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Introduction

Let {x, y, z} be a  basis of g = 50(3, R ) which satisfies the relations:

(0.1) [x, y] = z, [z, x] = y, [y, z] = x.

We regard x, y and z as coordinate functions on g* and we may identify g* with
R ' .  A  linear Poisson structure on g* is defined by the following antisymmetric
contravariant tensor P  of order 2:

(0.2) P = zax A  0 , + ya z  A  a, x ay  A  az .
Using the tensor P, we can define a  bracket operation {•, • } on C '(g*):

(0.3) {f, g}  = <df  A d g 1 P>, for all f , g  E C ( g
* ).

Then C (g*) becomes a Lie algebra and g* has a structure of a linear Poisson
m anifold. An infinitesimal automorphism of a linear Poisson manifold so(3, R)* is
a  smooth vector field X  on so(3, R )* which satisfies 2 (X )P = 0, where .99 (X)
denotes th e  L ie  derivative along X .  I n  th e  present paper, we shall discuss
infin itesim al autom orphism s defined o n  a  linear P o isson  m anifo ld  g*
= so(3, R ) * . This is  a  sequel of the author's papers [2] and [3].

A  L ie  group SO(3, R ) acts on so(3, R )* through the coadjoint action. All
coadjoint orbits except fo r the  origin are compact, which are diffeomorphic to
V . C o n tra ry  to  the case of sl(2, R )*, infinitesimal automorphisms of so(3, R)*
have some restrictions. This depends on the fact that each orbit is compact in the
case of so(3, R)*.

In  § 1 , we shall prove that every infinitesimal automorphism is tangent to
orbits at each po in t. In  §2 , we consider the formal version of smooth infinitesimal
automorphisms a n d  calculate derivation algebras o f  th e  space of polynomial
functions, which we call the polynomial Poisson algebra.
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§1 . The Schouten bracket and infinitesimal automorphisms

First recall the definition of the Schouten bracket (Lichnerowicz [1]). We call
i-tensor an antisymmetric cotravariant tensor of order i. For an i-tensor A and a
j-tensor B , we shall define the  Schouten bracket [A, B ] which is a n  (i +j— 1)-
tensor as follows: for every closed (i +j— 1)-form fl, we have

(1.1) 4[A, B]f3 = ( — i(A)di(B)fl + ( — 1)i(B)di(A)f3,

where 4.) is  the interior p ro d u c t. Then the Schouten bracket satisfies

(1.2) [A , B] = ( — A].

Moreover if C is a  k - tensor, we have the generalized Jacobi identity

(1.3) ( —  1)1i[[B , C], A ] + ( — l) [[C, A], B] + ( — 1)q[A , B ], C ] = O.

A function f e  C'(g*) is called a Casimir function if it satisfies { f , g} 0 for all
g e C ( 9 * ) .  W e deno te  by a  space of Casimir functions. Using the Schouten
bracket, we can give another definition of Casim ir functions a n d  infinitesimal
autom orphism s. A function f  is a Casimir function if [P, = 0, and a vector field
X  is an infinitesimal automorphism if [P, X ] = O. In the case of so(3, R)*, by an
easy consideration, we know that the space ce is consisting of functions (/)(x2  +
+ z 2 ).

W e  d e n o te  b y  2 '  t h e  L i e  a lgebra  o f  infinitesimal automorphisms of
so(3, R )* . L et .1  b e  a n  ideal o f  Y  whose elements are  tangent to coadjoint
orbits. W e  sh a ll p ro v e  2 ' =  fir in  the  following.

Lemma 1.1. Let X  = f  ex  + ga y + ht z be an element of Y . Then there exists
e 4f such that xf + yg + zh = ck(x 2  + y 2  + z 2 ).

Pro o f . By the genralized Jacobi identiy, we have

(1.4) [[X , P], + [[P, + [[,li, X ], P] = 0, f o r  all tfr e

Since [X , P ]= 0 and [P, tp] = 0, we get X(1//)E cg. Hence there exists triece such
that 20'(x 2 d-  y 2  + z 2 )(xf + yg + zh)= Cri(x 2  + y 2  + z 2 ). Put 49 = (7/720'. Then 4)
is the desired Casimir function. q.e.d.

Theorem 1.2. In  the case of g* = so(3, R)*, it holds Y  =

Pro o f . Let X  = f a x  ±  y  haz be an element of Y  .  Then f , g and h satisfy
the relations :

1j = x g y — ygx  + xh z — zhx ,

(1.5) g = y fx  — + yh z  — zhy ,

h = z fx — xf, + zgy — ygz .

Put div(X) +  gy +  hz . Combining Lemma 1.1 with (1.5), we have
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xdiv(X) = (xf + yg + zh)„ = 2x 0'(x 2 + y 2 + z 2 ),

(1.6) ydiv(X) = (xf + yg + zh), = 2y 0'(x 2  + y2  + z 2 ),

zdiv(X) = (xf + yg + zh) z = 2z 
0 ,  ( x 2  +  y 2  +  z 2 ) .

Hence div(X) = f  +  gy + h z = 2 0'(x 2 + y 2 + z 2 ) on R 3  — {0}. The continu-
ity of div(X) and  0  implies div(X) = 20'(x 2 + y 2 + z 2 )  o n  R 3 .

Let V be an open ball of a radius r centered at the origin. Let --r V be
the inclusion m apping . B y the Stokes formula, we have

(1.7) div(X)dV = f  t*(i(X )dV ).
av

First compute the left hand side of (1.7). We use the polar coordinates of R 3 .

(1.8) L div (X )dV  = f  (f x  + gy hx)dV = 2 0V 2 )r 2 sin0 drd0c10

= 8  f  0 '( r 2 )r2 dr.

O n the other hand, we have

(1.9)
f

/*(i(X)d V) =
av

4)(r2 )rsin OdOd
av

= 47r0(r 2 )r.

Thus we get

(1.10) 2 f4 )'(r 2 )r2 dr = 0(r 2 )r.

Differentiating both sides of (1.10), w e have 4)(r2 ) = 0  fo r any  r > 0. The
continuity o f  0  implies 0(0) =  0 . Thus 0  0  o n  R3 a n d  hence xf + yg + zh
= 0. This means that a  vector field X  is tangent to each coadjoint orbit. (N ote
that X  = 0  a t  the origin by (1.5).) q . e . d .

§ 2 .  Derivations of the polynomial Poisson algebra

Let {x, y, z} be basis of so(3, R ) which satisfies (0.1). Let F  be a  space of
hom ogeneous polynom ials f (x , y, z) w ith  d e g  (f) = p + 1, a n d  p u t  F
= E F p . Using the linear Poisson tensor P of (0.2), a Poisson bracket {•, •} on F
is defined. S ince it holds {F p , Fq } F  p + q  (p, q 0), F  becomes a  graded Lie
algebra. W e call F  the polynomial Poisson algebra.

The following proposition can be proved by the same method as the case of
51(2, R). So we om it the p ro o f . (For the proof, see [3].)

Proposition 2.1. Each space F p (p 2) is generated by  F 1 . Namely it holds
FF. = { F 1 , F_1} .
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Let 9' b e  the complexification of g = so(3, R ) .  A  subspace g, =  {x } i s  a
Cartan subalgebra of gc and a root decomposition of gc with respect to g, is given
by

(2.1) 9` = 9-i + go + 9i = {Y + iz} + {x} + {Y i z } .

Let Fp
c  b e  the complexification of Fp . A  linear mapping ad(x): Fp — Fp  is

naturally extended to ad(x): F p
c  F .  Then by direct calculations, we have

Proposition 2.2. A ll eigen values of  a  linear mapping ad(x): F p
c  F  p

c  are  0,
+ j , + 2 i,..., + (p  + 1 )i. L et Fp (ki) be an  eigen space corresponding to an  eigen

p+1
value ki. Then we obtain Fc

p = E Fp (ki), where each Fp (ki) is given by:
k= -(p+1)

(i) If  p  is even, say  p = 2m,

F(0) = <x 2m+ 1,  x 2m - 1(y 2 + z 2), ... , x (y 2 .4_ z 2). > ,p 

Fp (i) = <x 2 m(y — iz), x2 m-
2 (y —  iz)(y2  + z 2 ),..., (y — iz)(y 2  + z 2 )m>,

F p ( — i)= <x 2 m(y + iz), x 2 m- 2 (y + iz)(y 2  + z 2 ),..., (y + iz)(y 2  + z 2 )m>,
F p (20 = <x2 "' - '(y —  iz)2 ,  X2 m  - 3 (y — iz) 2 (y 2 + z 2 ),..., x(y — iz) 2 (y 2  + z 2 )m- i >
F p ( — 2i) = <x2 "' - '(y + iz)2 , 2 m _  3 (y + iz) 2 (y2 + z 2 ),..., x(y + iz)2 (y2  + z 2 )m- 1 >,

F((2m + 1)1) = <( —

F ( —  (2m + 1)i) = <(y + iZ)2 m + l >..
p y   

(ii) If  p  is odd, say  p = 2m — 1,

' F(0) =  <X2 m , X2 m  - 2 (y 2  +  z 2 ),..., (y 2  + z2 )m>,

FAO = <x 2 m- l (y — iz), x2 "1- 3 (y — iz)(y 2  + Z 2 ), ..., x(y — iz)(y 2 + z 2 )m- l>,

F p ( — i)= <x 2 m- '(y  + iz ), x2 m-
3 (y + iz)(y 2 + z 2 ),..., x(y + iz)(y 2 + z 2 )m- 1 >,

< F p (2i) = <x 2 m- 2 (y — iz)2 , x 2 m- 4 (y — iz)2 (y 2  + z 2 ), ..., (Y — iz)2 (Y2 + z 2 )m - 1 >,
F p ( — 2i) = <x2 m- 2 (y + iz)2 ,

F p (2mi) = <(y — iz)2 m>,

F p ( — 2mi) = <(y + iz) 2 m>.

A  linear mapping c: F F  is called a derivation if it satisfies

(2.2) c{ f , g}  = {c(f), g} + {f, c(g)} for all f , g e F

In the rest of this section, we shall calculate all derivations of F .  First define
the degree of c. If a derivation c satisfies c(F p ) F  0 _, for all p, we say that the
degree of c is r, and write as deg c = r. For any derivation c, we denote by cup ' ) the

x2rn 4(y ± iz)2(y2 z2), (y iz)2(y2 z2)n 1>
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Hom(Fp , Fp + k )-component o f  c. D efine  a  n ew  d e riv a tio n  c C( k ) I F
P

-=  4 ) . Then c( k )  i s  a  derivation of degree k , and c  is written a s  c = E c(k).
By the same method a s  [3], we can prove

Proposition 2 .3 . Fo r a derivation c: F F ,  if  deg c — 1, then c = O.

Consider the adjoint action of Fo = so(3, R ) over F,,. S in c e  F ,  is a simple
Lie algebra, it holds 1-11 (F,,F p ) = O. H ence there exists an f e F p  such that c i f ' ,
=  a d ( f ) . Thus (c — ad(f))(F 0 ) = O. By this reason, hereafter, we always assume
that a  derivation c  with non-negative degree satisfies c(F 0 ) = O.

To determ ine a  derivation c  o f  non-negative degree p , w e consider the
subspace c(F 1 )  in F + 1 . A n d  w e w rite  it dow n according to  the d irect sum
decomposition of F c

p .+. i .

Proposition 2.4. L e t deg c = p O. S ince c(F 1 ) F  p
c ." , acco rd in g  to  the

p+2
direct sum  decom position o f  Fp

c
+ 1 , w e  c a n  p u t :  c(x2) = E a,1 , c ( y 2 )

k=-p+2
p+2 p+2 p+2

= E bk, c(z 2 ) = E c,, c(yz) = E  r
k i •  

Then c(x 2 ) = a 0 , c(y 2 ) = ir _ 2i
k= -p -  2 k = - p -  2 k = -p -  2
bo — ir2 1 , c ( z 2 ) = — ir _ 2i + bo ir2 , a n d  c(yz)= r _ 2i r2 1 . M o re o v e r a ,

+ 2b,ece.

P ro o f . By the equation 0 = c {x, x2 } = {x, c(x 2 )} = Ekia k i , we have ak , = 0 if
k O. T h u s  c(x2 ) = ao . Another equation c {x, y 2 }  =  {x, c(y 2 )}  = 2c(yz) implies
tha t Ix , E  =  E  kibk , = 2E rk i . Thus w e  g e t  ro =  0  a n d  bk, = ( — 2ilk)rk ,  if
k O. S im ilarly c {x, z 2 } = {x, c(z2)} = — 2c(yz) implies ck , = (2i I k)rk , if
k O. On the other hand, it holds that c {x, yz}  = {x, c(yz)} =- c(z 2  — y 2 ) = c(z 2 )
—c(y 2 ). This equation implies kirk , = (4ilk )r, + c, — bo . Hence we have 1)0 =  co

a n d  rk, =  0  i f  k + 2. T h u s b2 , = — ir2 1 , b _2 i =  ir _ 2 ,, c 2 , = ir 2 ,  a n d  c_ 21 =
—ir _ 2i. A derivation c leaves the space ce invarian t. Hence c(x2 +  y2  + z 2 ) = a0

+ 2b0 ece. q.e.d.

Using the above proposition, we shall prove

Propositon 2.5. (i) I f  deg c = 2m —  1 (m 1 ) ,  then c  is  an  inner derivation.
(ii) If  deg c = 2m  (m  0), then c is an outer deriv ation. M ore precisely, c is

essentially defined as follows:
For all p 0 ,  c ( u p ) = pu p (x 2  + y 2 + z 2 )'" for all u p e Fp .

P ro o f . The proof proceeds in the same way as the case of sl(2, R ) .  ( i )  Note
that c(F i ) = F 2 . .  Since there are no Casimir functions in  F 2„„ we can put b, =
—a0 /2. According to the direct sum decomposition of n n , we can write a„, r2 ,
and r_ 21 a s  follows:

a o  =  a 1 x 2m+ a 2 x 2m-i. ( y 2 z 2)±  a m +  i x ( y 2 z 2) ,

r 2 , = c 1 x 2 "1 - 1 (y — iz)2 c2x2m-3(y iz)2(y2 z2)

(2.3) + c„,x(y — i z ) 2 ( y 2 + z2).-
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r+ 2id i  x 2m- 1(y  +  iz)2 +  d2x2M  - 3(y ±  iz)2(y2 +  z2) +  ...

X dp,x(y + i z )2( y 2 + z 2) .- 1 .

Substituting (2.3) into
(k = 0, 1, 2, ... , 2m + 1) to

m ) . Thus c(x 2) = c(y 2 )
= c(yz) O. H ence c(F i)
=  0  on  F.
(ii) Since c(F 1 ) F2m+ 1,

direct sum decomposition

{ y, c(y2 )} = c {y, y 2 }  = o, and equating coefficients of
zero, w e have a ; = c k = d k =  0 (1 j  m  +  1 ,  1  k

= c(z 2 ) = O. S in c e  c(F 0 ) = 0, we also have c(xy) = c(xz)
= O. B y  Proposition 2.1, c(F ) =  O (p 1), and hence c

we can write down (10 , r 21 a n d  r_ 21 according to  the
of FS:m +  1  a s  follows:

a( )  = a1x2m4.2 a 2 x 2m( y 2 z2) +  a m +  2(y2 z2)m  + 1 ,

r 2 i c i  x 2. ( y i z ) 2 c 2 x 2m - 2( y  _  i z )2(3,2 z z)

± c m +  1 (y iz)2(y2 z2 )m,

r _21 =  d i  x 2m(y i z ) 2 d2x2m -2( y  ±  i z )2( y 2 z2)

▪ d m + i z ) 2 ( y 2 z2 )m.

In F 2 „,+ ,, there is one dimensional subspace of Casimir functions whose basis
is  ( x 2  ±  y 2 + z 2 )m + 1. Hence we need put bo  = (K(x2 

±  y 2  4 _  z 2 ) m  + 1 a 0
)/2. Substi-

tuting (2.4) into {y, c(y 2 )} = 0, and equating coefficients of (k = 1, 2, ... , 2m + 2)
to  zero, we have

c ( x
2

)  =  4 d 1  i x
2( x 2 + y 2  +  z 2

)m  ±  a m +  2 (x 2 4_ y 2  ±  z 2)m + 1,

(2.5) c(y2) = 4d 1

i y 2 ( x 2  4 -  y 2  +  z 2 ) m  
(1/2)(am + 2  — K + 4d 1 i)(x 2 +  y  + z 2 )m + 1 ,

c(z2 ) = 4d1iz2
( x 2  +  y 2  +  z 2 ) m  

(1/2)(am + 2  — K + 4d1i)(x2 ± y 2 + z 2 ) m +  1.

Using (2.5), we also have

c(xy) = c ly 2 , z1/2 = {c(y 2 ), z}/2 = 4d1 ixy(x 2
 ±  y 2  ±  z 2) ,

(2.6) c(xz) =  c Ix 2 , y1/2 = Ic(x 2 }, y1/2 = 4d 1 ixz(x 2 +  y 2 +  z2 )m ,

c(yz) = c Ix, y 2 1/2 = c(y2 )1/2 = 4d 1 iyz(x2 + y 2 ± z2)m.

By equations (2.5) and (2.6), we know that a  derivation c can be essentially
written as c(u 1 ) = u 1 (x2 +  y 2 +  z 2 )m for a ll  ul eF i . (Recall that c  is  a  "real"
derivation.) Since F 1 generates F p  (p 2), we also obtain that c(up ) = pu r (x2 +  y 2

+ z 2 )m for all u p eF p . F inally  w e see that a  derivation c is  o u te r . In fact, if c is
in n e r, th e re  ex is ts  a  function fE F 2m s u c h  t h a t  c = ad(f). T hen  0  =  c (x )
=  {f, x }. T hus w e  have c(x 2 ) =  {f, .X2 }  =  2x { f, x }  =  0 . O n  th e  o ther hand,
c ( x 2) x 2( x 2 4 _ y 2  ±  z 2x) O. This is  a contradiction. q.e.d.

W e have thus determined the derivation algebra of F .  We shall resume all
results in

(2.4)

Theorem 2.6. L e t  c: F F  b e  a  deriv ation. T hen c E ot,,,c(2m) (mod
m,o
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ad(F)), where c ( 2 m) is derivation defined by

(2.7) c(2m)(up) = pup (x 2  + y 2 + z 2 )m f o r all u p e F p ,

and am  is some constant depending o n  c .  In particular, all c ( 2 m) are outer derivations,
hence 11 1 (F, F) is infinite dimensional.

Let L be the formal Lie algebra of at the origin. (For the precise definition
of the formal Lie algebras, see [ 4 ] . )  Then the derivation c obtained in  Theorem
2.6 induces a  derivation -6 of L .  The form of ë is explicitly given by ë  = ad((x 2

+ y 2 + z 2 )m(x0, + yOy + za,)).
W e shall consider here C'-versions o f  th e  results obtained in  th e  above

theorem . F o r  all non-negative integers m , l e t  X  = (x2 +  y 2 + z2 )m(x0, + yOy

+ z0z ) be a  smooth vector field on so(3, R)* = R 3 . Then for a ll  Y  = fa, + gay

+ haz e  2 , we have

2([X , Y ])P = —  2(Y )L (X )P = 2 (Y) {(x 2
 + y 2 + z 2 rp }

= YI(x 2 + y 2 + z2 )1  P

= 2m(x 2 + y 2 + z2 )"1 - 1 (xf + yg + zh)P = O.

(R e c a ll th a t 2  = .5  b y  T h e o re m  1.2, hence xf  + yg + zh = O.) T h is  implies
[X , Y ]e 2 and thus ad(X) is a  derivation of 2  for all m  O. This fact is quite
different from the case of sl(2, R ) .  (See Proposition 3.1 in  [3].)

DEPARTMENT O F MATHEMATICS
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