3-folds with two P^1 -bundle structures

By

Eiichi Sato

In the present paper, the author determines the structure of 3-folds which have two P^1 -bundle structures.

Let X be a projective 3-fold defined over an algebraically closed field k. Then, X is said to have two P^1 -bundle structures (S, T; p, q) if there are two P^1 -bundles $p: X \to S$ and $q: X \to T$ with projective surfaces S, T in the etale topology and moreover if $(P) \dim h(X) = 3$, where h is the morphism: $X \to S \times T$ induced by p and q.

Then we have

Theorem. Let X be a smooth 3-fold with two P^1 -bundle structures (S, T; p, q). Assume that the characteristic of the ground field k is arbitrary. Then, X is one of the followings:

- 1) $S \times_C T$, where S and T are P^1 -bundles over a smooth curve C.
- 2) $P(T_{P^2})$, where T_{P^2} is the tangent bundle over P^2 .

The author has already shown the above theorem in the case of characteristic zero in [Sa]. What is important for the proof is to prove that S and T are ruled, which is trivial in characteristic zero. Namely, the essential part is only that a projective surface dominated by a ruled surface is ruled in characteristic zero. (See Remark 1.3.1) But, in the case of positive characteristic, there are many unirational surfaces which are of general type [Za]. Moreover, in the case, there exists even a surface of general type which is regularly dominated by P^2 (See Proposition 2.12 and remark in [E]).

Hence, in order to prove the ruledness of S and T, we prepare two sufficient conditions about the ruledness: Proposition 2.4 and Proposition 2.7 in § 2. These propositions leave us the following case: the second Betti number $\beta_2(S, l) = 2$ and K_S is numerically equivalent to zero, if S is not ruled.

Finally, in §3, we can rule out this case thanks to the fact in [Bo + Mu] (See Proposition 3.7 in this paper).

Thus, throughout this paper, the characteristic of the ground field is supposed to be positive.

Notations. We work over an algebraically closed field k of any positive

394 Eiichi Sato

characteristic. A variety means an irreducible and reduced projective algebraic k-scheme. Letting $f\colon U\to V$ be a morphism between verieties and Y a subscheme of $U, f|_Y\colon Y\to V$ denotes the restricted map of f on Y. For a coherent sheaf F on a variety $Y, h^i(Y, F)$ denotes dim $H^i(Y, F)$. For a smooth projective variety $*, \kappa(*)$ denotes the Kodaira dimension of * (sometimes, abbreviated to κ). Moreover, Ω_* denotes the sheaf of holomorphic 1-forms on * and K_* denotes the canonical bundle of *. For a vector bundle $E, S^m(E)$ denotes the m-th symmetric product of E.

§1. Preliminaries

In the present section we shall study some cohomological properties of P^1 -bundles in the etale topology.

In the first place we recall a few of facts which are well-known. For the meaning of the notations, see § 5 of [Mi].

(1.1) Fact: I) Let W be a P^1 -bundle over a smooth projective variety V in the etale topology. Then $\chi(W, l) = \chi(V, l) \chi(P^1, l) (l \neq \text{char } k)$. Here $\chi(W, l) = \sum_i (-1)^i \beta_i(W, l)$ and $\beta_i(W, l)$ is the l-adic i-th Betti number of $W (= \dim_{Q_l} H^i(W_{et}, Q_l))$ (See Corollary 2.14 in §5 and Corollary 4.2 in §6 in [Mi]).

II) Particularly, if dim W = 2, we have

$$\chi(\mathcal{O}_W) = (K_W^2 + \chi(W, l))/12.$$
 (See Theorem 3.12 of §5 in [Mi])

III) For a smooth projective variety W, let Alb(W) be the Albanese variety of W. Then, we have an inequality: $\dim Alb(W) = \beta_1(W, l)/2 \le h^1(W, \mathcal{O}_W)$. Moreover, if $H^2(W, \mathcal{O}_W) = 0$, then $\dim Alb(W) = h^1(W, \mathcal{O}_W)$.

Note that $H^1(W, \mathcal{O}_W)$ is canonically isomorphic to the tangent space of $\operatorname{Pic}^{\circ}(W)$ at the zero point where $\operatorname{Pic}^{\circ}(W)$ is the connected component of the Picard scheme of W containing 0. See p.132 in [Mi] and Lecture 27 in [Mu].

Thus we have an easy

Proposition 1.2. let Z be a geometrically ruled surface over a smooth curve C. Then we have

- 1) $\beta_1(Z, l) = 2h^1(Z, \mathcal{O}_Z) = 2h^1(C, \mathcal{O}_C) = \beta_1(C, l)$.
- 2) $K_Z^2 = 8(1 h^1(C, \mathcal{O}_C))$ and $\chi(Z, l) = \chi(C, l)\chi(P^1, l) = 4(1 h^1(C, \mathcal{O}_C))$.
- 3) $\beta_2(Z, l) = 2$.

Now let us state the property of a surface dominated by a geometrically ruled surface.

Proposition 1.3. Let Y be a smooth surface dominated by a geometrically ruled surface Z. Then, we have

- 1) $\beta_2(Y, l)$ is 1 or 2.
- 2) If Y is ruled, then it is a geometrically ruled surface or P^2 .

Proof. Since the surjective morphism: $Z \to Y$ induces an injection $H^2(Y_{et}, Q_l) \to H^2(Z_{et}, Q_l)$, the former is obvious. The latter is trivial. q.e.d.

Remark 1.3.1. If the above dominating morphism $f: Z \to Y$ in Proposition 1.3 is separable, then Y is ruled. For the proof, for example, see Lemma 3.1 in [Sa]. Therefore, in characteristic zero, Y dominated by a geometrically ruled surface is ruled.

Finally in this section, let us state

Proposition 1.4. Let X be a smooth 3-fold with two P^1 -bundle structures (S, T; p, q). Let us assume that S and T are ruled. Then, S and T are geometrically ruled surfaces or they are P^2 .

Proof. First, recall that a smooth, projective ruled surface dominated by a geometrically ruled surface is a geometrically ruled surface or P^2 . Now, $\chi(X, l) = \chi(S, l)\chi(P^1, l) = \chi(T, l)\chi(P^1, l)$ by virtue of Fact I. Hence, we have $\chi(S, l) = \chi(T, l)$ because of $\chi(P^1, l) = 2$. Thus we get our proof, since $\chi(P^2, l) = 3$ and for a geometrically ruled surface $Z, \chi(Z, l)$ is a multiple of 4 by 2) of Proposition 1.2.

$\S 2$. Two criterions on the ruledness of S and T

Let us maintain a variety X with two P^1 -bundle structures (S, T; p, q) in Introduction.

Then, our main goal in this section is to get two sufficient conditions for S and T to be ruled.

First, let us begin with an easy

Proposition 2.1. Let X be a 3-fold with two P^1 -bundle structures (S, T; p, q). Then, for each point s in S, $qp^{-1}(s)(=C_S)$ is a curve. Similarly for each point t in T, $pq^{-1}(t)(=C_t)$ is a curve.

By the condition P in Introduction, this proposition is easily shown (see proof of Lemma 1.5 in [Sa]).

Now, for a point s in S, X_S denotes $pq^{-1}qp^{-1}(s)$ and for t in T, X_t denotes $qp^{-1}pq^{-1}(t)$. Then we have a

Proposition 2.2. Under the above notations, let us assume that there is a point t in T such that X_t is a curve. Then we have

- 1) $C_t(=pq^{-1}(t))$ and X_t are smooth rational curves.
- 2) $p^{-1}pq^{-1}(t)(=Y)$ is isomorphic to $P^1 \times P^1$ and two restricted maps $p|_Y$, $q|_Y$ coincide with two canonical projections from $P^1 \times P^1$ to P^1 respectively.
- 3) For every point s in C_t , $X_s = C_t$.

Proof. Since $p|_Y: Y \to C_t$ and $q|_Y: Y \to X_t$ are P^1 -bundles, we see that $Sing(Y) = P^{-1}(Sing(C_t)) = q^{-1}(Sing(X_t))$ where Sing * denotes the singular locus

of a scheme *. Hence, Proposition 2.1 yields the smoothness of C_t , X_t and Y. Next let us prove 2). For the purpose we need

Sublemma 2.2.1. Let $\phi: F_n \to P^1$ be a rational ruled surface with $F_n \simeq P(\mathcal{O}_{P^1} \oplus \mathcal{O}_{P^1}(n))$. Assume that C is an irreducible reduced curve of F_n , $\phi: C \to P^1$ is finite and the self-intersection number C^2 of C is non-positive. Then, we have two cases:

- 1) if n = 0, then C is a trivial section of ϕ .
- 2) if n is positive, then C is the minimal section in F_n .

Proof. Let C_0 the minimal section of F_n (in case of n=0, C_0 means a trivial section) and f a fiber of ϕ . Then C is linearly equivalent to aC_0+bf with integers a, b. The surjectivity of $\phi: C \to P^1$ implies that a is positive. Thus, by $C^2 \le 0$, we have $2b \le an$. Now, assuming that $C \ne C_0$, namely $(C, C_0) \ge 0$, we get $b \ge an$ and therefore n=b=0. Thus we are done.

3) is obvious by virtue of 2).

q.e.d.

Before stating a sufficient condition for S and T to be ruled, we recall

Lemma 2.3. Let Z be a smooth complete surface. Assume that Z has uncountably infinitely many smooth rational curves. Then Z is ruled.

Proof. By the assumption, we can choose an infinite subset of rational curves on $Z: W = \{C_W \simeq P^1\}$ whose Hilbert polynomial (with respect to a hyperplane section) is independent of a choice of an element in W. Letting C be a smooth curve in W, we see that the self-intersection number of $C(=C^2)$ is nonnegative and, therefore, $C \cdot K_Z$ is negative by the adjunction formula. Thus we infer that $H^0(Z, K_Z^{\otimes m})$ vanishes for every positive integer m, which yields the desired result.

Therefore we obtain

Proposition 2.4. Under the same conditions and notations as in Proposition 2.1, assume that for every point t in T, X_t is a curve with $X_* = qp^{-1}pq^{-1}(*)$, Then S and T are ruled.

Proof. First, note that $X_t = X_t$, for each point t' in X_t by Proposition 2.2. Thus, T is a disjoint union of smooth rational curves $\{C_a|a\in A\}$ and, therefore, so is S (= $\cup \{D_b|b\in B\}$). Moreover, A and B have the same cardinal number by 2) in Proposition 2.2. Now, let us consider the case that A is an uncountably infinite set. Then, by Lemma 2.3, we see that T is ruled and, therefore so is S. Next, let us consider a general case. Letting K be an algebraically closed field containing K such that trans $\deg_k K = \infty$, take the base extension of K = (S, T; p, q) by Spec K:

Then, we see that the morphisms \bar{p} and \bar{q} induced by p and q are P^1 -bundles and $(\bar{S}, \bar{T}; \bar{p}, \bar{q})$ has the same assumption as in Proposition 2.4. Hence, it follows from the above argument that \bar{T} has an uncountably infinitely smooth rational curves. Thus \bar{T} is ruled. Since $H^0(\bar{T}, K_{\bar{T}}^{\otimes m}) = K \times_k H^0(T, K_{\bar{T}}^{\otimes m})$, T is ruled. Similarly S is ruled.

From now on we shall study another sufficient condition for S and T to be ruled.

First we prepare the following. Let X be a smooth 3-fold with two P^1 -bundle structures (S, T; p, q). Then, the two P^1 -bundle structures of X yield the following

$$(2.5)' 0 \longrightarrow p^* \Omega_S^1 \longrightarrow \Omega_X^1 \longrightarrow \Omega_p \longrightarrow 0$$
$$0 \longrightarrow q^* \Omega_T^1 \longrightarrow \Omega_X^1 \longrightarrow \Omega_q \longrightarrow 0$$

where Ω_p and Ω_q are the relative cotangent bundles of p and q. The above yields the following

$$(2.5) 0 \longrightarrow p^*K_S \longrightarrow \overset{2}{\Lambda}\Omega_X^1 \longrightarrow p^*\Omega_S^1 \otimes \Omega_p \longrightarrow 0$$
$$0 \longrightarrow q^*K_T \longrightarrow \overset{2}{\Lambda}\Omega_X^1 \longrightarrow q^*\Omega_T^1 \otimes \Omega_q \longrightarrow 0$$

On the other hand we have a well-known

Proposition 2.6. Let us consider the following exact sequence of vector bundles: $0 \longrightarrow E_1 \longrightarrow E \longrightarrow E_2 \longrightarrow 0$. Then, $S^m(E) (= F_{m+1})$ has a sequence of subbundles:

$$0 = F_0 \subset F_1 \subset \cdots \subset F_m \subset F_{m+1}$$

where $F_{i+1}/F_i = S^{m-i}(E_1) \otimes S^i(E_2) (1 \le i \le m)$.

Thus, applying Proposition 2.6 to the exact sequences 2.5,

Corollary 2.6.1. Let X be a smooth 3-fold with two P^1 -bundle structures (S, T; p, q). Then, there are canonical isomorphisms:

$$H^{0}(X, p^{*}K_{S}^{\otimes m})(\simeq H^{0}(S, K_{S}^{\otimes m})) \simeq H^{0}(X, S^{m}(\Lambda^{2}\Omega_{Y})) \simeq H^{0}(X, q^{*}K_{T}^{\otimes m})$$

Proof. By restricting the vector bundle $p^*K_S^{\otimes m-i}\otimes S^i(p^*\Omega_S^1\otimes \Omega_p)$ (= G_i) to a fiber of p, we see that for each integer i ($1\leq i\leq m$) $G_{i|p^{-1}(s)}=S^i(\mathcal{O}(-2)\oplus \mathcal{O}(-2))$ on $p^{-1}(s)(=P^1)$, therefore, $H^0(X,G_i)$ vanishes, and it follows that the quotient of $S^m(\mathring{\Lambda}\Omega_X)$ by $p^*K_S^{\otimes m}$ has only a zero section by Proposition 2.6. The quotient of $S^m(\mathring{\Lambda}\Omega_X)$ by $q^*K_T^{\otimes m}$ has only a zero section in the same way as above. Thus we complete our proof.

Thus, we have an important criterion about the ruledness of S and T.

Proposition 2.7. Let X be a smooth 3-fold with two P^1 -bundle structures.

398 Eiichi Sato

Assume $H^0(X, S^m(\Lambda^2\Omega_X)) = 0$ for every positive integer m. Then, S and T are ruled.

§ 3. Ruledness of S and T

Let us maintain a smooth 3-fold X with two P^1 -bundle structures (S, T; p, q). In the present section, we shall show that S and T are ruled by using the results in §2.

First, taking into account of Proposition 2.4 and Proposition 2.7, we consider the following two conditions:

- (3.1.1) There is a point s in S such that $pq^{-1}qp^{-1}(s) = S$. Note that S is unirational, since $q^{-1}qp^{-1}(s)$ is a rational surface.
- (3.1.2) There is a positive integer m such that $H^0(X, S^m(\stackrel{?}{\Lambda}\Omega_X))$ has a non-zero section.

Thus, in order to prove that S and T are ruled, we have only to show

Proposition 3.2. Let X be a smooth 3-fold with two P^1 -bundle structures (S, T; p, q). Then, there exists no such X enjoying two conditions (3.1.1) and (3.1.2).

For the purpose, we make several preparations.

First, let us start with an easy

Proposition 3.3. Assume that the condition 3.1.2 holds. Then we have $p^*K_S^{\otimes m} = q^*K_T^{\otimes m}$.

It is trivial by Corollary 2.6.1.

In the next place, we show that Proposition 3.3 yields the fact that K_S and K_T are numerically equivalent to zero. For the purpose, let me state a proposition by Kleiman $\lceil K \rceil$.

Let V be a complete algebraic scheme over k and M an invertible sheaf on V. We call M numerically trivial and write $M \equiv 0$ if $(M,C)_V = 0$ for all closed integral curves C in V. Then he shows that

Proposition 3.4. (§ 4. Corollary 1 [K])

Let $f: V' \longrightarrow V$ be a morphism between algebraic complete schemes, M an invertible sheaf on V and $M' = f^*M$. Then we have

- (i) $M \equiv 0$ implies $M' \equiv 0$, and conversely,
- (ii) $M' \equiv 0$ implies $M \equiv 0$, if f is surjective.

Now, we have an important

Proposition 3.5. Under the condition in Proposition 3.2, let us assume the condition 3.1.1 and $p^*K_S^{\otimes m} = q^*K_T^{\otimes m}$. Then K_S and K_T are numerically equivalent to zero.

Moreover,
$$\kappa(S) = \kappa(T) = 0$$
.

Proof. Take a point s in S such tht $pq^{-1}qp^{-1}(s) = S$ by our assumption. Then, letting $f = p^{-1}(s)$, we see that $q^*K_{T|f}^{\otimes m}$ is trivial, which implies that $K_{T|q(f)}^{\otimes m} \equiv 0$ by Proposition 3.4. Now, consider $p^*K_{S|W}^{\otimes m} = q^*K_{S|W}^{\otimes m}$ with $W = q^{-1}(q(f))$. Noting that $W \to S$ is surjective, we infer that K_S is numerically equivalent to zero and so is K_T thanks to Proposition 3.4.

The latter part is obvious.

q.e.d.

By Fact I and II in 1.1, 1) of Proposition 1.3 and the above Proposition 3.5, we easily get

(3.6)
$$\beta_2(S, l) = 2.$$

(See also the table of possible invariants for surfaces with $\kappa = 0$ in the Introduction in [Bo + Mu])

Moreover, the following stated after theorem 6 in the Introduction in [Bo + Mu] takes an essential part of the proof of Proposition 3.2.

Proposition 3.7. If X is a surface with $\kappa = 0$, $\beta_2 = 2$, then $\beta_1 = 2$, hence Alb(X) is an elliptic curve and the fibers of the canonical map $\pi: X \to Alb(X)$ are either almost all non-singular elliptic curves or almost all rational curves with ordinary cusps.

The latter is only possible if char k = 2 or 3.

Proof of Proposition 3.2. By virtue of (3.6), condition 3.1.1 contradicts Proposition 3.7. Thus we complete our proof. q.e.d.

Combining Proposition 2.4 and Proposition 3.2, we get

Theorem 3.8. Let X be a smooth 3-fold with two P^1 -bundle structures (S, T; p, q). Then, S and T are geometrically ruled surfaces or they are P^2 .

§4. Proof of Theorem

In this section we shall give a proof of Thereom.

The argument in §3 [Sa] by which our Theorem is proved in characteristic zero, is still valid almost everywhere in positive characteristic. But, since we used the fact that a morphism in characteristic zero is separable in the proof of Propsition 3.8 [Sa], we shall make a slight modification as for the proposition.

Now, let us begin a proof of theorem.

By the result in Theorem 3.8, we divide into two cases:

- a) S and T are geometrically ruled surfaces.
- b) S and T are P^2 .

Let us start with case a).

Let $\bar{q}: T \to C$ be the P^1 -bundle over a non-singular curve C. Put $\bar{q}^{-1}(c) = l_c$ for a point c in C.

Remark 4.1. Under the above notation, let us assume that there is a point c

400 Eiichi Sato

of C such that $p: q^{-1}(l_c) \to S$ is surjective. Then for every point c in C, $p: q^{-1}(l_c) \to S$ is surjective.

Therefore we shall consider the structure of X in two cases as follows.

- (4.2) For every point c in C, dim $pq^{-1}(l_c) = 1$.
- (4.3) For every point c in C, dim $pq^{-1}(l_c) = 2$.

First let us treat the case 4.2. Then we have

Proposition 4.4. (Proposition 3.7 in [Sa]), In the case 4.2, X is isomorphic to $S \times_C T$, where both S and T are P^1 -bundles over a non-singular curve C.

The proof in Proposition 3.7 in [Sa] is available even in the case of positive characteristic.

In the next place, we observe the case (4.3).

Let $\bar{p}: S \to B$ be the P^1 -bundle over a non-singular curve B.

Then, it is easily seen that if there is a point t_0 in T such that $\bar{p}pq^{-1}(t_0)$ is one point in B, then for every point t in T, $\bar{p}pq^{-1}(t)$ is one point.

Thus we divide into two cases. Namely, the image of every fiber of q via $\bar{p}p \colon X \to B$ is

- α) a point , or
- β) B.

Let us study the case α .

By the condition, there is a point b in B such that a rational ruled surface $(\bar{p}p)^{-1}(b)$ contains infinitely many fibers of $q: X \to T$. Thus we see that the image of the rational ruled surface via q is a curve. Hence, by Remark 4.1, we can reduce to the first case 4.2.

Next we shall deal with case β).

Since $q^{-1}(l_c)$ is a rational ruled surface and for each point b in B, $(\bar{p}p)^{-1}(b) \cap q^{-1}(l_c)$ has an irreducible component whose self-intersection number is non-positive, we see that $q^{-1}(l_c) = P^1 \times P^1$ by sublemma 2.2.1. Since $p: q^{-1}(l_c) \to S$ is surjective, we infer that S is $P^1 \times P^1$. Let $p': S \to P^1 (=B')$ be another canonical projection besides \bar{p} . Noting that each fiber of $q^{-1}(l_c) \to l_c$ goes to a point via p'p, we can reduce β) to the case α). Hence, we finish the observation of the case (4.3).

Thus, summarizing the above argument, we obtain

Proposition 4.5. In the case a), X is isomorphic to $S \times_C T$ where S and T are geometrically ruled surfaces over a non-singular curve C.

Finally, let us consider the case b). Then we see that p and q are P^1 -bundles in the Zariski topology by Lemma 1.3, and Corollary 1.4 in [Sa]. Hence we complete a proof of the case b) by virtue of 2) in Theorem A in [Sa].

Thus we finish our proof of Theorem.

DEPARTMENT OF MATHEMATICS
COLLEGE OF GENERAL EDUCATION
KYUSHU UNIVERSITY

References

- [Bo + Mu] E. Bombieri and D. Mumford, Enriques' classification of surfaces in char. p. II, Complex Analysis and Algebraic Geometry, A collection of papers dedicated to K. Kodaira, Iwanami Shoten Publishers, Tokyo, and Princeton University Press, Cambridge (1977), 23-42.
- [E] T. Ekedahl, Canonical models of surfaces of general type in positive characteristic, preprint.
- [Ha] R. Hartshorne. Algebraic Geometry. Springer, Heidelberg, 1977.
- [K] S. Kleiman, Toward numerical theory of ampleness, Annals of Math., 84 (1966), 293-344.
- [Mi] J.S. Milne, Etale cohomology, Princeton Univ. Press.
- [Mu] D. Mumford, Lectures on curves on an algebraic surface. Annals of Math. Studies 59, Princeton University Press. Princeton, 1966.
- [Sa] E. Sato, Varieties which have two projective space bundle structures, J. Math. Kyoto Univ., 25-3 (1985) 445-457.
- [Za] O. Zariski, On Castelnuovo's criterion of rationality $P_a = P_2 = 0$, Illinois J. Math., 2 (1958), 303-315.