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3-folds with two P!-bundle structures

By

Eiichi SATO

In the present paper, the author determines the structure of 3-folds which
have two P!-bundle structures.

Let X be a projective 3-fold defined over an algebraically closed field
k. Then, X is said to have two P!-bundle structures (S, T; p, q) if there are two
Pl-bundles p: X - S and gq: X - T with projective surfaces S, T in the etale
topology and moreover if (P) dim h(X') = 3, where A is the morphism: X - S x T
induced by p and gq.

Then we have

Theorem. Let X be a smooth 3-fold with two P'-bundle structures
(S, T; p,q). Assume that the characteristic of the ground field k is
arbitrary. Then, X is one of the followings:

1) S x T, where S and T are P'-bundles over a smooth curve C.
2) P(T,2), where Tp. is the tangent bundle over P2.

The author has already shown the above theorem in the case of characteristic
zero in [Sa]. What is important for the proof is to prove that S and T are ruled,
which is trivial in characteristic zero. Namely, the essential part is only that a
projective surface dominated by a ruled surface is ruled in characteristic
zero. (See Remark 1.3.1) But, in the case of positive characteristic, there are many
unirational surfaces which are of general type [Za]. Moreover, in the case, there
exists even a surface of general type which is regularly dominated by P2 (See
Proposition 2.12 and remark in [E]).

Hence, in order to prove the ruledness of S and T, we prepare two sufficient
conditions about the ruledness: Proposition 2.4 and Proposition 2.7 in §2. These
propositions leave us the following case: the second Betti number f,(S, I) = 2 and
K is numerically equivalent to zero, if S is not ruled.

Finally, in §3, we can rule out this case thanks to the fact in [Bo + Mu](See
Proposition 3.7 in this paper).

Thus, throughout this paper, the characteristic of the ground field is supposed
to be positive.

Notations. We work over an algebraically closed field k of any positive
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characteristic. A variety means an irreducible and reduced projective algebraic k-
scheme. Letting f: U — V be a morphism between verieties and Y a subscheme of
U, fly: Y- Vdenotes the restricted map of f on Y. For a coherent sheaf F on a
variety Y, hi(Y, F) denotes dim H'(Y, F). For a smooth projective variety *, k(x)
denotes the Kodaira dimension of * (sometimes, abbreviated to k). Moreover, £,
denotes the sheaf of holomorphic 1-forms on * and K, denotes the canonical
bundle of *. For a vector bundle E, S™(E) denotes the m-th symmetric product of
E.

§1. Preliminaries

In the present section we shall study some cohomological properties of P*-
bundles in the etale topology.

In the first place we recall a few of facts which are well-known. For the
meaning of the notations, see §5 of [Mi].

(1.1) Fact: I) Let W be a P'-bundle over a smooth projective variety Vin the
etale topology. Then x(W, 1) = x(V.1)x(P',1)(I # char k). Here y(W, )=}

(— 1YB:(W, 1) and B,(W, 1) is the l-adic i-th Betti number of W (= dimy, H'(W,,, Q)))
(See Corollary 2.14 in §5 and Corollary 4.2 in §6 in [Mi]).
II) Particularly, if dim W= 2, we have

1(Ow) = (K3 + x(W, 1))/12.  (See Theorem 3.12 of §5 in [Mi])

III) For a smooth projective variety W, let Alb(W) be the Albanese variety of W,
Then, we have an inequality: dim AIb(W) = §,(W, 1)/2 < h* (W, Oy,). Moreover, if
H*(W, Oy) = 0, then dim Alb(W) = h'(W, 0y,).

Note that H'(W, 0y) is canonically isomorphic to the tangent space of
Pic°(W) at the zero point where Pic°(W) is the connected component of the
Picard scheme of W containing 0. See p.132 in [Mi] and Lecture 27 in [Mu].

Thus we have an easy

Proposition 1.2. let Z be a geometrically ruled surface over a smooth curve
C. Then we have

1) Bl(za l) = 2’11(2, (QZ) = 2h1(cv (QC) = ﬂl(c» l)
2) K7 =8(1—h'(C, O0) and x(Z, 1) = x(C, hx(P*, 1) = 4(1 — h*(C, O)).
3) Ba(Z, 1) =2.

Now let us state the property of a surface dominated by a geometrically ruled
surface.

Proposition 1.3.  Let Y be a smooth surface dominated by a geometrically ruled
surface Z. Then, we have

1) (Y, 1) is 1 or 2.
2) If Y is ruled, then it is a geometrically ruled surface or P2.
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Proof.  Since the surjective morphism: Z — Yinduces an injection H2(Y,,, Q)
- H*(Z,, Q)), the former is obvious. The latter is trivial. g.e.d.

Remark 1.3.1. If the above dominating morphism f: Z — Y in Proposition 1.3 is
separable, then Y is ruled. For the proof, for example, see Lemma 3.1 in
[Sa]. Therefore, in characteristic zero, Y dominated by a geometrically ruled
surface is ruled.

Finally in this section, let us state

Proposition 1.4. Let X be a smooth 3-fold with two P!-bundle structures
(S, T;p,q). Let us assume that S and T are ruled. Then, S and T are
geometrically ruled surfaces or they are P2

Proof. First, recall that a smooth, projective ruled surface dominated by a
geometrically ruled surface is a geometrically ruled surface or P2. Now, y(X, )
=x(S, Dx(P', Iy = x(T. l)x(P*, 1) by virtue of Fact I. Hence, we have x(S, )
= x(T; 1) because of y(P!,I)=2. Thus we get our proof, since y(P? I) =3 and
for a geometrically ruled surface Z, x(Z, ) is a multiple of 4 by 2) of Proposition
1.2. q.e.d.

§2. Two criterions on the ruledness of S and T

Let us maintain a variety X with two P!-bundle structures (S, T; p, q) in
Introduction.

Then, our main goal in this section is to get two sufficient conditions for S
and T to be ruled.

First, let us begin with an easy

Proposition 2.1. Let X be a 3-fold with two P'-bundle structures
(S, T: p, q). Then, for each point s in S, gp~'(s)(= Cs) is a curve. Similarly for
each point t in T, pg~*(t)(= C)) is a curve.

By the condition P in Introduction, this proposition is easily shown (see proof
of Lemma 1.5 in [Sa]).

Now, for a point s in S, X denotes pg~'gp~'(s) and for ¢ in T, X, denotes
gp~'pq~'(t). Then we have a

Proposition 2.2. Under the above notations, let us assume that there is a point
t in T such that X, is a curve. Then we have
1) C,(= pq~*(t)) and X, are smooth rational curves.
2) p~lpq ' (t)(= Y) is isomorphic to P' x P' and two restricted maps ply, qly
coincide with two canonical projections from P' x P! to P! respectively.
3) For every point s in C,, X;=C,.

Proof. Since ply: Y- C, and qly: Y= X, are P!'-bundles, we see that
Sing(Y) = P~ *(Sing(C,)) = ¢ '(Sing(X,)) where Sing* denotes the singular locus
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of a scheme *. Hence, Proposition 2.1 yields the smoothness of C,, X, and
Y. Next let us prove 2). For the purpose we need

Sublemma 2.2.1. Let ¢:F,— P' be a rational ruled surface with F,
~ P(Ops @ Opi(n)). Assume that C is an irreducible reduced curve of F,, ¢:C
— P! is finite and the self-intersection number C* of C is non-positive. Then, we
have two cases:

1) if n=0, then C is a trivial section of ¢.
2) if n is positive, then C is the minimal section in F,.

Proof. Let C, the minimal section of F, (in case of n = 0, C, means a trivial
section) and f a fiber of ¢. Then C is linearly equivalent to aC, + bf with
integers a, b. The surjectivity of ¢: C — P! implies that a is positive. Thus, by
C? <0, we have 2b < an. Now, assuming that C # C,, namely (C, Cy) > 0, we
get b > an and therefore n = b =0. Thus we are done. g.e.d.

3) is obvious by virtue of 2). g.e.d.
Before stating a sufficient condition for S and T to be ruled, we recall

Lemma 2.3. Let Z be a smooth complete surface. Assume that Z has
uncountably infinitely many smooth rational curves. Then Z is ruled.

Proof. By the assumption, we can choose an infinite subset of rational
curves on Z: W= {Cy ~ P'} whose Hilbert polynomial (with respect to a
hyperplane section) is independent of a choice of an element in W. Letting C be a
smooth curve in W, we see that the self-intersection number of C(= C?) is non-
negative and, therefore, C- K, is negative by the adjunction formula. Thus we
infer that H°(Z, K$™) vanishes for every positive integer m, which yields the
desired result. g.e.d.

Therefore we obtain

Proposition 2.4. Under the same conditions and notations as in Proposition
2.1, assume that for every point t in T, X, is a curve with X, = qp~"' pq~'(),
Then S and T are ruled.

Proof. First, note that X, = X,, for each point ¢ in X, by Proposition
22. Thus, T is a disjoint union of smooth rational curves {C,lae A} and,
-therefore, so is S (= U{D,|beB}). Moreover, A and B have the same cardinal
number by 2) in Proposition 2.2. Now, let us consider the case that A4 is an
uncountably infinite set. Then, by Lemma 2.3, we see that T is ruled and,
therefore so is S. Next, let us consider a general case. Letting K be an
algebraically closed field containing k such that transdeg,K = oo, take the base
extension of X = (S, T; p, q) by SpecK:
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Then, we see that the morphisms p and g induced by p and q are P!-bundles and
(8, T: p., ) has the same assumption as in Proposition 2.4. Hence, it follows from
the above argument that T has an uncountably infinitely smooth rational
curves. Thus T is ruled. Since HT; K?"‘) =K x HT, K$™), T is
ruled. Similarly S is ruled. g.e.d.

From now on we shall study another sufficient condition for S and T to be
ruled.

First we prepare the following. Let X be a smooth 3-fold with two P!-
bundle structures (S, T; p, q). Then, the two P!-bundle structures of X yield the
following

2.5y 0— p*Qs — Q5 — Q2,— 0
0— g*Q; — Qy — 2, — 0

where 2, and Q, are the relative cotangent bundles of p and gq.
The above yields the following

2
2.5) 0— p*Ksg— AQy — p*QL ® Q, — 0
2
0 — ¢*K; — A2y — ¢* Q1 ® 2, — 0
On the other hand we have a well-known
Proposition 2.6. Let us consider the following exact sequence of vector

bundles: 0 — E, — E — E, — 0. Then, S™(E)(=F,,+,) has a sequence of
subbundles :

0=F0CF1C"'CchFm+1

where F,,,/F;=S""'(E;) ® S'(E;)(1 < i< m).
Thus, applying Proposition 2.6 to the exact sequences 2.5,

Corollary 2.6.1. Let X be a smooth 3-fold with two P'-bundle structures
(S, T; p,q). Then, there are canonical isomorphisms:

HO(X, p*KE™)(~ HO(S, K&™) ~ HO(X, S"(4Q2y)) ~ HO(X, q*K$"™).

Proof. By restricting the vector bundle p*K&™ ™' ® S'(p* Q2§ ® 2,) (= G) to
a fiber of p, we see that for each integer i (1 <i<m) G; =SH0O(-2)

Up~ s

@ O0(—2)) on p~!(s)(= P'), therefore, H°(X, G;) vanishes, and it follows that the
quotient of S'"(/fQX) by p*K&™ has only a zero section by Proposition 2.6. The

2 .
quotient of S"™(AQy) by g* K§™ has only a zero section in the same way as above.
Thus we complete our proof. g.e.d.

Thus, we have an important criterion about the ruledness of S and T.

Proposition 2.7. Let X be a smooth 3-fold with two P'-bundle structures.
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Assume H°(X, S"‘(/% Qy)) = 0 for every positive integer m. Then, S and T are ruled.

§3. Ruledness of S and T

Let us maintain a smooth 3-fold X with two P!-bundle structures
(S, T; p, q). In the present section, we shall show that S and T are ruled by using
the results in §2.

First, taking into account of Proposition 2.4 and Proposition 2.7, we consider
the following two conditions:

(3.1.1) There is a point s in S such that pg~'qp~'(s) =S. Note that S is
unirational, since g~ !qp~!(s) is a rational surface. 5

(3.1.2) There is a positive integer m such that H°(X, S"(A4Qy)) has a non-zero
section.

Thus, in order to prove that S and T are ruled, we have only to show

Proposition 3.2. Let X be a smooth 3-fold with two P'-bundle structures
(S, T; p,q). Then, there exists no such X enjoying two conditions (3.1.1) and
(3.1.2).

For the purpose, we make several preparations.
First, let us start with an easy

Proposition 3.3. Assume that the condition 3.1.2 holds. Then we have
P*KS™ = q*KP".

It is trivial by Corollary 2.6.1.

In the next place, we show that Proposition 3.3 yields the fact that K5 and Ky
are numerically equivalent to zero. For the purpose, let me state a proposition by
Kleiman [K].

Let V be a complete algebraic scheme over k and M an invertible sheaf on
V. We call M numerically trivial and write M =0 if (M.C),, = 0 for all closed
integral curves C in V. Then he shows that

Proposition 3.4. (§4. Corollary 1 [K])
Let f: V' — V be a morphism between algebraic complete schemes, M an
invertible sheaf on V and M’ = f*M. Then we have

(i) M =0 implies M’ =0, and conversely,
(ii) M’ =0 implies M =0, if f is surjective.

Now, we have an important

Proposition 3.5. Under the condition in Proposition 3.2, let us assume the
condition 3.1.1 and p* K@™ = q*K®™. Then Kg and K are numerically equivalent
to zero.

Moreover, k(S)=x(T)=0.
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Proof. Take a point s in S such tht pg~'gp~'(s)=S by our
assumption. Then, letting f = p~'(s), we see that g* K7 is trivial, which implies
that K7, =0 by Proposition 3.4. Now, consider p*K&p = g*K§p with W
=q '(q(f)). Noting that W— S is surjective, we infer that Kg is numerically
equivalent to zero and so is K; thanks to Proposition 3.4.

The latter part is obvious. g.e.d.

By Fact I and II in 1.1, 1) of Proposition 1.3 and the above Proposition 3.5,
we easily get

(3.6) By(S, 1) =2

(See also the table of possible invariants for surfaces with k = 0 in the Introduction
in [Bo + Mu])

Moreover, the following stated after theorem 6 in the Introduction in [Bo
+ Mu] takes an essential part of the proof of Proposition 3.2.

Proposition 3.7. If X is a surface with k =0, B, =2, then B, =2, hence
Alb(X) is an elliptic curve and the fibers of the canonical map n: X — Alb(X) are
either almost all non-singular elliptic curves or almost all rational curves with
ordinary cusps.

The latter is only possible if chark =2 or 3.

Proof of Proposition 3.2. By virtue of (3.6), condition 3.1.1 contradicts
Proposition 3.7. Thus we complete our proof. g.e.d.

Combining Proposition 2.4 and Proposition 3.2, we get

Theorem 3.8. Let X be a smooth 3-fold with two P'-bundle structures
(S, T; p, q). Then, S and T are geometrically ruled surfaces or they are P*.

§4. Proof of Theorem

In this section we shall give a proof of Thereom.

The argument in §3 [Sa] by which our Theorem is proved in characteristic
zero, is still valid almost everywhere in positive characteristic. But, since we used
the fact that a morphism in characteristic zero is separable in the proof of
Propsition 3.8 [Sa], we shall make a slight modification as for the proposition.

Now, let us begin a proof of theorem.

By the result in Theorem 3.8, we divide into two cases:

a) S and T are geometrically ruled surfaces.
b) S and T are P2

Let us start with case a).

Let g: T— C be the P'-bundle over a non-singular curve C. Put g~ '(c) =,
for a point ¢ in C.

Remark 4.1. Under the above notation, let us assume that there is a point ¢
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of C such that p: ¢~ '(l) = S is surjective. Then for every point ¢ in C, p: ¢ *(l,)
— § is surjective.

Therefore we shail consider the structure of X in two cases as follows.
(4.2) For every point ¢ in C, dimpg~'(l) = 1.
(4.3) For every point ¢ in C, dimpg~'(l,) = 2.

First let us treat the case 4.2. Then we have

Proposition 4.4. (Proposition 3.7 in [Sa]), In the case 4.2, X is isomorphic to
S x T, where both S and T are P'-bundles over a non-singular curve C.

The proof in Proposition 3.7 in [Sa] is available even in the case of positive
characteristic.

In the next place, we observe the case (4.3).

Let p: S — B be the P!-bundle over a non-singular curve B.

Then, it is easily seen that if there is a point ¢, in T such that ppqg~!(t,) is one
point in B, then for every point ¢ in T, ppq~'(¢) is one point.

Thus we divide into two cases. Namely, the image of every fiber of g via
pp: X - B is
®) a point ,or
B) B.

Let us study the case a.

By the condition, there is a point b in B such that a rational ruled surface
(pp)” *(b) contains infinitely many fibers of g: X - T. Thus we see that the image
of the rational ruled surface via q is a curve. Hence, by Remark 4.1, we can
reduce to the first case 4.2.

Next we shall deal with case f5).

Since ¢~ *(l,) is a rational ruled surface and for each point b in B, (pp)~'(b) N
q~'(l) has an irreducible component whose self-intersection number is non-
positive, we see that g~ (/) = P! x P! by sublemma 2.2.1. Since p: g~ *(I) = S is
surjective, we infer that S is P' x P'. Let p’: S —» P!(= B’) be another canonical
projection besides p. Noting that each fiber of g7 !(I,) - I, goes to a point via p’p,
we can reduce f) to the case a). Hence, we finish the observation of the case (4.3).

Thus, summarizing the above argument, we obtain

Proposition 4.5. In the case a), X is isomorphic to S x T where S and T are
geometrically ruled surfaces over a non-singular curve C.

Finally, let us consider the case b). Then we see that p and g are P!-bundles
in the Zariski topology by Lemma 1.3, and Corollary 1.4 in [Sa]. Hence we
complete a proof of the case b) by virtue of 2) in Theorem A in [Sa].

Thus we finish our proof of Theorem.
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