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0. Introduction and Results

The notion of multiplicative systems was first introduced by Alexits [1], [2]. A
sequence {&,} of random variables is called a uniformly bounded multiplicative system
if there exists a constant N such that |§,] <K for all n and E(§,, -+ &,,)=0 for all
reN and n,< ---<n,. Of course sequences of independent random variables and
martingale difference sequences are examples of this notion when they are uniformly
bounded. But there are other important examples. Those are lacunary trigonometric
sequences with Hadamard’s gaps i.e. {cos2zn,x} on ([0, 1], dx) when the sequence
{n,} of integers satisfies ny+,/n,=2 for all .. Kolmogorov [10] proved that lacunary
trigonometric series having [,-coefficients converge almost everywhere, and the con-
verse theorem was proved by Zygmund [23]. The central limit theorem for lacunary
trigonometric sequences with Hadamard’s gaps was hardly studied as Kac [9] sum-
marizes and was completely proved by Salem-Zygmund [20]. These works revealed the
weak dependence property of these sequences, and this property was also realized for
multiplicative systems by the following studies. Alexits-Sharma [3] proved the law
of large numbers for uniformly bounded multiplicative systems (Cf. Preston [16]). The
central limit theorem was proved by Révész [17] and the law of the iterated logarithm
by Gaposkin [8], Takahashi [22] and Révész [18], [19] under some restrictive con-
dition.

Recently, Moéricz [14], [15] extended the notion of multiplicative systems to that
of weakly multiplicative systems. Sequence {&,} of random variables is called weakly
multiplicative system when E(§,,---§,,) is nearly 0 in some sense. Mainly we con-
sider weakly multiplicative systems satisfying (0.3). For a sequence {&,} of random
variables, we define an infinite dimensional vector B,=(bi,..: )i<.<i, for r&N by
biyi,=E(&;, - &) and |B,|; indicates its (;-norm, i-e. ]|B,|I,;=(il<§<ir[b,-l,..._irl")”".

Mbéricz [14] proved the following law of the iterated logarithm.

Theorem A. Let {£.} be a sequence of random variables satisfying

0.1) &1 SK  for all n,
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(0.2) (B, lls<oo for all r and  limsup |B,||}¥)"=B< o,

Then,

. S -
lmsup o kT By Az log log Az =1 ¢

where S,=a,6,+ - +a,€&, and Ai=a%4 - +al with A1 > as n—oo,

Berkes [4] also proved Strassen’s law of the iterated logarithms for weakly multi-
plicative systems satisfying much stronger conditions §l||B,l|,<oo and illB,’H,<co
T= r=1

where B/ is a vector defined in the same way as B, using {£}—1} instead of {&,},
i.e. B{=(bi,...i,)i,<<i, Where bj .. . =E(&—1)---(§ —1)). There are very important
examples of weakly multiplicative systems which do not satisfy Berkes’s conditions.
For instance, nonharmonic trigonometric sequences with Hadamard’s gaps, i.e. {cos A,x}
on ([0, 1], dx) when the sequence {4.} of real numbers satisfies 1, T o as k—oco and
Arsr/Ar=2 for all k, are weakly multiplicative systems satisfying (0.3) as stated in
Section 3.

We prove the following functional central limit theorem and Strassen’s law of the
iterated logarithms. Kono [11] and Fukuyama [7] proved these theorems for some
type of multiplicative systems. We extend these theorems to the case of weakly muti-
plicative systems satisfying (0.3).

First we define C[0, 1]-valued random variables X, by X,(A3/A%)=S,;/A, and is
linear in [A%/ A2, A%,/ AL] where Sp=a,6,+ -+ +azé..

Theorem 1. Let {£,} be a sequence of randomm variables satisfying (0.1),

(0.3) sup | B |3 < oo for some d€([1, 2)
and either
0.4) lim E((§i—1X§;—1)=0
{20
or
(0.5) E(&—1X&E—1)<Biisi  for some sequence {B;} with Zj Ba< oo .

Let {a,} satisfy
(0.6) Ai=al+ - +aito and a,=0o(A,) as n—oo.

Then the distributions of {X,} converges weakly on C[0, 1] to the Wiener measure.

Under the condition on B/, we can weaken the condition that {&,} is uniformly
bounded.

Theorem 2. Let {£,} satisfy (0.3).

0.7) sup | By} < oo for some ¢'€[1, 2).

TEN
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Let {&,} and {a,} satisfy
0.8) A Too and aléalle=0(A,)  as n—oo.

Then the distributions of {S./A,} converges weakly to the standard normal distribution.
And moreover, if we suppose

0.9) E& <K for all neN,
then the distributions of {X .} converges weakly on C[0, 1] to the Wiener measure.

Theorem 3. (i) Let {&.} satisfy (0.1) and (0.3), and {a.} satisfy
A2 )

2 2 —
(0.10) A21 oo and ai=o ————log log Az

as n—oo .
Then
P({X,/~/2log log A%} is relatively compact in C[0, 1])=1.
(it) Let {&.} satisfy (0.1), (0.3) and
(0.11) Bzl <oo.
Let {a,} satisfy

2
Ak ) as n—oo for some &>0.

(0.12) A;oi T o and (1,2,=0 (TOEZ}T“
Then . v
P({The cluster of {X./+~21loglog A%} in C[0, 1]J}CK)=1.

(iii) Let {&.} satisfy (0.1), (0.3) and

(0.13) sup | B[} <o for some 0'€[1, 2].
reN
Let {a,} satisfy
14 Az d ai= A
(0. ) F T co  an an—o(W) as n—oo ,
Then

P({The cluster of {X./+2loglog A3} in C[0, 1]J}CK)=1.
(iv) Moreover if we suppose
(0.15) Azl oo and a,=0o(Ay") as n-»oo for some ¢>0,
then we have ‘
» P({The cluster of {X./vZloglog A7} in CT0, 1]}=K)=1,
where K={x€—C[O, 1]: x(0)=0, x is absolu(ely cpntinuous and S:(%)zdtél}.
Most important part of proof of these theorems is to prove an estimate in lemma 1.

It is very meaningful to prove these theorems in functional form, because the usual
central limit theorem and the law of the iterated logarithms follow from these and
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moreover, other limit theorems can be derived out. (Cf. Billingsley [5] and Strassen
[21].)

The author would like to express his heartily thanks to Prof. N. Kono and Prof.
S. Watanabe for their advice and encouragement.

1. Proof of Theorem 1 and 2

We use the following lemma due to Mdéricz [14].
Lemma B. Under the conditions (0.1) and (0.2), for all >0 and {a,}

y2
P(|S.|29)<C,exp (_ AR AL )

Using this lemma, we can prove
y*
(L.1) P(1S:1 20 C exp(— )

under the conditions (0.1) and (0.3) for all {a,} for some constants C and C’, because
sup || B,||}"<oo implies sup | B,[3/"<e0. We say that sequence of random variables
TeN reEN

satisfying (1.1) is sub-gaussian. Discussion here asserts that uniformly bounded weakly
multiplicative systems are sub-gaussian.

Using (1.1), tightness of sequence {X,} is easily proved. (Cf. Fukuyama [7].)
Thus we only have to prove the weak convergence of finite dimensional distributions
of {X,}. We prove l-dimensional case using next theorem due to McLeish [13]. After
that, multidimensional case becomes trivial because of the well known Cramér-Wold
theorem (Cf. Billingsley [5]).

Theorem C. Let {{,.;: 1<j<k,} be a given triangular array of random variables
and put T":;sl;l (1414tL,.;). Suppose for all real t,

(a) E(T,)—l1, (b) {T,} is uniformly integrable,

p b
() X8 ;—1 and (d) max|f, ;| — 0 as n—oo.
jskq Jskp

Then the distribution of 3 {..; converges weakly to the standard normal distribution.
Jsky

Now we put k,=n and {, ;=(a,;/A,)E;, Then we have

K
|Tol <e*¥*? and max|{, ;| < ——max|a;|—0.
jsn A, jsn

We prove (a) in the following generalized form for the convenience of the later use.

Lemma 1. Let {&,} satisfy (0.3) and {a,} satisfy (0.6). Then

B i+ 21| 4 L)

for large enough n, where {G,} is a real sequence satisfying

1/0
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Ga njqax at<A: and Gptoo as n—oo,
¢ is the dual of & i.e. 1/6+1/e=1 (n case 6=1, 1/e=0.), T= ZSup I|B-&7, {4} isa

real sequence satisfying /A,=o(G¥*'*) as n—oo and {4 ;} is a triangular array of
numbers satisfying |2, ;1 < An.

For the proof of (a), 4, ;=i for all n, j and A,=t for all n. Now we prove
Lemma 1. In case d=1,

" An, 10151 _ - L aj, - aj,
E.ll;[l(l An ll rzl Jl<’><fr-!"2n'“ Xn.jr AT bjl Ir
5 1
< 4 S by,

"G"zi (< Chpsn

=5 () (%)

Since T A,/GY*—0 as n—oo, for large enough n, T4,/Gy/*<1. Thus we have

II/\

In case 3(1, 2).
B ()|
(2,2l ﬂn-frT'“’—‘,a;&l')”‘( 2 D geltaesr )
S(3,.5, | | - G (B )
(

EZJ (G”2 ’/‘) Jl<"§frsn(azj:l)2 v aAj ))1/5(?—.1—_1)”5'

Since (T'A,/GY?*'¢)—0 as n—co, for large enough n,

- aéffﬁ(ré h<’“§1rsn(% 2 (-az‘{_:)z)lh(za_l_—l—)”a
= Gl/2 1/¢ (26 )1/6( )‘/5.

Making use of 1+x=<e, 1:]( ><exp(2’:}l:

IA

.0

):e. Thus we have,

E1S)
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g Gfllz 7:/3 (26 1)”6

This completes the proof of Lemma 1. Next we prove (c). We prove

1 L

(1.2) AT 2 a}E} —1 as n—oo

-

when either (0.4) or (0.5) is assumed. From (0.4),

1 = 2 1 & 2
E(gr Bai—1) =4 SoBE-10+ 45, 3 etalB(E-DE-D)
:21+22’
(K*+17 o, (CHL? 2 (K*41)
Elé—A{—Ea} CoAr A aj= —?;n.'——>0 as n—oo,

By (0.4), for all ¢>0, there exists N such that /4+j7=N implies |E(&i—1)&—1)| <e,
and

ll/\

2.2 2 _ ata?
Dt E DG S 3t

Thus we have llmsupIEzl <e. Since ¢ is arbitrary, we have proved (1.2) from (0.4).
From (0.5)

1 By ape 2 2 n-1  n-r -
E(A_’zl j%ll afe.l_l) é;l?.,% ﬁr tg‘ aiais,
_ 2 ni:l njraz.
= G, AL f=0‘8ri=l ¢
S—z—i‘aﬁ —> 0 as n—oo
=G, =0 T

This completes the proof of theorem 1.

Next we prove theorem 2. First we check the conditions of Theorem C. (a)
and (c) are trivial because (0.11) implies (0.4). To prove (b), it is sufficient to show
that sup E|T,|*<co.

Tl I (14255

n Zn!“}(fﬁ—l)

=1 (1+ AZ)II‘ N

where DZ=atl+ -+ +a¥ and A, ;=D,/(3aj+ A2). Since |4, ;|*<D:/ALL1/G,, we can
apply Lemma 1 and prove that E|T,|* is bounded. (d) is a direct consequence of
(0.8). Tightness is proved by E(S%)=<CAZ, but it is a consequence of (0.7) and (0.9)
using the Theorem 1 of Méricz [14].
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2. Proof of Theorem 3

The proof of (i) is the same as that of Theorem 7 (1) in Fukuyama [7], because
it uses only the sub-gaussian property (1.1) of {&,}. For the proofs of (ii), (iii) and
(iv), we use the following theorem due to Kuelbs [12].

Theorem D. Assume that

P({X./~/2Tog log A%} is relatively compact in C[0. 11P)=1
and for all signed measure v with bounded variation on [0, 1],
_ | Xomdy )
P llr{llfgp 72:13—?1—@% <K,,|=1
holds. Then we have
P({The cluster of {X,/+/27log log A%} in C[0, 1]}CK)=1.
Further more suppose thal
. [ xaway )
r llgfgpm-—zlﬁ,, =1.
then we have

P({The cluster of {X./+/2Tog log A%} in C[0, 1]}=K)=1,
where

a-l
1{3,O:E[(S:W(t/\o-')dy(t))z]zgo lx, 1])dx.
(W(t) denotes the standard Brownian motion.)

First we prepare some notations.
Put N=|[v|([0, 1]),

A2
0 for te[O, f}‘{%‘]
_ 2 2 2 2
¢"-’(t)_\%(t—ii";l‘) for te[éfé‘, gé—] and
1 otherwise

tr = Be 000 and AZ= B (@cns)

=1

‘k Tl(t) E a 1'¢n. 1(t)Ef and ; ‘K n(t)dl'(t) N 24 a Icn 7€ je
An j=1 Jo An j=1 / -

The order of A%, is calculated as follows.
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2
@.1) lnngfi; oK,

This formula is easily proved as an application of the functional central limit theorem
for the Rademacher sequence {r,}. Let }, be a C[0, 1]-valued random variable de-
fined in the same way as X, using {r,} instead of {&,}. Functional central limit
theorem and uniform integrability imply

@2.2) lim E[(S:X,.(t/\ﬁ“ )dp(t))’J: E[(S:B(t/\0“)du(t)>2] .

Putting =1 and calculating the expectations, we have (2.1). Now we take §>1 and
take p(r) satisfying A2, <0"<AZy+. We derive the conclusion of (ii) and (iii) from
(0.1),

(2.3) Al 2(] (ajcper, &5 —> K2, a.s. as r—oo
p(rd
and
(2.4) E]'[(1+C" "“5’\/2 log 1o"A2) <L for all neN, for somel >0.

Thus we first prove (2.3) and (2.4) under the condition of (ii) or (iii). First we asume
the condition of (2). Since |c,, ;| =N, (0.12) and (2.1) implies

Al
(Cl,-Cn,j)2 (W) as n—oo .

Using this estimate,

1 e 2

= S s pen P E(E 1)

A:.p(r) J

2

A:,p(,) 1si<jsp(r)

U+ +21Bi2) : v_0 1
= AL per il;nng()(a.c,,(,)_,)__ ((logA o )‘*f)

+ -

(aiCpery. ) (@icpcry, 5)°bi. 4

O@r—1'-%),

Since this is a term of a convergent series, by the Beppo-Levi theorem, (2.3) is proved.
Next we prove (2.3) under the conditions of (iii). Since |c, ;| <N, (0.14) and (2.1)
implies
Al.

(@jcn. )= ((———log og Az)_5/(2 6)) as n—oo .
Since {&*—1} is sub-gaussian, putting
2
Hn:: Ayv" T ©o »

(max | a,c,,,,]’) log log A2
Jjsn

we have
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pLrd I
(| "8 @rern &~ | 2VZC Hyrr)
v, p(r) 71

4
cCexpf— - AA
Hp AL p(r)( max (a iCpcrd, j))

<Cexp(—4loglog d7).
Since this is a term of a convergent series, by the Borel-Canteil lemma, we have

1 (r) o
. ”};l(a,-cpm,,-)z(eﬁ—l)’g«/zc'/Hp(r) f.e. a.s.

v, p(r) 1%

Thus (2.3) is proved.
Next we derive (2.4) from (0.3) and (0.14). Put

cn.;v/2log log A2=4,,; and A,=N+/2log log AZ.

By (0.14), we can take 1/G,=o((log log A2)~%@-9) and this implies (T A,/GY¥?* /¢)=0(1).
Thus we can apply Lemma 1 and prove (2.4).

Now we derive the final conclusion from (0.1), (2.3) and (2.4), using the method
due to S. Takahashi. (Takahashi [22]) Put 2,=K;}+/2log log A2. Making use of e*<
(I4+x)exp (x%/2+1x1%) (x| £1), (2.3), (2.4) and uniform boundedness and taking large
enough », we can prove that

] r pCrd 2 r prd v 2 -
E[CXD(AD(( )) ]2 Cperd,i@i6— 22( - 2 {cper. ;06512 —(142e)— 1—--~p( )>]
per

< B (122224 2 iog Tog A5

prd

p(r)K LASR) K?;.J%(r))
2

A
xexp (52— "3 ey a1 = (14260

2
<Lexp (lﬁ”] N®max |a,|—(1+2 )M)

pCr) ispcr 2
< L exp (log log A}¢r>0(1)—(1+2¢)log log Akcr>)
SK'rite,

Since this is a term of convergent series, by Beppo-Levi’s theorem, we have

i 25crs( s | X pedy—( 0K )= —eo
to conclude

1
Xp(r)dV

llr{lil;l mAp(r;)— ._[(,,,1 a.s..

For given n, take » as p(r—1)<nZp(r). Then
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1+/2 log log A2~

_ (1A= X ()
=) V2 Tog log A3 @)+

=]1+]2 .

——u(dt)

O Aee®
J 0=, riog Tog AT

i 1 -
v2Tlog log A~ +/2log log A3, )So“ perv(dt).

I,—0 as n—oo is trivial.

—~ 1 o Ap(r)
L= +/2loglog A%¢: ( A,

. Aj .
SD{XP(”(A—,%(;—)I‘)—“ p(r)(t)}”(dt)’
Apcr !
+(Epn )—1).50,\’,,(,)»(&)').
The first part tends to 0 a.s. as 6 |1 by equi-continuity and the second part is trivial.
Thus we have proved

Xudy
|12§£pﬁm;l v 1 a.s.

Here we end the proof of (2).
The proof of

"1
oX,,dv
li —te——— > K, . S.
P o loglog Az =t &8
is the same as that in Fukuyama [7], because it use only the sub-gaussian property

of {&§—1}

3. Examples

We consider on the sequence &,=+/2cos 4,x on the probability space ([0, 1], dx)
when the sequence {4} of real numbers satisfies A;—o as k—co and A;4,/2:=2 for
all k. {&,} is a uniformly bounded weakly multiplicative system such that (0.1), (0.3)
and (0.7) hold with d=d’=1. Since

B, )l =3 3 |Jeos o, - 22 )xde| SVE R, — o =207
2 'E(enl‘“fn,)lé E \/2}(2"’— ——2"1)_'
<<y 051 <<y

SV2T 2 S (@ e —2h])
ni=1 1Sngl <Ny

SVET S (@rr— e =2
057, Z<ny

< SVE

Thus we have | B,|/"<4/2 for all ». Similarly, we have | B/} "<+ 2.

Current Address
DEPARTMENT OF MATHEMATICS INSTITUTE OF MATHEMATICS
KYOTO UNIVERSITY UNIVERSITY OF TSUKUBA



(L]
£zl
£3]
[4]

(5]
el

£7]
£8]
£9]
{10]
1]
(12]
(18]
(14]
[15]
(16]
(17]
(18]
[19]
[20]
[21]
[22]

f23]

Functional central limit theorem 635

References

G. Alexits, Convergence problem of orthogonal series, Académiai Kiadd/Pergamon Press,
1961.

G. Alexits, Sur la sommabilité des séries orthogonales, Acta Math. Acad. Sci. Hungar., 4
(1953), 181-188.

G. Alexits-A. Sharma, On the convergence of multiplicatively orthogonal series, Acta Math.
Acad. Sci. Hungar., 22 (1971), 257-266.

1. Berkes, On Strassen’s version of the log log law for multiplicative systems, Studia Sci.
Math. Hungar., 8 (1973), 425-431.

P. Billingsley, Convergence of probability measures, J. Wiley, 1968.

E. Dudley and P. Hall, The gaussian law and lacunary sets of characters, J. Austral.
Math. Soc., 27 (1979), 91-107.

K. Fukuyama, Some limit theorem of almost periodic function systems under the relative
measure, J. Math. Kyoto Univ., 28 (1988), 557-577.

V.F. Gaposkin, On the law of and iterated logarithms for strongly multiplicative systems,
Theory Prob. Appl., 6 (1969), 493-496.

M. Kac, Probability methods in some problems of analysis and number theory, Bull. Amer.
Math. Soc., 55 (1949), 641-665.

A. Kolmogorov, Une contribution a I’étude de la convergence des séries de Fourier, Fund.
Math., 5 (1924), 26-27. '

N. Kéno, Functional central limit theorem and log log law for multiplicative systems, Acta
Math. Hungar., 52 (1988), 233-288.

J. Kuelbs, A strong convergence theorem for Banach space valued random variables, Ann.
Probab., 4 (1976), 744-771.

D.L. McLeish, Dependent central limit theorem and invariance principles, Ann. Probab., 2
(1974), 620-628.

F. Méricz, On the law of the iterated logarithms and related results for weakly multipli-
cative systems, Analysis Math., 2 (1976), 211-229.

F. Moéricz, On the convergence properties of weakly multiplcative systems, Acta Sci. Math.
Szeged, 38 (1976), 127-144.

C.J. Preston, On the convergence of multiylicatively orthogonal series, Proc. Amer. Math.
Soc., 28 (1971), 453-455.

P. Révész, Some remarks on strongly multiplicative systems, Acta Math. Acad. Sci.
Hungar., 16 (1965), 441-446.

P. Révész, The law of the iterated logarithm for multiplicative systems, Indiana Univ.
Math. J., 21 (1972), 557-564.

P. Révész, A new law of the iterated logarithm for multiplicative systems, Acta Sci.
Math. Szeged, 34 (1973), 349-358.

R. Salem-A. Zygmund, On lacunary trigonometric series, Proc. Nat. Acad. Sci. USA 33
(1947), 333-338.

V. Strassen, An invariace principle for the law of the iterated logarithm, Z. Wahrsh.
Verw. Geb., 3 (1964), 211-226.

S. Takahashi, Notes on the law of the iterated logarithm, Studia Sci. Math. Hungar., 7
(1972), 21-24.

A. Zygmund, On the convergence of lacunary trigonometric series, Fund. Math., 16 (1930),
90-97, Correction, ibid., 18 (1932), 312.



