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A note on the coefficients of Hilbert polynomial

By

Ravinder KuMARrR*

Let (Q, m) be a local ring of dimension d and g an m-primary ideal. It is well
known that for sufficiently large values of n (notation: n » 0) [,(Q/¢q"*"), the length
of the Q-module Q/q"*! is a uniquely determined polynomial of degree d, called
the Hilbert polynomial and is given by

d d—1
lo(Q/q"* ") = eo<nji_ > - e1(n :_ 1 ) + o+ (— 1)ey

where the integers e, ey, ..., e; depend on g and are known as normalized Hilbert
coefficients. e; is sometimes written as e;(q) to emphasize its dependence on gq.

It is easily seen that e, is positive. In case Q is a Cohen-Macaulay ring,
Northcott [2] showed that e, is non-negative and Narita [1] showed that in this
case e, is non-negative as well. Narita gave an example of a Cohen-Macaulay
ring and an m-primary ideal g such that e;(q) is negative.

The purpose of this note is to show that for any integer d > 3, it is possible to
construct an example of a Cohen-Macaulay ring (Q, m) of dimension d and an m-
primary ideal g such that e,(q) is negative.

We use the arguements given in [1] to obtain explicit values of the
normalized Hilbert coefficients and use them subsequently to test our examples for
the claim made above. To give a general treatment we must introduce some
auxilliary notations which are explained at the appropriate place. Throughout
this note (Q, m) denotes a Cohen-Macaulay ring with infinite residue field.

§1:

To start with we quote the following result

1.1 (Northcott [2]). Let dim Q = d and w a superfical element of q. Suppose
that w is not a zero divisor. Let Q = Q/Qw and G = q/Qw. Then we have
(1) 1g(3/a" ") = lo(q"**: w/g"* ") for all n>0
(i) 1(0/d"*Y) = 1o(Q/a"* ") — 1o(Q/q") for all n>»0
(iii) eflg) =elq), 0<i<d-—-1.
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Let dim Q = d and g an m-primary ideal. Let w;, w,,..., w; be a system of
i—1
parameters in g. We denote by Q;, the quotient ring of Q modulo Y Qw4
j=1

denotes the image of ¢ in Q and w, denotes the image of w; in Q. For the
sake of uniformity Q. ¢;, and w;, will denote Q, q and w, respectively.

1.2. Theorem. Let (Q, m) be a Cohen-Macaulay ring of dimension d (= 1).

Suppose q is an m-primary ideal and w,, w,, ..., w, a system of parameters in q such
that wy, is a superficial element of q. Then
n+d n id-1 i2 i1
10(Q/q""") = lQ(Q(d+1))< d ) - X _ z z (A; + By,
ig-1=0 ig-2=0 i(1=0i=0
n id-2 iz iy n
- Z Z Z Z Bd—l i - Z Bl i
id-2=0 ig-3=0 i1=01i=0 i=0

d d
where A;=1o(Q/ Y. Qw) ~ o(@/a'** + 3. Qwy), 120

and Bj; =lo (a5 s wy/ap) J=1,2,...,d:i=20

Proof. The proof is by induction on d. We shall denote the terms A; and
B;; for Q,, by bars over the corresponding letters.

Suppose d = 1. Write w, as w. Since w is a superficial element which is not
a zero divisor, we have

10(Q/Qw + q'" 1) = 1p(Q/q'™") — 1p(Qw + q'* 1 /q'™ ")
=1(Q/q""") — 1o(Q/q' "' w)
=19(0/q'") — 19(Q/q") + lo(q' ' - w/q')
Thus
10Q/q"*") — 19(Q/9") = 1o(Q/Qw + ¢'* ") — By

Putting i =0, 1,..., n and summing up the respective sides, we get

0Q/a" ) = 3 1@ulai3) — 3. Bu. )

n+ 1 n n
ZIQ(Q(Z))< 1 >— Z A — Z Bl.i
i=0 i=0
Assume the result holds when dim Q =d — 1. Since dim(Q,) =d — 1, the
given hypothesis ensures that

+d—1
IQ(Z,(Q(Z)/‘I?ZJF)I) = IQ(Z)((Q(Z))(d))(n d—1 )

n id-2 i2 i

- 2 X (A; + By-1 )

ig-2=0 ig-3=0 i1=01i=0



Coefficients of Hilbert polynomial 477

n ig-3

- X X ZZB“; e

id-3=0 ig-4=0 i1=0 i=

iy

1]
o

Using (1) we get

k=0 ig-2=0 i1=01i=0

+1 n l+d n k i2 iy _ _
1o(Q/q" ™) = g, (( Q(z)(a))(;( ))‘ Z Z Z Y (A;+B,_y )

n k

S i

k=0 ig-3=0 i1=0i=

lle

n
— Z B
i=0
Now observe that B; 1.i = B;; etc. Consequently, the last expression readily

produces the desired result.

1.3. Corollary. With the same assumptions as in Theorem 1.2, we have the
Sfollowing :

€y = IQ(Q(d 1)

Z i+ B,

i=0

¢ 0 o0
e;= 3 ) (A;+B,)— Z By i,

=0 i=iTH1 <o

e o] a0 oo} e o] Q0 Q0
ex=3 Y (A4, +B,;)— Z Y B+ Z By 5,

i2=0 i1=i2+1 i=i;+1 (h1=0i=i1+1 i=0

0 0 [ o] e ¢} Qo Q0 e e}
=) ) SIEDY Y (A+By)— Y Y Y Bii

id-1=0 ig-2=ig-1+1 i1=iz+1 i=i;+1 ig-2=0 i1=ix+1 i=ij+1

+oe (=1 Y By
i=0

Proof. Assume that d =1. Clearly, all but finitely many A; and B,;
vanish. Taking n sufficiently large, we get

o0
eo = 1p(Q(z) and e, = ._ZO(Ai + B,;,)
The corollary now follows on using the inductive process and the following
identity:
If atmost finitely many real numbers a; are nonzero then

>3

j=01i

0

atk+1)- ) 3 4

=0 i=j+1

nM&
II
||M8

1.4. Remarks. 1. Theorem 1.2 includes as a special case Proposition 6 of
Narita [1].
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e

2. When d =3, ¢, = 14(Q/ ), Qw)) is also mentioned in Narita [1].

i=1

§2:

2.1. Example. Let x;, X,,..., X4, X4+, b€ d + | indeterminates over an infinite
field F. Let Q= F[[x,, X3, ..., X441]]/(x4+,). Then Q is a local Cohen-
Macaulay ring of dimension d. Assume d>3. Let A= {x;, X5, ..., Xg_3,
xdZ1, x4 1} and B = {X,_ X441, XgXq+,}. Put C = AUB. Further, suppose that
for two sets U and V of monomials in the above indeterminates UV denotes the set
of all products of monomials in U with all monomials in V. A simple calculation
shows that

C.C...-C=C.C.---C. AUT

dtimes d—1 times

where T is a set of monomials in which x,,, occurs in degree d.
Let &,, &,, ..., &, Eapq denote respectively the images of x;, X,, ..., X4 Xg41
modulo x4,,. Let

q="(1&sees Camar 0T CT N a1 Cavrs Ea Can )
As argued in the previous paragraph, it is immediate that
g4 =q" "¢y, &y s Eamny EITHL &éh o (%)
We claim that e, is negative. It is clear that
(gt ¢;)=qy forallt>0andj=1,2..,d-2.
Again it is easily seen that
(-t EY) = i3 + Qu-n &7l and (@l ' &) = ql® + Quw &t

where £4;1 denotes the image of ¢47}1 in Q-4 and &1 denotes the image of
&1 in Q. Further, using (¥) it is seen that

(gt &) =4qu-1 and @' &) =4q for t>d—1L
Thus we find that
B,;=B,;=-+-=By_,;=0forall i>0and By 4, =Bys-2#0.

Now substituting these values in the expression for e, as deduced in Corollary 1.3,
we find that

elq) = — By-14-2<0.

2.2. Remark. Using the same construction as above it is possible to give
another class of examples by replacing &, &,,..., &;—, by powers of the respective
elements in q.
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2.3. Remark. With reference to the above example, computations show that
ford=3
(1) lQ(Q(d+1)):d3 —2d*+2d
(ii) Ag=d>—3d*>+3d
(ili) A;j=d—-i—1D)[d-1D)d—-i—=3)+((+2)d—(>{+2)(+3)/2]
for1<i<d-—2
(iv) 4,=0 forizd—1
(v) Bj;=0 forj<d—2 and i=0
(vi) Bjo=B;_10=0 and
(vi) By;=By_,;=d—2 for 1 <i<d-2
These values can be used to calculate the various Hilbert coefficients in respect of
Example 2.1.
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