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Simple transcendental extensions of valued
fields III: The uniqueness property

By

Michel MATIGNON and Jack OHM

L e t  (K o , v o )  be a  valued field  and x  be a n  indeterminate over K o . F or any t  in
K 0 (x)\ICO 3 o n e  can define an extension Yo

t o f  vo to  a  valuation of K 0 (t ) by :

fo r all ao , ••• , a  in  Ko, vo t (a o -P a it+  •••  ±a n tn)=inf {yo(a i )I i=0, ••• , .

We are  concerned here with the

Uniqueness problem : Given a  valuation y  o f  K0(x) which extends vo
t , does there

exist a  t ' in  K 0 (x)\K0 such that y extends Yot ' uniquely?

We proved in  [9 ] that th e  answer is "yes" if  rk yo is 1. We shall show here that the
answer is also "yes" if  yo is  henselian, and  that the  answer is "no" in  general.

T he  henselian result, which is proved in section 3, follows from th e  theorem that,
fo r  yo henselian, v ot extends uniquely to a  valuation of K 0 (x ) whenever t  has the  form
t=f (x )m lb, where f (x ) is irreducible in  K o [x ], b  is in  K o , and  m is

T h e  negative result is proved in section 2. It follows from the observation that
an affirmative answer to the uniqueness problem is equivalent to a fundamental equality,
E=IRDh, relating some numerical invariants of the extension y/yo . By studying these
invariants punctually at t ,  we show that if  there exists a  t  such that Y/Yo

t i s  unique,
then viv o ' is  a lso  unique for every t ' of minimal deg such that y extends vot ".

T h e  Dh that appears in  th e  above equality is called t h e  henselian defect o f  v/vo.
T h e  n o tio n  o f  defect, which is central to th e  ideas of section 2, is introduced in  sec-
tion 1.

We have come to this work from two directions. O ne is that o f th e  equality E =
IR Dh, which had been conjectured to hold under certa in  hypotheses in  [12] ; th e  pre-
sent paper puts [12 ] in  its proper setting and completes th e  proof o f its conjectures.
T h e  other direction is that o f th e  uniqueness problem f o r  function fields :  a n  affirma-
tive answer to this problem is given in  [7 ] fo r  yo rk 1 complete and  is a  key step in
th e  proof o f th e  genus reduction inequality o f that p a p e r . See also the introduction
to [7 ] fo r some historical remarks on this problem.

T h e  seco n d  author would like to express his thanks to  Jean  F re sn e l an d  his
coauthor fo r their hospitality during his visit to the  U niversity  of B ordeaux I during
th e  month o f October, 1987, and  fo r arranging financil su p p o rt fo r  this visit through
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the Conseil Supérieur des Universités.

O . Notation and terminology

Throughout the  paper (Ko , vo)C(K0(x), y) will denote a simple transcendental (abbre-
viated tr.) ex tension  o f valued fields, i. e. x  is tr. over K o ,  y  is a  valuation o f  Ko(x),
and vo=v I K0. Sometimes it will be convenient to abbreviate this notation to (K0(x)/K0, y)
o r  merely K0(x)/K0 or viv o . T h e  corresponding valuation rings, value groups, and
residue fields will be denoted V oCV, G oCG, and  koCk respectively).

Moreover, ko '  will denote the  algebraic closure o f  k o i n  k.
We use ( )* for im age under the  residue map o f  a  given valuation ; thus, i f  s  is

in K 0(x ) and y(s)_0, then s*  is the  im age  o f s  under t h e  y-residue map V .-+V /in=k .
We shall also refer to s* as  th e  y-residue of s.

L et t  be in K 0 (x)\K0 .
We call t  residually tr. fo r  y/yo i f  t*  is tr. over ko.
The extension (Ko, v0)C(K0(x), y) is called residually tr. if  there exists a  residually

tr . t  in  K o (x).
deg t= EK0(x) : Ko(t)], o r equivalently,

=max {deg f (x ) , deg g(x)} ,

when t  is , written in  th e  form t=f (x )Ig (x )  with f (x ), g (x ) relatively prime elements of
K0[x] ; c f . [18, p . 197].

yo
t ( th e  inf extension of vo w. r. t. t)=the valuation of K 0 (t) determined by : fo r  all

a o , ••• , an i n  K o , vot(ao - P a i t +  • • •  -Fan tn)=inf { y0(a1)li=0, ••• , 72}. T h e  residue field of Yot

is ko (t*), with t*  tr. over ko ; and  the  value  group is G o . M oreover, 1) I Ko(t)=v o
t i f  t

is residually tr. fo r v/vo. (C f. [2 pp. 160-161])
Ko a l g  w ill be a  fixed algebraic closure o f K o . If wo is any extension of vo to  Ko a l g y

then the  residue field of wo is  th e  algebraic closure k o alg o f  ko a n d  th e  v a lu e  group is
the divisible hull G od  o f Go.

(1(0, yo)  denotes completion and (Ko , yo)h henselization.
We use c  for inclusion and <  for proper inclusion.

1 . Defect

Fix throughout sec tion  1 a  finite algebraic extension of valued fields (L o , wo)c
(L , w ), with value groups Hoc H  and residue fields /0c/.

We use Lh to denote henselization and L -  to denote completion. Recall that both
L "  a n d  L -  h a v e  t h e  same residue f ie ld  a n d  v a lu e  group a s  L  and that any finite
generating se t fo r L/L 0 is also a  generating se t fo r  L '/ L 0 '  and  fo r L - /L o -  ; see [l,
pp. 175-179] o r  [3, p . 131] fo r  henselizations an d  [17, pp. 45-47, §§ 4 and 5] o r  [2, p.
121] fo r completions.

A  set of extensions w  W  W O1
=

 - • • •  w n  of wo to  L  is called a  complete se t o f exten-
sions of wo to  L  if  every extension of wo to  L  is equivalent to o n e  o f  these and no
two of these are  equivalent. Similarly, a  se t o f ex tensions wi i =w, wi,, ..• of wo
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to L  is called a  complete set of independent extensions of wo to  L  i f  every extension
of wo to  L  is dependent on one of these and no two o f  these are dependent. (Recall
that tw o  extensions are dependent i f  either their valuation rings have  a  common
valuation overring < L  or both are trivial.)

1.1. The fundamental equalities.

i) EL 1, 01= E 7:=EL (1,0, wo) h ]

(Apply [3 , p . 125, (17.3)] a n d  th e  fac t th at, in  th e  terminology o f that reference,
L o h/Lo is  a  separable, "allowable" extension.)

ii) EL : Loi=ET=EL, wi i r  : ( L0, wo) NT(wi i /wo)

(cf. [17, p. 49, Lemma 5]), where Q- (w1i /w0)=- EL : Lolins/C(L, wi i r : (Lo, wo ) I n s  ( [  l i n s

denotes deg of inseparability).
The first sum is taken over a  complete set of extensions wi=w, , w n o f  wo to L,

and the second sum over a  complete se t o f independent extensions w i i =w, ••• , w i .  of
wo to  L.

W e shall ca ll [(L, w) h  : (L0, 1 o ) '] (resp. [(L, w ) :  (Lo, w 0 )])  th e  henselian (resp.
completion) degree of the extension (Lo, wo)C(L, w), and Q- (w/w0) th e  inseparability
quotient. Note that Q- (w/w0)= 1 whenever L 0 7 L 0 or L/L o is separable, and in general
equals p i  for some i O, where p=char L o ; cf. [19, p . 119, Cor. 2 , and p . 114, Lem.].
F o r  a  discrete rk  1  example with EL : Loi =Q - (w/w0)=P >0, see [20, p. 62] or [2 , P.
187, Exercise 3].

1.2. Definition of the defects. Let e--=-- [H : Ho] and f -- = [1 : 1 0 ]. We define three
notions of defect for the extension (Lo, wo) (L, w), the  defect, the  henselian defect,
and the completion defect, resp., as follows :

i) def (w/w0)=CL: L0i/ef

ii) def h (w/w0)---4 (L , : (Lo, wo)"]/ef

iii) def ^ (w/w0)=C(L, : (Lo, wo)]lef

We can now restate the fundamental equalities of 1.1 in  terms of these defects :

EL : Lo] =def (wIwo)ef

=E 1 1=1defh(w1lw0)eifi

=Er, d e
f .

Note that each defect is a  rational number 1>_1. Much o f th e  usefulness o f  these no-
tions is due to the following classical

Theorem. L et p=char l o i f  char /0 >0 and p=i i f  char /0 =0.
i) (Ostrowski) I f  rk w 0 = 1, then def - (w1w0)=P i  f or som e i ; and i f  wo is discrete

rk 1, then der(w1w0)=1 (cf. [15, p . 355] and [2 , p . 148, Cor. 2]. )
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ii) (E. Artin—ostrow ski) I f  rk wo is arbitrary , then defh(w1w0)-=P i  f o r some
(cf. [1 , p . 180, Prop. 1 5 ] ,  o r  [2 , p . 190, Exercise 9]).

It is easy to  g ive exam ples to  show  d e r (wlwo) is not related to the residue
characteristic if  rk wo >1 ; in fact, in 2.5 below we give discrete rk 2 examples, in, say,
residue characteristic 0 for which def - (wIwo) is an arbitrarily prescribed rational num-
ber Note that by ii) of the theorem d e f h ( w / w o ) = 1  f o r  such examples.

1 .3 .  Comparison of the defects. Since LoCL oh and Loc L o", both defh(w/wo) and
dent/V iv o) are  ._def (whvo). A s for the relationship between defk and d er ,  we have
the

Proposition. def h (w1w0).--def - (wIwo)QA (wlw ° ), and =holds i f  (L o , wor  is  henselian
(in Particular, =holds if  rk w 0 =1).

Pro o f . W e shall form  our henselizations a n d  completions inside the fixed field(Laig\ -9) where Lalg is an  algebraic closure of L , with w extended arbitrily.
W e m ust show :  [Lh : Loh] _< EL^  : Lo - N - (w/wo), and =holds if  Lo^ i s  henselian.

By 1.1, since W h  is  the unique extension of woh to Lh,

(1.3.1) EL' : Loh ^ i(r (w h iwoh )

To prove the inequality, it suffices to show

EL-  L 0 's1Q- (w/w0)-- EL' : L o 'N - (wh /wo"), or

: Lo - i(C L : Loiins)/CL -  : Lo A iins>.---EL h ^  : Loh - JEL h  : Lo h iins/C-Lh -  L 0 h - 1n 8), or

Lo ^ ls e p E L  L O lin s EL V ‘  L O h ^ lsepEL h  L o h jins •

But L 0'/L 0 is separable, so EL : Loiins=- EL h LOh l i n s  (cf. [19, p . 119, Cor. 2 ] ) .  There-
fore w e m ust show  EL-  : Lo ^ isep: EL h -  : Loh - 18p ,  which follows from Lo" c L oh" (cf.
[19, p . 114, Lem. 1]).

Finally, i f  L o ^  i s  henselian, theu L oĥ =-- Lo" ,  a n d  (1.3.1) becomes [L h  : Lo h l=
EL^  L o - i T (w h iwo 4 ). But (r(w h iwoh")=Q - (w/wo) since a s  noted above, EL : Loins=
CV ' Lo h iins. Q. E. D.

A s we mentioned in  1.2, there exist examples with defh=1 and d e r  a n  arbitrary
rational number O n  th e  other hand, the example mentioned in  1.1 is a  discrete
rk 1 example with def^=1 and defh=p>0.

1 .4 .  The uniqueness criteria. W e shall say w/wo i s  unique (resp., dependence
unique) if all extension of 14)0 to  L  are equivalent to (resp., dependent on) w .  B y the
fundamental equalities of 1.2, the following are equivalent :

wiwo is unique (resp., dependence unique)
ii) def(w1w0)=def h (wIwo) Cresp., =der(wIw0)C2 - (wIw0))

iii) EL : L o ]=efdefh(wIw o )  (resP., -=efder(wIwo)QA(wIwo)).
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Remark. w/w o is dependence unique if there exists a  valuation w ' o f  L  whose
valuation ring contains th e  valuation ring of w and is such that w '/(w 'IL 0 ) is unique
(cf. [20, p . 65]).

It is always possible to embed the value group of an extension w of w 0 to  L  in a
fixed divisible hull H0

ǹ v of  H0 ; this has the effect of replacing th e  valuation w by an
equivalent o n e . B u t  it is  eas ily  seen  th at if  two extensions w1, w2 of wo to  L  both
have value groups contained in  the same Ho

d '  and are equivalent, then they are equal.
Thus, by requiring that all extensions under consideration should have values in Hod'',
we could replace equivalence by equality.

2 .  The fundamental invariants

Throughout section 2  (K 0 , yo )C (K o (x), y )  will denote a  residually t r.  extension of
valued fields with value groups GocG  and  residue fields ko c k .  (Here x  i s  a single
indeterminate.) In addition, we let

= i t  in  K0(x) t is residually tr.} , and

min g --= i t  in  g I for a ll t ' in F ,  deg t deg

Note that for a ll t in  g, yI Ko (t)=-- vo
t , the inf extension of yo w. r. t. t (cf. § 0). It

follows that index (y/yot)=index (y v o) := [G : G o ]  ; we shall denote this index by I. We
define an additional set of rational numbers 1 as follows :

2 .1 .  Definition. For t  in i f ,

R(t) (residue deg at t)=Ek: ko(t *
)i,

{

{
E(t) (extension deg at 0-= [Ko(x): Ko(t)i,

Eh(t) (henselian extension deg at t)=- [Ko(x) h  : Ko(tri,

E ( t )  (completion extension deg at t)-=Ko (x ) : K0) - 1

D(t) (defect at t)=E(t)IIR(t),

D Î(t) (henselian defect at t)=Eh(t)IIR(t),

DA(t) (completion defect at t)=E - (t)IIR(t).

Moreover, if  A(t) denotes any one of the above symbols, we define

A=inf I A(t)It in  gl ; e. g. Dh=inf {Dh(t)I t in  g} .

In this way we obtain a set of "invariants" I , R, E, Eh, E - , D , Dh, D -  fo r  th e  ex-
tension (K 0 , v0 )C(Ko(x), y), called respectively the index, residue deg, extension deg,
henselian extension deg, etc.

Each of the expressions of 2.1 may be regarded as defining a  function from i f  to
th e  {rationals 1}.
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2.2. T heorem . Dh(t) is constant on g, i. e. f o r a l l  t  in  g , D h(t)=D h; and  the  re-
maining functions o f  2.1 are constant on min g  and  attain their infs there,  i. e . f o r all
t  in  min g, R =R (t), E=E(t), Eh=-Eh(t), etc.

Pro o f , i)  D h (t)  is constant on g.
This was proved fo r D - (t), in the rk 1 case, in [9, Thm. 2.5] ; and the same proof

yields i), modulo the observation that Lemma 2.5.3 o f [9 ] was not really needed there,
only th e  weaker observation that if  K i is  a  finite algebraic extension of K o a n d  y  is
extended arbitrarily to Ki(x), then for t ,  t ' in  g ,  the extensions K o (OcK i (t) and K 0(r)
C if i (r ) are isomorphic as valued field extensions. (Actually it is also easy to see that
Lemma 2.5.3 of [9] remains valid if d e r  is replaced by defh; c f. [14, § 4.1]. )

ii) R (t) is constant on min g  and attains its inf there.
T h is  i s  a  consequence of the  Ruled Residue Theorem [13] : For t  in  min g , k =

k o '(t*) and R(t)=[ko' : ko]  (where ko '  is the algebraic closure of ko in  k).
iii) E (t) is constant on min g  and attains its inf there (i. e., E=deg min g).
This is immediate from the definition of min E.
i v )  Eh(t) is constant on min g  and attains its inf there.
This is by i), ii), and the equality Eh(t)=/R(t)DI.

E ( t )  is constant on min g  and=E there.
By [9, Theorem 2.1], E (t)=E (t)  on min g ; and by iii), E (t)=E  on min g.
v i )  D(t) and D ( t )  are constant on min g  and -=-E IIR  there.
This is by ii), iii), and v).
It remains to prove E ( t) , D (t) , and D ( t )  attain their infs on min g ,  o r  in  view

of IT) and vi), that E =E -  a n d  D - =D =E I I R . These equalities are  a  corollary to

2.2.1. Proposition. For all t in  g , E (t) /R (t)_E /R .

Pro o f . Let t  be in  g  and to be in min g .  By definition of m in g, E (t o )=E ; and
a s  noted i n  ii) above, R(t 0)=R =[k 0 ': k o ]  and k =k A t o *), where ko ' =algebraic closure
of ko in  k. Let m= [k : koV *)] (=deg of to * over k o V * )) , Then

R(t)=[k: ko(t*)]=[k: koV *)][koV *): ko(t*)1=mR .

Therefore it suffices to show E - (t)_ m E, which follows from the
Claim : The m E elements of

S ={ x 1 t o ili=0 ,••• , E -1 ; j=0 , ••• ,m -1 }

are linearly independent over K o ( t) .
We need the following lemma, whose proof will be given later.

2.2.2. L em m a. The extension deg E' of  K 0
- (x)1K0

- =the  extension deg E of Ko(x)/Ko.

By the lemma, x  is of deg E  over K o (t o ). Since also to is  t r .  over K o -  (because
to is residually tr.) , it follows that 8  is linearly independent over K o

- . Therefore by
[9, Cor. 1.6], we need only check th a t t  satisfies the condition (inf/Ko<S>) of that
reference, where Ko<S> denotes the K, -vector space spanned by LS,  i. e. we must show :
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if  bo , ••• , bn, a re  in  K o <S>, then v(b0-1-b1t+ ••• -1-bn tn)=inf{v(b i )li=0, ••• , n}.

W rite bi=biod-biito+ ••• (i-=-0, ••• , n), where bi i  a r e  i n  K o + K o x+  •••
± K 0xE - 1 .  By the lemma in the proof of [9, Theorem 2.1], v(b i )= in f {v(b i i )1 j=0 ,--,m -1 }.
Therefore if  b is an  element o f least value from ib i i  I •-• n  ;  i= 0 , ••• m - 1 1 ,  then
inf {v(b i )I i=0, ••• , n} = v (b ). Thus, i f  s=b o +b i t+  ••• +b,i tn, w e  m u s t  prove (0 ) * * 0
(where *  denotes im age in  k). We have

(s1b)*=(bo/b)+(bilb)*t*-1- ••• --1-(b n lb )t*n

---=[(boo/b)*+(bei/b)*to*+ +(b.,._i/b)*to*m - 1 1+ +C 1t*-1- ±E

B u t deg bi i /b i s  < E ,  a n d  by definition o f E this implies each (bi i /b)* is in  ko ',  the
algebraic closure o f ko i n  k. O n  th e  other hand , 00* i t* 1 i= 0 , •- •  , m -1  ;  j= 0 , •- •  , n l
is linearly independent over ko ',  since t*  is tr. over 14' and t o*  is o f deg m  over ko V*).
Thus, (s/b)**0. Q. E. D. for the Proposition.

2.2.3. Corollary. E=E - , and D=D - =EIIR_Dh.

Pro o f . Proposition 2 .2 .1  is equivalent to : D E / IR . O n the  other hand, since,
fo r  t in if , K 0(t)CK 0(t) -  a n d  K 0 (t)C1f0 (t)h, we have E (t)_E - (t) and  E(t) E 4 (t). There-
fore, E(t)/IR(t)_E - (t)/IR (t) a n d  E(t)/IR(t) Eh(t)/IR(t). B y tak ing  in f s  over g  of
these inequalities, we conclude .D DA and  D D h .

But by v i)  above, D E / I R .  Putting these observations together, we obtain D =

To see E=E - , note that 2.2.1 yields E - (t)_(E/R)R(t) o n  g , and  hence by taking
in fs  over g , we have Conversely, as noted above, E(t) E - (t) on r  s o  E_%E - .

Proof  o f  Lemma 2.2.2. Since any residually t r .  element t  of K 0 (x ) is  a lso  a
residually tr. element o f  K0- (x), and since [1(0 - (x) : K0- (0 ] [K0(x): K0(01, we conclude

Thus, it remains to show :  fo r any residually t r.  element t ' o f K o
- (x), there

exists a  residually t r.  t in K 0 (x) such that [ K 0 (x): K0- (C)] E(t).
Write t' =aYb', where a ', b' are  relatively prime elements o f  K o

- [x ],  and note that
CK0^ (x): K0 - ( r ) ]= m a x  {deg a', d eg  b '}  (c f. [18 , p. 197]). N ow write a'=ao'd-a i 'x-i- ---
-kan 'xn, where the a i '  a r e  in  K o

-  and  a '*  O. S in ce  K o is  dense in  K o
- , there exist a i

in  K o such  that v(ai ' x i  —ai xi ) >v (b ') a n d  a n,* O. L e t  a=a 0 + • • • -I- an xn . Then v(a' /b'
—alb 1 )>O, so (a 'ib ')*= (a lb ')*. Thus alb ' is residually tr. We can now repeat this
procedure, using b'/a, to obtain a n  element t=b/a in  K o (x) which is residually t r.  and
such that E(t)...< max {deg a, deg b} <max {deg a ', deg b'} . Q. E. D.

T his concludes th e  proof o f Theorem 2.2.

Remark. In  [9 ]  we defined the  defect D of v/v o to be E/IR and  then proved that
D - (t)=E/IR fo r  t in  m in  g , while th e  crux of 2 .2  is that, in  fa c t, E/IR is th e  in f  of
D (t )  o n  g .

2 .3 . D h  and the property (U ) .  We shall say
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i) t  in  9- h a s  th e  uniqueness property (U ) (resp., th e  dependence uniqueness pro-
perty  (Udep)) if  v/vot is  unique (resp., dependence unique), and

ii) th e  ex ten sio n  (K o , vo)C (K o(x), y )  h a s  t h e  uniqueness property (U ) (resp., the
dependence uniqueness property (Udep)) if  there  exists t  in  g  w ith  (U ) (resp., (Udep)).

B y 1.4 applied to the extension (Ko(t), vo t )C(K0(x), y), fo r  t  in  9- t h e  following are
equivalent :

i) t  has (U)

(2.3.1) ii) D (t)= Dh

iii) E (t )= IR (t )D "  (= E " (t )).

2.3.2. C orollary . The following are equivalent:

i) the extension (K o , vo)C(Ko (x), v) has (U)

ii) D=Dh

iii) E = IR D "  (= E " )

iv) every element o f  min if  has ( U).

Proof. Suppose to in  ET has (U ) .  Then D. D(t o )=-Dh, the equality by 2.3.1.
O n the other hand,

 D D h  b y  2.2.3. : E / IR = D  b y  2.2.3. : D (t)= D  on
min g" by  2.2, so 2.3.1 applies. iv ) —i) : By definition. Q. E. D.

2.3.4. C orollary . There exists a residually  tr. simple t r .  extension which does not
have (U).

Pro o f . In  [11, p . 218, § 7.2] there is given a discrete rk 2 exam ple with E=2 and
IR =1; and  the  residue char is  0, so  D h=1 . (Note that this exam ple is optim al in the
sense that every rk 1 extension has (U ) b y  [9, Cor. 2.2]. )

2.4. D -  and the property (Udep). T h e  statements 2.3.1 a n d  2.3.2 have analogues
fo r (U d e p) and  D -  a s  follows :

F o r t  in  g  the following a re  equivalent :

t has (Udep)

(2.4.1) ii) D (t)= D - (t)

iii) E (t)= IR (t)D - ( t )  ( = E - (t ) ).

T his follows from 1.4 applied to the extension (K o(t), vo t ) (Ko(x), y), provided one
first proves that th e  inseparability quotient Q- (y/yot) w hich appears in  1.4 is  1, j .  e.

2.4.2. L em m a. For t  in  T, 1=Q - (Y/Y0t ) (=CK0(x): K0(t)i1/[K0(x) : Ko(t)iins).

Before proving this lemma, we shall give the analogue of 2.3.2:

2 .4 .3 . The following are true:
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i) the extension (K o , v0)C(K0(x), y) has (LI dep)

ii) D=D -

iii) E=IRD -  ( = E - )

iv) every element o f  min g  has (Udep) •

P r oof. i) is by [9 , Cor. 2.2], ii) and iii) by 2.2.3, and iv)Iby the  equalities D(t)-=
D-- -=--D- =D - (t) fo r t  in m in g ,  which come from 2.2 and 2.2.3.

Proof  o f  Lemma 2 .4 .2 . It suffices to prove Q- (v/vo t ) is independent o f  t  in  g,
since w e know  by [9 , T h m . 2 .1 ]  th at E (t)= E - ( t )  f o r  t in  m in  g ,  which implies
T(v/vo t )= 1  fo r t  in m in g .

Let Ko(t)"P denote the separable closure of K 0 (t) in K 0 (x ) and p=char K o . Since x
is purely inseparable over K o(t)"P , it follows that Ko(t)"P=K o (xP i )  for some i O. (This
is because the only fields L  between K o ( e i )  and K 0 (x ) are  Ko(xP i ), Ko(xP i - i ), ••• , K o (xP),
K o (x). For, 1K0(x): L]= p '  for some j  in  {O, since [K0(x): L] I p i .  But the irre-
ducible polynomial for x  over K 0 (x 1 )  is X P i  -  X P iX ) P i  a n d  th e  irreducible poly-
nomial fo r  x  over L  must be a factor of this polynomial, hence must be (X—x ) ' ; so
xP 1 is  in  L.)

First consider the case that x  itself is residually tr. Then xP i  is also  residually
t r . ,  so  th e  residue field extension corresponding to K0(xP')CK0 (x ) is  ko(x*P i )Ck o(x*).
Therefore [ K 0(x) K 0(t)l10 =  EK0(x): K0(x i )1 = Ck0(x*): k o(x*P i )] [1 (0 (x ) -  : K0(9 1 )^ ] =
CK0(x) -  : K 0(trl1n0. Since EK0 (x): K0(t)i1n8 Uf0(x) -  : Ko(t)'iins is immediate from K 0 (t)
c K o (t) - , we have proved Q - (v/v 0

t )= 1  when x  is residually tr.
Consider next the general c a s e . There exists a finite algebraic extension K i  o f  K0

such that (after extending y arbitrarily to Ki(x)), K 1(x)/K 1 has a residually t r.  generator
(cf. [9 , Proof of 2.5]).

K i(t) Ki(x)

1C0 (t)  K0(x) .

Now use the m ultiplicative property o f  Q -  : Q - (Ki(x)/Ki(t))Q - (Ki(t)/K0(0)=Q - (K1(x)/
K0(x))Q - C-K0(x)/K0(t)). (Note th a t w e  have changed notation here from e. g . Q- (y/vot )
to Q- (K o (x)/Ko (t).) We have seen above that QA (K1(x)/K1(t))=1, so it remains to ob-
serve that Q^  (K1(t)/K0(t)) is independent o f  t  in if . B u t  this follows from the fact
that for any t, t ' in  2", the extensions Ko(OCK I (t) and K o (C )c K i ( r )  are  isomorphic as
valued field extensions. Q. E. D.

In view of 1.3 and 2.2, Lemma 2.4.2 yields also the

2.4.4. Corollary. If rk y 0 = 1 , then D ( t )  is constant on g  and =Dh.

A  second proof o f  Lemma 2.4 .2  may be obtained by replacing K 1 in  th e  above
proof by K 0

- . A s in the above proof, one must first verify that Q-(K0^(x)/K0-(t))=1,
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which by 1.1 follows from the

2.4.5. Proposition. L et K o C K o (t ) be a valued field extension w ith K o com plete and
t residually  tr. T hen Ko(t) -  is separable over K o (t).

Pro o f . T his was proved in the discrete rk 1 case  in  [5 , p. 48, Lemma 3 .1 ] and in
the  rk 1 case  in  [7 , p . 183, C or. 1] or [6, p. 18], for a detail proof) ;  these proofs carry
over to the  present case of arbitrary rk  valuations, provided one has the

Lemma. Same hypothesis as 2 .4 .5 . I f  K o '  is a finite algebraic extension of K o ,  then
K o ' ( t )  and K 0(t) -  are  linearly  disjoint overt K 0( t )  (o r, equivalently , [Ko'(t): K0(t)i-=
[K 0(t) : K o (tr]).

Pro o f . Since [Ko'(t) : K0(t)]=[K0' : Ko], it suffices to show :  if  so =1, si , •-• , s n, is  a
vector space basis of K 0 '/K0,  then so , ••• , s„ a re  linearly independent over K o (t ) '. By
[9, Cor. 1.6] one need only check that t satisfies the condition (inf/Koso + ••• +K os.) of
that reference. B ut t  is residually tr. and any element of value 0 which is a quotient
of elements o f K oso +  ••• +Kosn is residually algebraic, so the  cond ition  follows a s  in
[9 , Lemma to 2.1].

2.4.6. Remark. This second proof is o f special interest, since by iteration o f 2.4.5
it y ie ld s t h e  Theorem ( in  th e  terminology o f  2.7 below) : L et (Ko , vo)c(K , v) be a
residually tr. valued function field. Then Q- (v/vot )  is independent o f  residually tr.
basis t  in E . (See a lso  2.7.4.)

2.5. Example. Let (Ko, vo) be any non-trivally valued fie ld , and  le t v  be t h e  inf
extension (to K o (x)) o f  vo w . r. t. x. T h is  is the most elementary kind of residually tr.
e x te n s io n . F o r  an y  t i n  g ,  th e  residue fields corresponding to K o c K o (OCKo(x) are
ko c k o (t* )ck o (x*), and the value groups are  all equal. Thus, 1 = E = I= R = D = D - =Dh.,
and therefore D (t )= D (t )= 1  on min T .  What do D(t) and D ( t )  look  like o n  th e  rest
o f  g ?

F irst, D (t ) assum es all rational numbers 1 . T o  see  th is , choose a  in  K o such
that vo (a)>O; and let tnii n =axmd-xn. Then tin/„*=x*n, so R(tmin)-=n. Therefore D(t./.)
=E(t./.)//R(tm/n).=m/n.

Secondly, D ( t )= 1  on T  if  rk v 0 = 1, and assumes all rational numbers 1  if  rk vo
> 1 .  F o r, if  rk v0 = 1, we know by 1 .3  th at D- (t)Q - (v/vot )=D h = 1 ; a n d  this implies
D - ( t )= 1 .  O n the other hand, if rk v0 >1, then there exists a  valuation r in g  <Ko which
properly contains th e  valuation r in g  o f vo ; call th e  associated valuation uo ,  a n d  le t u
be th e  inf extension of uo w . r. t. x. Then u  and  v define th e  same topology on K 0(x)
and hence produce th e  same K o (x) - . Choose a in  K o such that u0(a)= 0 a n d  vo(a)>O,
and  le t tm,„=axm+xn. A s above, we see that th e  u-residue deg o f K o (O cK 0(x )  is m,
and this forces E - (t./n) (= LIC0(x) -  : Ko(tminr]) to  be in . S im ilarly, th e  v-residue deg
o f Ko(t)cK e(x) is n, so R (t./n )=n . Therefore D - (t./n)-=E - (t./0//R(t./.).=m/n.

2 .6 .  T h e  property (11) implies the more general uniqueness property o f th e  follow-
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ing  theorem ;  it is  in  this form that it plays a  key role in  th e  proof o f  th e  genus re-
duction inequality o f  [7 ]  (see also 2.7.5).

Theorem. L et (K o , vo) be a valued field and v1 , ••• , vn  be non-equivalent extensions
o f  vo to  K 0 (x) such that each v 1/v0 is  residually  tr. and has (U ) .  Then there exists t  in
K 0 (x)\K 0 such that v1 , ••• , vn  i s  a complete set of extensions o f  vo t  to K o (x).

T h e  proof is virtually th e  same as the  rk  1  proof (fo r 1-dim function fields) given
in  [16, p . 19 , C or. 1] (and which has antecedents in  the work of Lamprecht, Mathieu,
and M atignon) : for the convenience o f th e  reader we shall sketch it here.

P ro o f . By hypothesis there exist t 1 , • •• , tn in  K 0(x )  such that vi  extends vo t i  uni-
quely. Consider first th e  c a s e  th at v2(t 1)= 0 .  Since v i /vo t l  is unique, v2I Ko(ti)*vo t '.
T h is  implies there exists t1 ' in K0[t1] having the form t,' =a i t i + ••• ±an_1t1n - 1 -1-t1n such
that v2(t 1 ') >O, where n > 1  and a i = 0  o r  ai  is  a n  element o f  K 0 o f  v a lu e  O. L et fo r
th e  m o m e n t *  denote v1-residue ; since [ko(t i *) : k0(t1'*)]=deg o f  t , '*  in  ko (t,* )=n =
deg t 1 '  in  K 0 (t 1 )= [K 0 (t 1 ) :  K0(W)i, vo t i/vo t , '  is u n iq u e . Since v i /v o

t ,  is  a lso  unique, this
implies vi /vo t l/ i s  u n iq u e . N o te  also that if v 3(t 1)* 0 ,  then v,(t i ')*  O. B y rep lacing 1- 1

by t1 ' ,  we may therefore assume v2(t1)*0 ; more generally, by repeating this procedure,
we may assume vi (t j ) * 0  fo r  i * j .

Now let t1"=(1+t2 2 )/(1 - 1-  ti-Fti 2 ). A s  before, we see that vi /v o t l "  is unique ;  this
uses the  observation  that the v 1-residue deg of the extension K 0 (t 1" )C K 0 (t 1 )  = th e  deg
o f the e x te n s io n  = 2 . Also, fo r  i# 1 , v i (t 1)* 0  implies vi (t 1

1')-= 0  a n d  th e  v i -residue of
t 1 "  is  1. Thus, by replacing t ,  by t i " ,  we may further assume t 1 is  v i -residually equal
to 1 for a n d  i n  general, by repeating this procedure f o r  t h e  other ti , we may
assume ti  is  vi -residually equal to 1 fo r j * i .

C laim . t= t i ••• tn  sa tisfies t h e  theorem. Note first that all the v i contract to vot

on K 0 (t) since t is residually tr. for v i ; in fact, the v i -residue of t equals the v i -residue of
t i . Moreover, obviously CK0(x): K0(t)] I[K0(x): Ko(ti)]. Now fix i  and consider
v i /v o . L e t  / i (t)=index v i /v o a t  t, e tc ., a s  i n  2 . 1 .  T h en  b y  1 .4  [K0(x) : Ko(ti)] =
I i (t i )R i (t i )D i h(t i ) ,  since vi /v o t  is u n iq u e . B u t this expression equals I i (t)R i (t)D i h(t), for
/ i (  )  an d  D i h ( ) a re  independent o f choice o f residually t r.  element for v 1/v 0 (cf. 2 .2)
and R 1 (t 1 )  = R (t ) because the v i -residue of t equals the v i -residue of t i . Thus, [K 0 (x):
Ko(t)] 1/i(t)R 1(t)D 1 h(t), which by 1 .2  implies v i , ,  v 7,  a r e  th e  only extensions of
vo t  to K o (x). Q. E. D.

2.7. Remarks on residually tr. functian fields. Let ( K/K0 , v) be a valued function
field of dim n  with constant field K o , i. e. K  is a  finitely generated extension of K o  o f
deg o f  tr. n, y is a  valuation o f  K , and K o is algebraically closed in  K .  L et ko c k  and
Go cG  denote a s  before th e  residue fields and value groups fo r  K o c K .

T he previous definitions carry  over with self-evident minor changes to this situa-
t io n . For example, a  tr. basis t= (t i, ••• , tn )  of K/Ko is called residually  tr., o r  is said
to be a  residually  tr. basis, if v(t1)--0 (i=1, ••• , n) and t*= (t i *, ••• , t n * )  i s  a  t r .  basis
o f  k/ko ;  and (K / K 0 , y )  is  ca lled  a  residually  tr. function f ield if  there exists such a
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residually t r.  b a s is . A s before, we let g = it I t is a  residually t r .  basis of (K /K 0 , v)}
and min g = ft in  g I for a ll t ' in  g, K o ( t ) ] [ K :  K o ( r ) ] } .  T he  functions defined
in 2.1 can now be defined analogously for residually tr. function fields, e. g . / = [G  G o],
and for t in  g, R(t)=[k : k0(t*)], E h (t)=-[10: K0(t)h], and Dh(t)=Eh(t)//R(t).

2 .7 .1 . Kuhlmann and the second author [14] have independently proved that Dh(t)
is constant on if (hence can be denoted D h ). (Kuhlmann announces this result in  [4]).

2 .7 .2 . The set min if no longer seems to play for function fields the strong role
that it does in the simple t r .  c a se . Although E(t) is still constant on min if  by defini-
tion , th e  remaining functions o f  2 .1  need not b e .  It is not clear if  these functions
attain their infs on min i f  ;  in fact, in the case of D(t) and D ( t )  it is not clear if they
attain their infs anywhere on g ,  or even if their infs D and D -  a r e  rational numbers.

Moreover, we have seen that D=D -  in  the sim ple t r .  c a se . T h e  first author [8]
has p roved  tha t f o r  1-dim function fields (K /K 0 , y) with infinite residue field ko ,  the
equality D=D - Q-  holds (where Q-  is given by 2 .4 .6 ). Conjecture :  this equality holds
for arbitrary function fields.

A s for R, one can no longer expect to have R--- --- [k o ' :k o ], where ko ' is the algebraic
closure of ko in  k; fo r, if  this were the case, we would have k =k 0 /(t*) for some t  in
T, i. e . klk o w ould be ruled. Thus, [ ko ' : k o]  must now be considered a  separate in-
variant.

2 .7 .3 . It is easy to give examples of residually t r.  function fields w ith  (U )  such
that not every element of min i f  h a s  (U).

Example. L e t ko b e  a  fie ld  o f char*2  and z be an  indeterminate ;  le t K o =k o (z)
and yo b e  the z-adic valuation of k o (z)/k o (i. e . th e  valuation whose r in g  is  ko[z](z));
le t  K=K0(x, y ) , w here y2 =1±z(x 2 + 1 );  le t  vo '  be the inf extension of vo w . r . t . x;
and let v be an extension of yox to  K.

C laim : v o x  has two extensions to  K .  For (y-1)(y+1)-=z(x 2 + 1) has value 1 and
(y+1)—(y —1)=2 h a s  value  0  under any extension ;  so one of y -1 , y + 1  has value 1
and the other value 0 under the extension. Since these values are reversed under the
K0(x)-conjugation map y  a n d  its conjugate are  d istinct. T his also shows k=
ko(x*).

Say v (y -1 )= 1 . Then x is  in  min g , and w e have just seen that x does not have
(U ) .  On the other hand, (y -1 ) /z  is also in  min if  and does have (U ), since ((y-1)1z)*
=(x* 2 +1)/2 implies R((y-1)1z)=2.

If the same construction is used for the func tion  field defined by y2 =1-1-zx2 -1-zx3 ,
w e  d o  not know  if the  resulting (K /K 0 , y) has (U ) .  If  K o =k o (z) is replaced by Ko=
ko((z)), then by [7 , p . 197, Thm. 3] the extension has (U ); but w e  still d o  not know
an explicit t  in i f  w ith  (U).

2 .7 .4 . It was proved in  [7 , p . 191, Cor. 1 ] that D ( t )  is  constant on i f  for a func-
tion field (K/K0 , v) with y  of rk 1 ; the proof involves relating  D ( t )  to  a certain collec-
tion of vector spaces. A nother proof can now  be effected by putting together the
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equality D h(t)=D ^ (t)C (v Iv o t )  o f  1.3 (which holds in  rk 1), the theorem mentioned in
2. 7. 1 above that Dh(t) is constant on g , and the remark o f  2. 4 . 6  th at Q - (vIvo t )  is
constant on g .

2 .7 .5 . The theorem of 2.6 holds m ore generally f o r  1-dim function fields. The
only new fact needed is that  i s  constant on T  (c. f. 2-7-1) ; also, the  inequality
[Ko(x) : Ko(t)] E 71=1[1(0(x) : Ko(ti)] appearing in  th e  proof is no  longer obvious but
requires an argum ent as in [16, p . 20, Proof of Cor. 1].

2 .7 .6 . Let (K/K 0 , v) be a  1-dim residually tr. function field with constant field Ko,
and assume v  is of rk 1. P o lz in  [1 6 ] , by showing that th e  property (U )  is equivalent
to a certain "descent of Skolem" property, has proved :  (K/K 0 , v ) has (U )  if  either

i) vl Ko is  henselian,
ii) K/K o is  of genus 0 , or

iii) ko is algebraic over a  finite and y is discrete.
Moreover, there exist examples (of arbitrarily prescribed genus>0) which do not have (U).

It should be emphasized that all of these assertions are extremely difficult to prove
and rely heavily on previous results and on techniques from algebraic and rigid analytic
geometry ;  in  particu lar, i i i )  i s  an application of deep results of Rumely, Roquette,
Moret-Bailly, an d  S z p iro . O ur counterexample of 2.3.4 shows ii) no longer holds for
valuations of rk  >1, and an analogous example shows the same for iii). We conjecture
that i) holds for arbitrary valuations ;  we shall prove this fo r the  s im p le  t r .  case in
the next section.

3 .  The henselian theorem

We fix throughout section 3  the following notation : (K o , v o)  is a  valued field with
value group Go a n d  residue field ko, x  is an  indeterminate over Ko , and t is in Ko(x)NKo.

3 .1 .  Generalized in f extensions (cf. [11, p . 209, Prop. 4.3]).
Let r be an  element o f a  totally ordered group containing G o . T he in f  extension

of vo w . r . t . (t, r) is the valuation v  of K 0 (t) determined by :  f o r  every integer n 0
and all ao, ••• a . in  Ko,

v(a o -ka i t + • • • -kantn )= in fiv (a i) - kiT I i=1, , n} .

We denote the  in f extension of vo w. r. t. (t, r) by vo(tir)  ; if r=o, we drop the reference
to r and merely write vot .

The value group of vo
( '' 7 ) is generated by Go a n d  r. We shall only be concerned

here with the case that r is a torsion element mod Go ,  or equivalently, the case that r
is  in  Go

d ' .  If  r is of order m  mod Go , then there exists b in  K o such that vo (b )= m r=
vo (t'r ) (tm), and it is easily seen that the vo (t' 7 ) -residue o f tm/b i s  t r .  over ko a n d  th e
residue field of vo

( t i T) i s  ko((tm /b)*).
One usually checks that an extension of vo to K 0 (t) is some vo

( t'r ) by means of the

3.1.1. Proposition. L et r be an element of G o '  o f  order m  mod Go ,  let v  be an
ex tension of  vo t o  K o ( t ) ,  an d  le t  w  be a f urther extension o f  v  to Koa l g (t). Then the
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following are equivalent:
v =v 0 " 'n

ii) there exists b  in  K o of  v alue mr such that the v -residue o f  tm /b  is tr. ov er ko,
iii) there exists a in  K o alg of  value r such that the w -residue o f  t / a  is tr. ov er ko.

3 .2 .  Theorem . L et t(x ) be in K 0[x ]\K 0.
i) For every root r  in K o o f  t(x ) and every p in  Go

d , there  ex ists  a unique r=
r(r, , ) in  G od- such that v o

( x - r•r ) (t)= P. Moreover, if  ro =r(r, 0), then v o
( x - r'ro ) extends vot .

ii) I f  t(x)=a(x— r1)••.(x — rn), w here a ,  r i a r e  i n  K o, and T i=r(ri, 0), then v i = :
vo (x - ri•T o extends v o t, an d  every extension of v o t  to K 0(x ) is equivalent to some v i (i=1 ,
••• , n).

P ro o f . W e can w rite  t =ai(x — r)±•••-i-an(x — r)n, a i i n  K o . Define

(# ) r=m ax { (P— v 0(ai))/ili=1 , ••• , nl.

The equality y o (x - r in ( t )= p  is equivalent to: ird -y o (a i ) _P for a ll i  in  {1, •-• , n } a n d =
holds for some i ;  and this is equivalent to ( # ).

For the second assertion of i),  w e must show the yo (' ' 70) -residue of t  is  t r.  over
ko . Extend vo t o  a  valuation wo o f  Koal g. T h e n  wo ( x- rtro)  e x te n d s  yo

( x- r4 0) . Choose
b  in  Ke i g  su ch  th a t wo(b)= ro, and write

(# # )  t  = b a  1((x b)± • • • -1-bn a ,z((x —r)/ b)n

W e have yo (x - rJ0 ) ( t )= 0  i f  wo (x - r'r0) ( t )= 0  i f  w0(b1 a1) 0  for i  in  11, ••• , nl and =holds
for some i. N o w  ap p ly  th e  w0 (s - 7 . 4 0) -residue m a p  to  ( # # ) .  S ince  th e  residue  of
(x — r)/b  i s  t r .  o v e r  ke i g  i t  f o l lo w s  t h a t  the residue of t  is  a lso  t r.  over k o alg, and
hence tr. over ko.

For the proof of i i ) note first tha t y i ex tends yot b y  i). L et v  be any extension of
yot to  K o (x). By replacing y  by  an equ iva len t va lua tion , w e  m ay  assume the value
group of v  is contained in G o d .  L e t  w  be a  fu r th e r  extension of v  to  a  valuation of
K oaig

,
x

,
)  having value group G o

d ' ,  and let wo=w I Koa l g  . Since the value group of Koa l g

is God i v ,  there exists bi in  Koa l g  su ch  th a t w(x—r1)=w0(b 1). Write

t =(abi•-b,,Ex — ri)/bil•••[(x — r,E)/bn].

The y-residue of t  is  t r.  over ko because v  extends vo' ; and therefore the w-residue of
(x— r i )/b i  m ust be t r.  over k o fo r  some i. T h e n  w = w 0

(x-r i , wo(bi)) fo r  t h a t  i. Hence
v = y o

( x- ri wo (b i ) ) . Finally, since y (t)= 0 , the  uniqueness property of i )  yields w 0(b1) = î 1.
Q. E. D.

The question remains as to  how  m any  of the  ex tensions v i o f  vo'  in  3.2-ii) are
equivalent; w e shall settle this later (in 3.6) since the result is not used below.

3.3. Theorem . L et (Ko, yo) be a henselian v alued f ield; let x  b e  an  indeterminate;
let t =f (x )m /b , where f ( x )  is irreducible of  d eg > 0  in  K 0 [x ],0 * b  in K o, and m _ 1 ; and
let v o t  be the in f  extension of v o w . r . t .  t .  Then the valuation vot of K 0(t) extends uniquely
(up to equivalence) to a valuation o f  Ko(x).
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Pro o f . By replacing our valuations by equivalent ones w hen necessary, w e m ay
assume a ll our values lie in a fixed Godiv.

Since vo i s  henselian, vo h a s  a unique extension wo t o  Ko a l g , a n d  th e n  wo  i s  the
unique extension of v o '  to Koa l g (t).

If r 1, ••• , rn a re  th e  roots (in Koa l g )  Of f ( x )  a n d  w i = : wo ( x- riJo(i=1, •-• , n) are
the extensions of w o ' to K o ai g(x) given by 3.2-ii), then every  extension of w o '  to K 0 (x)
is  one of these  wi . T h u s, to  p ro v e  vot has a unique extension to  K o (x ) , it suffices to
prove that the  wi a ll re s tr ic t  to  the same valuation of K o (x).

( K oalg(t ) ,  wo' )  ( Koa l g( x ) ,  w i)

(Ko(t), vot
)    K0(x)

W e shall show w, and w, both  restric t to  the same valuation on K o ( x ) .  Since f (x )
is  irreduc ib le  in  K o[x ], there  exists a  K 0 -automorphism a  of Ko a l g  w h ich  takes r, to
7-2. Extend a  to  an  automorphism of K 0 ( x )  b y  d e f in in g  r ( x ) = x .  Since w 0/v0 i s
unique, a  i s  a n  isom etry of (K 0a 1 g

,  WO onto ( K 0 ,  (i. c . w 0=w 0a), and it follows
th a t r  is  an  isometry of (K o alg(x), wo ( x- r iJo ) o n to  (K o al g(x), wo 2' 7 0 ). But K 0( x )  is
left elem ent-w ise fixed under r ,  so  w i = w o

( s- ri'n ) a n d  w o c x - -7 -2 ,T 1 ) m u st restric t to  the
same valuation on K o (x).

T h u s, it  rem a in s  to  p ro v e  w 2 = w 0 c x - r 2 » r 1 ) ,  o r  equivalently, 11 = 12 . T h is  follows
from  the uniqueness assertion of 3.2-i) since w o c x - , 2 , 7 1 ) ( 0 , w o c s - r 1 , r 1 ) ( t ) = 0  a n d  w2(t)=0.

Q. E. D.

3.3.1. Corollary. A  residually  tr. extension (K o , v o )C (K o (x), v) with (K o , vo) henselian
has property (U ) .  More precisely, there exists a residually  tr. elem ent t  in  K o [x ] of the
f orm  t =f (x )m /b, where f (x )  is irreducible of  deg>0 in  K o[x ], 0*b is in  K o , and m s.1;
and any  such residually  tr. t  has (U).

Pro o f . Let to be  any  residually  tr. element of K o(x), and w rite  t0= f 1 . - f q /g c - gp,
where f i , g i  a re  irreducible in  K o [ x ] .  Since [G : Go]  is  f in ite , th e re  ex is ts  an  integer
2/2 1  such  tha t a ll the  f i m and g m  have values in Go. Therefore there exist bi , c i  in
K o s u c h  t h a t  v (f1m /bi)=0 a n d  v(g i mic1 )= 0 .  Then th e  equality t o m, --- -(c i .•.cp/bc-b,)
(f1 m ib1).•.(f q

m /b0 /(g i 7 ici).••(gpm /cp) im plies som e f i m/b i o r  g i m/c i  is  re s id u a lly  tr.
Now apply 3.3.

3.3.2. Corollary. L et (K o , v o ) be henselian, and let v 1 , ••• , v n  be a set of non-equivalent
extensions of v o to  K 0(x ) such that each v i /v o is residually  tr. T hen there ex ists a  t  in
K 0(x )\K 0 s u c h  th a t  v i , ,  v „  is a  complete set of extensions o f  vot to Ko(x) (where vot

is the in f  extension of vo w .r.t .  t ) .

Pro o f . Apply 3.3.1 and 2.6.

3.4. Remark. I f  (K o , v0)C(K0(x), v )  i s  a  residually  t r .  extension w ith  (K o , yo)
henselian, then  E =IR D h  b y  2.3.2 and 3.3.1. It w as conjectured in  [12] that E =IR  if
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Vo i s  henselian and of residue char 0 ; since residue char 0 implies D"=1 (cf. 1.2) this
now follows.

The equality E-=IRDh (or equivalently, th e  property (U)) also  holds if  rk yo=1 ;
this w as proved in  [9 , Cor. 2.4.1] by using completions. It is also possible to derive
this rk 1 case from the henselian case by observing that the extensions K0c K 0(x) and
K o hcK o h(x) have the same E, I , R , D h . This is true for I  and R  since passing to the
henselization does not change the residue field or value group, and it  is  tru e  fo r Dh
by the definition of Dh and 2 .2 .  A s for E , in the rk 1 case K0 i s  d en se  in  K o h , and
a s  in  2.2.2 this im plies the extension deg of K 0c K 0(x) equals the extension deg of
Kohc Koh(x ).

3 .5 .  Even if the extension (K o , v o)c (K o(x), y) has (U ), i t  i s  n o t  possible without
the  henselian hypothesis to conclude every residually t r.  t  of the form t=f (x )m /b (as
in 3.3.1) has (U ) . Consider the following discrete rk 1 example : Let y be an  indeter-
minate over a field k 0 , le t  yo b e  the y-adic valuation of Ko =k o( y )  over ko ,  and  le t y
b e  th e  in f  extension (to K o (x )) o f  yo w . r . t. x. Then t =y x 2 --Fx+1 is residually tr.,
since t*= x*-F1. But I=- R (t)=1 and E(t)-=2, and Dh=1 since yo is  d isc re te  rk 1 ; so
E(t)#/R(t)Dh, a n d  therefore (by 2.3.1) t does not have (U), or, in  other words, vot
does not extend uniquely to K,,(x).

One can still ask, however, if an extension w ith (U) necessarily contains at least
one residually t r.  t  of the form t =f (x )m /b having ( U ) .  We shall show next that this
is so.

3.5.1. Theorem. I f  a  residually  tr. extension (Ko , vo)C(Ko(x), v) has (U), then K o(x)
contains a residually  tr. elem ent t w ith (U) of  the f o rm  t=f (x )m /b , w here  f (x ) is  ir-
reducible in K o[x ]\K 0,0#b is in K o , an d  m 1 .

P ro o f . W e need th e  following lemma from [10] (it would take us too fa r  afield
to give its proof here):

Lemma (cf. [1 0 ] ) .  Min if  contains an element t of  the form  t=f (x )n/g(x ) w ith the
following proPerties: f (x) is irreducible in K a]; g (x ) is  in K o [x] and degg(x)<deg f (x );
n ._ 1 ; an d  there ex ists a n  integer q._1 an d  an  elem ent b#0 in K o such that fnq/b is
residually  tr. and gq/b is residually alg.

We claim the residually t r.  element to =f -nq/b is the element of the theorem. Since
t  is  in min if , t  has (U) by 2.3.2 ; and since deg=residue deg for the extension  K 0(t)

c

Ko(t), tq also has (U ) . Therefere b y  2.3.1 E(P)=IR (P)D h• B u t E(tq)=E(t o ), a n d  we
shall show  below that R(tg)=R(t o ) ;  so it follows that E(t o)=IR (t o)Dh, which by 2.3.1
implies t o h a s  (U).

Thus, it only remains to prove R(tq)=R(t o ). Since t*q=(b/gg)*t o * and (gq/b)* is  in
ko' (=algebraic closure of ko in k ), we have k0V*9-=k0V0*). Then R (t )= [k  :  ko(t* q )]=
Ek : ko' (t*g)i[ko' (t*g) : k o(t*b)]=[k : k Ato*)][k (At 0*) : ko(to*)]=Ek : k 0 o*)i= R(to). Q. E. D.

3 .6 .  Let (Ko , yo) be a  valued fie ld , le t x  b e  a n  indeterminate, a n d  le t  t  be an
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element of K o [x ]\ K o such that t=a(x— r1) .•.(x—r.), where a, r i  are in Ko.
We have seen in 3.2 that there exists a unique ri in  God' such that vo (x - ri' 7 0 (0=--

0, and that if vi = : vo ( x- ri'ri), then each v i extends vo  and every extension of vo '  to
K 0 (x ) is equivalent to one of these vi 's. The following theorem completes the descrip-
tions of these extensions of vo '  to K o (x).

3.6.1. Theorem (continuation of 3 .2 ). L et Z i = {d in  Koivo(d—ri)}i .  e .  .0 i  is  the
disc of  center r i  and radius ri . Then vi =v i  i f  .0i = 2 i . Moreover, the index  of  vi/vo t

(=order o f  ri  mod Go ) tim es the residue deg o f  vi lv o t equals the number o f  r g 's, counted
w ith mutiplicity, in

P ro o f . Since the theorem is trivial if n = 1 , let us assume n2 , and  then, for
ease of reading, that i=1  and j = 2 .  The first assertion of the theorem follows from the

3.6.2. L em m a . The following are equivalent:
vi=v2.

ii) v0(r1—r2)---71=72.
iii) 2 1= g 2.
iv) .01r122“25.

Proof. By definition o f v2 , the equality x—r1=(x—r2)—(r 1 —r2) implies
v2(x—r1)=-- inf{72, Y0(r1—r2)}. Since v1 -=v2 , then 71=v1(x — r1)=Y2(x — r1)=inf {72, Y0(r1 — r2)}.
Therefore, 71--<72 and 7 1 v0(r1—r2); and by symmetry,

By extending v o to  Koa l g ,  w e are reduced to considering the case that
Ti, 7 2  are in Go . Let bE K oa'g be such that v0(b)=71=72. By applying the v i -residue
map to the expression (x—r2)/b=(x—r1)/1)—(r2—r1)/b, we conclude that (x—r 2 )/b is
residually t r.  for v1. By 3.1.1 this implies v i -=v0

( x- r2' 7 1) . But r ,= r 2 , so v o (x-271)= v o .
Immediate.

We may suppose d is in z1n22 and 72--<Ti. Then v0(r 2 —r 1) inf{v 0(r 2 —d),
v o (r i —d)} In, 711=-72. It remains to show 71=12.

By definition of y1

vi(x—r;)=inf{vi(x—ri), v0(r1—r 1 )} =inf{1, v0(r1—r 1 )}.

v2(x—r 5 )= in f{7 2 , v0(r2— r5)}.

But v0(r2—r i )--inf{v0(r1 — r;), Y0(r2—r1)}, and =  holds if vo (r 1—ri)#v0(r2—r1). Since
v0(r2—r1)->-72, it follows from (2) that

(3) v2(x—ri)=inf {72, v0(r1—r1)}.

Therefore by (1) and (3) 72 71 implies

(4) v  x — v2( x .

By taking j = 1  in (2), (4), we have
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(5) Ti=vi(x—ri)>=v2(x—ri)=72.

By (4) y1(t) v2(t) ; and by (5), if 7 l> r 2 ,  then v1(t)>Y2(0. Since by hypothesis v,(t)=
y2(0 , we therefore have 71= 12. Q. E. D.

W e n o w  tu rn  to  t h e  proof of the second assertion of 3.6.1. First consider the
case that r, is  in  Go . Then there exists b  i n  K o s u c h  th a t  v1(x—r1)=v1(b)=T1. Let
t i =(x—r i ) / b .  T h e  residue field extension for  v 1/v0 t i s  ko(ti*)/ko(t*), so it remains to
verify that Eko(ti*): ko(t*)j=m, th e  number o f r i  i n  2 , .  T h is  will follow from the

C laim : t*  is a polynomial of deg m in  ko [t,*]. We may suppose r„ ••• , r in, are in
21 and r . + 1, •-• , 1' 7, a re  not in  2 1. Write

(# )  t= a [ (x — r1)] [(x — r i) — (r2 — ri)1•••[(x — r i) — (rn — r i) ]

=Cab m (rm+i — r1)•••(rn — r1)][1.1][ti — (r2— r,)/b]-•

[ti — Crin— r1VbiC((x — ri)/(rm+i — ri)) - 11. . . [((x — ri)/(rn — r1))-1].

Since v 0 (r 1 —r 1 ) _7 1 i f  r i  is in 2,, v0((ri—r1)/b)>=0 for j=1, ••• , m, and v1((x — r1)/(r5 ---- r1))
> 0  for j=m +1, ••• , n . T h e  claim now follows by applying th e  v 1-residue map to the
expression (#).

Now consider the case that r, is not in  Go ,  and  le t e  b e t h e  order o f  7', mod Go
B y  3.1 t h e  residue f ie ld  o f  y , is now ko(C(x— ri) e/b1*), where b  is  a n  element o f  Ko
such that v0(b)=01.

Note that yo h as a unique extension (of index e )  to K 0(1)'/e)=  : K o '  and y, a unique
extension (of residue deg e )  to  K o '(x):

K ( t ) K ( x )

K0 (t)

 

Ko(x

 

k0(C (x— ri)/b1*)

ko(t*)  ko([(x — r,)e / bi*)= k

By applying th e  previous case to the  extension K o ' K o ' (x ) ,  we conclude that t*  is of
deg m in  ko([(x—r i )/ b l i e ] * ) .  Therefore m = e[k  : k o ( t* ) ] . Q. E. D.

3.6.3. Corollary. I f  t =a(x— r 1) ••.(x—r 7,), a, r i  i n  K o , n 1 , th e n  e v e ry  extension v
of v o t  to K 0 (x ) has defh(v/v 0 ') =1.

P ro o f .  Le v 1, ••• , v„, be a  complete se t of ex tensions of v o ' to  K o (x). B y  3.6.1,
n=Elili[index(vi/v o

t )][residue deg(v i /v0 9]. B u t  n = [K : K 0(0 ],  so by 1.2 this implies
defh(v 1/v0 ') =1 (1=1, ••• , m). Q.E.D.

deg m
ko(t*)
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3.6.4. Example. L et K 0 =k 0 (z ); le t y, be th e  z-adic valuation o f  k 0 (z)/k 0 ; an d  le t
t=(1/z 5 )(x—r1 )(x—r2 )(x—r3 ), w here r 1 = 0 , r 2 =-- z ,  a n d  r 3 =z 3 . Then the extensions of
vo'  to K 0(x ) a re  y i

, v 0 c x-r 1 ,2) , v2=v0(x-r2,3), and y2 B y  3.6.1, v i = --v3 # v 2 ; and,
since the indices are all 1, th e  residue deg o f y i /vo t is  2 and  tha t of v 2/v0t is  1.
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Added in Proof :

Answers to conjectures made in 2.7 are given in
B. W. Green, M. Matignon, F. Pop, On valued function fieds I ,  Manuscr. M ath . 65

(1989), 257-276.
, On valued function fields II, J. reine angew. Math.

392 (1990).


