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On the behavior of non-negative finely
superharmonic functions at the Martin boundary
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Introduction

By F. Riesz [13] and M. Parreau [11], a non-negative superharmonic function is
decomposed uniquely into the sum of a Green potential, a quasibounded harmonic func-
tion and a singular harmonic function. L. Naim [10] and J. L. Doob (cf. [5]) connected
this decomposition theorem with the Fatou boundary theorem on the Martin boundary
for non-negative superharmonic function as the following :

Theorem A. Let u be a non-negative superharmonic function in a Green space R.
Then it holds that

(1) wu s decomposed uniquely into the sum of a Green potential p in R, a quasibounded
harmonic function f, in R, and a singular harmonic function f, in R, and that

(ii) u and f, have a common fine limit at almost every minimal point with respect
to the harmonic measure w,(zE R).

B. Fuglede [7] introduced the notion of finely superharmonic functions to potential
theory on harmonic spaces. The main purpose of this paper is to extend Theorem A
to the case of a non-negative finely superharmonic function and to obtain the next
theorem :

Main Theorem. Let U be a finely open subset of a Green space R in the sense of
Doob [6, §4] which admits the Green function, and u be a non-negative finely superhar-
monic function in U. Then it holds that

(1) & is decomposed uniquely into the sum of a fine potential p in U, a non-negative
finely superharmonic function f, in U which is quasibounded finely harmonic in U—
{z€U : u(z)=4+} and a non-negative finely superharmonic function f, in U which is
singular finely harmonic in U—{z€U : u(z)=+co}, and that

(ii) u and f, have a common fine limit at almost every point of A,(U)(see §4) with
respect to w,.

The definitions of notations and terminologies used in this theorem are stated in
8§81, 2 and 4, and the word “almost every” will be later used with respect to w, unless
otherwise stated. Roughly speaking, the idea of the proof of Main Theorem is to
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modify u in order to extend its modification to R as a bounded subharmonic function.
In the process of its proof, the behavior of solutions of the generalized fine Dirichlet
problem (see §3) at the Martin boundary will play an important role.

As an important application of Main Theorem, a Plessner type theorem for finely
harmonic functions is obtained.

In §1 we provide some definitions and results from the fine potential theory and
state in §2 a Parreau type decomposition theorem for finely harmonic functions. The
generalized fine Dirichlet problem is stated in §3 and the minimum principle for finely
superharmonic functions is shown in §4. Using the above results, we give in §5 the
proof of Main Theorem and a Plessner type theorem for finely harmonic functions is
proved in §6.

The author wishes to express his deepest gratitude to Professors Y. Kusunoki and
T. Fuji’i’e for theire encouragements and comments. And he also wishes to thank
Professor M. Taniguchi for valuable advices.

§1. Preliminaries

First we introduce the notations which will be used throughout this paper.
R : a Green space in the sense of Doob [6, §4] (cf. [4]) which admits the Green
function,
% : the Martin compactification of R,

4(=R%—R): the Martin boundary of R,

4, : the totality of minimal points in 4,

k¢ : the Martin function with pole at {€R¥,

®,: the harmonic measure on 4, relative to zeR and R, and

%: the canonical measure on 4, representing 1.

We refer to [5, Ch. 13] for the notion of Martin’s compactification. In [5], the Martin
compactification of a hyperbolic Riemann surface is considered, but the results in [5]
for superharmonic functions are valid even if we observe a Green space in place of a
hyperbolic Riemann surface.

Next we state some notions and results from fine potential theory. For that purpose
we introduce into R the weakest topology which makes all positive superharmonic
functions in R continuous. Such a topology is called the fine topology (cf. [3, Ch. 1]).
In this paper, as for the topological terminologies in fine topology, we put the word
“fine” or “finely” before those of the original topology in R, for example, finely open,
a fine neighborhood etc.

Definition 1.1 ([7, 8.1~8.3]). If an extended real valued function u defined in a
finely open subset U of R satisfies the following conditions, u is called to be finely
harmonic (resp. finely hyperharmonic, finely hypoharmonic) in U.

(i) —oo<u<+co (resp. —oo<us+o0, —c0Lu+00);

(ii) u is finely continuous (resp. finely lower semi-continuous, finely upper semi-
continuous) in U ;

(iii) for every x€U, there exists a compact fine neighborhood V of x such that u
is bounded (resp. bounded below, bounded above) in V (CU) and that for every z€V'’
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(=the fine interior of V),

u(z)=Su defY (resp. u(z)gSu def?, u(z)_S_Su defv),

where ¢SV is the balayage of the Dirac measure ¢, at z on CV (:=R—V) (cf. [1]).

Moreover, if a finely hyperharmonic (resp. finely hypoharmonic) function u in U
is not equal to +oo (resp. —oo) identically, u is called to be finely superharmonic (resp.
finely subharmonic) in U.

We state the fundamental theorem for finely hyperharmonic functions:

Theorem 1.1 (Fuglede [7, Theorem 9.10]). Every finely hyperharmonic function is
finely continuous.

Definition 1.2 ([7, 10.5]). A non-negative finely superharmonic function p in a
finely open subset U of R is called a fine potential in U if every finely subharmonic func-
tion s in U dominated by p is non-positive in U.

The next theorem is considered as a Riesz type decomposition theorem for finely
superharmonic functions.

Theorem 1.2 (Fuglede [7, Theorem 10.7]). For a non-negative finely superharmonic
function u in a finely open subset U of R, u is decomposed uniquely into the sum of a
fine potential p in U and a non-negative finely superharmonic function h in U which is
finely harmonic in U—{z€U : u(z)=-+co}.

§2. A Parreau type theorem for finely harmonic functions

In [9], by using a Brownian motion on R¢%(d=2), we obtained a Parreau type
theorem for finely harmonic functions in a fine subdomain of R?(cf. [11]). In the
same way as in [9] we conclude that such a result is valid for finely harmonic
functions in a finely open subset of R since we can construct a Brownian motion on
R (cf. [8, Ch. 5], in particular for Riemann surface see [14, §2]). Thus we only state
the result without proof.

Definition 2.1. Let U be a finely open subset of R and f a non-negative finely
harmonic function in U. Then f is called to be quasibounded in U if there exists a
sequence {f,}#=; of bounded non-negative finely harmonic functions in U such that
{fn}i=, converges increasingly to f on U.

Definition 2.2. Let U be a finely open subset of R and f a non-negative finely
harmonic function in U. Then f is called to be singular in U if a bounded non-
negative finely harmonic function s in U dominated by f is equal to zero identically
in U.

Theorem 2.1. Let U be a finely open subset of R and f a non-negative. finely har-
monic function in U. Then f is decomposed uniquely into the sum of a quasibounded
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finely harmonic function f, in U and a singular finely harmonic function f, in U.

We refer to [9] for the proof of this theorem.

§3. The generalized fine Dirichlet problem

First we introduce the generalized fine Dirichlet problem considered by Fuglede
{7, 14.3].

Definition 3.1 ([2, p. 41]). A Green potential p in R is called to be semi-bounded
in R if lim inf('ar;{ R'8>4(x))=0 for every zeR, where R'5>" is the balayage of p on
=z

{x€R: p(x)>2}, that is R'B>V(z):=inf{s(z): s is non-negative superharmonic in R and
s=p q.e. (=quasi-everywhere) on {x&R: p(x)>4}) (cf. [1]).

Definition 3.2. Let U be a finely open subset of R and f an extended real valued
function on the fine boundary d,U of U. Then we denote by &% the totality of func-
tions u satisfying the following conditions:

(i) wu is finely hyperharmonic in U;

(ii) —u is dominated in U by some semi-bounded Green potential p in R, where
p depends on u;

(iil) zﬁ(rég)llzn inf w(z)= f(¢) for every {€d,U,

and we define the functions H‘f’ and HY in U as follows:
HY(z):=inf{u(z): ucd¥}, HY:=—HY,.

Moreover, if —co<HY=HY<+o in U, f is called to be finely resolutive relatively to U
(for the generalized fine Dirichlet problem), we denote HY by HY, and we call HY the
solution of the generalized fine Dirichlet problem of f on U.

The next theorem gives us a necessary and sufficient condition for the fine resolu-
tivity of boundary functions.

Theorem 3.1 (Fuglede [7, Theorem 14.6]). Let U be a finely open subset of R and
f an extended real valued function on 0,U. Then it holds that

(i) ﬁ’f’(z)=g*f defV and Ij‘}(z)zs*f deCV for every z€ U, where S*f deS? and
S*f defV is the upper and the lower integral of f respectively;

(ii) f is finely resolutive if and only if f is integrable w.r.t.(=with respect to) eV
for every z€ U;

(i) if f is finely resolutive, H‘}(z)zgf de€? for every z€U and HY is finely har-
monic in U.

Next we introduce notions of regular and irregular points. For a subset A of R,
we denote by b(A) and i(A) the totality of finely accumulated points of A and the
totality of finely isolated points of A respectively. We call b(A) the base of A. Then
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it is well-known that #(A)=A—b(A) and i(A) is a polar set (cf. [3, Theorem VII, 7]).

Definition 3.3 (cf. [7, 12.5]). Let U be a finely open subset of R. Then the
points of b(0,U)=b(CU)Nd,;U are called the regular points of ;U or the regular (fine
boundary) points for U, the remaining points of d,U, forming the polar set #(d,U)=
#(CU), are called the irregular points of d,U or the irregular (fine boundary) points for U.

Lemma 3.1. Let U be a finely open subset of R and u a non-negative finely super-
harmonic function in U such that u is finite in U and is finely continuous on the fine
closure U of U. Then it holds that

(1) wu s finely resolutive relatively to U;

(ii) for every regular points {€d,U,
w({)=fine lim HY(z).

2L

Proof. Let u be a non-negative finely superharmonic function such that u is finite
in U and is finely continuous on . From the definition of HY, u>HY in U. Therefore
we obtain (i) from (i) and (ii) of Theorem 3.1. Next we show (ii). Since u is finely
continuous on U and efU=¢e9sP for every zeU (cf. [7, Lemma 12.3]), by Theorem
3.1 and [7, Remark of Theorem 9.13] we have, for every regular point {d,U,

fine lim inf HY(z)=fine lim inf Su del?
2(Ee)-§ 2(€U)~¢

—fine lim inf Su deb@sv>
z2(el)-§

>fine lim inf Su de2@s>
2(ER)-

=fine lim inf u(z2)
2(Eb@ UL

=u(g).
On the other hand, for every {€ad,U,
u({)=fine lim sup u(z)=fine lim sup HY(z),
2(elh~§ 2(Eel-¢

since u is finely continuous on U and u=HY in U. Thus the proof of (ii) is completed
q.e.d.

Lemma 3.2. Let U be a finely open subset of R and u a non-negative superharmonic
function in R. Then

HY=HY=RS in U.
Moreover, if u :=SR* ke dp(Q), where p is a regular and positive Borel measure supported
M
on R¥%,

U_— OgU_—_ PCU_— cuU ;
HY=HY=R _SRT, R dp@) in U.
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Proof. By (i) of Theorem 3.1 and the general theory of balayage (cf. [1, Theorem
6]), for every z€U,

I_JZ(z)=HZ(z>=Su deSU=R¥(2),

since u is measurable w.r.t. ¢%Y(cf. [7, 4.9]). Here we suppose that quRf, ky du(D),

where ¢ is a regular and positive Borel measure supported on R%. By Fubini’s The-
orem and [1, Theorem 6], for every z€U,

Hi@) =A@ ={ude"=([  kcap© dss”
M

={ Jrede?? au@={ _ 2 auc®). ae.d.

R

§4. Minimum principle
First we state several definitions.

Definition 4.1 (cf. [5, p. 145]). For a point {&4, and a finely open subset U of
R, UU{L} is called a finely open neighborhood of { if R¢ ;&kc We denote by &, the
totality of finely open subsets U of R such that U\U{{} 1s a fine neighborhood of (.

Definition 4.2. For a finely open subset U of R, we define
4,U):={fed,: U=g}

and
4,U*:={Ld,: VNU+Q for every VeEg,}.

Definition 4.3. Let U be a finely open subset of R and f an extended real valued
function defined in U. Then, for a point {&4,(U)*, we define

f*—limsup f(z):=inf sup f(2)

HE SRS vedy :einv

and o
f*—lim inf f(2):= /*—llm sup(— f(2)}.
2l 2Eeh~¢

In particular, if f*—lim sup f(2)=f*—lim inf f(z), we denote this common value by

2l ~¢ 2el~{
f*—lim f(z). Moreover, if {ed,(U), we denote /*—llm sup f(2), /*—llm inf f(z) and
2 -{ z2el)~¢
f*—lim f(z) by j’—llm sup f(2), /—llm inf f(z) and /—llm f(2) respectlvely f—lim f(2)
2§ 2l -§ 2Eel~¢

is called the fine lzmzt of f at (.

Theorem 4.1 (Minimum principle). Let U be a finely open subset of R and u a
ﬁnely superharmonic function bounded below in U. If, for a.e. (=almost every) {&
4, UY*, f*-—hm inf u(2)=0 and for q.e. {€d,U, fine lim inf u(2)=0, then u=0 in U.

HEAE 2(el)-{
Proof. Assume that u is a finely superharmonic function bounded below in U

f*—lim inf u(2)=0 for a.e. {&4,(U)*, and fine lim inf u(z)=0 for q.e. {€d,U. Let
2Ee-¢ 2ely~¢
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Uy :=max(—u, 0),
u(2) for zeU

0 for zeCU,

N:={{=0,U: finelim inf u(z)<0},

zEe -

p: a Green potential in R such that p=+o on N and
Uy :=u,—np (9>0).

In order to obtain the desired fact, it is sufficient to prove that u, is finely subharmonic
in R. In fact, by the definition of u, and [7, Theorem 9.8], u, is bounded above in

R and subharmonic in R. Furthermore, by the assumption, f—lim inf u,(2)<0 for a.e.
2(el)~§

{e4,. By [10, Principe de maximum (p. 261)], u,<0 in R. Since 7 is arbitrary, u,<0
g.e. in U and hence u=0q.e. in U. This implies the assertion of this theorem. Thus
we must prove that u, is finely subharmonic in R. To do this, we have only to check
the conditions (i)~(iii) of Definition 1.1 at every point of d,U because of the defini-
tion of u,.

First it is obvious from the definition of u, that (i) holds.
Next we show (ii). At every point of 0,U—N, u, is finely continuous because p
is finely continuous in R, u,=0 on CU and for every {<d,U—N,

0<fine lim sup u,(z)=fine lim sup(max(—u(z), 0))<0,
2(el)~¢ HE R4

which shows that u, is finely continuous at every point of 9,U—N. At every point of
N, u, is finely upper semi-continuous because u, is bounded above in R and p=+4o on
N. Thus (ii) is shown.

Finally we show (iii). To do this, it is sufficient to prove that u, satisfies (iii)
since —np satisfies (iii). For every {€d,U, we take an open neighborhood V of C.

For every zeVNCU, uz(z)=0§Su2 def?, for u,20 on R. To prove that, for every z&
VAU, uz(z)§gu2def", we set

{sz(z) for zeo,UNV,

uy(z)=

’ uz)  for z€d,(UNV)—8,UNV.

Since u,<u, on 0,(VNU), HLYY<HLM in VNU. Thus by Theorem 3.1 it is sufficient
to prove that u,<HYL on VNU since H;,=H,)” on VNU. Considering the gener-
alized fine Dirichlet problem of u, on VNU, we find that u,<H ZQIU <HTYW on VNU,

because u, is finely subharmonic in R. Since 7 is arbitrary, u,<HYY q.e. on VNU.
By Theorem 3.1 u,<HYY on VNU. q.e.d.

§5. Proof of Main Theorem

1. Here we provide several lemmas from the need for proofs of pfopositions and
theorems stated later. To start with, from [7, Theorems 9.14 and 9.15] we obtain
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Lemma 5.1 (Fuglede). Let U be a finely open subset of R such that i{@;U)+ @, u
a finely superharmonic (resp. finely harmonic) function bounded below (resp. bounded) in
U, and V:=Cb(CU)=U\UICU). Then u is uniquely extended to V as the finely super-
harmonic (resp. finely harmonic) function bounded below (resp. bounded) in V.

Lemma 5.2. Let U be a finely open subset of R,u a non-negative finely super-
harmonic function in U such that (i) u is finite in U; (i) u is finely continuous in U;
and (iii) u is dominated in U by some non-negative superharmonic function s in R. Then
HY has a fine limit 0 at almost every point of 4,(U).

Proof. Let u be a finely superharmonic function in U satisfying the above pro-
perties (i)~(iii). By Lemmas 3.1 and 3.2,
HY<HY=RSU in U.
By [5, Theorem 4.6 and Corollaries 2.1 and 14.2] we find that s is decomposed uniquely
into the sum of a Green potential p in R, a quasibounded harmonic function
Sd F1( @k dX(C) in R, where f, is the Fatou boundary function of s on 4,, and a singu-
1

lar harmonic function f, in R, that is

s=p+|, Ok ALO+f2 in R.

Thus by Lemma 3.2 and the definition of 4,(U) we have

(og)H‘,{gég%Sd F(OREY dUQ+RFY

<p+{, |, o SOO+H], | FORF O+ U

4,-4, > (]

Hence by [10, Theorem 21] and [5, Corollary 14.2] we have, for a.e. {€4,U),

<V/_1; U _1i pcU
0=)flim sup Hi(a)s f-limsup|,  F(ORE dX©.

Thus by [10, Theorem 21] it is sufficient to prove that SA o f 1(C)Rff’ dx(©) is a Green
1

potential in R in order to prove this lemma. By the definition of 4,(U) and [10,
Lemma 1], for every {e4,U), R,‘,’c” is a Green potential in R and hence by [5, Corollary

4.7] S F(DREY dX(C) is a Green potential in R. q.e.d.
41)

Lemma 5.3. For a finely open subset U of R, there exists finely open set U, such
that (i) O,cUVCU); (i) i@, U)=0 and (iii) 0,(4,(U)—4,(U)=0.
Proof. Let f(2) :=w,(A,(U))=SA (U)kc(z) dx(Q) (cf. [4, Theorem 13.4]), W :=U\Ui(CU),
1
fi:=f—HY and U,:={zeW: f(2)>¢} (0<e<l). By Lemma 3.1 ﬁ(gg)lircnfl(z)zo for

every {€d,W. This means the statement (i). By [7, Theorem 12.6] we get (ii). To
show (iii) it is sufficient to prove that )i’e—wl)mg fi(z)=1 for a.e. {=d,(U). By [5, Co-
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rollary 14.2] f;e—l_vl)i-r-? f(z)=1 for a.e. {&4,. Moreover by Lemma 5.2 we find that

f—lim H¥(z)=0 for a.e. {&4,(U) because f<1 in R. Therefore the statement (iii) is
2(eEW)-{

proved. q.e.d.

2. We study the behavior of fine potentials at the Martin boundary. For that
purpose we show the following :

Proposition 5.1. Let U be a finely open subset of R such that {@,;,U)=@ and u a
non-negative finely superharmonic function in U dominated by some non-negative super-
harmonic function s in R. Then u has a fine limit at almost every point of 4,(U).

Proof. Let u be a non-negative finely superharmonic function in U dominated by
some non-negative superharmonic function s in R. By Riesz’ Theorem [5, Theorem
4.6] s is uniquely represented as the sum of a Green potential p in R and a non-
negative harmonic function 2 in R. From the Riesz’ decomposition property [7,
Lemma 11.14] we see that there exist non-negative finely superharmonic functions u,
and u, in U such that (i) u;<p in U and u,<h in U; and (ii) u=wu,+u, in U. By
(i) and [10, Theorem 21] we find that for a.e. {4,(U), (Og)gf;,)litgl sup u,(2)<

f—lim p(2)=0 and hence f—lim u,(z)=0 for a.e. {&4,(U). Thus it is sufficient to
z(ely—~§ 2el>-~¢

prove that u, has a fine limit at almost every point of 4,(U) because of (ii). To do
this, we take a finely open subset U, of U as in Lemma 5.3 and let

fi=h—u,—H%'_,, and

{ max(f, 0) in U,
g:=
0 in CU,.

First we show that g has a fine limit at almost every point of 4,. In the same
way as in the proof of Theorem 4.1, we see from Lemma 3.1 that g is a non-negative
finely subharmonic function in R and hence we see from [7, Theorem 9.8] that g is
a non-negative subharmonic function in R. Hence by [5, Lemma 14.3] we find that
g has a fine limit at almost every point of 4,, for g<h in R.

Next we prove that u, has a fine limit at almost every point of F,:={C4(U):
/_lif;n g(2)>0}. Setting G:={z€U: f(z)>0}, we find that 4,(G)DF,. Therefore by

zelh
Theorem 1.1, Lemma 5.2 and [5, Corollary 14.2] we find that #, has a fine limit at
almost every point of F, because u,=h—g—H%!_,, in G.

Finally we prove that u, has a fine limit at almost every point of F,:=4,(U)—F,.
By the definition of F,, Theorem 1.1 and Lemma 5.2, for a.e. {EF,,

< f_—_1i — —f 11

0= f_lim sup(h(z)—us())=§ _ lim sup f(2)
< f—lim =

=/ lim g(2)=0

and so ,{e—vlgrx}(h(z)——uz(z))=0 for a.e. {&F,. Therefore we find that u, has a fine
z 1)
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limit at almost every point of F,, for A has a fine limit at almost every point of 4,
(5, Corollary 14.27). q.e.d.

By the above proposition we immediately can prove the following :

Lemma 5.4. Let U be a finely open subset of R such that i(0;U)=@ and p a fine
potential in U such that (i) p is bounded in U; (ii) p is finely continuous in U ; and (iii)
p is zero on d,U. Then p has a fine limit 0 at almost every point of A,(U).

Proof. Let p be a fine potential in U satisfying the above conditions (i)~(iii).
By Proposition 5.1 we find that p has a fine limit at almost every point of 4,(U).
Thus we have only to prove that f’(e—Ugir? inf p(2)=0 for a.e. {€d,(U). Setting

F.:={Ced(U): zfze_l/'}l-»r? inf p(2)=e}(e>0),

we suppose that there exists a positive number 7 such that w,(F,)>0. Let f(z):=
nwz(Fﬂ)anF ky(z)dX(C) and f,:=f—HY. Then we see from (ii) and Lemma 3.1 that
7

ﬁng)licm(p(z)—fl(z))zo for every {=d,U. By Lemma 5.2 and [5, Corollary 14.2] we
z(El)—~

T _ RTI s TR _
have ﬁevll‘? inf(p(z)—f(2)= Z;E”ll_.rg] inf p(z)—%=0 for a.e. {&F, and f(eU)IJCm inf(p(2)
fl(z));/*—li(g}bigcf p(2)=0 for a.e. {4 (Uy*—F,, for f2HY in U. Then we see from

Theorem 4.1 that p=f, in U. This implies that f,=0 in U because p is a fine potential
in U. On the other hand Lemma 5.2 and [5, Corollary 14.2] give us that f —Ulir? fi(2)
z2(€elU)~

=y for a.e. {&F,. This is a contradiction. q.e.d.

We can omit the conditions (i)~(iii) from the above lemma. To see this, we
show a property of fine potentials.

Lemma 5.5. Let U be a finely open subset of R such that i(0;U)=@ and p a finite
potential in U. If we take a finely open set V such that VCU and 10, V)=0, then
pi=p—H} is a fine potential in V such that ﬁ?e%)lircn p1(2)=0 for every {ca, V.

Proof. Let p be a finite fine potential in U, V a finely open set such that
VcU and i(8,V)=@, and p,:=p—HY. By Theorem 1.1 and Lemma 3.1 ﬁng)lixcn pi(2)
z(Eev)—~

=0 for every {€d,V. To show that p, is a fine potential in V, suppose that 4 is a
non-negative finely harmonic function in V such that A< p, in V and we set

h inV
h; :—_—-{
0 in U-V.

In the same way as in the proof of Theorem 4.1 we find that h, is a non-negative
finely subharmonic function in U because ﬁm; )hrcn h(z)=0 for every {ed,V. Thus we
z(EV) -~

find that A,=0 in U, for h,<p in U. Hence h=0 in V. Therefore by [7, Lemma
10.9] p, is a fine potential in V. q. e. d.



Non-negative finely superharmonic functions 203

Proposition 5.2. Let U be a finely open subset of R and p a fine potential in U.
Then p has a fine limit 0 at almost every point of 4,(U).

Proof. We choose a finely open set U, as in Lemma 5.3. Let p be a fine potential
in U. By Lemma 5.1 p is extended uniquely to UUi/CU) as a fine potential in
UNi(CU). Setting p,:=min(p, 1) and p,:=p,—HY!, we see from Theorem 1.1 and
Lemmas 3.1 and 5.5 that p, is a fine potential in U, such that (i) p, is bounded in
U,; (ii) p. is finely continuous in {f,; and (iii) p,=0 on 8,U,. Hence by Theorem 1.1
and Lemmas 5.2 and 5.4 we find that p, has fine limit 0 at almost every point of
4,(U). Therefore this implies the assertion of this proposition. q.e.d.

The above proposition gives us the behavior of singular finely harmonic functions
at the Martin boundary.

Proposition 5.3. Let U be a finely open subset of R and h a singular finely harmonic
function in U. Then h has a fine limit 0 at almost every point of 4,(U).

Proof. Let h be a singular finely harmonic function in U. It is obvious that
h,:=min(h, 1) is a fine potential in U. Thus by Proposition 5.2 we find that A, has
a fine limit 0 at almost every point of 4,(U). Therefore this shows the assertion of
this proposition.

3. Proof of Main Theorem. From Theorems 1.2 and 2.1 we obtain (i). To
show (ii), by Propositions 5.2 and 5.3 it is sufficient to prove that » has a fine limit
at almost every point of 4,(U) under the assumption of this theorem. Let

u,:=min(u, n), where n is a positive integer,

E . := FSIE’:, where E?:={Cs4,(U): /;Ul)ing u,(z)=n}, and

E,:=[\ E%, where E}:={{€4,(U): u, has a fine limit at C},

Then Proposition 5.1 shows that u, has a fine limit at almost every point of 4,(U),
that is 0,(4,(U)—E?%)=0 for every n. Hence

wd(U)—Ed=0,(J (4(U)—ED)

gng(dl(U)—EIghO and so
w(4(U)—E»=0.

Thus we have only to prove that u has a fine limit at every point of E,. First we
+00
consider a point {€E,—FE,. Since E,—FE,= Ul(Ez—E'f), there exists a positive integer

n=

n, such that {eE,—E7, that is /(;jl)mcl un(2)<m,. This implies that u has a fine limit

at {€E,—FE,. Next we consider a point. {&E,. For all =, n=/—U}i1? u(2)<
. 2(€U)



204 Hiroaki Masaoka

z/;g—y}g inf u(z), and hence f( e—(—]l)l_{{l u(z)=-+oo. g.e.d.

§6 A Plessner type theorem for finely harmonic functions
First we introduce the notion of fine cluster sets.

Definition 6.1. Let U be a finely open subset of R and f an extended real valued
function defined in U. Then we define the fine cluster set f°({) at {&4,(U) as follows:
Q=N fvNnu),

Vegc
where f(VNU) is the closure of f(VNU) in RU{+oo}N{—c0}.
Next we state a Lemma on fine open neighborhoods.
Lemma 6.1. Let { be a point of 4, and U a finely open subset of R such that Us

Gr.  Then there exists a fine subdomain (= finely connected and finely open subset) V of
U such that Vegy.

Proof. Let { be a point of 4, and U a finely open subset of R such that Uegy.
Then there exists a point z of U such that k((Z)>RfCU(Z). Let V be a fine component
of U containing z. We see from Lemma 3.2 and Definition 3.2 that

I?,?C"zHL’C:H?(:I?EC” in V.
Therefore we find that kg#R§Y, that is Vg g.e.d.
From the above lemma we can get the following:

Lemma 6.2. Let U be a finely open subset of R and f a finely continuous function
in U. Then, for every Ledy(U), f~(£) is a closed interval in R\U{+oo}\U{—co}.

Proof. Let { be a point of 4,(U) and f a finely continuous function in U. Setting
g¥:={Veg;: VCU and V is finely connected}, we see from Lemma 6.1 that
f A(C)=VQ, F(V). The general theory of topology says that f(V) is connected for every

edt

Veg¥ because f is finely continuous in U. Hence f(V) is a closed interval in RU
{+ o} U{—c} for every Veg#. This means that f°({) is a closed interval in R\U
{+oopU{—co}. q.e.d.

Finally we show a Plessner type theorem for finely harmonic functions as an ap-
plication of Main Theorem (cf. [12])

Theorem 6.1. Let U be a finely open subset of R and h a finely harmonic function
in U. Then for a.e. L&4,(U), h™() is a singleton or R\U{+oo} U{—oc}.

Proof. Let h be a finely harmonic function in U. We set
g¥:={Veg,: VCU and V is finely connected} for {&4,(U),

E, .= QAI(G’;), where G%:={zeU: h(z)>—n}(n: a positive integer),
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E,:= le(G;‘), where G?:={z€U: h(z)<n}, and

E;:=4(U)—E,—E,.

First we consider the behavior of & at E,\UE,. Main theorem states that A has
a fine limit at almost every point of 4,(G?). Hence h has a fine limit at almost every
point of E,. In the same way as above, 4 has a fine limit at almost every point of
E,. Thus we find that f°({) is a singleton for a.e. {€E,UE,.

Next we consider the behavior of &4 at E;. Taking a point {&E,;, we see from
the definition of E; that for every V&g# and every n, VNCG}+# @ and VNCGE+# @,
that is there exist two points z, and z, of V such that A(z,)<—n and h(z,)=n. By
Lemma 6.2 we find that A(V)D{xeR: —n=x=<n} for every V&gf and every n.

Hence A(V)DRU{+}\U{—oo} for every VEg¥ since n is arbitrary. Therefore from
Lemma 6.1 we conclude that A" ({)=R\U{+wo}U{—co}. q.e.d.
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