢(2)c. Then, a simple calculation leads to
AUIKLX, Y D=ALINLX, Yi1-0J1 X, JiY.D)
+=TAGI Xy, JYY J+LT X, VD).

The right hand side is equal to 0 thanks to (4.18). This means that b;([u;, u;])
=(0), i.e., u; is a totally isotropic subspace for b;. On the other hand, we see
easily that the radical of b; coincides with ¢(2)c. So, the dimension of any
Lagrangian subspace must be equal to 27'dimg(l)¢c+dim g(2)c=dimu;. This
proves that u; itself is a Lagrangian subspace.

(2) Let Xeu; be as above. Then A (X, X) is calculated as

h(X, X)=h(X,+v=1J{X,, Xi+v—=1]! X))
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=—2AL0NT! X, XD

By virtue of Proposition 4.9, h; is positive semidefinite.
(3) follows from (4.16). Q.E.D.

The general theory for holomorphically induced representations (see e.g.
[3, Chap. VIII]) tells us how to construct the irreducible unitary representation
of N corresponding to A[7]* through the Kirillov correspondence, by making
use of the positive polarization u;. This is done in the following way. We
identify the enveloping algebra U(nc) of ne with the algebra of left N-invariant
differential operators on N via

ROOS(m=—2-f(rexptX)l s (EN)

for Xen and feC=(N). Denote by N, the center of N: N,=expg(2). Let 4,
be the space of C=-functions f on N satisfying

(4.20) R(Y)f=—~—1A[IXY)f  for all Yeu,,

(4.21) 171%,=, 1701 di< oo,

where N=n—#ne N/N, denotes the canonical homomorphism, and d# the N-
invariant measure on the factor group N/N,.

One should note the following point. Since N, is simply connected, (4.20)
implies that

(4.22) fnn)=nny)""f(n) (MEN, n,€N,),

where %, is the unitary character of N, given as
niexp V)=exp{v—TALINY)}  (YeEg@)).

By virtue of (4.22), the function 7#—|f(#)| is well-defined on N/N,. So, the
integral (4.21) has a meaning.

In the present case, one can show that 4; has a structure of Hilbert space
with the inner product induced from the norm ||, (We need not take the
completion.) The group N acts on 4 ; unitarily, through the left translations,
so we thus get a unitary representation (T;, 4;) of N by putting T(n)f(n")=
f(n~'n’) (neN, fe ;). Then, T; is irreducible and it corresponds to A[:]*
through the Kirillov correspondence: T;=§&;.

We now realize the representation T; in a more explicit manner. Notice
that the exponential map exp:n—N gives a diffeomorphism. Therefore, we
can identify n=g(1)@g¢(2) with N through this map:

(4.23) 1=g(1)Pg2)=2(X, V) — n(X, Y)=exp(X, Y )EN.

Then, in view of the Campbell-Hausdorff formula, the group law on N is
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rewritten as
(4.24) (X, Y- (X, YVo)=(X\+X,, Vi+Y,+27[ X, Xo]).

Moreover, we can identify canonically the factor space N/N, gith g(1)={(X, 0)}
Sn, and the N-invariant measure d7z with the Lebesgue measure dX (suitably
normalized) on the vector space g(1).

Define a bilinear form (, ); on g(1) by

(4.25) (X, Xz)i:_%{A[i]*([jéth X D+V—TALIX X, X))}

for X,, X,=g(1). We denote by (g(1), J#) the complex vector space g(1) equipped
with the complex structure J7. Then one has '

Lemma 4.11. (1) (, ); gives a hermitian inner product on (g(1), J7).

(2) The group KNH*S L acts, through the adjoint action, on the complex
finite-dimensional Hilbert space (g(1), J¥, (, ):) as a group of unitary operators.
Namely, one has for any ke KNH?,

(4.26) Ad(k)eJ7-Ad(k™DH=JT,
4.27) (Ad(B)X, Ad(B)X");=(X, X'): (X, X'eg(1)).

Proof. (1) It is easily checked that (,); gives a sesqui-linear hermitian
form on (g(1), J¥). Moreover, it is positive definite thanks to Proposition 4.9.

(2) We first prove (4.26). Recall the expression (3.18) of the Lie algebra
hi=h:» of H:. Then, I} is described as

(4.28) NG =1,N\IPr,N\IPm  (as vector spaces)

with
= > {glap; 27" Qe —2An)+0g(ap; 27 (A — A},

1smlksi

n=_ 3, 1600y 27 =2+ 00(ap; 2 (=)}
Consider the decomposition g(1)=bv.@v, with b_=>],c:8(ap; 27'4,) and b=
Sm>ig(ap; 27'4,). By the definition of J/, we have J/|v.==+]"|v.. It follows
from (4.28) that both the spaces v, and v. are stable under ad({N\§?). More-
over, they are stable under Ad(M), M=Zk(a,), too. In view of Proposition
45, we conclude ad(X)eJ7/=J{-ad(X) and Ad(m)-J/=]7-Ad(m) for all
XetNy® and all meM. This implies that (4.26) holds for all ke M(KNH),=
KNH*.
The equality (4.27) follows from (4.26) and the definition of H®.
Q.E.D.

Let &, be the space of holomorphic functions ¢ on the complex vector
space (g(1), J#) satisfying

(4.29) I913,=], 16X 17 exp(—2) X [DdX<+o0,



422 Hirvoshi Yamashita

where [ X[I{=(X, X);. Then, ¥, is complete with respect to the norm |-|g,
hence it has a structure of Hilbert space indced from this norm. We call &,
the Fock space of (g(1), J#). Since the function exp(—2||.X||?) is rapidly decreasing
as | X|;—o0, F; contains the space 2; of polynomial functions on (g(1), J7).
Moreover, if ¢ denotes, for an integer ¢=0, the subspace of homogeneous
polynomials of degree ¢, then F; is decomposed as

(4.30) F,= D P! (orthogonal direct sum).
qao0
We can realize the representation 7T'; on the Fock space &; as follows.

Proposition 4.12. (1) For any f€4;, define a function ¢f on g(1) by
(4.31) f(X)=F(X)exp(—[ X7 (Xeg)).

Then, ¢ gives an isomorphism of Hilbert spoces from J; onto F,.

(2) Let p; denote the unitary representation of N on F, transferred from T;
through the isometry t¢: p(n)=ct-Tyn)ec™' (nEN). Then, the operators pyn),
n=n(X,, YoEN, are described as

(4.32) pm)g(X)=exp {2(X, Xo)i— | Xoli++—1ALT* Y )} o(— Xo+X)
for Xeg(l) and ¢=F,.

One can show this proposition by a simple calculation. For the proof, we
refer to [20, 2.2].

As we saw for p;=§&;, the representation p; can be extended to a genuine
unitary representation §; of the semidirect product group H:N. The realization
o enables us to write down explicitly pi(x) for xe(KNH*)N. We set for
keKNH?

(4.33) GRSX)=¢(Ad(R)X)  (peF, Xeg(l)).

Then, thanks to Lemma 4.11(2), we have

Theorem 4.13. The map (KNH)YN3kn—p,(kn)=p5(k)pn) gives a unitary
representation of (KMNH')N on the Fock space F;, which extends p;.

Remark 4.14. (1) If /=0 or [/, then it holds that KNH*=H!=KNL.
Therefore, in this case, the above theorem gives a complete description of the
extension £,.

(2) For each integer ¢=0, the finite-dimensional subspaces ¢? (0<i</) are
stable under g, (KNH?).

4.4. The adjoint representation of M on S;.

For the later use, we realize here the adjoint representation of M on the
complex vector space (g(1), J¥) (see (4.15)) in a different manner. For this
purpose, we first claim
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Lemma 4.15. The Cayley transform pE€Gc=Int(gc) commutes with Ad(k)
for all ke KNL: Ad(k)ep=p-Ad(k).

Proof. Let ke KNL. By virtue of Lemma 3.5(3), one has Ad(k)A=A and
hence Ad(k)A=0A, where

A=2/=1 $ (Hy = X 4 Xy and 0A=27 =1 3 (Hiy4 Xy = Xy
This implies that
AdD) {2 (X — Xy )} =V 1A (RXA— 0 )= B (X, — X-).
From the definition of g in (3.8), we obtain the desired result. Q.E.D.

Now set S(k)=3),ec,8c(tc; P)Sac (1Sk</). For 0=</=</, define a complex
vector space S; by

(4.34) Si=(@,SEND(P, Stm.

Here, for a vector space X over C, X' is the space X equipped with the
complex structure x——+/—1x (x€X) instead of x—+/—1x. We will denote
by X>x—xt=x& X' the identical anti-linear isomorphism. Then, taking into
account the definition (4.15) of J# and Lemma 4.15, we obtain immediately from
Lemma 4.4(3) the following

Proposition 4.16. (1) The map

(4.35) i g()2X — p(X++v/—-1]"X)e élS(k)

gives rise to an isomorphism of complex vector spaces from (g(l), J7) onto S; for
any 0=i<l. Here, ]J” is the restriction of the complex structure J' in (4.6) onto
g(1).

(2) The subspaces S(k)Sge (1=k<1) are stable under Ad(M). Equip S(k)!
with a structure of M-module through m-s'=(Ad (m)s)t (meM, s€S(k)). Then,
(g(L), J¥) is isomorphic, as an M-module, to S;=3],<:S(R)YDXn>:S(m)t through
the map .

This proposition gives another realization S; of the M-module (g(1), J7),
which is useful for our later calculation in 5.3.6 for type EIIL

§5. Finite multiplicity theorems for (c|M)®(g:|M) in connection
with RGGGRs ['(c)

Let (:, F;) (0<:</) be the irreducible unitary representations of (KXN\H*)N
constructed in 4.3. For irreducible representations ¢ of H?, consider the repre-
sentations ¢;(c)=(c| M)R(p:| M) of M. In this section, we give finite multiplicity
theorems for these representations. (Our results of this section is summarized
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in Theorem 5.17.) These theorems combined with the results of [1] enable us
to produce finite multiplicity theorems for RGGGRs I'i(c), given in the succeed-
ing section.

5.1. A central element Z3 of [=Lie L.

Firstly, we study the multiplicities in ¢;(c) for /=0 or /. For this purpose,
we construct here a central element Z§ of ! contained in the maximal abelian
subalgebra t* of m. The element Z} reduces to 0 if and only if G/K is holo-
morphically equivalent to a tube domain. We describe the adjoint action of the
one-parameter subgroup C.,=exp RZ}<S M on the complex vector space (g(1), J”),
which is given in 4.2.

We keep to the notations in §3. Let Z,=t be the central element of ¥ in
(38.1). Express Z, as Z,=Z}+Z; with Z{et*, Z;&+4/—11t", according as the
decomposition t=t*@+/—11t" of the compact Cartan subalgebra t. ‘Then one has

Lemma 5.1. (1) Z7=2"'v—13 s Hj,.
(2) For any positive root yE2'*, the values y(Z%) are given as

/T ~
2/ —1 if rels\gslP,, ,
(5.1) HZH=1 —2-'v/—1 if relskkjslck,
0 otherwise.
V=1 if TelsmnglPkmUPO
(5.2) rWZo=1{ 2'"v/—1 if rEls\kJsl(Ck‘JPk),
0 otherwise.

(3) Z% reduces to 0 if and only if g(1)=(0). This happens just in the (CASE
I) in Theorem 3.3.

Proof. (1) Put 23:2“\/——1151% ayH;, with a,€R. Then, for any 1<k

<!, we have n(Zo):r,,(Za):x/——l ay because y(Hy, )=20,mn (see (3.5)). On the
other hand, (3.1) and (3.2) imply that 7,(Z,)=+/—1, whence a,=1 for ISkl
(2) (5.2) follows immediately from the expression of Zj in (1). Keeping
in mind
P Z9=rz {\/——1 if yel2y,
(ZO)+1(Z0)=1(Z)=
REVTTE0=T e if &3t

we obtain (5.1) from (5.2).
(3) The assertion (3) is a direct consequence of (5.2) because P,=C,=@
for all %2 if and only if g(1)=(0). Q.E.D.

Thanks to this lemma, we can deduce the following propositions.
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Proposition 5.2. Z% is a central element of 1=Lie L. Moreover, the one

parameter subgronp C,=exp RZ{ (S MZ L) is contained in the center of L.

Proof. Recall the restricted root space decomposition (3.10) of {=g(0). Then,
in view of Moore’s restricted root theorem (see 3.1), the complexification [¢ is
expressed as

(6.3) le=p""{tcD>Z(acltc; )Dgclte; =N},

where, in the above summand, y runs through the roots of (g¢, tc) in Co\J
(Ui>mnCrm). Notice that g~ (Z})=Z7% because the Cayley transform g is identity
on t* (see (3.9)). Then we get

[Z3, le]l=p [ ZF, tcDZ(actc ;s )Daclic; —rN1H=(0)

by virtue of (5.1).
The latter assertion follows from the former one, since Ad(L)|l¢ is con-
tained in the adjoint group of l¢ (see the proof of Lemma 2.7 of [1]). Q.E.D.

Proposition 5.3. The adjoint action of Z§ on g(1) is described as
1
(5.4) ad(Z9)|g(1)= 7/” .

So, the one-parameter subgroup C. acts on the complex vector space (g(1), J”) in
such a way that

(5.5) Ad(e(s))| g(1)=expv/—1s-1 for e(s)=exp(2sZ}) (s€R),

where I is the identity operator on g(l).

Proof. By virtue of Lemma 4.4(3), the (++/—1I)-cigenspaces V*Sg(l)c for
J” are expressed as

Ve= #_1{1;[;1 rengC(fc; r)}' Vﬂ:‘u-l{klgx re%,,gcac; T)} '

Then, (5.1) together with the fact p~'(Z%)=Z% implies (5.4). Furthermore, (5.5)
is a direct censequence of (5.4). Q.E.D.

5.2. Finite multiplicity property for ¢.(c); /=0, /.

Thanks to Proposition 5.3, we can show that the restriction ¢:(c)|C+ (=
0, 1), and hence ¢;(c) itself has finite multiplicity property for any irreducible
unitary representation ¢ of H°=H'=KnL. This is done as follows. Let =0
or /. It suffides to study the case =0 only, because g,=p%, the contragredient
representation of §,. By Proposition 5.3, we have for each integer ¢=0

5.6) pole(s))| Pi=exp(—+/—1sg)-I,,

where I, is the identity map on the subspace 2% (see 4.3). In view of the de-
composition (4.30), we conclude
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Theorem 5.4. The restriction of p, to the one-parameter subgroup C. is
decomposed into irreducibles as

(6.7 fol Co= D [DY]-e7v 10,

where D=dim @}, and e v-14 denotes the unitary character of C. such that e(s)
—exp (—+/—1gs) (sER). Especially, the restrictions ;| C4 (i=0, 1) are of multi-
plicity finite.

From this theorem, one gets immediately the following finite multiplicity
theorem.

Theorem 5.5. If i=0 or [, then the representation ¢i(c)=(c|M)R(p:|M) of
M has finite multiplicity for any irreducible unitary representation ¢ of the com-
pact group H'=H'=KNL.

This is a complete result for /=0, /.

5.3. Finite multiplicity property for ¢.(c); i#0, /.

Let us now proceed to the cases 7#0, /. Then, the reductive subgroups
H!S L are non-compact. So, irreducible admissible representations ¢ of H® are
infinite-dimensional in general, and it is unreasonable to expect that the repre-
sentations ¢;(c) are of multiplicity finite for all ¢. Therefore, in the following
we put some reasonable assumption on ¢, and give finite multiplicity theorems
for ¢i(c). For this purpose, we study separately each type of simple Lie groups
of hermitian type (see 3.1 for the classification of such groups).

5.3.1. (Case I) in 3.1. This is just the case where G/K is holomorphically
equivalent to a tube domain, or equivalently, g(1)=(0). Then, g, is, by con-
struction, a one-dimensional unitary representation of H!N for each 7. There-
fore, if a representation ¢ of H* is finite-dimensional, then ¢(c) is finite-dimen-
sional, too, and in particular, of multiplicity finite.

In this case, we can not hope any more result in general. However, in the
special case G=SU(p, p) (I=p), ¢i(c) has finite multiplicity for any irreducible
admissible highest weight representation ¢ of H!=SU(7, p—i). This property
is proved in the next 5.3.2.

5.3.2. Case of type Alll(8u(p, q); p=q). For positive integers p, ¢ such
that p=q, let g be the Lie algebra of the special unitary group SU(p, ¢) with
respect to a hermitian form on C"XC™ (n=p+¢q) with signature (p,q). We
realize g in the following manner. Define a matrix I, , of degree n by

0y Ogr a4
(5.8) I,.=| 0,4 I, 0Oy (0,,=the zero matrix of size aXb)
aq 0y Og

with r=p—gq, I,=(r Xr)-identity matrix, and
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0o !
0,= (gX ¢ matrix).
1
1 0

Then, g consists of complex matrices X of degree n satisfying
(5.9) XI5 +154X=0 and tr X=0,

where tr X (resp. ‘X, X) denotes the trace (resp. the transpose, the complex
conjugation) of a matrix X. The real linear map X——‘X gives a Cartan in-
volution of g denoted by @, and the subspace

ap:{H:diag<hqr R hl: 0’ ttty 0» _hlr ttty __hq); hleR (lé/\?é(])}

is a maximal abelian subspace of p={Xeg; § X=—X}. Therefore, the real
rank [ of g coincides with q. The general element X of the centralizer m=
3t(ap) is expressed as

;

;
V=T 1
|
* : Olr E Oll
* | |
v _1¢1}L E —tY=Y (rXr matrix),
____________ N S——
(.10) m: X= 0, 1Y 0y i drER (1<E=D),
_______ I-——_.-— l-—————_——_—-
1 "if:m tr X=0.
I -
0 E 0yr E .
1
L IERENVE )

So, one gets a canonical isomorphism of Lie algebras

(5.11) m=

{ V=1 R'Pau@») (r+0),
VIR (r=0).

We may choose elements H(o) and A[/] (0=<:<!) respectively as

( | i ] [ ' 0]
L 1o 1o Op |
! i 1— 0y
""" I A Rt
(6.12) Ho=| 0 | 0,, 1 0 Alil=+/—1 ;
“““ %“""‘:f"‘"‘ Opp i Opl
0 i 0 i—-[, , L i .

From this choice, the subalgebra ! and the subspaces g(1) and g(2) are expressed
as



428 Hiroshi Yamashita

r ( ! { b 3
X 00 X
! ! egll, C
------ P sit, €) gl(l, CO)Psu(r) (r+0),
(5.13) I=9X= 0 | Y| 0 |; —7=Y =
_____ S A —
7 T x=0 8l(l, PR (r=0),
0| 0 i-7X,
\ N ! | J /
, -, 1 | N N\
|
01z 1 0
_____ _:_____:_______
~ ! _
G4 g)=4Z=| 0 | 0 |—‘Zo,|; Z IXr complex matrix {,
_____ I T N
| ]
o101 o0
(L i i J J
and
0, 0, W
(5.15) 9(2): Orl Orr Orl H TWZ_I/V .
0,0 0 0y

Here we put, for a matrix V of degree a, TV=¢,'Va,. Moreover, for each
1=k, the root space glap; 27'4,) is described as

(5.16) glap; 2_12k):{269(1); Z=(2ij)15151 15jsr With z;;=0 if 71—k},

slilg

Now we suppose that »+0, i.e., g(1)+(0). The natural complex structure
on the space M, . (C)=C X --- XC" (l-copies) of [Xr complex matrices gives
rise to the complex structure J” on g(1) through the map Z—Z. So we identify
them. Under this identification, one has for each 0<:</

(5.17) (g(1), JH=(CIX - X(CNXC™X -+ XCT

i 1-i

where (C™)' is the complex vector space conjugate to C™ as in 4.4. Further-
more, the adjoint action of m on (g(1), J”) is written as

(5'18) ad (\/__1¢y Y).(zly 22, Zl)———(‘\/——ly(¢)1)—/21, Tty '\/jy(gﬁ)l )_/Zl)
for (vV—1¢, Y)Ev/—1 R'@3u(r)=m and z,€C" (1<k<!). Here we put
(5.19) V(¢)k=¢k+27"ls§sl¢k' for ¢=(¢;, -, pUER".

We see easily that the linear map ¢—u(@)=((¢),, -+, v(¢),) on R' is non-
degenerate. One thus obtains the following

Proposition 5.6. Let g=3u(p, q) (n=p-+q, p=qg=Il) with r=p—q+0. Then,
for each 0<i<l, there exists a unique ¢li]=R* such that
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(5.20) ad (v —1g[:], 0)lg()=]7.
Moreover, the element ¢[i]ER" is expressed as
—(r+4l—4i)/n  (RZ0),

(5.21) ¢[i]k={ . .
(r+4i)/n (k>1).

Thanks to this proposition, we deduce, just as in the case of (=0 or / (see
5.1 and 5.2), the following finite multiplicity theorem.

Theorem 5.7. Let g be as above. Then, for any i and any finite dimensional
representation ¢ of H?, the representation ¢i(c)=(c|M)Q(5:|M) has finite multi-
plicity property.

5.3.3. Interesting infinite-dimensional ¢. Furthermore, in case of /0, /,
there exist very interesting examples of infinite-dimensional admissible repre-
sentations ¢ of H?, for which ¢(c) are still of multiplicity finite. Such ¢’s are
given in the following way as irreducible admissible highest weight representa-
tions. Suppose that G=SU(p, q) (p=q=!) for simplicity, and consider the cases
i#0, {. Then the subgroups M, H* (MS H*) are described as

(5.22) { M=T'xSU(r) = U(—i, )XSUr)=H*  (r+0)

M=T!1 ., SU(—i, )=H! (r=0),
where T denotes the one-dimensional torus. So, in particular, H* is a reductive
group of hermitian type for each i. Take a central element Z% of INg® (§'=

Lie H?*) which gives an Ad (KN H?%-invariant complex structure on pNY§:. By
virtue of (5.21), we can (and do) choose Z% as

(5.23) Zr=2"Y(v/—1¢[7], O)et*Sm

in case of r#0. In any case, Z% is in t*+Sm. Notice that t* is a compact
Cartan subalgebra of %%, Let X(h%) denote the root system of hi with respect
to t&. We select as in 3.1 a positive system X+(§¢) of 2(§é) compatible with
the above complex structure on pN\§.. Then, by definition, one has

(5.24) V=17(Z%H<0

for any non-compact positive root yeX+(hi).
Now let @=+/—11** be a (KN H*)-dominant, integral element:

(5.25) (@, =20 for all positive compact roots y=3+(h¢),

(5.26) 2 X—exp(?, X> gives a unitary character of
compact Cartan subgroup T+=exp i+ of H*.

Here, (,) denotes the inner product on +/—11** defined through the Killing
form of g¢. Then, according to Harish-Chandra [7, IV, Theorem 2], there
exists a unique (up to isomorphisms) irreducible admissible (h&, KN H*)-module
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I(@) with highest weight @&+/—11t* with respect to X*(6¢). Furthermore,
I(®) extends to an irreducible admissible representation ¢(®) of H® on a Hilbert
space J(D), in such a way that I(®) coincides with the (§i, KN H?)-module of
(KN HY-finite vectors for c(®).

The restrictions of ¢(@) and g; to the one-parameter subgroup Ci=expRZ?
ST* are described as follows. Let 75, be the smallest positive number such
that exp(n,Z%)=1. Then, for any integer m,

(5.27) e(m)expyZ)=exp{2xv/—1 myy3'} (vER)

gives a unitary character e(m) of C]. Moreover, the map m—e(m) defines an
isomorphism of abelian groups from Z to the dual group (C})" of Ci.

Proposition 5.8. The restrictions ¢(@)|CL and p:|CL are decomposed into
trreducibles as follows respectively.

(5.28) c(P)|Ci= EB«» [Dr]-e(m),
msm(P)
(5.29) bil Ci'z"ﬁs}o[D;,,]-e(m) .

Here m(®) is the integer such that e(m(®))=(exp <D, -))|Ci, and the multiplicities
D, and D, are all finite. (If r=0, p;|C} is the one-dimensianal trivial repre-
sentation.)

Proof. The decomposition (5.28) follows from (5.24) and the admissibility
of the highest weight representation ¢(@). We deduce (5.29) from Proposition
5.6, keeping in mind the decomposition (4.30) of the Fock space &; (=the repre-
sentation space of ;). Q.E.D.

From this proposition, we obtain immediately the following finite multiplicity
theorem for ¢;(c(®)), with irreducible highest weight representations ¢(®).

Theorem 5.9. Suppose that G=SU(p, q) (p=g=!). For 0<i<!, let c=c(D)
be the irreducible admissible representation of H'=U(l—i, i)XSU(r) (r=p—q+0);
Ht=SU(l—i, i) (r=0), with highest wieght @=+/—11t**. Then, the restriction of
¢i(c) to the one-parameter subgroup Ci=exp RZ% is of multiplicity finite. So, in
particular, the representation ¢(c) itself has finite multiplicity property.

5.3.4. Irreducible representations of SU(n). Before proceeding to other
types of simple Lie groups, we recall here theory of finite-dimensional irreduci-
ble representations for SU(n) and 8l(n, C) (n=1).

Let (z, V) be a finite-dimensional representation of SU(n). Then, the dif-
ferential of the group action naturally gives rise to a representation of the Lie
algebra 8l(n, C)=38u(n)®+—1 8u(n) on V, which is denoted again by =. Suppose
that = be irreducible. Then, there exists a unique (up to constant multiples)
non-zero vector ve V satisfying following two conditions:

(5.30) n(Xijv=0 for 1Si<j<n,
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(5.31) T( Xep— X1, s )V=f -V for some non-negative
integers g, (1Sk=n—1).

Here, for 1=<:¢, j<n, we put Xi,=(xi)ise msa With xi=1if @, ))=(k, m);
x4, =0 otherwise. The sequence g=(f;)isesn-1 iS said to be the highest weight
for 7, and v the highest weight vector.

We can thus attach, to an irreducible finite-dimensional representation m of
SU(n), its highest weight g. Moreover, this assignment m—g sets up a one-
to-one correspondence from the set of equivalence classes of irreducible finite-
dimensional representations of SU(n) onto (Z,)""!, where Z,={0, 1, ---}. For
p=(p)s(Z)"!, we will denote by R[p#l=R[, s, -, #tn-1] the (equivalence
class of) irreducible representation of SU(n) (or 8l(n, C)) with highest weight ge.

For an integer ¢=0, let @%n) denote the space of homogeneous polynomials
of degree ¢ on C*. @%n) has a structure of SU(n)-module, denoted by d(n),
through

(5.32) d(n)@)¢(2)=¢(g™'z)  (g€SU(n), $€2Y(n)).

One can check easily that d,(n) is an irreducible representation with highest
weight (0, -+, 0, g).

For the later use, we now give the irreducible decompositions of the tensor
product representations d,(n)Qd.(n) (g, r€Z,).

Proposition 5.10. For integers q, r such that q=r=0, the representation
d(n)®d .(n) is decomposed into irreducibles as

(5.33) dq(n)®d,(n)’=”jErPoR[0, <, 0, 7, g+r—25].

Proof. For a sequence =(0;)icrs» Of non-negative integers o, define a
homogeneous polynomial ¢(g)=¢(a1, g;, -, 6,)EP''(n) with |6|=1<ss20: by
o)z, 2, =+, Zn)=27125% - 277, Then, {¢(g); |o|=q} forms a basis of P%(n)
for any ¢=0. Moreover, making use of this basis, the representation operators
d(n)(Xi;) (1<i#j<n) are described explicitly as

(5.34) d(n)(Xi))¢(0)=—0:¢(a—8;+6;),

where 0;=(0;,) with 8;,=0 (k+#17); 8;,=1 (k=:/). Here we understand that the
right hand side is equal to 0 if ¢;=0.

Using this description, one can determine easily all the highest weight vec-
tors in @U(n)QRP(n) as follows. For an integer 0< <7, set

o= 8~ 5)90. <, B, 4=BIDYO, -, 0, j—B, r—j+P),

where (;3)=j 1/B1(j—B)!. Then ¥PePYn)QRL(n) is a highest weight vectors
with highest weight (0, -+, 0, 7, ¢+7r—2;). Conversely, any highest weight
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vector in @Un)RP"(n) is a scalar multiple of some ¥, This proves the as-
sertion. Q.E.D.

5.3.5. Case of type DIII (380*%(4n+2)). Let g=8&o*(dn+2)=380(2n+1, H) be
the Lie algebra of special orthogonal group of degree 2n-+1 over the quaternion
field H. In this case, the real rank /=dima, is equal to n. By realizing g, as
in the case of type AIlIl, as a Lie algebra of matrices explicitly, one can describe
the adjoint action of m on (g(1), J”) as follows. For each 1<k</, the complex
vector space (g(ap; 27'4,), J”) is two-dimensional. So, we may identify this

space with C®. The Lie subalgebra m is isomorphic to (hence it can be identified
with)

au2)X - Xau@2)X+v—1R.
l

Under this identification, the adjoint action of m on (g(1), J”) is described as
(5'35) ad(Yl» ) Yl’ \/__1¢)'(zlx ] Z[):(’\/_—1¢21+Y121, Ty '\/__—I¢Z[+Y[Z[),

where (Y, -+, Y, V/—1¢)em with YV ,€3u@2) (1<k<)), gER, and (zy, -, 2,)E
a(1) with z,eC>

Let M’ denote the analytic subgroup of M corresponding to 8u(2)X --- X38u(2)
(l-copies). Then, M’ is identified canonically with SU(2)X --- XSU(2), and the
adjoint action of M’ on (g(1), J”) coincides with its natural action on C%*X ---
X C?.  The restriction g;| M’ is decomposed into irreducibles as follows.

Proposition 5.11. For any 0<Zi<!, one has an isomorphism of unitary repre-
sentations of M'=SU2)X - XSU(2) (I-copies) as

(5.36) M= 32 d@8d, DB - Bdy(2),

(5]

where d(2) is the irreducible representation of SU(2) given as in (5.32). Especially,
6:1 M’ is of multiplicity free, and its unitary equivalence class does not depend
on 1.

Proof. In view of (4.30), the Fock space &F; of (g(1), J%) is decomposed
canonically into an orthogonal direct sum of M’-modules as

F= T (@) A@DIRL DR - L),

21,92, 41

Here (2%2))" is the SU(2)-module contragredient to £%2). But, in this case,
(P2))t is equivalent to P%2) as an SU(2)-module, which proves (5.36). Q.E.D.

From this proposition, we can deduce immediately the following

Theorem 5.12. Suppose that g=30*(4[+2). Then, for any 0=i<! and any
finite-dimensional representation ¢ of H, the restriction (c|M")Q(p:|M’) and so
¢i(c) have finite multiplicity property.
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5.3.6. Case of type EIll. We now proceed to the last case of type EIIL
Then, the Satake diagram of g (see [11, p. 534]) is given as

o 7S o)
(5.37) a, a; !as a, a

This diagram should be understood as follows. Let II’ denote the totality of
simple roots in X+*=2X*(g¢, tc). First, consider the Dynkin diagram of the root
system 3 of type E;. Each node of this graph expresses an element of II’:
II'={a,; 1k<6}. The elements in II{;=II"NC, (i.e., a, a; and a,) are
denoted by black circles, and the others (i.e., a;, a; and @) by white circles.
If a, BII’'\II| are such that a|tz=p|t¢, then @ and B are jointed by a curved
arrow ~. (This is the case of @, and as.) ‘

From the diagram (5.37), one sees that g is of real rank 2: [=2. In view
of Theorem 5.5, we have only to study the cases 70, /, so thé case ;=1 here.
In the following, we give the irreducible decomposition of g,| M’ on the Fock
space &,, where M’S M is the analytic subgroup of M with Lie algebra m’'=
[m, m]. As a consequence, we will find out that ¢.(c)=(c|M)R(p,| M) is of
multiplicity finite for any finite-dimensional representation ¢ of H*.

First, let us describe the adjoint action of m’ on the complex vector space
(g(1), J'1, which is equivalent to such action on the space S, constructed in 4.4.
For this purpose, we realize the complex simple Lie algebra f¢=¥&®rC with
V=[t, 1] explicitly as a Lie algebra of matrices.

It follows from Theorem 3.3 that /7’ splits into a disjoint union of subsets

as
(5.38) I'=IT0II'NCo ) VT’ NCHUIT' NP .

In the Satake diagram, the unique element of II’N\C, is jointed with the ele-
ment of [I’NP, by an arrow. So we may assume wi;hout loss of generality
(5.39) I'NC,={a,} and II'N\P,={a}.

Moreover, we get

(5.40) II'NCoi={as}.

This implies that the Dynkin diagram of the root system 3 of (£, ;) with t'=
tNY is of type Ds: '

ay
(5.41) a pe a,
[243
Therefore, ¢ is isomorphic to (and hence we identify it with) the Lie algebra
o(10, C), consisting of complex matrices X of degree 10 such that X=—TX.
Under this identification, we may assume that
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(5.42) te={h=diag (hy, -+, hs, —hs, -+, —hy); he€C (1=k<5)}
and that
(5.43) a,=er—ers (1=h=4), as=e,te5.

Here, for 1<k<5, e, denotes the linear form on t¢ given as e,(h)=h, (h<te).
Then the subsets C,, C,, C, and C, of X} are expressed respectively as fol-
lows :

Co={e,—e,;; 25r<s<b}, Cou={e,+tes; 2<5r<s<b},
(5.44)

Ci={e;—e;; 2555}, C.={eites; 2<s<5}.
Moreover, the subalgebra m¢Ste is isomorphic to 8{(4, C) and it is described as

N
| ! h

[ [ol 0o ! o 0
|
__]L___T_“__r._.

0]=TY| 0 |0 Y 4x4 matrix L
(G.45) me= Y= ——l--——}————!—— ;
ol o 1y o0 tr ¥'=0
|
__I_____}__._._l__

[
L 0}0'0'0

Therefore, we can take a compact real form wm’ of m¢ as
(5.46) w'={Vem; 'Y=—Y}=sud).

Let S;=S()PS2) with S(k)=3;ec,0c(c; y)Stc be the complex vector
space in 4.4, The adjoint m’-action on S, is described as follows. The sub-
spaces S(1) and S(2)t are identified with C* respectively through the maps

. ~ 0{ t20'4 : 0 : 0
2 __.t____L___]:___
2 O: 0 } 0 : 0
C'oz= b= |-~ €50,
23 0} 0 ‘ 0 1z
__p____;_____l___
2, | ' i
N LO I 0 {1 0 0
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) R '0: 0 I _tw: 0 N
" T
| |
ws 0] 01 0 |ouw
C'sw= — W= _._.:.....--{.———-—-{—-—-—- eS(2)'.
Wy 0or 0ot 0o 1o
! ] !
_—
w, [ | |
L) 0} 01 010
~ 1 ] Ve

Under this identification, the adjoint action of m’ on S,=C*@C"* is expressed as
(5.47) ad(?)-(z, w)=Yz, Yw) for Y=su@4) and z, weC*.

In view of Proposition 4.16, we deduce immediately from this .description
the following

Lemma 5.13. The analytic subgroup M’'S M with Lie algebra m’=[m, m] is
isomorphic to SU4): M’'=SU(4), because of the action (5.47) of m’ on S,. Through
this isomorphism, the adjoint representation of M’ on (g(1), J1) is equivalent to
(a, CHYPD(a, C*), where a is the natural representation of SU(4) on C*.

Let us now decompose the representation ,|M’ on the Fock space &, into
irreducibles. Identify M’ with SU(4) as in the above lemma. Then, keeping
(4.30) in mind, one gets immediately from Lemma 5.13 a decomposition of
611M’ as

(5.48) ol M’ = E@odq(4)®dr(4).
q, T
This equivalence together with Proposition 5.10 yields the following
Theorem 5.14, Keep to the notation in 5.3.4 for representations of M'=
SU(4). Then, the representation p,|M’ is decomposed into irreducibles as

(5.49) p1lM'= @ [k+1]-R[0, m, k].

, k2o

In particular, p,| M’ has finite multiplicity property.

From this theorem and Theorem 5.5, one gets immediately a finite multi-
plicity theorem for ¢;(c) as follows.

Theorem 5.15. Suppose that g is of type EIIl. Then the representation
Gi(e)=(cIMYQ(p:| M) is of multiplicity finite for any i: 0={=2, and any finite-
pimensional c. :

Remark 5.16. In any case of type Alll, DIIl and EIll, we have proved that
the representation ¢;(¢c) has finite multiplicity property for any 7/ and any finite-
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dimensional ¢ (Theorems 5.7, 5.12 and 5.15). But, the proofs for theese three
cases are quite different from each other. In case of type Alll, we can con-
struct a one-parameter subgroup CigT+£exp t* such that ¢(c), restricted to
Ci, is already of multiplicity finite. On the other hand, in the latter two cases,
the restriction ¢,(c)|T* is no longer of multiplicity finite if 0, L Actually,
it contains the trivial character with infinite multiplicity. In these cases, we
can not prove finite multiplicity property for ¢;(c) until we study ¢dilc) itself
detailedly. ‘

5.4. Finite mutipllicity theorems for ¢(c)=(c|M)R(p:| M).
We summarize the results of this section as follows.

Theorem 5.17. For 0</</=dima, and an irreducible admissible representa-
tion ¢ of the reductive subgroup H'SL, consider the representation ¢(c)=
(cIM)R(5:IM) of M=Z (ap). Then one has

(1) ¢i(c) has finite multiplicity property for any i and any finite-dimensional c.

(2) Suppose that G=SU(p, ) with p=I. For 0<i<l, let c=c(D) be the
irreducible admissible representation of H* with highest weight @€/ —11** (see
5.3.3). Then the representation ¢i(c) is of multiplicity finite

Remark 5.18. Notice that (L, H) is a reductive symmetric part at least
on the level of Lie algebras (see Lemma 3.15). So, we can apply the results of
[1] to RGGGRs ['y(¢)=Ind§:n(®p:). The above theorem enables us to prove
finite multiplicity property for RGGGRs, which will be discussed in the succeed-

ing section.

Remark 5.19. One can describe, developing the argument in this section,
the multiplicities in ¢i(c) explicitly, although we do not carry out it here. Us-
ing such description, we can give a nice upper bound for multiplicities in

RGGGRs I'i(c).

§6. Finite multiplicity theorems for RGGGRs I;(c)

We now come to the climax of the present article. In this final section, we
give finite multiplicity theorems for RGGGRs I'i(c) associated with the nilpotent
classes w;=Ad(G)A[7] (see Theorem 3.13), using the results of [I], summarized
in 6.1, and those in the previous sections. Our results for 7=0 or / are com-
plete: all the RGGGRs associated with the nilpotent classes w; (=0, /) have
finite multiplicity property. Also in other cases: 7#0,/, we can prove the
finiteness of multiplicities in differentiably induced RGGGRs C=-I'(c), if ¢ is
finite-dimensional.

Moreover, even for infinite-dimensional ¢’s, there are interesting examples
for G=SU(p, q) (p=q) such that the RGGGRs C=-I";(c) are of multiplicity finite.
Such ¢’s are given as highest weight representations.

Theorems 6.5 and 6.6 are the main results of this paper. We treat in this
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paper finite multiplicity property only. Nevertheless, the method of this series
of papers is applicable also for estimating multiplicities in RGGGRs.

At the end of this section, we will announce a multiplicity one theorem
(Theorem 6.9), proved in the subsequent paper [33]. This theorem asserts that,
under some reasonable assumptions on G and ¢, the reduced generalized Gelfand-
Graev representations /;(¢) have multiplicity free property for ;=0 or /.

6.1. A summary of the results of [I]. In this subsection, let G be a con-
nected semisimple Lie group with finite center. We sum up here the results of
[I7 on (finiteness of) multiplicities in induced representations of G.

Let K denote a maximal compact subgroup of G, and # a Cartan involution
of G such that K={geG; 0(g)=g}. Denote by g=iPp the Cartan decomposi-
tion of g=Lie G determined by 6. Let P'=LN with L=0P’'N\P’ be a Levi de-
composition of an arbitrary parabolic subgroup P’ of G. Then a=3Np is the
split component of the Lie algebra ! of L, where 3; expresses the center of I.
Consider an involutive automorphism ¢ of [ with following two properties:

(i) o commutes with @ restricted to [,
(ii) ola=-—I,, I,=the identity map on a.

Let 1=%@q be the eigenspace decomposition of | with respect to ¢, where § and
q are respectively (+1)- and (—1)-eigenspaces. Then ([, §) has a structure of
so-called reductive symmetric pair. Take a closed subgroup H of L with Lie
algebra ), and consider the semidirect product subgroup HN=Hx N of G.

Extend a to a maximal abelian subspace a,,2a of pNg. We set M,,=
Z knu(apy), the centralizer of a,, in KNH.

In the previous paper [1], we studied multiplicities in C*=- or L2-induced
representations Ind% () of G, generalizing the theory of spherical functions
developed by Harish-Chandra [8] and van den Ban [1]. We gave nice sufficient
conditions for a representation { of HN that Ind§ y({) has finite multiplicity
property.

Remark 6.1. In [I], an assumption stronger than the above one is imposed
on ¢ and H. Namely, we supposed there that (1) ¢ extends to an involution of
the Levi subgroup L (denoted again by ¢), and that (2) H satisfies the inclusion
relation (L,), S HS L,. Here L, is the fixed subgroup of ¢, and (L,), its identity
component. But these additional assumptions are not used. Therefore, all the
results of [I] remain true in the present setting.

6.1.1. Case of C>-induced representations.

First, let us consider the representation C=-Ind§ y({)=(x;, C=(G ;{)) induced
in C~-context (see [I, 2.1] for the precise definition of C=-induced representa-
tions). Here { is a continuous representation of HN on a Fréchet space. The
differential of the G-action gives on the representation space C=(G;{) a com-
patible (g¢, K)-module structure, denoted again by 7. Then we obtain a criterion
for the finiteness of multiplicities in n; as follows.
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Theorem 6.2 [I, Theorem 2.12]. The induced representation n;=C>-Ind% (&)
has finite multiplicity property, if so does the restriction of { to the compact
subgroup Myy. Namely, if dim Homy, (v, {)<4oo for any finite-dimensional ir-
reducible representation v of My, then every irreducible admissible (g¢c, K)-module
A x (see [1, 2.17) occurs as a submodule of C=(G; L) with at most finite multi-
plicity, i.e., dim Homy,_x(H x, C=(G; {))<+co.

6.1.2. Case of unitarily induced representations.

We can relate the multiplicities in unitarily induced representations to those
in the corresponding C=-induced representations. To be more precise, for a
unitary representation { of a closed subgroup Q of G, let L2Ind§()=
(Ue, L¥G ; {)) denote the representation of G induced unitarily from . Accord-
ing to Harich-Chandra, the connected semisimple Lie group G is of type L
Therefore, the unitary representation U, admits a unique factor decomposition
on the unitary dual G of G, equipped with the usual Borel structure (cf. [I,
Lemma 3.5]):

6.1) e vmdpm), LG 0=( 4 Ddpdn).

Here g is a Borel measure on G, and the representations (U(x), 4(C, x)) are,
for almost evey (=a.e.) =G with respect to /¢, factor representations of type
7. Uym)=[my(w)] 7. The function m—m(x) is said to be the multiplicity func-
tion for U, (This is a Borel function on G.) Then, using the results of R.
Penney on desintegrations of C=-vectors for unitary representations, we get

Theorem 6.3 [I, Theorem 3.12]. Suppose that { be finite-dimensional. Then,
the multiplicity function mg for U admits an upper bound as

6.2) my(m)<dim Homy,_x(mk, mg) with w;=C=-Ind§()

for a.e. x€G. Here, for an irreducible unitary representation = of G, mx denotes
the irreducible admissible representation of (ge, K) acting on the space of K-finite
vectors for .

From Theorems 6.2 and 6.3, one obtains

Theorem 6.4 [I, Theorem 3.13]. Let { be a finite-dimensional unitary re-
presentation of HN. Then, the unitarily induced representation Ug=L*-Ind%x(Q)
has finite multiplicity property: the multiplicity function m—m(w) takes finite
values for a.e. n€G.

6.2. Application to RGGGRs [';(c). Return to our original objects in §§3-5
and keep to the notations there. Put ¢=86., and H=H* (0</</; see 3.2 and
3.3). Thanks to Lemma 3.15, the pair (6., HY) satisfies the assumption for
(o, H)in 6.1. In this case, the subspace a,, coincides with the maximal abelian
subspace a,=i5ri RH, of p in 3.1. Moreover, each H* contains M=Zg(a,).
Therefore we have M,,=M. We can thus apply the results of [I], quoted as
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Theorems 6.2-6.4, to RGGGRs I';(c)=Ind%:x(¢®¢E,) assoziated with the nilpotent
classes w;. In the succeeding subsections, we present the results and prove

them.

6.3. Finite multiplicity theorems for C=-I";(c).

First, let us consider the RGGGRs C=-I";(¢) induced in C~-context. Thanks
to Theorems 5.17 and 6.2, we immediately obtain our first main result, on finite-
ness of multiplicities in C=-I";(c), as follows.

Theorem 6.5. Let G be a connected simple Lie group of hermitian type,
with finite center. Denote by w; (0=<i<[=the real rank of G) the nilpotent Ad(G)-
orbits in g=Lie G defined in Theorem 3.13. Consider the RGGGRs C=-I';(c)=
C=-Ind%: y(CRE;) (induced in C=-context) associated with w;. Then one has

(1) C=-I'y(c) has finite multiplicity property in the sense of Theorem 6.2 for
any 0<i<! and any finite-dimensional representation ¢ of H'.

(2) Suppose that G=SU(p, I) (p=1l). Let c=c(D) be the irreducible admissible
representation of H'=U(—i, ))XSU(p—1) (p+!); H'=SU(I—i, i) (p=I) with
highest weight @€ /—1t**, constructed in 5.3.3. Then, the representation C>-
I'i(c) 1s of multiplicity finite.

6.4. Finite multiplicity theorems for LZ2-I",(c).
Secondly, we study the multiplicities in the unitarily induced RGGGRs. Our
result for these representations is stated as follows, which is our second main

result of this article.

Theorem 6.6. Let G be a simple Lie group as in Theorem 6.5. For an ir-
reducible unitary representation c of tbe reductive subgroup H*, consider the unitary
RGGGR L*-I'{c)=L*Ind%:y(CRE;). Then,

(1) if i=0 or I, then all the RGGGRs L*-I'i(c) (c(KNL)") associated with
w; have finite multiplicity property in the sense of Theorem 6.4. Here (KNL)"
denotes the unitary dual of the compact group KNL=H°=H".

(2) Suppose that G/K reduces to a tube domain. Then, the RGGGR L*-I",(c)
is of multiplicity finite for any i and any finite-dimensional c.

6.5. Proof of Theorem 6.6. First, notice that the representations &; (0<:
</) are all one-dimensional if G/K reduces to a tube domain. So, the assertion
(2) follows from Theorem 6.4.

In the following, we show the assertion (1) by reducing the proof to the
case of C>-induced representations. (Since £; is infinite-dimensional in general,
one can not apply Theorem 6.4 directly. In order to prove (1), we need get
back to the argument in [I, § 3], which proves Theorems 6.3 and 6.4.) Our
proof consists of four steps.

STEP I. Throughout this proof, we always assume that ;=0 or /. Let
(ps, ;) and (T;, 4;) be two kinds of realizations of [¢,] N constructed in 4.3,
where &; is the Fock space of (g(1), J¥). Denote by ¢ the intertwining operator
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from 4; onto &; in Proposition 4.12. Extend (p;, &;) to a representation (e, Fy)
of H'N as in Theorem 4.13, and define a representation 7; of H'N by T:=
¢"'egioc. By making use of these realizations g; and T':. the unitary RGGGRs
associated with w; are constructed as

(6.3) L2-T(c)=L*Ind$:iy(E®p:)= L2-IndG. v ¢ R T

for irreducible unitary representations (¢, E.) of H*=KNL.

We identify the tensor product Hilbert space E.X%; canonically with the
Hilbert space consisting of E.-valued holomorphic functions ¢ on (g(1), /%) such
that

(6.4) Ig17={, , 190X Izexp(—2) XD X<+eo,

where |[|-||; denotes the norm on E. (Compare with (4.29).) Then, the repre-
sentation {=¢®4; of H'N on E.QZ; is described as

{C(k)¢(X)=C(k)°¢(Ad(k)"X) (k€ HY)
Lm)=1.Rp:n) (neN; I.=the identity map on E.)

(6.5)

for g€ E.QF..

We adopt the same kind of identification of E Q.4 ; with the space of E.-
valued C=-functions on N satisfying (4.20) and (4.21; replace the absolute value
|-| in the integrand by |-|.). Put £’'=¢®7T;, then an element k€ H! is re-
presented by {’ as

(6.6) C(R) f(my=c(k)f(k™'nk)  (nEN, fEERH,).

Step 1. We put (Ug LAG; Q)=L%I(c)=L*Ind§:xy() with {=¢Qp..
Then, in view of Lemma 3.9 of [I], the subspace L* G ; {)* is contained in the
space C*(G; {) consisting of H({) (=E.QF)-valued C=-fuctions F on G such
that F(gz)={(z)"'F(g) (g=G,z= H'N). Here, for a unitary representation (U, 4)
of G, U. denotes the corresponding smooth representation of G and gc on the
space 4= of C>-vectors for U, equipped with the usual Fréchet space topology.
Moreover, the linear map

0V LAG; O — H©Q),  dP(F)=FA)

is continuous, where 1 expresses the unit element of G.

We set §?(¢)=¢(0)E, for g=4#((). Then, 0> gives a continuous linear
map from () to E.. To verify this, we may assume without loss of generality
that ¢=1, the trivial character of H:. Then it holds that 4#({)=%;. Take an
orthogonal basis X;, X,, -+, X, of the complex Hilbert space (g(1), /7, (,):) (see
Lemma 4.11), and express Xeg(1) as X=2>) ;<. 2;X; with z;&C. The Lebesgue
measure d X on g(1) in (6.4) is described as

.
dX=b1ldz;dz; for some positive constant b.
j=1

For ¢=F,, ¢(X)=Xnawnz" be the Taylor expansion of the entire function ¢,
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where zV¥=zMz% ... 2% for a multi-index N=(n,, n,, ---, n,) of non-negative
integers n;. Then, a simple calculation yields

(6.7 913,65 | axl*@m) ™ (T1] ermear),

where |N|=n,+n,+ --- +n,. This shows the continuity of §* because a,o.... o
=$(0)=0(g).

Thus, we find out that the composition d=0*-9‘" gives a continuous linear
map from L*G;{)* to E.. Furthermore, J satisfies, by construction, following
three properties: for Fe L% G ; {)~, one has

(6.8) M(ULY)F)=v—TALT*Y)NF)  (YEuw),
(6.9) (Uu(R)F)=c(k):0(F) (k€ HY),
(6.10) d(U=(G)F)=(0)  implies that F=0.

Here, u,=V;®Pg(2)c is the positive polarization at A[]J*<n* in 4.3. The
third property means that d: L*G;{)*—FE. is a generalized cyclic map (see
L, 3.51).

STEP IIl. Consider the factor decomposition of U, in 6.1. Then, by virtue
of Propositions 3.7 and 3.8 of [I], there exist, for a.e. #&G, linear maps
0.: H({, n)>— E, with properties (6.8), (6.9) and (6.10). (There, replace
(Ut), A1) by (Ur), H(, =).) And J is decomposed into a “direct integral ”
of d,’s.

For Fe 4 (, n)°, define an E.valued C=-function A.(F) on G via

(6.11) A(FXg)=0{(Ua)Xg HF) (g€06).

This map A, naturally gives rise to an injective, continuous intertwining operator
from Ugn). to the representation C=-Ind§:y({’*). Here {'* is a representation
of H'N defined as follows. 4t (24 ;) denotes the space of C*-functions f on N
satisfying (4.20) only. The representation T, on 4, extends naturally to a re-
presentation ’7"; acting on 4*t. We set C’*=c~®7’”{.

In the same way, we can construct a representation {*=¢®pt of H'N
acting on E.QXFt. Then ¢: 4,;=F; is extended naturally to an isomorphism ¢+
of H:N-modules from 4% onto F%. One thus gets a commutative diagram of
HiN-modules:

I.Qct
E.QJ% — —> E.QF*t

(6.12)

Ec®ﬂi _— > Ec®gi .
1.&e

From the above discussion, we see that the multiplicity function . for the
RGGGR U¢=L*-I'y(c) is bounded as
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(6.13)  my(m)<dim Homg(7e, C=-Indiy({*)<dim Homg,_x(mx, C=-Ind§:x(C*))

for a.e. 7€G.

STEP IV. Thus, in order to complete the proof, it suffices to show that the
representation C*=-Ind%:y({*) has finite multiplicity property. This is achieved
as follows. Thanks to Theorem 6.2, it is enough to prove that the restriction
{*IM is of multiplicity finite. Let (v, V) be an irreducible unitary representa-
tion of M, and T a non-zero intertwining operator from v to {*|M. Then, the
central one-parameter subgroup C, of M in 5.1 acts on the subspace T(V)S
EQ4* by scalars, which implies that all the elements in T(V) are polynomials
on (g(1), J¥). Hence one gets T(V)S E.®%F;. This means that Homy(v, {*)=
Homy(v, {). Consequently, {*|M has finite multiplicity property thanks to
Theorem 5.5. Q.E.D.

Remark 6.7. In the proof of the assertion (1), we have made use of the
Fock model realization of [é,]J€(H:N)" (=0, /). But, if 0, , then fi con-
structed in 4.3 can not give a complete description of a genuine extension £; of
§:. This is because, in such a case, the positive polarization u;=V;@Pg(2)¢ at
A[i]*en* is no longer stable under the whole Ad(H?®). For this reason, one
can not generalize the proof of (1) directly to the case of arbitrary 7. At the
present time, we do not know whether or not the unitary RGGGRs L2-I'i(c)
have finite multiplicity property for %0, /.

6.6. Case of i=0, /. Our results for this case are quite satisfactory. We
restate here them and comment on them in connection with Problem EDS (see
4.1).

Theorem 6.8. A/l the RGGGRs (L* or C=-)["i(c) (cE(KNL)") associated
with the nilpotent class w; have finite multiplicity property for i=0 or I.

The original non-reduced GGGR ['; is far from being of multiplicity finite
in general, and its study is reduced to that of the corresponding RGGGRs
I'i(c). Therefore, thanks to our results, one can avoid the difficulties in the
study of GGGRs I'; (i=0, /), coming from the infiniteness of multiplicities in I

For instance, the discrete series representations of G occur in I'; generally
with infinite multiplicities (cf. [23]). We believe that, in such a case, our
RGGGRs are useful to settle Problem EDS brought up in 4.1. To be more pre-
cise, in view of (4.13) this problem for I'; (=0, /) is reduced to the following

Problem EDSbis. For /=0, /, describe the embeddings of discrete series
representations of G into RGGGRS Ii(c) (ce(KNL)").

We think that this problem of reduced type is, thanks to our results, much
more manageble than the original one.
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6.7. A multiplicity one theorem and embeddings of discrete series.

At the end of this paper, we refer to the contents of the subsequent paper
[33].

Under some additional assumptions on G and ¢, we can show multiplicity
free property for RGGGRs I'i(c) (=0, /).

Theorem 6.9 [33]. Suppose that G/K is holomorphically equivalent to a tube
domain. Then, for any real valued character ¢ of the compact subgroup KNL=
H'=H!, the unitary RGGGR L*-I'(c)=L*Ind%n.,n(¢RE) (=0 or 1) is of
multiplicity one: the multiplicity function for L®-I'i(c) takes values 0 or 1 almost
everywhere on G with respect to the Borel measure giving its factor decomposition
(see 6.1). Here, one chooses an extension &; of the unitary character & of N in
such a way &;|(KNL)=1.

This theorem generalizes, in a certain sense, the result of Piatetskii-Shapiro
and Novodvorskii ([21], [22]) on the uniqueness of generalized Bessel models
for Sp(4).

In [33], we study also the embeddings of discrete series into (reduced)
GGGRs L% or C=-I'; (I'i(c)) (Problems EDS and EDSbis). We remark here
that there is a difference between the embeddings into unitary GGGRs L2-I;
and those into C=-I'y(¢) (in C=-context). In other words, even if a discrete
series representation D can be embedded into C=-I'; as a (g¢, K)-module, D
does not necessarily occur in L2-I7,.
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