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On T. Petrie's problem concerning homology planes

By

Toru SUGIE

Introduction

Let X be  a  smooth algebraic surface defined  over th e  com plex num ber field C.
W e call X  a  homology plane if the homology groups Hi (X ; Z ) vanish for 1 i 4 .  I f
X  is topologically contractible, then X  is  a  homology plane.

This paper a rose  from  th e  follow ing question  of tom  Dieck a n d  Petrie w hich
evolved from  their study of a configuration of curves leading to a  homology plane.

Problem. Let F and G be irreducible curves in P 2 such that
i) deg F=m and deg G=m+1
ii) F  and G are topologically  isomorphic to P'.

iii) F and G meet in two smooth points.
Assume that an affine surface which is obtained from P 2 by deleting these curves via the
construction generaliz ing the Ramanujam's is a homology plane (See § 2 for the explicit
construction). Does this imply m=2?

W e recall some notations and results concerning homology p lanes. Embed X  into
a  smooth projective surface, say  V , as a  Zariski open set so  tha t the  boundary divisor
D :=V — X consists o f  sm o o th  ra tio n a l c u rv e s , w ith  o n ly  norm al crossings a s  its
singularity . D efine the Kodaira dimension x(X ) of X as follows :

—00i f  n(D+Kv )i =  0  for a n y  n >0

s u p  d im  7, C D + K  0 1 (V) otherwise
n>o

w here Kv  i s  the canonical divisor of V . K(X) takes the value 00, 0, 1, 2. The above
definition does not depend on the choice of an open em bedding X  in to  a  smooth pro-
jective surface V  and smooth algebraic surfaces are classified into four classes accord-
in g  to  the value x(X).

The affine plane C 2 is topologically contractible w ith ic(C ')= —(x), and th is  is  the
unique topologically contractible surface, even the unique homology plane whose Kodaira
dimension is —o0.

In  [R ], Ramanujam exhibited an example o f  a  sm ooth contractible affine surface
R, whose Kodaira dimension is  in fac t tw o. R ecently  Gurjar-Miyanishi [G -M ] proved
the  following :

( 1 )  There are no homology planes of Kodaira dimension 0.

Received May 26, 1988



318 Toru Sugie

(2) There exist an  infinite number of distinct smooth affine contractible surfaces
of Kodaira dimension 1 and any homology plane of Kodaira dimension 1 is one of them.

(3) There exists a  smooth affine contractible surface G-M  of Kodaira dimension
two other than Ramanujam's.

I t  is  n a tu ra l to  a sk  w h e th e r  o r  n o t th e re  a re  other topologically contractible
surfaces or homology planes of Kodaira dimension tw o. W e rem ark  that a  homology
plane is a  rational affine surface by Gurjar-Shastri [G-S].

In  this paper we shall consider a  slightly general form of tom Dieck-Petrie's pro-
blem. Putting deg F = m  and deg G=n, w e trea t th e  problem f o r  a n  arbitrary pair
(m , n ) . Here we may assume

In § 1 we reproduce th e  proof o f  a  slightly generalized version of the inequality
in Gurjar-Shastri. In § 2 we shall generalize the example of Ramanujam and using the
inequality in § 1 we shall prove the following

Theorem. If the obtained surface is a homology plane whose Kodaira dimension is
greater than or equal to zero, then m  is less than or equal to three.

In § 3 we shall consider remaining cases m =3, 2, 1 separately. Especially when
m =2, w e get tw o new  configulations of curves which lead to contractible surfaces,
but obtained surfaces are isomorphic to the  example in Gurjar-Miyanishi. F inally  in
§ 4 we shall generalize the example of Gurjar-Miyanishi.

Jointly with Prof. M. Miyanishi, we constructed Infinitely many topologocally con-
tractible surfaces by looking at the above case (m, n) , (1, n). We include th e  results
as an appendix at the end of the article.

The author w ould like to thank Professor Ted Petrie a n d  Professor Masayoshi
Miyanishi who initiated him to this problem and gave him many useful suggestions.

§ 1. An auxiliary inequality

Let V  be a  smooth projective surface and let D be a  reduced effective divisor on
V .  We assume that each irreducible component of D  is smooth and D has only normal
crossings a s  its  s ingu la rity . L e t Kv  denote the canonical divisor of V .  When some
multiple of K v + D  i s  effective, K v + D  has Zariski decomposition K v +D =P-FN  in
Pic(X )0Q where P and N  satisfy the following properties ;

(Z1) P  is numerically effective, i. e., (P • C) is non-negative for any curve C in X.
(Z2) N  is effective.
(Z3) PN=---0.
(Z4) The intersection matrix of the curves in the support of N  is negative definite.
With the above notations, Miyaoka proved that if  K v +D  has Zariski decomposition,

the following inequality holds :

1 1e(V )— e(D )--
3

(K v +D) 2 ± -
12

N 2 0

where e(V ) denotes the topological euler characterisic. For the Zariski decomposition
and Miyaoka's inequality see [F] and [M ].
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Gurjar and Shastri used some inequality derived from Miyaoka's one to prove that
a  complex homology 2-cell, which is in our terminology a  homology plane, is rational.
They proved the  inequality assuming that V  is not ra tio n a l. We show that the given
argument in Gurjar-Shastri applies for rational su rfa c e s  a s  w e ll. We will reproduce
here their proof of the inequality in the case of rational surfaces to fix the notation.

Now we assume that the  following four conditions hold.
( j )  V  is  a  smooth rational projective surface defined over C.
(ii) Each irreducible component of D  is isomorphic to P 1 a n d  dual graph of D

is a  tree, i. e., D  is simply connected.
(iii) D  is minimal, i. e., any ( -1 ) curve in D meets at least three other components.
( iv )  K(V — O.
Let b = b (D ) denote th e  i-th  betti number of D  and Ai (V ) denote the i-th betti

number of V .  Since V  is rational, we have the folowing equalities :

e(V)=192(V)-1-2,

e(D)=bo — b1- Fb2,

K 2 =10 - 2 (V),

which follows from Noether's formula and

E v •D±D 2 =-2(b 1 —b0 ),

which follows from the  adjunction form ula . Thus the  inequality yields

(1.2) 4/32+ b1 —bo —4-3b 2 —K v • D -E -
1

N 2 0 .
4

First we have the following

Lemma 1 .1 . N 2 <O.

P roo f. Since the dual graph of D  is  a  tree, D  contains a  component Do such that
D o •(D—Do )_.<1  a n d  D o is isomorphic to P ' .  Take Do to be a terminal component of
the tree. Therefore we have

(K v +D•D 0 ) . - 1 .

By the property of the Zariski decomposition of Kv -FD, Do is  a  componet of N .  This
implies N 2 <0.

We consider a  sequence of contractions of ( - 1 )  curves r : V -÷V ", where V " is a
relatively minimal rational surface, i. e., either V": P 2 o r V " is a minimal ruled surface
Ea(a Though there may be different models V " obtained from V  a s  above, we
fix V " once for all.

Write r=pm.y0.-10••••Ti where each yoi  is  a  contrac tion  of ( - 1 )  curve E .  P u t
00=idv and 0,=yD,.•••. 1 fo r  j 1. Now we can rearrange ço,'s and we may assume
that if  ri=99.,°•••oçoi, then the  following holds.

a )  Every component of D' , 7r1(D) is still smooth.
a )  F o r  each j>n i ,(E i •C ) :2  for at least one component C  o f  01 _,(D) e., any
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contraction of E,(j>n,) results a  singular irreducible component in the image 0.,(D).
Put V '= z i (V), 7r2=wnio•-•°q).,+, : V'-+V". Let e, be the  exceptional locus for

j. e., si  i s  the union of irreducible curves on V  contracted to  points on V ' and let s2
be the exceptional locus of 7r2 o n  V '.  W e denotes the components of e l b y  { L1}1515711

and those of e2 b y  IM.fl.- -15i5n2 , where m=n 1 d-n2 i s  the num ber of contractions in  r.
The M;'s are curves on V ' and we denote the proper transform  of M; on V  b y  M .

Define for each ( -1 ) curve E,, the branching number  j3(E 1 ) by

(E
 )= {(0,_1(D)— E • E,) if E1 c0 1 _i (D)

R2=U{L1IP(L1)=2}, R3=- U{Lil P(Li)=3}
R4 =U {L 1 1 13(Li)>=4} , S=--.62n7c1(D),

r i =b 2 (R 6 )=the number of the irreducible components in  Rz,
e l = n1—b2(e1nD),

E (M; 2 +2).
inEs

L e t D=U131,- ,  r i (D )=JD 's ,  a n d  ir(D)=UD'I b e  th e  irreducible decomposition o f  D,
r i(p ) and r(D ) respec tive ly . D, and .1-)  will denote the proper transform  of 13,7 on  V
and V ' respectively and D, will denote the proper transform  of D; on V.

Let mi ,i  b e  the multiplicity of a  singular point P 2 , 1 on D;' including infinitely near
singular points on D'1'. W e  d e fin e

r=

2=ED7 • Kv. •

Here K IT, , ifv. denote the canonical divisors of V ', V " respectively.
For let now T s, con trac t 02 _,1(L 5 )  w h e re  L,cs i n R , f o r  som e i=2, 3, 4

i. e., L, is  a  proper transform of E .  T h e n  w e  have

E((0.,(Dr)) 2 +2) if L .4 D—i
(1.3) (((fr.,-.1(D r))2+2 ).{

((çbj (D r )) 2 +2)—i+1 if L ,cD

H ere w e take (0,-,(Dr)) 2 +2=0 (resp. (0 3 (Dr))2 +2=0) if Oi_i(Dr)(resp. 0,(D,)) is a point.
By the adjunction formula, w e have

D=E(M4-2)=E(00(Dr)) 2 +2)
and

• r1(D)=E(D; 2 +2)=E((r1(D8)) 2 +2)=ENn 1(Dr)) 2 +2) .

(01 -1(D). E.) if E i 00,,(D ).

Note that each component L, of si  is  a proper transform of a ( -1 ) curve E, on 0,_,(V),
w hich is uniquely determ ined. W e put 19(L1 )= 13(E1 ).

H ere w e assume th a t  the following condition (V ) holds.
(V ) 6, does not contain a  curve L i  w ith  p(L 1 )<1.
W e shall introduce some more notations:
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Now applying (1.3), repeatedly for 3 =1, 2, ••• , n 1 we obtain
—Kv •D<— K r •r i (D )-2 r 2 -37- 3-4r,d-b 3(e i nD )

and noting the  fact that n1=r2-Fr3±r4,
—Kv •D_<—Kv , • r1(D)--7- 3 - 2 r 4 — n1— e1.

On the other hand, by the  genus formula, we have

(D7 2 +2)+Mi•Kv--- = m8,,(7228,,-1)

and since D ; is the  smooth model of D;',

D;2 +2 _ ,<D r+2 — n e , 42 = — p n tp ,

Recalling the definition of r  and 2 we get

E(DP+2)s- - -r -2 n 2 - 2 .

Since
•71-1(D)=E(D2+2)-=E(DP+2)+ E (M"+2),

M'ES

we have
—Kv •D_< —2—r —a—n2—n1—r3-2r4—e1.

Now applying (1.2), we obtain
1() .4t32 —b0 -3b 2 -4-2—r—a—n 2 —n 1 —r3 - 2 r 4 —e 1 +  ,71 1V2 .

All the quantities in  this inequality are integers except possibly (1/4)N 2 . N ote that
132(V')=192(17 )— n1— n2=1 or 2 because V "  is isomorphic to P 2 or X .  We can rewrite
the above inequality and obtain the  following

Proposition 1 .2 .  Let V  be a  sm ooth rational projective surface and let D b e  a
reduced effective div isor o n  V .  W e assum e that the conditions ( i )  to (y ) ho ld . Then
under the above notations we have the following inequality:

{ — 4 i f  V" - - . P 2

— 3 i f  V" -..'E a

Remark. We can prove the above prposition without the condition (V).

§  2 . A  generalization o f Ramanujam's example

In this section we shall apply the  inequality (1.4) to  th e  special case . N o te  that
quantities a, r , r 3 , r , can be calculated locally on V".

Let F and G  be curves on P 2 . We assume that the following conditions hold.
A  1 ) d e g F = m , deg G =n  and m_<n.
A-2) F and G are topologically isomorphic to .13 '.
A-3) F  and G  meet each other in two smooth p o in ts . P u t F n G H R , SI.
Since F and G  are topologically isomorphic to 13 1 ,  they have only cuspidal singu-

larities. N am ely i f  i :  P - +F  i s  the  normalization, and  if P S in g (F ) , v ( P )  consists
of a single point.

(1.4) 3(b2—i32)+60-1-2d-e1d-a-Fr-1-r3+2r4
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Let r 2 : V'--43 2  b e  the shortest sequences of blowing-ups at singular po in ts of F
and G  infinitely near singular points such that the proper transforms of F  and G on
V ' become nonsingular. Let V—W.' be the shortest sequences of blowingups such
th a t  th e  to ta l transform (71-

2 .if 1 )- i(FU G ) i s  a  divisor with normal c ro o sin g s. Since
( re i -c1 )- 1 (FU G ) contains a  lo o p , w e  fu rth e r  b lo w  u p  V  arbitrarily m any tim es at
infinitely near p o in ts  o f  o n e  o f  R  or S .  Let r o V — >V  be the composition of such
blowing-ups and put r 1=iio2r o . L e t  E  be (- 1 )  curve obtained by the last blowing-up
in  r o .  Put 7T=2T2 or 1 and D =S upp(r - 1 (FUG)— E). W e  m a y  assume that D is minimal,
i. e . ,  any (- 1 )  curve in  D  meet at least 3  other components. This assumption restricts
th e  sequence o f  blowing-ups r o P u t  X =V — D . T h e n  o u r  question is  the
following :

When does X  become a contractible surface of i(X )=2 ?

Note that this construction is a  generalization of Ramanujam's and w e  can  show
that the example of Gurjar-Miyanishi, which was originally constructed from E 2 , can
be obtained also in this way.

Let P  be a  singular point of F  o r G, say F .  Define do a n d  d , by

d o = m axi(F , A ; P),
A

d i =M U ltp  F,

where A  is a  curve on P 2 passing through P  and sm ooth  at P .  Since F  is singular
a t  P ,  th is quan tity  do is uniquely determined (and bounded of course). Indeed, we
consider the shortest sequence of blowing-ups with centers at P  and its infinitely near
points such that the proper transform of F  is smooth over P .  Then as the exceptional
curves considerd from the beginning, there appear several (- 2 )  curves a n d  th e n  a
curve with self-intersection multiplicity < - 2 .  If  there are p i  curves with self-intersec-
tion multiplicity (- 2 ) ,  th e n  d0=p1d1+d2 w here d ,  is the multiplicity of the proper
transform of F  after p i  blowing-ups. W e have di<do.

Find integers d2, ••• , d a and p i ,  • • • ,  p a  by the following Euclidean algorithm ;

do=pid,+d2 o<d 2 <d i

d, , p,d2+d, 0<d 3 <d2

da _2 =p a _,d„_,±d c, 0<d a <d a _1

da_,=pada•

Let n 2 (P )  denote the local contribution of P  to  th e  quantity  n ,  and  s o  o n . P u t
.3F(P) --=a(P)+r(P)-Fr3(P)+21 - 4 ( P ) .  W e w ant to calculate these quantities. W e w ill
consider four cases separately.

Case I) d a =1 (a 3 )  In this case the singular point P  can be resolved after blow-
ing up p i +p 2 -1- ••• +p a -, times successiviely. Tne exceptional locus 7rV (P) is expressed



—2 —2 —(P3+2) —2 —2 —(Pa-g+2) —2 —2 (Pa-i+1)
o —  o o oo o o

P2- 1 P . - 2 - 1

p , - 1 P a - 1
o - - - - - 0 0 00 0 0

—2 —2 —(P2+2) —2 —2 —(P.2- 2 +2) —2

—2 —2 — (p3+ 2) —2 —2 — (p a_2+ 2) —2

a : even

—2

1
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in terms of the dual graph as follows;

Pa-1 —

—1

P2 —  1

a : odd

PI -1
0 0 0 -0 0

Pa -2
00—

—2 —2 —(P2+2) —2 —2 — (Pa-3+2) —2 —2 —(p._1+1)

The proper transform 7 r( F )  and the exceptional locus irV(P) intersect as follows;

where E  is the (-1 ) curve obtained by the last blowing-up and E ' is the curve with
self intersection number — ( p a _ ,+ i )  in the dual graph. rc (F )  intersects E ' transversally
and i( r(F ) , E ; P ')=d a- i .

Now we can calculate the quantities n 2 (P), 6 (P) and so on as follows;

n2(P)-=P1+ ••• - FP.-1,

a(P)=n 2 (P)-1 +(p 2 + • • •  + / ) .- 1 -1 )

= P i+ 2 (p 2 +  • • •

r(P)=P1 d 1 +P2 d 2 + —  +Pa-ida-2 - 2(Pi+ +Pa-1)

=do+d1— (P.+1)-2(Pi+ •••

ra(P)=-Pa, r4(P)=-0.

We obtain

3F(P)=do-Fdl— P1-3
and
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3F (P) n2(P)

=P1 c l1 +P2 d 2 + +Pa-id a-i - 2P1— (P2 - 1- ± P a - - 1 ) - 2+P.

=(d1-2)P1-1-(d2-1)P2+ ..• ± (da-1-1)Pa-i-Fda, - 2

> 0 ,

since di -2 fo r 2_<i a —1, d 1 3 and

Case II) d a =1  ( a = 2 )  In  this c a s e  th e  singular p o in t  P  c a n  b e  resolvad after
blowing up  p ,  times successively. T he  exceptional locus n i '( P )  is expressed in  terms
of the  dual graph a s  follows;

—2 —2 —2 —2 —1
o o o   o o

E
p i - 1

T he  proper transform n q F )  and  the  exceptional locus 7rV(P) intersect a s  follows ;

where E  is  the  ( - 1 )  curve obtained by th e  last blowing-up a n d  i( r(F ) , E ;
We obtain the  quantities n2(P), a(P) and so o n  as  follows;

n2(P)=1;11,

a(P)=n2(P) - 1 = p i-1 ,

r(P)=Pidi - 2Pi,

r 2(P)= di -1 , r 4 (P)=0 ,
whence

3F(P)=Picli+ d1—pi-2=d0-Fd 0—Pi - 3
and

6F(P)—n2(P)=(Pi+1)(di - 2) 0,

since d 1 - 2 and

Case III) d a >1 r ,  comprises a t le a s t the  com position  p  o f  p ,+  • • •  +pa
times blowing-ups a n d  th e  exceptional locus p - L(P) is expressed in  terms of the  dual
graph a s  follows;
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—2 — 2 — (P2+2) —2 — 2  — ( p ._ ,+ 2 )  —2 —2
o— o

P2 1
a: even

o— o
—2 —(p2+2) —2 —2 — (P 1-2+2) —2—2

—2 —2 — (p2+2) —2 —2 - - (Pa-2+2) —2
o— o

Pz—
 1

a: odd

—2

PI -1
0-- o o o o o o

—2 —2 —(p2+2) —2 — 2 — (P -1 -2 ) — 2

The proper transform p '( F )  and the exceptional locus p - '( P )  intersects as follows;

where E  is a  ( -1 )  curve obtained by th e  last blowing-up and i(E , p '(F ) ; P ')=c la.
Let n 2 (P) 1 > denote the local contribution a t  P  to  the quantity n2 w hich  is due to those
exceptional curves which are obtained first P1+ •••+P. times blowing-ups. W e define
a(P) ) , T (P)(') and 6F(P) 1) in  a  similar w a y . Now we can calculate these quantities
as follows;

n2(P) ( 1 ) -- =P1+ ••• +P.,

c (P) ( 1 ) ._ n2(P) - 1 + ( P 2 +  +pa—i)

_P1-F2(p2+ + 1 ) 0 - 2 ,

D(P) ( 1 ) =P2 d 1 +P2 c 1 2 + + p a d a -2 (P 2 +  +PO,
whence

6 F(P) ( "=--a(P) ( " +r( P ) ( 1 )

>---P1d1+P2d2+ ••• +papa—pi-2

and
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3F(P) ( 1 ) — n2(P) ( 1 )

-'1)161 1- FP2d2+ ••• + pa d .-2 p i— (P2 +  • • •  + p ,z ) - 2

=(d 1 -2 )p 1 +(d 2 -1 )N + • • •  -1-(da  — 1)pa  —2

since d a >1, c/, 3  for —1 and
Next we put d° :==da a n d  di"=multip , p '( F ) .  We consider three cases separately.

Subcase III-1) d r ) > d f "  We determine integers by th e  Euclidean algorithm and
continue the argument, returning to one of main four cases I) to IV).

Subcase III-2) d 6 n = d f "  Let W be the surface obtained from P 2 b y  p i - F • • - + p .

times blowing-ups with center P  and  its infinitely near points as above. Let Fo) ,

p '(F), P o := P '= p '( F ) n E  and let pi : 147
1—>W0 :=W  be the blowing-up with center Po.

L e t F ( ' ) :-= p i(F ( " ) ,  11.------- P1J1(Po) a n d  le t  P 1 = F " ) (11 1 . L e t dP ) :=multp,F ( ' ) . If  d ,r=
clf "=d1", le t po : W  W  be the blowing-up of W , with center P 1 . Define pi :,  

W 1 - 1 ,  
F ( 1 ,

 l j  and dii )  a s  follows when d P ) = di° ) =-- d f" , -- •••.---- d f i - ' ) .
p ;  is  the blowing-up of W ,  with center P ; _, -= F ( l - i ) n / ; _,,

P i )  p 3 ( F  0 - "), /;=  p7 t(P ; _ ,),

Pi =F ( i ) (111 , di=m ultpjF(i) .

Assume dr)=df ° ) =df t ) =-•••=dfe - 1 ) >die ) a n d  p u t  p= fie°•••°P i.
p ( P )  of p  is expressed in  terms of dual graph as follows ;

—2 —2 —2 —2 —1
o o o o   o o
E e1 ,

Pi - 1

The proper transform F ( e)  intersect 1, with contact of order cif' )  and E , is the proper
transform of E  by p.

We consider two cases separately.

Subcase III 2 -a ) d fe )= -1  Let n 2 (P) 2 )  denote the local contribution a t  P  to  the
quantity n2 which is due to exceptional curves of blowing-ups p i ,  p o ,  • • •  ,  /2, and further
(LI' )  times blowing-ups with center P , and its infinitely near points over F ( e) . Then
we obtain

n2(P)(2)=e,

a(P) 2 ) =n2(P) 2 ) - 1=e - 1,

r(P)( 2 )=d i° )e -2 e ,

ra(P)(2)=df e-')-1=d

T h e  exceptional locus

whence
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F (p)(2) - 3 )(2) + 1.(p)(2) _Er  3(p )(2) 4_2r  py2)

=df"e— e-1-1-clf" — 1
and

3F(P) ( 2 ) — n2(0 2) >.---(df° ) - 2)(e+1) 0

since cif" and

Subcase d ie )>1  Let n2(P) ( 2 )  d e n o te  the local contribution a t  P  t o  the
quantity n 2 w h ic h  is  d u e  to exceptional curves of blowing-ups p i ,  p22 • • •  r  ti e . Then
w e have

n 2 (P) 2 =e ,

0 .(p)(2) .. 712(p)(2) = e

whence

and

r(P)( 2)=clf "e-2e ,

3F(P) ( 2 ) =- (t(P)" ) +T- (P) (2 ) df"e— e

3F (P)( 2)—n 2 (p)( 2) (cli°) - 2 ) e 0

since c/f°) .3 and
In this case  w e determ ine in tegers for th e  p a ir  (dfc - ", dfe ) )  b y  th e  Euclidean

algorithm and continue the argument, returning to the one of main four cases I) to IV).

Case IV )  da > l, a = 1  Similarly n2 com prises a t  le a s t  the composition p  of PI
blowing-ups. The exceptional locus p - '(P)  of p  is expressed in  term s o f  dual graph
as follows ;

—2 —2 —2 —2 —1
oo o o o

E
P.-1

The proper transform p '(F) intersect the last obtained (-1 ) curve E a t P' with contact
of order d,.

If the proper transform p '(F)  is smooth at P ',  le t n 2 (P) denote the local contribu-
tion at P to  the quantity n2 w hich is due to those exceptional curves which are ob-
ta ined  from  first p ,  times blowing-ups and  further d , times blowing-ups with with
center P ' and its infinitely near points over p '( F ) .  W e define a(P), v (P) and 5F(P)
in  a  similar w a y . Then we have

n2(P)=1)1, a(P)-=p 1 - 1 ,

r(P)=Pid1 - 2 1, 1, r 3 ( P ) =d ,- 1 ,
where

3F(P)=a(P)±7(P)d - r3(P)+2r4(P)=Pid1 — P
and

dp(P) --n2(P)=(di - 2)(Pi+1 )>=0
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since
If the proper transform p '(F) is still singular at P ',  le t n 2(P) ( ' )  d e n o te  the local

contribution a t  P  t o  th e  quantity n2 w hich is due to those exceptional curves which
are obtained from first p 1 times blowing-ups. W e define a(P)( 1 ), r (P )o ) a n d  B F(P)' )

in  a  similar w a y . Then we have

n2(P)(1)=P1, a(P)(" p „

r(P) ( 1 ) =p1d1 - 2131,

whence
6 ,(P )(1 )= 0 -(P )0 )+ T (P )" )> = p id i— p ,

and
3F(P) — n2(P) Pi(di - 2) 0

since
A t the next step we proceed as in  the subcase III-1) or III-2).
We continue this argument I) to IV) untill w e can resolve th e  singu la rity  a t P.

Thus we have calculated the local contribution 6F(P) as follows ;

Proposition 2.1. W e can estimate the local contribution 3 F (P) as follows;

=-_-do+di—p1-3 if da =l, (z 2

3F(P) . dod-di— cla— pi-2{ if d a > l ,  a

do— pi if d a >l, a=1 .

In  any  case we have 3F(P) n2(P).

From now on, in addition to  the conditions A l) to  A3), w e assume the following
conditions hold.

A-4) X  is a  homology plane, i. e., th e  homology groups 1-1 ,(X ; Z ) vanish for

A-5) r i (X )=(e).
A -6 )  K(X)O.
Note that by a  theorem o f  J. H. C. Whitehead, A -4) a n d  A  5) im p ly  th a t X  is

topologically contractible.
We can prove easily the following

Lemma 2.2. Under the above notations, the assumption A-4) implies the following;
(1) X  is affine.
(2) The divisor class group Pic X  is triv ial.
(3) The units in the coordinate ring  r(X ) o f  X  are  ju st the elements of  C*.
In particular (2) and (3) im ply  that the irreducible components of  D  generate freely

the divisor class group Pic V.

For the proof of these, see [F] §  1 and § 2.
This lemma implies the following
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Lemma 2.3. Under the assumption A-1) to A-4) the integers m  and n are mutually
prime.

P roo f. From lemma 2.2, (1) and (2) the proper transform r'(/) of the  line 1 on P 2

has the expression as follows ;

e(1)= n F F'(F )-Fnor'(G )+ E n i D,,

where n F , nG  an d  n , a re  integers and  D,'s a re  irreducible components of D other than
F  and  G .  Taking the direct im age by r , we get

/ - . 11F F-Fn G G

in  Pic P 2 . Since Pic P 2 =Z1, this implies that m=deg F and n deg G are mutually prime.

We now apply th e  inequality obtained in  § 1 to our situation.

Theorem 1 .  L el F  and G be the ?rredu cib le curves on P 2 . We assume that F , G
and the surface X obtained by the above construction satisfy the conditions A-1) to A-4)
and A - 6 ) .  Then have m=deg F 3.

P ro o f. We apply th e  inequality (1.4). By lemma 2.2, since V  i s  ra tio n a l, we
have b2= 132. W e get also

b0 =1, e 1 =1, A= —3(m+ n).

W e h a v e  already calculated the  local contribu tion  F (P )  and 6G(Q) fo r each singular
point P  o f F  an d  Q o f  G .  We put

F = E  F ( P t ) )
P i

60 =  6 G(Q.)
Q j

where P t 's  and Q 's  a r e  singular poists o f  F  and  G respectively. N ote that if
F  has singilar p o in ts  a n d  therefore 51 , i s  p o s itiv e . Similarly OG i s  positive if G is
singular.

We shall calculate the local contributions at R  and S , where IR, S I= F nG .
P u t i(F , G ; R )= u, i(F , G ; S)-=-v, where u+y=m n. First we m u st blow up at R

and its infinitely near points up to order u, all lying o n  th e  proper transform o f  F,
to get a norm al crossing divisor. T h is  process is ii considered locally at R.

We m ust also blow up y  times at Q.
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Moreover, to get a  simply connected boundary D , we blow up at one of four points
121 , R2, S I ,  S2 and its infinitely near points arbitrarily many times and  exclude the
lastly obtained exceptional curve from D.

Thus the sum 3(R , S ) of the local contributions at R  and S  is equal to

3(R, S) ,  a(R)H-r(R)-Fr 3(R)+2r4(R)± a(S)+T(S)±r s(S)+2r,(S)

=u — 1+ v-1= inn-2.

Putting these numbers into the  inequality in Proposition 1.2, we obtain

1-3(m +n)+1+m n-2+6 F -H3G < - 4 ,
or 

(m —3)(n —3)+5 F +13G.<5

By lemma 2.3 and by noting that (3F and OG are positive if m 3  a n d  n - 3 , w e have
m <4.

Now we shall exclude the case m = 4 . If so, the arithmetic genus Pa (F)  o f  F is
3. Since F  is topologically isomorphic to 13 ', F must have one singular point with
multiplicity three or three singular points with multiplicity two, where some of them
might be infinitely near to the other. In any case °F= 3. T hus the  inequality becomes

(n —3)+3+3 .<5

Since n  rn = 4 , since m and n are mutually prime and since O >0, this is a contradiction.

§ 3 .  The case 7/2. 3

In this section we shall consider three cases m=1, 2, 3 separately. In these cases
we have obtained so far only incomplete results. We even state some results without
details, but include results which are obtained supposing that some conjecture is true.

Case m = 3  The arithmetic genus Pa (F) is  1 and F has only one singular point of
multiplicity 2. We have 3F =1  and the inequality becomes 3G <4.

If  n=5, G has some singular points, whose multiplicity chains a re  subsets of the
following :

(4), (3, 2, 2, 2), (2, 2, 2, 2, 2, 2)

By a  chain consisting of several intergers, we mean that not only the point itself is a
singular point w ith th e  first number as its multiplicity, but also there are  infinitely



T . Petrie's problem 331

near singular points whose multiplicities are successively indicated by th e  integers in
th e  chain . I f  G  has one  singular point with multiplicity 4 , we have 6G =5 . In the
other cases, we have 60 = 6 .  Thus th e  c a se  n = 5  i s  im possible. The case  n 7  i s
impossible by the same reason.

Subcase m = 3, n= 4 In  this case arithmetic genus o f G  is three a n d  G has either
one  singular p o in t o f  multiplicity three or three singular points of multiplicity two.
First we consider the case when G  has unique cuspidal singular po in t o f multiplicity
three. Then choosing suitably a  system of homogeneous coordinates (X, Y , Z ) on P 2 ,
we can write the  equation o f G  as

Y 3 Z =X 2 (X 2 -kaY 2 ).

Write the equation of F as follows.

f  :=a 1 X r ± a 2 Y Z 2 -Ea 2 X 2 Z-ka 4 X Y Z-ka 5 ZY 2 -ka 6 X 3 -ka 7 X 2 Y  ±a,X Y 2 -ka,Y 3 -FZ 3

Here we may assume the coefficient of Z  is  one , because if the  coeffic ien t of Z  is
zero, F and G  meet at the  singular point of G .  We may assume also that the points
R  and S  lie outside the  line Y=0.

The intersection points of F  and G  a r e  then obtained a s  common roots of the
following two equations :

(1) z=x2(x2-1-a)

(2) f ';= z 3 -ka i xz 2 -1-a2 z 2 ± a 2 x 2 z ± a d x z -k a,z +a,x 3 H-a7 x 2 --k a,x +a,=0

where x =X IY  , z =Z /Y .
We plug (1) into (2) and let J  be th e  obtained polynom ial. The hypothesis that

F-G =uR d-v S  implies that th e  equation 1 = 0  should have two distinct roots. Here
u-l-v=12 and it is sufficient to consider u  for 1 u 6 .  T h u s  w e  g e t  th e  following
equation ;

1=(x +r)ux (x +s)"-u

whence, comparing the coefficient of x "  we obtain

r=—(12—u)s/u.

By the comparison of coefficients of terms in  x , using a com puter, we can determine
inductively the coefficients a, a l , a2, ••• , a, of f  as polynomials of s  and we also get
one relation from the comparison of coefficients of x l .  F o r  u=1, 2, 4, 5, w e  g e t a
contradiction from this re la tion . F o r u= 3 and 6, we can determine the polynomial f ,
but f  splits into th e  third power of a linear form. Thus in this case there exist no
irreducible curves which satisfy the conditions A-1) to A-3).

In the case of a quintic curve with three ordinary cusps, the  involved computation
is so complicated that we could not obtain any definite answer.

Case m = 2  To us the following statement seems to be true.
( * )  When the degree G =n  is fixed, among many possibilities of the combinations
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o f  multiplicites o f  singular po in ts  o f G , aG atta in s its minimum if the number of
singular points is the least.

We assume that this conjecture is true . In  the  case  o f a  curve in  P 2 , 3G attains
its minimum if G  has only one cuspidal singular point with multiplicity n - 1  and we
obtain 3G =2n —5. Putting these into the  inequality (1, 4) we have

1—(2+n)•3+1+2n-5+2n-2_ —4.
Therefore n 7.

In fact when n=7, the combination of multiplicities of the singular points of G  is
one of the following :

(6), (5, 3, 2, 2), (4, 4, 3), (4, 4, 2 3 ), (35 ), (3 4 , 23 ), (32 , 23 ), (32 , 23 ), (3, 2"), (2").

where some of these singular points may be infinitely near points to  th e  other. On
the other hand we have 6G 9 by the inequality (1.4). By calculating bc in each case
we can see that only the case when G  has unique cuspidal singular point is possible.
In the case m=2, n=7 and G  has only one cuspidal singular point, we can check, in
a  similar way as in the case m=3, n=4, that there exists no curve G  which satisfies
the condition A-2) and A-3).

In the case when n=5 we have nothing to say.
In the case m=3, w e  have  some examples o f  contractible surfaces. We shall

describe these examples. First we recall the example of Ramanujam.

Example 1 .  Ramanujam's example Bet F  be a  conic on P 2 and  le t G  be a  curve
of degree 3 on P 2 w ith a  ordinaly cusp P such that F.G =5R +S .

After resolving the singularity of G  and blowing up successively, we make the  se t
theoretic to ta l transform o f  FU G  a  divisor with normal crossings. Finally we blow
up at S  and we denote the  obtained surface by V .  The dual graph of the total trans-
form of F U G  on V has the  following picture.

E F'
—20 —1 o----o —2

(3.1)
G'

o oo o o o o
— 3  — 1  — 3  — 1  — 2  — 2  — 2  — 2

Here we denote the proper transform of F and G  by F ' and G ', and E  is the excep-
tional curve obtained by the blowing up at S .  We pu t D=(total transform of FUG)
—E a s  defined in § 2 and put X =V — D . This is an example of Ramanujam and X  is
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topologically contractible.
Example 2 .  In the example 1, we further blow up at the intersection point EnG '

and let V "> be the obtained surface. Then the dual graph of the total transform of
F G  on V (') has the following picture.

E 0 ) E >

10—10

(3.2) —20

o o o o 0 0 o o
— 3  — 1  — 4  — 1  — 2  — 2  — 2  — 2

Here F "), G "), E ") are the proper transforms of F ', G ', E  in  (3.1) respectively and
E (') is the exceptional curve obtained by blowing up at E n G '.  Put D ( 1 ) =(total trans-
form of FUG)—E 0 )  and put X(' ) =V( 1 ) —Do ) . Then we can show that X " ) is isomor-
phic to the example of Gurjar-Miyanishi and X o )  is topologically contractible.

Example 3 .  Let F  be a  conic on P 2 a n d  le t  G  b e a  curve o f degree 3 on P 2

w ith  an  ordinary cusp P  such that F • G=3R-F3S. In fact we can show that such
curves exist.

After resolving the singularity of G and blowing up successively we make the set
theoretic total transform o f F u G  a  divisor with normal crossings. The dual graph
of the total transform of F u G  is as follows.

E, — 2 — 2

   

—2

 

--2

 

F(')

   

(3.3)

We further blow up one of G 'nE i  and G 'nE z , say G 'n E , and let W be the obtained
surface. Then the dual graph of the total transform of F n G  looks as follows.
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(3.4)
— 3 — 1 — 4 — 1 — 2 — 2

-o - - - - - - - - 
— 2  — 2

    

—1

Here E is th e  exceptional curve obtained by blowing at G/nE 2 . L e t  W(2 )  b e the
obtained surface. P u t  D' 2 ) -- =(tota1 transform o f  FUG)—E and  pu t X(2)= W ( 2 )  D ( 2 ) .

Then X (2 ) is isomorphic to the  surface in  the example 2 and topologically contractible.

These are  all example o f homology planes we know in  the  case  m=2.

T he casn  m = 1  We shall treat this case  in  the  appendix of this paper. we recently
found new exomples o f contractible surfaces in this case.

§  4 . A generalization of Gurjar-Miyanishi's example

In  this section we shall generalize the  construction of Gurjar-Miyanishi and apply
the  inequality (1.4).

L et 2%, be a  relatively minimal ruled surface with a minimal section M and a fiber
/. L et F  an d  G  be curves on - a• We assume that th e  following hold.

B-1) F-• , nillz. f+mal, G --nM -F(na+1)1 where m , n a re  integers.
B-2) F  and  G  a re  topologically isomorphic to P 1 .
B -3 )  F  and  G  meet each other in  two smooth p o in ts .  P u t  FnG=112, S I .  Put

u = i(F •G ; R ),v= i(F •G ; S ) . Then u+v=m(na-1-1).
B -1 )  implies that F  a n d  M  are disjoint and G  and  M  meet transversally at one

p o it .  We have the following figure.

We will consider a  ruled surface E a only when a because such a  configulation
o n  X , can be reduced to th e  configulation on  P 2 a n d  there do not exist irreducible
curves on 2'0 =-Pix P 1 which satisfy B-1) to B-3).

L et r , :  V'-->Ea  be th e  shortest sequences of blowing-ups at singular points of F
and  G  including infinitely near singular points such that t h e  proper transforms o f F
a n d  G  o n  V ' become nonsingular. L et Fe : — V ' be the shortest sequences of blowing-
ups such that the  to ta l transform ( r e i t 1) - '(Fr1G) is a  divisor with norm al crossings.
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W e further b low  up 17 arbitrarily m any tim es at infinitely near points of one of R  or
S .  Let r o : 17, -(7 be the composition of such blow ing-ups and  pu t r i = ° 7 0 .  le t  E
b e  ( - 1 )  c u rv e  o b ta in e d  b y  t h e  la st b low ing-up  i n  n o . P u t  r = r 2 .7r1 a n d  D=
Supp(r - l(FUGUM)— E ) .  W e  m a y  assume th a t  D  is  m inim al. This assumption res-
tric ts  the sequence of blowing-ups n o : V --->V . Put X=V — D. Then our question similar
to  the one in §2 is  the following.

W hen does X  become a contractible surface of k(X)=2?

This construction is  a  generalization of Gurjar-Miyanishi's. W e assume th a t  X  is
a  contractible surface with and state some known results.

W e can calculate the local contribution 3F (P ) a t  the  singular point P  of F  b y  the
sam e w ay as in  § 2 .  Similarly for 5 (Q ).  We define S F ,  3G by

6F=E 5F(P,), 6G= E aG(W ,
P i et

w here Pz 's and Qt 's are singular points of F and G respectively.
W e have

bo=l, e,=1, A= —(m+ u)(a +2)-2+(a —2),
since

Ki a = —2M —(a +2)i .

The sum  5(R, S) of the local contribtions a t  R, S is equal to

5(R, S)=m(na +1)-2.

Putting these into the  inequality (1.4) w e have

1—(m+n)(a+2)-Fa-4+1+m(na+1)-2±3 F +60 - 3 ,  or

(4.1) a(m-1)(n-1)—(m+1)+3F-1-5G2n.

The arithm etic genus of F  and G are as follows;

1 1
Pa(F)= y(m —1)(m a — 2), Pa (G) ,  na(n —1).

Note th a t the curve F  on E a can  have a singular point w ith  m ultip lic ity  a t m ost m.

T h is  im p lie s  th a t i f  m 2  w e  m ust blow  up  a t least
 [ m a

-

2

 1 times to resolve the

singularities of F .  H ere ra l m eans th e  sm a lle s t  in te g e r  w h ic h  is  g re a te r  th a n  or
equal to  a .  Similarly if  n 2 w e m ust blow  up  a t least a  tim es to resolve the singu-
larities of G .  A s w e proved in Proposition 2.1, this implies

if m 2 , 5 G a  if

Putting these into the  inequality (4.1) w e obtain the following inequality;

fa(n-1)-11(m-1)-1-2a_<2n+2 if m 3  and n 2
(4.2)

a (n+1)2n+4 if m=2 and n 2



336 Toru Sugie

We consider several cases separately.

Case I) n 2
Subcase I-1) In this case we have
The left hand side of the inequality (4.2) . 2 a (n -1 )-2 + 2 a= 2 an -2 .

Thus a  and a  must satisfy

2an -2< 2n-I-2  o r  2 n ( a - 1 ) 4 .

Since a 2 and n only the case a= 2 and n= 2 is possib le  and  if a = 2  a n d  n=2
we have m = 3 . But in this case the original inequality (4.1) becomes 6F +6 G 4. Since
Pa(F)=4 and p a (G)=2, 6 F =4  and 30 = 2 .  Therefore this case does not occur.

Subcase 1-2) m = 2 . T he inequality (4.2) becomes

(a —2)(n -F1) 2.

This implies that only the case a= 2  is possible and in th is c a se  th e  inequality (4.1)
becomes 3F +6 0 5.

Subcase I -3 )  n _ 2 , m = 1 . The inequality (4.1) becomes

(3G 2n-F2.

Case II) n=1 or O. The inequality (4.1) becomes

6F Sm+3 if n=1,

3F<(a-1-1)(m-1)+2 if n=0.

Gurjar and Miyanishi's example o f a  contractible surface  o f Kodaira dimension two
belongs one of this case, that is the case a= 2, m = 2 and n=1.

Rem ark. W e can obtain more restrictions by considering each case in  detail.
Moreover i f  w e assume that the conjecture (*) in  § 3 is true, we can exclude some
possibilities of values a, m and n ,  For example in  th e  ca se  II)  n = 1 , i f  w e  assume

we can show that only the following four cases are possible.

(a, m, n)=(2, 4, 1), (2, 3, 1), (3, 3, 1), (3, 2, 1).
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Appendix : Examples o f homology planes of general type

By

Masayoshi MIYANISHI and Toru SUGIE

In the present article, we shall construct infinitely many examples o f  homology
planes X;,1,),„ and X;,22 . with Kodaira dimesnion 2, i .  e . ,  of general ty p e .  Among them,
X;,1,),  is topologically contractible, though we do not know yet whether or not so are
the others.

1. Construction. L et C  and D be irreducible curves of respective degree 1 and n on

the projective plane P 2 . W e  assume that C•D=(n—m)P-kmQ, where 1...<m and

P, Q  are distinct smooth points on D  and that D has a unique cuspidal singular point
R  of multiplicity n - 1 .  Then, choosing suitably a  system of homogeneous coordinates
(X, Y , Z ) on P 2 , we can write the  equation of D as

y n - 1Z X 2( X n -2+  a  2 X n  -4y2+  + a  2  yn - 2)

Write the equation o f C as Z = 1 )X -F c r  We may assume that the points P  and Q  lie
outside the line Y = 0 .  The intersection points of C  and D are then obtained as roots
of the following equation

x 2 (xn - 2 d-a 2 xn - 4 + ••• -Fa i i _2 )= b x + c ,

where x = X I Y .  The hypothsis that C•D=(n—m)P-FmQ implies that the above equa-
tion should have two distinct roots. Therefore we have the following relation

x 2(x .-2 ± a 2 x .-4 ± + a n _2‘) bx—c=(x-Fu)Th - m(x+v)In

whence, by the comparison of coefficients of terms in  x , we obtain

n —m \l u .m  )

Since a2 , ••• , an - 2, b and c are  expressed as polynomials in  u and y, they are expressed
in a unique way as homogeneous polynomials in u ;  deg u a t = i  for n - 2 ,  d e g b ,

n - 1  and deg u c = n .  Therefore, replacing homogeneous coordinates X, Y ,  Z  by U n  1 X,
unY and Z  respectively, we can determine the curves C and D  uniquely upto projective
transformations as well as the intersection points P  and Q .  Here we note that u * 0
because P * Q .  If  m = 1 , the curves D and C are respectively given by
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y n -1 2 ',X 2 { X n - 2_ 1g ( i  1)(7 )  X n - t-2 y il

and
Z= (n 2 -2n)X +(n —1)Y .

The intersection points P  and Q are then given by

P=(-1, — 1, — n 2 +3n —1) a n d  Q =(n -1 , 1, (n -1 ) 3 ).

We perform the following blowing-ups with centers P, Q, R a n d  their infinitely
near points: B low  up the point P  and its infinitely near points n—m times to separate
the proper transforms o f C and D , blow up the point Q and its infinitely near points
m times first to separate the  proper transforms o f C and D, then continue the blowing-
ups r+1 times with centers infinitely near points of Q lying on  the  proper transform
of D , and finally blow up the point R  and its infinitely near points minimally to make
the proper transform of D  smooth. Let o :  V - 4 '  be the  above sequence of blowing-
ups, and let C and D be the  proper transforms o f  C  a n d  D , repectively. Let E ce
the (-1 ) curve appearing in  the  last stage of the (m ±r+1 ) blowing-ups with centers
Q and its infinitely near points, and let X:=V—(o- - 3 (C ±D )— E ). We obtain the  fol-
lowing dual graph o f 6- 1 (C±D)— E:

—2 — 2  —1 —1—r —1 — (n-1) — 2 — 2 —2
0 - -  o9 o 0 o 0 o ---o

n — 2I D
—2 —2

—n
n — m —1 m-1

—2 —2

Note th at (C 2 )=- 1— n a n d  (D2) ,  —1 — r . Next we consider the intersection matrix
associated with this dual graph and require that the discriminant have absolute value
—1, i . e., the intersection matrix is unimodular. In  order to compute the discriminant,
w e can  m ake avail o f  th e  result in  Gurjar-Shastri [2 ; L em m a 11.3]. Denote the
vertices D and the ( -1 ) curve between D and C by d and I" respectively. Deleting
these two adjacent vertices GI and from the  above dual graph, it is a union of three
connected components, each o f  which has negative-definite in tersection  form . Call
these connected components G I , G 2 , G3 counted from the  left. The intersection matrix
o f  Gi +ZI i s  diagonalized so  that th e  entry of 4  is  —1—r+n(n —1). Similarly, the
intersection matrix o f G2 -1-Td-G 3 is  diagonalized so that the  entry of is

r—(m 2 —m-1)
(n—m){(n—m —1)r±(m+l)n —2m —1}

Now the intersection matrix of the graph G  is unimodular if and only if

{n(n-1)—r —1} fr—(m 2 —m-1)1—(n—m){(n—m-1)r-F(m+1)n-2m-11=±1

provided n2 — n —1 r m 2 —  m  1. Taking th e  v a lu e  — I forcibly, this equation is
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equal to
(r—mn-l-m)(r—mn+m+2)=0.

n2—n-1So, the intersection matrix o f G  is unimodular either if  r=mn—m provided n-1
and

m 2 - 1  

o r if  r=m n  m  2  provided 
n 2 — n + 1 m2+1

and .  The con--  i n n -1  — m
n 2 — n - 1 n2— n-1-1

dition  or >_m follows automatically from th e  hypothesis thatn -1  — n - 1  —
m2-1 m2+1

m < F1 ]  and 3 n .  S im i la r ly ,  the condition   o r    follows auto-2 m
matically from the same hypothesis. On the other hand, the Picard group Pic(V)0Q

is generated by irreducible com ponents o f  a - '(C + D )— E  i f  r*m(n —1)-1, for
(m+r-F1—mn)E i s  a n  integral combination o f  these components. Moreover, these
components a re  independent over Q  because rank Pic(V) equals to th e  number of
irreducible components o f  o-- 1 (C±D)— E. Hence if the  in tersection  matrix of G  is
unimodular, Pic(V) is a  f r e e  abelian group generated by irreducible components of
6 - 1 (C  D)—  E .  N ote th at H 2 (V ; Z) - Pic(V) because V  is ra tio n a l. Looking at the
long exact sequence of integral cohomology groups associated with a  pa ir (V , V — X)
a n d  making u s e  o f  th e  Lefschetz duality, we easily conclude that X is a  homology
p la n e . Thus we have proved the following :

Theorem 1. F or n 3 and [--] m i ,  w e  have homology planes of general type2  —
X4! ),„ (i=1, 2) which are embedded into a smooth projective rational surface V so that the
boundary divisor V —XV„, is a div isor w ith simple normal crossings and with the follow-
ing dual graph:

—2 —2
0— 0

—1 —1—m(n-1) —I —(n-1) —2
0 o 0 o o

—2 —2
o - - a

n-2 m(n-1)

X „ 0 —2 —2
—n n—m-1 m —1

—2 —2

—2 —2 — 1 1—m(n-1) - -1  — (n-1) —2 —2 —2
0— o o o o 0 o o -- o

n-2 m(n-1)-2

—2 —2
—n :n— m -1 1 m-1

—2 —2 O

I f  (n, m )*(n ' , m ') then X rli;),,,, (i=1, 2) is not isom orphic to X II?, or X4??.,.
To verify the  last assertion, note that if  Xe„, is isomorphic to X ifl?,,„ for example,

then the graphs of the boundary divisors attached to X em  a n d  X 71P,„,, must be trans-
formed from one to the other by the  blowing-up-and-downs with centers lying on the
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boundary divisors. T h is  is clearly im p o ss ib le . T h e  same reasoning relying o n  th e
difference between t h e  boundary graphs o f  X 7fi,), , a n d  a  homology plane of Kodaira
dimension 1 (cf. [1] ) , it can be shown that X 7f%  is a  homology plane of general type.

Note also that X a  has th e  same boundary graph as R am anujam 's surface  [4 ].
Indeed, consider th e  smooth projective surface V  containing X3

(,1? which is constructed
in  th e  a rg u m e n ts . L e t  A  be a n  irreducible conic on P 2  m eeting  the  cubic D  with
A•D= P4 -4Q±S, where S is a  smooth point on D  other than P  a n d  Q .  T h e  proper
transform a '(A ) o n  V  i s  a  ( - 1 )  curve m ee tin g  th e  (-1 )  curve E (cf. the  previous
notations). N ow , contracting th e  components in  the subgraphs G1 , G,, the  component

and  a'(A), we have a birational m orphism  r :  V —>P 2 w h ich  m aps cr'(D) an d  th e
unique component in  the  subgraph G2 to  a  cuspidal cubic a n d  a  smooth conic meeting
each other with r (e (D ))•r(a '(A ))= 5 P '±Q ' a s  in  R a m a n u ja m 's  example for smooth
points P ' and  Q ' on r(oa(D)).

2 .  Topological contractability. We shall consider the  surface  X := X , .  W ith  the
previous notations, X is embedded into a smooth projective surface V  with th e  boundary
divisor illustrated below :

Contracting E, G 1 , ••• , G._, and D, we have a morphism  p :  V —>TV such that 10:=
p(i) defines a  P '-fib ra tion  p  :  W—>P 1 o n  W . T h e  f ib r a t io n  p  has tw o cross-sections
M and C, and the components A 1 , ••• , A._, and B„ B 2 , •-• , B . a re  contained in  singular
fibers o f  t h e  P 1-fibration p .  Moreover, the im age H :=p(G ) meets a  general fiber
o f p  with (11-1)=n-1, i .  e . ,  H  is an (n-1)-section  o f  p .  Moreover, H  has a  cuspidal
singular point R o f multiplicity n-1 lying on  the  fiber I .

Contracting further th e  components of singular fibers of p  not meeting the section
M, we obtain a birational morphism a : W-42' 2 from  W  to the H irzebruch surface X2
of degree 2  so that M  is the m inim al section, S:=a•p(C ) is a  cross-section with
M+21 a n d  T  := a (H ) i s  an  (n -1 )-sec tio n  with T --(n -1 )(M + 2 1 ). Note that W  has
Picard number 2n+1 a n d  there are 2 n -1  c u rv e s  o n  W  to be contracted under o,
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including the components B 1 , ••• , B .  and A ,, •••  , A ._ 3 . So, there are four ( - 1 )  curves
E z ( 1 : ‹ i 4 )  such that

( i )  E i+ .4 1 4 - • • • ± A .-3 -F E 2  and E 3 -1-B ,+•••+B .+E 4 a re  singular fibers of p , and
there are no other singular fibers of p ;  i f  n = 3 , E i +E 2  is  a  singular fiber ;

(ii) (E1-A 1)=(E2-A .-3)=(ErC)=(E2-H)=1 and (E,•11)=n — 2 ; if  n = 3 , (E i.E 2 )=

(E2•M )=(E l •C)=1;
(iii) (E 3 •B ,)=(E 4 •B .)=- (E 3 •11)=(E 4 •114)=1 and (E 4 •H)=n —2 ;

The m o rp h ism  p : W - -4 "  restricted onto X  is a  f ib r a t io n  o n to  A l. So, we have
an exact sequence of the fundamental groups,

r,(1 - 1(n+1)points} ) - ->  7 1 (X ) 7 i(A 1) 1,

where 1 is a  general fiber of p and lnX =1—  {Po, ••• , P i i } with P0-=1(1M, •••, Pn-11
=ln H  and P„+ 1= 1 n C .  Take loops To, ••• T n + 1  on 1 around P,,0, ••• , P n + 1 ,  oriented by
the natural complex orientation on X .  Then n i (X )  is generated by the images of
To, ••• 7,1+1. Write the image of r, in ri(X ) by Cril. As loops around the curve H,
we have [Ti]-=• - •= [T n -1 ] , which we denote by y .  Consider the curve E 3 . Take loops
7  and 3  on E 2 around the points E,C1H and E 2 n A n _s ,  respectively, oriented by the
natural orientation on X .  Then [ 7 ] = [ T I ]  and [ 7 ] E 3 1 = 1 .  Hence [ 3 ]= [T - 1 ] .  Let 5 '

be an oriented loop on the curve A , around the point Ai n m . Since the branch A ,+ •••
is contracted to a rational double point, we know that N 'i= 15 1n - 2  (cf. M um ford

[3 ]) ,  and [3']-=Crol which we call x .  Hence x -= [5] ' = y ' .  Next, look at the curve
E 3 . Let 13  and is,  be oriented loops on E 3 around the points H n E 3 and E,r-)B „ res-
pectively. Then [13]E/3'1=1 and [ 13 ]= y .  Bring the loops r + , and 13' along the curves
C  and B „ respectively, near the point C n E 3 . Since we can take D * x D *  as an open
neighbourhood of C n E „ where D* is a  punctured disk and since r i (D*xD*)_ -__•Z x Z ,
we know that [r,i + ,1 and Epl commute with each other. Denote [r„+ ,] by z. Then
7 1 (X ) is generated by x , y  and z  with relations x =y 2 - n and y z = z y .  Hence ir,(X ) is
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abelian . Since I i i (X ; Z )=(0) by Theorem  1, w e have rc 1 (X) , (1). By a  theorem of
J. H. C. Whitehead, X is topologically contractible. We have thus proved :

T heorem  2. W ith th e  notations i n  Theorem 1 ,  th e  surface X,; ),  is topologically
contractible for every n .3 .
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