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On the behavior of non-negative finely
superharmonic functions at the Martin boundary
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Hiroaki MASAOKA

Introduction

By F. Riesz [13] and M . Parreau [11], a  non-negative superharmonic function is
decomposed uniquely into the sum of a Green potential, a quasibounded harmonic func-
tion and a singular harmonic function. L. Naïm [10] and J. L. Doob (cf. [5 ]) connected
this decomposition theorem with the Fatou boundary theorem on the Martin boundary
for non-negative superharmonic function as the  following :

Theorem A .  L et u be a  non-negative superharmonic function in  a  Green space R.
Then it holds that

( i  )  u  is decomposed uniquely into the sum of  a Green potential p in R, a quasibounded
harmonic function f , in  R , and a singular harm onic function f , in R , and that

( i i )  u  and f , hav e a common f ine lim it at alm ost every  m inim al point with respect
to  the harmonic measure a),(zcR).

B. Fuglede [7] introduced the notion of finely superharmonic functions to potential
theory on harmonic spaces. The main purpose of this paper is to extend Theorem A
to the case of a non-negative finely superharmonic function a n d  to obtain th e  next
theorem :

Main Theorem. L et U  be a f inely  open subset o f  a Green space R  in  the  sense of
Doob [6, § 4] which admits the Green function, and u be a  non-negative finely superhar-
monic function in  U. T hen it holds that

(i) It is decomposed uniquely into the sum of  a f ine potential p in U, a non-negative
f inely  superharm onic function f , in  U  which is quasibounded f inely  harmonic in  U -
{ zEU : u(z)--=±00}  and a non-negative finely superharmonic function f , in  U  which is
singular finely harmonic in U— Iz cU : u(z)=+o'}, and that

(ii) u  and  f , have a common fine limit at almost every point of  J i (U)(see § 4) w ith
respect to co,.

The definitions of notations and terminologies used in  this theorem a re  stated in
§§ 1, 2 and 4 , and the word "almost every" will be later used with respect to co, unless
otherwise stated. Roughly speaking, th e  idea o f  th e  proof of Main Theorem is to
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modify u in order to extend its modification to R as a  bounded subharmonic function.
In the process of its proof, the behavior of solutions of the generalized fine Dirichlet
problem (see § 3) at the Martin boundary will play an important role.

As an important application of Main Theorem, a  Plessner type  theorem for finely
harmonic functions is obtained.

In  § 1 we provide some definitions and results from the  fine  potential theory and
state in  § 2 a  Parreau type decomposition theorem for finely harmonic functions. The
generalized fine Dirichlet problem is stated in  § 3 and the minimum principle for finely
superharmonic functions is shown in § 4. Using the above results, we give in  § 5 the
proof of Main Theorem and a  Plessner type theorem fo r  finely harmonic functions is
proved in §6 .

The author wishes to express his deepest gratitude to Professors Y. Kusunoki and
T . Fuji'i'e for theire encouragements and comments. A nd  he also wishes to thank
Professor M. Taniguchi for valuable advices.

§ 1 . Preliminaries

First we introduce the notations which will be used throughout this paper.
R : a Green space in  the sense of Doob [6, § 4] (cf. [4 ]) which admits the Green

function,
: the Martin compactification of R,

4 (=R — R ): the M artin boundary of R,
4 :  th e  totality of minimal points in 4,
kc: the Martin function with pole at Ce
w : th e  harmonic measure on 4  relative to z R  and R, and
X: the canonical measure on 4 i representing 1.

We refer to [5, Ch. 13] for the notion of Martin's compactification. In [5], the Martin
compactification of a  hyperbolic Riemann surface is considered, but the results in  [5]
for superharmonic functions are valid even if  we observe a Green space in place of a
hyperbolic Riemann surface.

Next we state some notions and results from fine potential theory. For that purpose
we introduce into R  th e  weakest topology which makes all positive superharmonic
functions in  R continuous. Such a  topology is called the fine topology (cf. [3, Ch. 1]).
In  this paper, as for the topological terminologies in fine topology, we p u t th e  word
"fine" or "finely" before those of the original topology in  R, for example, finely open,
a fine neighborhood etc.

Definition 1.1 ([7, 8.1, -8.3]). If an extended real valued function u defined in a
finely open subset U  o f R satisfies the following conditions, u  is  ca lled  to  be finely
harmonic (resp. finely hyperharmonic, f inely hyPoharmonic) in  U.

(i) — 0 0 < u <+ 0 0  (resp. --00<u-Pcx), —co 5_u<+00);
( ii) u  is finely continuous (resp. finely lower semi-continuous, finely upper semi-

continuous) in  U;
(iii) for every x U, there exists a compact fine neighborhood V of x such that u

is bounded (resp. bounded below, bounded above) in  V  (C U ) and that for every z E V'
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(= th e  fine interior of V),

u(z)-=lu d ' u ( z )  5u cle'v, u ( z )  5u deP'),

w here e v  is  the balayage of the Dirac measure s , a t  z on CV  (:=R— V) (cf. [1]).
Moreover, if  a  finely hyperharmonic (resp. finely hypoharmonic) function  u  in  U

is  no t equal to  +00 (resp. — o 0 )  identically , u is called to be finely superharmonic (resp.
finely subharmonic) in U.

W e state the fundamental theorem for finely hyperharmonic functions :

Theorem 1.1 (Fuglede [7, Theorem 9 .1 0 ]) . Every f inely hyperharmonic function is
_finely continuous.

Definition 1.2 ([7, 10.5]). A  non-negative finely superharmonic function p  in a
finely open subset U  of R is called a fine potential in U if every finely subharmonic func-
tion  s in U  dominated by p  is  non-positive in U.

The next theorem is considered as a Riesz type decomposition theorem f o r  finely
superharmonic functions.

Theorem 1.2 (Fuglede [7, Theorem  10.7]). For a non-negative finely superharmonic
function u in a finely open subset U  o f  R, u is decomposed uniquely into th e  sum  o f  a
f ine potential p  in  U  and a non-negative finely superharmonic function h  in  U which is
finely harmonic in U--IzEU : u(z)=-Fool

§  2 .  A Parreau type theorem for finely harmonic functions

In  [9 ], by using a  Brownian m otion on Rd (d 2 ), w e  o b ta in e d  a  Parreau type
theorem  fo r  fine ly  harm onic  functions in  a  fine  subdomain of Rd (c f . [1 1 ]) . In the
sam e w ay a s  in  [ 9 ]  w e  c o n c lu d e  th a t su c h  a  r e s u lt  is  v a lid  f o r  finely harmonic
functions in  a  finely open subset o f R since w e can construct a  Brow nian motion on
R (cf. [8, Ch. 5 ], in particular for Riemann surface see  [14, § 2]). Thus we only state
the result without proof.

Definition 2 .1 .  Let U  be  a  finely open subse t o f  R  and  f  a  non-negative finely
harm onic  function in  U .  T h e n  f  is called to  be quasibounded in  U  if  there exists a
sequence {f } 1 o f  bounded non-negative finely harm onic functions in  U  such  tha t

f } 1 converges increasingly to f  on U.

Definition 2 .2 . L et U  b e  a  finely open subset o f R and f  a  non-negative finely
harmonic function in  U .  Then f  is  c a l le d  to  b e  singular in  U  i f  a  bounded non-
negative finely harmonic function h  in U  dominated by f  is equal to  zero  identically
in  U.

Theorem 2 .1 .  L et U  be a finely open subset o f  R  and f  a non-negative, finely har-
m onic function i n  U . T h e n  f  is decomposed uniquely into the sum  o f  a quasibounded
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finely harmonic function f , in  U  and a singular f inely harmonic function f , in  U.

We refer to [9 ] for the proof of this theorem.

§ 3 .  The generalized fine Dirichlet problem

First we introduce the  generalized fine Dirichlet problem considered by Fuglede
[7, 14.3].

Definition 3.1 ([2, p. 41 ]). A Green potential p  in  R  is called to be semi-bounded
in  R  if  lim inf(inf P V '(x ))= 0  for every z E R , where .k(71,>21 i s  the balayage of p  on2>0
{xER : p(x)>2}, that is h>Â'(z) :=inf {s(z): s  is non-negative superharmonic in R  and

p q. e. (=quasi-everywhere) o n  IxER : p(x)>21) (cf. [1]).

Definition 3.2. Let U  be a  finely open subset of R  and f  an  extended real valued
function on the fine boundary a1 u of U .  Then we denote by L''). th e  totality of func-
tions u satisfying the following conditions :

( i ) u  is finely hyperharmonic in U ;
(ii) — u is dominated in U  by some semi-bounded Green potential p  in  R , where

p depends on u ,
(iii) fine lim inf u(z)_ f(C) for every CEaf u,z(Œu)-c

and we define the functions Fit} and 11(j. in  U  as follows :

17-6(z) := inf { u(z) : u eg (j} , Htl

Moreover, if  —00 <F6=1/51 < + 00 in U , f  is called to be finely resolutive relatively to U
(for the generalized fine Dirichlet problem), we denote n il by IF} , and we call FF1 the
solution of the generalized f ine Dirichlet Problem of f  o n  U.

The next theorem gives us a  necessary and sufficient condition for the fine resolu-
tivity of boundary functions.

Theorem 3.1 (Fuglede [7, Theorem 14.6]). L et U  be a f inely  open subset of  R  and
f  an extended real valued function on af  U. T hen it holds that

( i ) 1-7,1-(z)=r‘ f  ds and 1157- ( z ) = f  c le F  f o r ev ery  z GU, w here .ç f  cisFu and

f  c leF is the upper and the lower integral o f  f  respectively ;

(ii) f  is finely resolutive if  and only i f  f  is integrable w .r.t.(=w ith respect to) eFu
f o r every  zEU;

(iii) i f  f  is f inely  resolutiv e, H5(z )=f  deF f o r ev ery  z EU  and IFJ is f inely har-

monic in  U.

Next we introduce notions of regular and irregular po in ts . F o r a  subset A  of R,
we denote by b(A ) and i(A ) the totality o f  finely accumulated po in ts  o f A  and the
totality of finely isolated points of A  respectively. We call b(A ) the base of A .  Then
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it is well-known that  i(A )=A — b(A ) and i(A ) is a polar set (cf. [3 , Theorem VII, 7]).

Definition 3.3 (cf. [7 , 1 2 . 5 ]) . L e t U  be a  finely open subset o f  R .  Then the
points of b(af U)=b(CU)na f U  are called the  regular points of af u or the  regular (f ine
boundary) points fo r  U, the remaining points of af t], forming th e  p o la r  se t  o f m=
gcu), are called the irregular points of a f u or the irregular (f ine boundary) points for U.

Lcmma 3.1. L et U  be a f inely  open subset of  R  and u a non-negative finely super-
harmonic function in  U  such that u is f inite in  U  an d  is f inely  continuous o n  th e  fine
closure U o f  U. T hen it holds that

(i) u  is f inely resolutive relatively to U;
(ii) f o r every  regular points Cca f U,

u(C)=fine lim H (z ).
z(Eu)-•c

P ro o f . L et u  be a  non-negative finely superharmonic function such that u is finite
in U and is finely continuous on O. From the  definition of Fn, u_ FIV, in  U .  Therefore
we obtain ( i ) from ( i ) and (ii) of Theorem 3 .1 .  Next we show (ii). Since u is finely
continuous on U  and sVpfu) for every zEU (cf. [7 , Lemma 12.3]), by Theorem
3.1 and [7 , Remark of Theorem 9.13] we have, for every regular point cEaf v,

fine lim inf In(z)=fine lim inf
z(Eu)-c z(Eu)-c

=fine lim inf 1u deVafu )

z (EzT)-6c

fine lim inf fu  deVatu )

z (eR)-c

=fine lim  inf u(z)z (ebo f e) ,,c

=u(C).

On the other hand, for every C Ea f  U,

u(C)=fine lim sup u (z ) fine lim sup H (z ) ,
z (EU)-C (e17)-C

since u  is finely continuous o n  '0 and u .1 -1,u, in  U . Thus the proof of (ii) is completed
q. e. d.

Lemma 3.2. L et U  be a finely open subset of  R  and u a non-negative superharmonic
function in R . T hen

H 2u,=17=PF in  U.

Moreover, if  u :=5 dp(C), w here t is a  regular and positive Borel measure supported

on R 4k,

Pf,,u dp(C) in  U.



198 Hiroaki Masaoka

P ro o f. By ( i ) of Theorem 3.1 and the general theory of balayage (cf. [1, Theorem
6]), for every zEU,

cleFu.---P,T(z) ,

since u is measurable w. r. t. s' '(cf. [7, 4.9]). Here we suppose that k„ dp(C),

where p  is a  regular and positive Borel measure supported on R .  B y  Fubini's The-
orem and [1, Theorem 6], for every zEU,

cH(z)=F-n(z)= clF-=.fu k  dp(C) deF
6 RA f'̀

=1R  5kcclEF clp(C)-=1 n u (z )d p (C ). q. e. d.
R M

§  4 . Minimum principle

First we state several definitions.

Definition 4.1 (cf. [5, p . 1 4 5 ]) . For a point CELI, and a  finely open subset U  of
R , U J {C} is called a  finely open neighborhood of i f  Ê ' *  k. W e denote by gc the
totality of finely open subsets U  of R such that UUICI is a fine neighborhood of C.

Definition 4 .2 .  For a finely open subset U  of R, we define

41(U):={ CE41: UEgc}
and 

41(U)* := ICE di: V r for every Vc gc}.

Definition 4 .3 .  Let U  be a  finely open subset o f R and f  an extended real valued
function defined in U .  Then, for a point C E 4 U )*, we define

f *—lim sup f (z ):=  i n f  sup  f(z)
(Eu)-,c V E gc zeUnV

and
f *—lim inf f (z) :-= — { f* —lim sup(— f (z)} .
z (eu)-•C ceU)-C

In particular, if f*—lim sup f(z)=f*— lim inf f (z ),  we denote this common value byz( E u)-c z(EU)-C
f * -111T1 f ( z ) .  Moreover, i f  C E 4 i (U ), we denote f * — lim sup f(z), f  * — lim inf f(z ) and
z (e U ) -C zce t1 )- z (eu)-C

f * —l i M  f(z ) by f  —lim sup f(z), f  —lim inf f(z) and f —lim f(z ) respectively. f  — lim  f(z )
z(eU) - C z CEU)-■C .ceu) - C z (eU)-< ceET)---C

is called the f ine lim it of f  at C.

Theorem 4.1 (Minimum principle). L et U  be a finely open subset o f  R  and u  a
finely suPerharmonic function bounded below i n  U . If ,  fo r  a . e. (=almost every) CE
41(U)*, 1*—liminf u(z) 0  and f o r q. e. c af U, fine lim inf u(z) - 0, then u 0 in  U.

z(eco-c .,(ev)-c

P ro o f .  Assume that u is a  finely superharmonic function bounded below i n  LI,
1*—lim inf u(z)?_0 for a. e. CE41(U)*, and fine lim inf u(z).0  for q. e. Cc af u  Let
2(Eu)-c z(eu)-c
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u, :=max(—u, 0),

u1(z) f o r  zEU
u2(z):=

0 f o r  zECU,

N := 3f  U . fine lirn inf u(z)<0},
z(Eu)-c

p : a Green potential in  R such that p=-1-0. on N  and

(n>0).

In  order to obtain the desired fact, it is sufficient to prove that u v  is finely subharmonic
in  R .  In fact, by the definition o f  u,, and [7 , Theorem 9.811,  u , 2 is bounded above in
R and subharmonic in R .  Furthermore, by the assumption, f —lim inf u,i (z).<0 for a. e.

z (Eu)-c
CEZ11 . By [10, Principe de maximum (p. 261)], u,2 0 in R .  Since 72 is arbitrary, u 2 - 0
q. e. in U and hence u 0 q. e. in  U .  T his implies the assertion of this theorem. Thus
we must prove that u ,7 is finely subharmonic in  R .  To do this, we have only to check
the conditions ( i o f  Definition 1.1 at every point of af y  because of the defini-
tion of

First it is obvious from the definition o f u,2 that ( i ) holds.
Next we show (ii). A t every point of af U—N, u,, is finely continuous because p

is finely continuous in  R, 1/2 = 0 on CU and for every cEa,U— N,

0 S fine lim sup u2 (z) ,  fine lirn sup(max(— u(z), 0)) 0 ,
z (eU) -0C z (EU)--.c

which shows that u, is finely continuous at every point of af U—N. At every point of
N, u„ is finely upper semi-continuous because u 2 is bounded above in  R and p=d-00 on
N .  Thus (ii) is shown.

Finally we show (iii). To do this, it is sufficient to prove that u2 satisfies (iii)
since —)7p satisfies (iii). F o r  every c af  u, we take an open neighborhood V  of C.

For every zEVnCU, u2 (z)=05 572 2 d e y ' ,  fo r  /22 - 0 on R .  To prove that, for every zE

Vn U, u2 (z)..4 i 2 d e F ,  we set

H 2 (z) f o r  zEa f U nV ,

u2 (z) f o r  zEa 1 (Ur1V)-6 f  Ur1V.

Since u2 _743 o n  af (VnU), H,v/u H,ve in  Vn U . Thus by Theorem 3.1 it is sufficient
to prove that u2 H1v,(

2'u on  Vn U since 1-117,2 = H w on  V n U .  Considering th e  gener-
alized fine Dirichlet problem o f u,7 o n  Vn U, we find that o n on VnU,
because 11,, is finely subharmonic in R .  Since n is arbitrary, u2:<H,v,r

2
w  q . e . on v nu.

By Theorem 3.1 u,<H,Wu on VnU. q. e. d.

§  5 . Proof of Main Theorem

1 .  Here we provide several lemmas from the need fo r  proofs of propositions and
theorems stated la te r .  To start with, from [7 , Theorems 9.14 and 9.15] we obtain

u,(z)--=
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Lemma 5.1 (Fuglede). L et U be a finely open subset o f  R  such that i(3 f u)* 0, u
a  finely superharmonic (resP. finely harmonic) function bounded below (resp. bounded) in
U, and V :=C b (C U )=U U i(C U ). Then u is uniquely extended to V as the finely super-
harmonic (resP. finely harmonic) function bounded below (resp. bounded) in V .

Lemma 5 .2 .  L et U be a finely open subset o f  R ,u  a non-negative finely super-
harmonic function i n  U  such that ( i )  u  is finite in  U; (ii) u is finely continuous in U ;
and (iii) u is dominated in  U by some non-negative superharmonic function s in R. Then
H,u, has a  fine limit 0 at almost every point of  4 1( U).

P ro o f. Let u be a  finely superharmonic function in  U  satisfying th e  above pro-
perties ( By Lemmas 3.1 and 3.2,

1-1... H V = P F  in  U.

By [5, Theorem 4.6 and Corollaries 2.1 and 14.2] we find that s is decomposed uniquely
into t h e  sum  o f  a  G r e e n  potential p  i n  R ,  a  quasibounded harmonic function

f ,(C)k c dX(C) in  R, where f1 is the Fatou boundary function o f s on 4,, and a singu-

lar harmonic function f ,  in  R, that is

s=- f ,(C)kcdX(C)± f in R .

Thus by Lemma 3.2 and the definition of 4 1(U ) we have

(0 _<)H + L i t  ,(C)f?fcu dX(C)+Pn

P +5 (u)f ,(C)k dX(C)+L ( u ) f 1(C)P' dX(C)± f 2 in U.

Hence by [10, Theorem 21] and [5, Corollary 14.2] we have, for a. e. CEGII(U),

(0 )/ —lim sup In (z )S  —lim sup,ç f ,(C)f?fcu dX(C) .
z ( E U ) - . { z  ( E U ) - - . 0 41(U)

Thus by [10, Theorem 21] it is sufficient to prove that f 1(C)P' dX(C) is a Green41 (u)
potential i n  R  in  order to prove this lem m a. By th e  definition of 41( U ) and [10,
Lemma 1], for every CEZI i (U), P q  is a Green potential in R and hence by [5, Corollary

4.7] S. f i (C)Pft dX(C) is a Green potential in  R. q. e. d.41 (u)

Lemma 5 .3 .  For a finely open subset U of  R, there exists finely open s e t  U , such
that ( i )  0 1cU U i(C U ); (ii) o f u1)=0 and (iii) toz(41(U) - 41( U1))=0.

Proof. L e t  f (z) :-=( z(4 1(U))= .f , k ( z )  dX(C) (cf. [4, Theorem 13.4]), W := UUi(CU),al  (u)
f  :=1 -H 7  and /./i := {zE W: f 1(z)> s} (0 s < 1). By Lemma 3.1 fine lim f i (z)= 0  for“Ew)--c
every C ea, w . This means the statement ( i ). By [7, Theorem 12.6] we get (ii). To
show (iii) it is sufficient to prove that f — lim f i (z)=1 for a. e. Œ 4 1(U). By [5, Co-

 ) - C
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rollary 14.21 f —lim f ( z )=1  f o r  a. e .  CE4 1 . Moreover by Lemma 5 .2  we find that
z (ew)-c

f —lim H7(z)=0 for a. e . r,EGl i (U) because f< 1  in  R .  Therefore the  statement (iii) is
z ceW)-C

proved, q. e. d.

2 .  We study the behavior of fine potentials at th e  M artin  boundary. F o r  that
purpose we show the following :

Proposition 5.1. L et U  be a finely open subset of  R such that i(a f  u)=-- 0  and  u  a
non-negative finely superharmonic function in  U  dominated by some non-negative super-
harmonic function s  in R .  Then u has a fine limit at almost every point of zl i (U).

P ro o f. L et u  be a  non-negative finely superharmonic function in  U  dominated by
some non-negative superharmonic function s  in  R .  B y R iesz ' Theorem [5 , Theorem
4 .6 ]  s  is uniquely represented a s  th e  sum of a G reen potential p in  R and a  non-
negative harmonic function h  i n  R .  From th e  R ie sz ' decomposition property [7 ,
Lemma 11.14] we see that there exist non-negative finely superharmonic functions u,
and u 2 in  U  such that ( i ) u l

- P in  U and 7.12 _<h in  U ; and (ii) u=u 1 --1-u2 i n  U .  By
( i ) a n d  [1 0 , Theorem 2 1 ]  w e find  that fo r  a. e. CE d i ( U), (0<)f —lim sup u 1 (z)zceu)-c
f —lim p(z)=0 and hence f —lim u 1(z)=0 for a . e .  C E  U ) .  Thus it is sufficient to
z (EU) -C z (EiT)-C

prove that u2 has a fine limit at almost every p o in t  o f  i( U )  because o f  (ii). To do
this, we take a  finely open subset U1 o f  U as in  Lemma 5.3 and let

f :=h— u 2 - 1 -15 2 , and

m ax (f , 0 ) in  U,

0 in CU,.

First we show that g  has a fine limit at almost every po in t o f d i . In  th e  same
way as in  the  proof of Theorem 4.1, we see from Lemma 3.1 that g  is a non-negative
finely subharmonic function in  R and hence we see from [7 , Theorem 9.8] that g  is
a  non-negative subharmonic function in  R .  Hence b y  [5 ,  Lemma 14.3] we find that
g  has a fine limit at almost every point of 4 2 ,  for g h  in  R.

Next we prove that u2 has a fine limit at almost every p o in t o f  F, := ICEZI,(U):
f  — lim  g(z )>01. Setting G ;={ z E U : f (z )>0} , we find that di(G)DF i . Therefore by
z (e17)-C

Theorem 1.1, Lemma 5.2 and [5 , Corollary 14.2] we find that u2 h a s  a  f in e  limit at
almost every point of F, because u 2 =h— g— H5

1_. 2 in  G.
Finally we prove that u , has a fine limit at almost every point of F2 :=41(U) — F1.

By the definition of F 2 , Theorem 1.1 and Lemma 5.2, for a. e. CGF2,

0 —lim sup(h(z)— u2(z))= f — lim sup f (z )z(evo-c

f(E—vil!mc g  ( 4 = 1 3

and so f  —lim(h(z)— u 2 (z))-- -- 0 for a. e. e F 2 . Therefore we find that u2 h a s  a finez(Eui)--c
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lim it at alm ost every point of F„ for h  has a fine limit at almost every point of 41
([5, Corollary 14.2]). q. e. d.

By the above proposition we immediately can prove the following :

Lemma 5.4. L et U be a finely open subset o f  R  such that i(a f  (1)-- 0 and p a fine
potential in  U such that ( i )  p  is bounded in  U; (ii) p is finely continuous in U ; and (iii)
p is zero on a  U .  Then p  has a f ine limit 0 at almost every point of  d i (U).

P ro o f .  Let p be a fine potential in  U satisfying th e  above conditions ( i
B y  Proposition 5.1 w e find  that p  has a fine limit at almost every point of d i (U).
Thus we have only to prove that f inf p(z)=0 for a. e. CE4 1(U ) .  Settingz (Eu)-<

F,;={ Cez l,(U): f — urn inf p(z) 61(6 >0),

w e  suppose that there exists a positive number 72 such that co2 ( F ) > 0 .  Let f (z ):=

nwz(F71 )= kc(z)dX(C) and fi:=f —111j. Then we see from (ii) and  Lemma 3.1 that
F n

fine lim(P(z) — f i(z))=0 f o r  e v e r y  E a /  U. B y L em m a 5.2 and [5, Corollary 14.2] wezceu)-C
have f — lim inf(p(z)—f i (z)) /—lim inf p(z)-77>0 for a. e. CEP', and p—lim inf(p(z)—

z(et7)-C z (E U )- {z (E U )-C

f inf p(z) . 0 for a. e. CE4,(U)*— for .f..H (}  in  U .  Then we see from
z(Eu)-c

Theorem 4.1 that in U . This implies that f,=0 in  U because p  is a fine potential
in  U .  On the other hand Lemma 5.2 and [5, Corollary 14.2] give us that f ( e—u li_mc f ,(z )

=72 for a. e. CEF,. This is a contradiction ,q .  e .  d.

We can omit the conditions ( from th e  above lem m a. To see this, we
show a property of fine potentials.

Lemma 5.5. L et U be a finely open subset o f  R  such that i(a f  u)=_- 0 and p a finite
potential in  U .  I f  we take a finely open set V  such that V  cU  an d  i(a f v)= 0, then
p i :=p—Hr, is  a fine potential in  V such that fine lim p i (z)==0 f o r every CEa f

2 (EU) - •C

P ro o f .  L et p  b e a  finite fine  potential i n  U, V  a  finely o p en  se t such that
'1.7c U and i(d f V ) = 0 ,  and p,:=p— Hr,. By Theorem 1.1 and Lemma 3.1 fine lirn p i (z)z(Ev)-c
=0 for every CEaf  V. To show that p, is a fine potential in V, suppose that h  is  a
non-negative finely harmonic function in  V such that h",p , in  V and we set

in  V
h 1 :={  h

0  in  U— V .

In the same way as in  the  proof of Theorem 4.1 w e find  that h , is a  non-negative
finely subharmonic function in  U because fine lim h(z)=0 fo r  every c a f  V . Thus wezcev)-c
find that h,=0 in  U, for h, p  in  U .  Hence h=0 i n  V .  Therefore by [7, Lemma
10.9] p, is a fine potential in  V. q. e. d.
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Proposition 5 .2 .  L et U be a f inely open subset o f  R  and  p  a fine potential in  U.
Then p  has a f ine lim it 0 at almost every point of  4 1( U).

P ro o f . We choose a  finely open set U, as in  Lemma 5 .3 . Let p be a fine potential
i n  U. By Lemma 5 .1  p  is extended uniquely to U U i(C U ) a s  a  f in e  potential in
uni(cu). Setting P I :=min(p, 1) and po : =p i -1/7,1, we see from Theorem 1 .1  and
Lemmas 3 .1  a n d  5 .5  th a t p2 is a fine potential in  U, such that ( i ) P 2  is bounded in
Ul ; ( i i )  P 2  is finely continuous in  0 1 ; and (iii) p2=0 on 3 1 v1.  Hence by Theorem 1.1
a n d  Lemmas 5 .2  a n d  5 .4  w e find  that p , has fine limit 0 at almost every point of
41(U ). Therefore this implies the assertion of this proposition. q. e. d.

The above proposition gives us the behavior of singular finely harmonic functions
at the Martin boundary.

Proposition 5 .3 .  L et U be a f inely open subset of  R and h a singular finely harmonic
function in  U . T hen  h  has a f ine lim it 0  at almost every Point of  4,(U).

P ro o f . Let h  be a  singular finely harmonic function i n  U .  It is obvious that
h 1 :=min(h, 1) is a  fine  potential in  U .  Thus by Proposition 5.2 we find that h, has
a fine limit 0 at almost every p o in t  o f  ,( U ) .  Therefore this shows the assertion of
this proposition.

3 .  Proof of Main Theorem. From Theorems 1 .2  a n d  2 .1  we obtain ( i ). To
show ( i i) , b y  Propositions 5 .2  and  5.3 it is sufficient to prove that u  has a fine limit
at almost every point of 41(u) under the assumption of this theorem. Let

u n  : =min(u, n), where n is a positive integer,
+-

E ,:=  n Elt, where Eiz := {CE4,(U): f u n (z )= 0 , and
n=1 z (EU) - •C

+0.
E 2 :-= n , where E 7

2i := IC E  1( U) : un has a fine lim it at Ci,n=1

Then Proposition 5.1 shows that un has a fine lim it at almost every p o in t o f  41(U),
that is (0,(4,( U)—E 7

2
1 )= 0 for every n .  Hence

wz(41(U) — E2)=w2( nC)(41(U) — ED)

+-
E eoz(41( U)— ED= 0  and so
n=1

W41(U)—E,)=0.

Thus we have only to prove that u  has a fine lim it at every p o in t o f  E 2 .  First we

consider a point Ce E 2 — E 1 . Since E,— E 1= U (E2 —  E?), there exists a positive integer
n=1

no such that CEE2—E7o, that is f —lim u n o (z)<n o . T his implies that u has a fine limit

a t  CE E,—E,. N e x t  w e  c o n s id e r  a  p o in t  CeE i . F o r  a l l  n,
z (eU )-C



204 Hiroaki Masaoka

f — urn inf u(z), and hence f —lirn u(z)=+o0.
z (EU)-C z <EU)-C

§  6  A Plessner type theorem for finely harmonic functions

First we introduce the notion of fine cluster sets.

q. e. d.

Definition 6 . 1 .  L et U be a  finely open subset o f R and f  an extended real valued
function defined in  U .  Then we define the fine cluster set f^(C) at CEZI,(U) as follows :

f  (C ):= f l  f(17 n U ),
V E g (

where f(vnu) is the closure of f (V n U ) in RUH-co}r1{-00}.

Next we state a  Lemma on fine open neighborhoods.

Lemma 6 . 1 .  L et C be a point of  Zli  an d  U a finely open subset of  R such that
gc . Then there exists a f ine subdomain (=finely connected and finely open subset) V  of
U such that Veg c .

P ro o f . Let be a point of 4  and U a  finely open subset of R  such that UE.gc.
Then there exists a point z o f  U such that lz (z )>P fcu(z). L et V be a fine component
o f  U containing z. We see from Lemma 3.2 and Definition 3.2 that

Pfcv=Hrc=1--n c=f?Tc
u  i n  V.

Therefore we find that k c# 4 v , that is V Egc. q. e. d.

From the above lemma we can get the following :

Lemma 6 .2 .  L et U be a f inely open subset of  R and f  a finely continuous function
in  U .  T hen, for every CE41(11), f  (C) is  a closed interval in  Rut-i-coluf-001.

P ro o f .  Let be a point of Zli(U) and f  a  finely continuous function in U . Setting
Q':={ V : VOEU a n d  V  is finely connected}, we see from Lemma 6.1 that
f  n. f (V ) .  The general theory of topology says that f (V ) is connected for every

Vegt
V  E g t  because f  is finely continuous in  U .  Hence f (V ) i s  a  closed interval in  Ru
{±00}U{ —co} f o r  every  V E gt. T h is  means that r(C ) is a  closed interval in  RU
{+ 0°}U { — °°I. q .  e .  d.

Finally we show a Plessner type theorem for finely harmonic functions as an  ap-
plication of Main Theorem (cf. [12])

Theorem 6 . 1 .  L et U be a finely open subset o f  R and h a finely harmonic function
in  U . T hen f o r a.e. CE4 1( U), 12 - (C) is a singleton or RU{±00}U{-00}.

P ro o f . Let h  be a  finely harmonic function in  U .  We set
gt {V E flc  : V c LI and V  is finely connected} for CE41(U),

Zli (q ) ,  where G 72' : =  { Z E  U: h(z)>— n}(n: a  positive integer),
n =1
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E , :=  4 , ( G ) ,  where G1,.:={ z E U : h(z )<n} , and
n= 1

E 3 :==41 (U)—E 1 —E2 .
First we consider the  behavior o f h at E 1 l..).E2 . Main theorem states that h  has

a fine limit at almost every point of 4 1(G11). Hence h has a fine limit at almost every
po in t o f E , .  In  th e  same way as above, h has a fine limit at almost every point of
E 2 .  Thus we find that RC) is a singleton for a. e. CEE ' VE 2 .

Next we consider the  behavior o f h at E 3 . Taking a  p o in t C E E „ we see from
the definition of E 3 that for every V E f t  and every n, v ncG7* 0 and V r\CG7 * 0,
that is there ex ist tw o  points z , and z , of V  such that h(z,)_-<— n and h(z 3 ) n .  By
Lemma 6.2 w e find  that h(V )D{x R :  — n x n }  f o r  every V . g t  a n d  every n.

Hence h(V)DRU { + 00 } —  co }  for every V E gt since n is arbitrary. Therefore from
Lemma 6.1 we conclude that V (C )=R U 1+00 }U {-00 }. q. e. d.
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