On the structure of infinitesimal automorphisms of linear Poisson manifolds II

Dedicated to Professor Masahisa Adachi on his sixtieth birthday By

Nobutada NaKanishi

Introduction

Let $\{x, y, z\}$ be a basis of $\mathfrak{g}=\mathfrak{s o}(3, R)$ which satisfies the relations:

$$
\begin{equation*}
[x, y]=z,[z, x]=y,[y, z]=x . \tag{0.1}
\end{equation*}
$$

We regard x, y and z as coordinate functions on \mathfrak{g}^{*} and we may identify \mathfrak{g}^{*} with R^{3}. A linear Poisson structure on g^{*} is defined by the following antisymmetric contravariant tensor P of order 2:

$$
\begin{equation*}
P=z \partial_{x} \wedge \partial_{y}+y \partial_{z} \wedge \partial_{x}+x \partial_{y} \wedge \partial_{z} \tag{0.2}
\end{equation*}
$$

Using the tensor P, we can define a bracket operation $\{\cdot, \cdot\}$ on $C^{\infty}\left(\mathrm{g}^{*}\right)$:

$$
\begin{equation*}
\{f, g\}=\langle d f \wedge d g \mid P\rangle, \text { for all } f, g \in C^{\infty}\left(g^{*}\right) \tag{0.3}
\end{equation*}
$$

Then $C^{\infty}\left(\mathrm{g}^{*}\right)$ becomes a Lie algebra and g^{*} has a structure of a linear Poisson manifold. An infinitesimal automorphism of a linear Poisson manifold $\mathfrak{s o}(3, R)^{*}$ is a smooth vector field X on $\mathfrak{s o}(3, R)^{*}$ which satisfies $\mathscr{L}(X) P=0$, where $\mathscr{L}(X)$ denotes the Lie derivative along X. In the present paper, we shall discuss infinitesimal automorphisms defined on a linear Poisson manifold \mathfrak{g}^{*} $=\mathfrak{s o}(3, R)^{*}$. This is a sequel of the author's papers [2] and [3].

A Lie group $S O(3, R)$ acts on $\mathfrak{s o}(3, R)^{*}$ through the coadjoint action. All coadjoint orbits except for the origin are compact, which are diffeomorphic to S^{2}. Contrary to the case of $\mathfrak{s l}(2, R)^{*}$, infinitesimal automorphisms of $\mathfrak{s o}(3, R)^{*}$ have some restrictions. This depends on the fact that each orbit is compact in the case of $\mathfrak{s o}(3, R)^{*}$.

In §1, we shall prove that every infinitesimal automorphism is tangent to orbits at each point. In § 2 , we consider the formal version of smooth infinitesimal automorphisms and calculate derivation algebras of the space of polynomial functions, which we call the polynomial Poisson algebra.

§ 1. The Schouten bracket and infinitesimal automorphisms

First recall the definition of the Schouten bracket (Lichnerowicz [1]). We call i-tensor an antisymmetric cotravariant tensor of order i. For an i-tensor A and a j-tensor B, we shall define the Schouten bracket $[A, B]$ which is an $(i+j-1)$ tensor as follows: for every closed $(i+j-1)$-form β, we have

$$
\begin{equation*}
i\left([A, B] \beta=(-1)^{i j+j} i(A) d i(B) \beta+(-1)^{i} i(B) d i(A) \beta,\right. \tag{1.1}
\end{equation*}
$$

where $i(\cdot)$ is the interior product. Then the Schouten bracket satisfies

$$
\begin{equation*}
[A, B]=(-1)^{i j}[B, A] . \tag{1.2}
\end{equation*}
$$

Moreover if C is a k-tensor, we have the generalized Jacobi identity

$$
\begin{equation*}
(-1)^{i j}[[B, C], A]+(-1)^{j k}[[C, A], B]+(-1)^{k i}[[A, B], C]=0 \tag{1.3}
\end{equation*}
$$

A function $f \in C^{\infty}\left(\mathrm{g}^{*}\right)$ is called a Casimir function if it satisfies $\{f, g\}=0$ for all $g \in C^{\infty}\left(\mathfrak{g}^{*}\right)$. We denote by \mathscr{C} a space of Casimir functions. Using the Schouten bracket, we can give another definition of Casimir functions and infinitesimal automorphisms. A function f is a Casimir function if $[P, f]=0$, and a vector field X is an infinitesimal automorphism if $[P, X]=0$. In the case of $\mathfrak{s o}(3, R)^{*}$, by an easy consideration, we know that the space \mathscr{C} is consisting of functions $\phi\left(x^{2}+y^{2}\right.$ $+z^{2}$).

We denote by \mathscr{L} the Lie algebra of infinitesimal automorphisms of $\mathfrak{s o}(3, R)^{*}$. Let \mathscr{I} be an ideal of \mathscr{L} whose elements are tangent to coadjoint orbits. We shall prove $\mathscr{L}=\mathscr{I}$ in the following.

Lemma 1.1. Let $X=f \partial_{x}+g \partial_{y}+h \partial_{z}$ be an element of \mathscr{L}. Then there exists $\phi \in \mathscr{C}$ such that $x f+y g+z h=\phi\left(x^{2}+y^{2}+z^{2}\right)$.

Proof. By the genralized Jacobi identiy, we have

$$
\begin{equation*}
[[X, P], \psi]+[[P, \psi], X]+[[\psi, X], P]=0, \text { for all } \psi \in \mathscr{C} . \tag{1.4}
\end{equation*}
$$

Since $[X, P]=0$ and $[P, \psi]=0$, we get $X(\psi) \in \mathscr{C}$. Hence there exists $\tilde{\psi} \in \mathscr{C}$ such that $2 \psi^{\prime}\left(x^{2}+y^{2}+z^{2}\right)(x f+y g+z h)=\tilde{\psi}\left(x^{2}+y^{2}+z^{2}\right)$. Put $\phi=\tilde{\psi} / 2 \psi^{\prime}$. Then ϕ is the desired Casimir function.
q.e.d.

Theorem 1.2. In the case of $\mathfrak{g}^{*}=\mathfrak{s o}(3, R)^{*}$, it holds $\mathscr{L}=\mathscr{I}$.
Proof. Let $X=f \partial_{x}+g \partial_{y}+h \partial_{z}$ be an element of \mathscr{L}. Then f, g and h satisfy the relations:

$$
\left\{\begin{array}{l}
f=x g_{y}-y g_{x}+x h_{z}-z h_{x} \tag{1.5}\\
g=y f_{x}-x f_{y}+y h_{z}-z h_{y} \\
h=z f_{x}-x f_{z}+z g_{y}-y g_{z}
\end{array}\right.
$$

Put $\operatorname{div}(X)=f_{x}+g_{y}+h_{z}$. Combining Lemma 1.1 with (1.5), we have

$$
\left\{\begin{array}{l}
x \operatorname{div}(X)=(x f+y g+z h)_{x}=2 x \phi^{\prime}\left(x^{2}+y^{2}+z^{2}\right) \tag{1.6}\\
y \operatorname{div}(X)=(x f+y g+z h)_{y}=2 y \phi^{\prime}\left(x^{2}+y^{2}+z^{2}\right) \\
z \operatorname{div}(X)=(x f+y g+z h)_{z}=2 z \phi^{\prime}\left(x^{2}+y^{2}+z^{2}\right)
\end{array}\right.
$$

Hence $\operatorname{div}(X)=f_{x}+g_{y}+h_{z}=2 \phi^{\prime}\left(x^{2}+y^{2}+z^{2}\right)$ on $R^{3}-\{0\}$. The continuity of $\operatorname{div}(X)$ and ϕ implies $\operatorname{div}(X)=2 \phi^{\prime}\left(x^{2}+y^{2}+z^{2}\right)$ on R^{3}.

Let V be an open ball of a radius r centered at the origin. Let $t: \partial V \rightarrow V$ be the inclusion mapping. By the Stokes formula, we have

$$
\begin{equation*}
\int_{V} \operatorname{div}(X) d V=\int_{\partial V} \iota^{*}(i(X) d V) . \tag{1.7}
\end{equation*}
$$

First compute the left hand side of (1.7). We use the polar coordinates of R^{3}.

$$
\begin{array}{r}
\int_{V} \operatorname{div}(X) d V=\int_{V}\left(f_{x}+g_{y}+h_{z}\right) d V=2 \int_{V} \phi^{\prime}\left(r^{2}\right) r^{2} \sin \theta d r d \theta d \phi \tag{1.8}\\
=8 \pi \int_{0}^{r} \phi^{\prime}\left(r^{2}\right) r^{2} d r
\end{array}
$$

On the other hand, we have

$$
\begin{equation*}
\int_{\partial V} i^{*}(i(X) d V)=\int_{\partial V} \phi\left(r^{2}\right) r \sin \theta d \theta d \phi=4 \pi \phi\left(r^{2}\right) r \tag{1.9}
\end{equation*}
$$

Thus we get

$$
\begin{equation*}
2 \int_{0}^{r} \phi^{\prime}\left(r^{2}\right) r^{2} d r=\phi\left(r^{2}\right) r . \tag{1.10}
\end{equation*}
$$

Differentiating both sides of (1.10), we have $\phi\left(r^{2}\right)=0$ for any $r>0$. The continuity of ϕ implies $\phi(0)=0$. Thus $\phi \equiv 0$ on R^{3} and hence $x f+y g+z h$ $=0$. This means that a vector field X is tangent to each coadjoint orbit. (Note that $X=0$ at the origin by (1.5).)
q.e.d.

§ 2. Derivations of the polynomial Poisson algebra

Let $\{x, y, z\}$ be basis of $\mathfrak{s o}(3, R)$ which satisfies (0.1). Let F_{P} be a space of homogeneous polynomials $f(x, y, z)$ with $\operatorname{deg}(f)=p+1$, and put F $=\sum F_{P}$. Using the linear Poisson tensor P of (0.2), a Poisson bracket $\{\cdot, \cdot\}$ on F is defined. Since it holds $\left\{F_{p}, F_{q}\right\} \subset F_{p+q}(p, q \geqq 0), F$ becomes a graded Lie algebra. We call F the polynomial Poisson algebra.

The following proposition can be proved by the same method as the case of $\mathfrak{s l}(2, R)$. So we omit the proof. (For the proof, see [3].)

Proposition 2.1. Each space $F_{P}(p \geqq 2)$ is generated by F_{1}. Namely it holds $F_{P}=\left\{F_{1}, F_{P-1}\right\}$.

Let \mathfrak{g}^{c} be the complexification of $\mathfrak{g}=\mathfrak{s v}(3, R)$. A subspace $\mathfrak{g}_{0}=\{x\}$ is a Cartan subalgebra of g^{c} and a root decomposition of g^{c} with respect to \mathfrak{g}_{0} is given by

$$
\begin{equation*}
\mathfrak{g}^{c}=\mathfrak{g}_{-i}+\mathfrak{g}_{0}+\mathfrak{g}_{i}=\{y+i z\}+\{x\}+\{y-i z\} . \tag{2.1}
\end{equation*}
$$

Let F_{p}^{c} be the complexification of F_{p}. A linear mapping $\operatorname{ad}(x): F_{p} \rightarrow F_{p}$ is naturally extended to $\operatorname{ad}(x): F_{p}^{c} \rightarrow F_{p}^{c}$. Then by direct calculations, we have

Proposition 2.2. All eigen values of a linear mapping $\operatorname{ad}(x): F_{p}^{c} \rightarrow F_{p}^{c}$ are 0 , $\pm i, \pm 2 i, \ldots, \pm(p+1) i$. Let $F_{p}(k i)$ be an eigen space corresponding to an eigen value ki. Then we obtain $F_{p}^{c}=\sum_{k=-(p+1)}^{p+1} F_{p}(k i)$, where each $F_{p}(k i)$ is given by:
(i) If p is even, say $p=2 m$,

$$
\left\{\begin{array}{l}
F_{p}(0)=\left\langle x^{2 m+1}, x^{2 m-1}\left(y^{2}+z^{2}\right), \ldots, x\left(y^{2}+z^{2}\right)^{m}\right\rangle, \\
F_{p}(i)=\left\langle x^{2 m}(y-i z), x^{2 m-2}(y-i z)\left(y^{2}+z^{2}\right), \ldots,(y-i z)\left(y^{2}+z^{2}\right)^{m}\right\rangle \\
F_{p}(-i)=\left\langle x^{2 m}(y+i z), x^{2 m-2}(y+i z)\left(y^{2}+z^{2}\right), \ldots,(y+i z)\left(y^{2}+z^{2}\right)^{m}\right\rangle \\
F_{p}(2 i)=\left\langle x^{2 m-1}(y-i z)^{2}, x^{2 m-3}(y-i z)^{2}\left(y^{2}+z^{2}\right), \ldots, x(y-i z)^{2}\left(y^{2}+z^{2}\right)^{m-1}\right\rangle \\
F_{p}(-2 i)=\left\langle x^{2 m-1}(y+i z)^{2}, x^{2 m-3}(y+i z)^{2}\left(y^{2}+z^{2}\right), \ldots, x(y+i z)^{2}\left(y^{2}+z^{2}\right)^{m-1}\right\rangle, \\
\vdots \\
F_{p}((2 m+1) i)=\left\langle(y-i z)^{2 m+1}\right\rangle, \\
F_{p}(-(2 m+1) i)=\left\langle(y+i z)^{2 m+1}\right\rangle .
\end{array}\right.
$$

(ii) If p is odd, say $p=2 m-1$,

$$
\left\{\begin{array}{l}
F_{p}(0)=\left\langle x^{2 m}, x^{2 m-2}\left(y^{2}+z^{2}\right), \ldots,\left(y^{2}+z^{2}\right)^{m}\right\rangle, \\
F_{P}(i)=\left\langle x^{2 m-1}(y-i z), x^{2 m-3}(y-i z)\left(y^{2}+Z^{2}\right), \ldots, x(y-i z)\left(y^{2}+z^{2}\right)^{m-1}\right\rangle, \\
F_{p}(-i)=\left\langle x^{2 m-1}(y+i z), x^{2 m-3}(y+i z)\left(y^{2}+z^{2}\right), \ldots, x(y+i z)\left(y^{2}+z^{2}\right)^{m-1}\right\rangle \\
F_{p}(2 i)=\left\langle x^{2 m-2}(y-i z)^{2}, x^{2 m-4}(y-i z)^{2}\left(y^{2}+z^{2}\right), \ldots,(y-i z)^{2}\left(y^{2}+z^{2}\right)^{m-1}\right\rangle \\
F_{p}(-2 i)=\left\langle x^{2 m-2}(y+i z)^{2}, x^{2 m-4}(y+i z)^{2}\left(y^{2}+z^{2}\right), \ldots,(y+i z)^{2}\left(y^{2}+z^{2}\right)^{m-1}\right\rangle, \\
\vdots \\
F_{p}(2 m i)=\left\langle(y-i z)^{2 m}\right\rangle, \\
F_{p}(-2 m i)=\left\langle(y+i z)^{2 m}\right\rangle .
\end{array}\right.
$$

A linear mapping $c: F \rightarrow F$ is called a derivation if it satisfies

$$
\begin{equation*}
c\{f, g\}=\{c(f), g\}+\{f, c(g)\} \quad \text { for all } f, g \in F \tag{2.2}
\end{equation*}
$$

In the rest of this section, we shall calculate all derivations of F. First define the degree of c. If a derivation c satisfies $c\left(F_{p}\right) \subset F_{p+r}$ for all p, we say that the degree of c is r, and write as $\operatorname{deg} c=r$. For any derivation c, we denote by $c_{p}^{(k)}$ the
$\operatorname{Hom}\left(F_{p}, F_{p+k}\right)$-component of c. Define a new derivation $c^{(k)}$ by $c^{(k)} \mid F_{p}$ $=c_{p}^{(k)}$. Then $c^{(k)}$ is a derivation of degree k, and c is written as $c=\sum c^{(k)}$.

By the same method as [3], we can prove
Proposition 2.3. For a derivation $c: F \rightarrow F$, if $\operatorname{deg} c \leqq-1$, then $c=0$.
Consider the adjoint action of $F_{0}=\mathfrak{s o}(3, R)$ over F_{p}. Since F_{0} is a simple Lie algebra, it holds $H^{1}\left(F_{0}, F_{p}\right)=0$. Hence there exists an $f \in F_{p}$ such that $c \mid F_{0}$ $=\operatorname{ad}(f)$. Thus $(c-\operatorname{ad}(f))\left(F_{0}\right)=0$. By this reason, hereafter, we always assume that a derivation c with non-negative degree satisfies $c\left(F_{0}\right)=0$.

To determine a derivation c of non-negative degree p, we consider the subspace $c\left(F_{1}\right)$ in F_{p+1}. And we write it down according to the direct sum decomposition of F_{p+1}^{C}.

Proposition 2.4. Let $\operatorname{deg} c=p \geqq 0$. Since $c\left(F_{1}\right) \subset F_{p+1}^{c}$, according to the direct sum decomposition of F_{p+1}^{c}, we can put: $c\left(x^{2}\right)=\sum_{k=-p+2}^{p+2} a_{k i}, c\left(y^{2}\right)$ $=\sum_{k=-p-2}^{p+2} b_{k i}, c\left(z^{2}\right)=\sum_{k=-p-2}^{p+2} c_{k i}, c(y z)=\sum_{k=-p-2}^{p+2} r_{k i} . \quad$ Then $c\left(x^{2}\right)=a_{0}, c\left(y^{2}\right)=i r_{-2 i}$ $+b_{0}-i r_{2 i}, \quad c\left(z^{2}\right)=-i r_{-2 i}+b_{0}+i r_{2 i} \quad$ and $\quad c(y z)=r_{-2 i}+r_{2 i}$. Moreover a_{0} $+2 b_{0} \in \mathscr{C}$.

Proof. By the equation $0=c\left\{x, x^{2}\right\}=\left\{x, c\left(x^{2}\right)\right\}=\sum k i a_{k i}$, we have $a_{k i}=0$ if $k \neq 0$. Thus $c\left(x^{2}\right)=a_{0}$. Another equation $c\left\{x, y^{2}\right\}=\left\{x, c\left(y^{2}\right)\right\}=2 c(y z)$ implies that $\left\{x, \sum b_{k i}\right\}=\sum k i b_{k i}=2 \sum r_{k i}$. Thus we get $r_{0}=0$ and $b_{k i}=(-2 i / k) r_{k i}$ if $k \neq 0$. Similarly $c\left\{x, z^{2}\right\}=\left\{x, c\left(z^{2}\right)\right\}=-2 c(y z) \quad$ implies $\quad c_{k i}=(2 i / k) r_{k i} \quad$ if $k \neq 0$. On the other hand, it holds that $c\{x, y z\}=\{x, c(y z)\}=c\left(z^{2}-y^{2}\right)=c\left(z^{2}\right)$ $-c\left(y^{2}\right)$. This equation implies $k i r_{k i}=(4 i / k) r_{k i}+c_{0}-b_{0}$. Hence we have $b_{0}=c_{0}$ and $r_{k i}=0$ if $k \neq \pm 2$. Thus $b_{2 i}=-i r_{2 i}, b_{-2 i}=i r_{-2 i}, c_{2 i}=i r_{2 i}$ and $c_{-2 i}=$ - ir $r_{-2 i}$. A derivation c leaves the space \mathscr{C} invariant. Hence $c\left(x^{2}+y^{2}+z^{2}\right)=a_{0}$ $+2 b_{0} \in \mathscr{C}$.

Using the above proposition, we shall prove
Propositon 2.5. (i) If $\operatorname{deg} c=2 m-1(m \geqq 1)$, then c is an inner derivation.
(ii) If $\operatorname{deg} c=2 m(m \geqq 0)$, then c is an outer derivation. More precisely, c is essentially defined as follows:

For all $p \geqq 0, c\left(u_{p}\right)=p u_{p}\left(x^{2}+y^{2}+z^{2}\right)^{m}$ for all $u_{p} \in F_{p}$.
Proof. The proof proceeds in the same way as the case of $\mathfrak{s l}(2, R)$. (i) Note that $c\left(F_{1}\right) \subset F_{2 m}$. Since there are no Casimir functions in $F_{2 m}$, we can put $b_{0}=$ $-a_{0} / 2$. According to the direct sum decomposition of $F_{2 m}^{c}$, we can write $a_{0}, r_{2 i}$ and $r_{-2 i}$ as follows:

$$
\left\{\begin{array}{l}
a_{0}=a_{1} x^{2 m+1}+a_{2} x^{2 m-1}\left(y^{2}+z^{2}\right)+\cdots+a_{m+1} x\left(y^{2}+z^{2}\right) \tag{2.3}\\
r_{2 i}=c_{1} x^{2 m-1}(y-i z)^{2}+c_{2} x^{2 m-3}(y-i z)^{2}\left(y^{2}+z^{2}\right)+\cdots \\
\\
\quad+c_{m} x(y-i z)^{2}\left(y^{2}+z^{2}\right)^{m-1}
\end{array}\right.
$$

$$
\begin{aligned}
& r_{-2 i}=d_{1} x^{2 m-1}(y+i z)^{2}+d_{2} x^{2 m-3}(y+i z)^{2}\left(y^{2}+z^{2}\right)+\cdots \\
& \times d_{m} x(y+i z)^{2}\left(y^{2}+z^{2}\right)^{m-1} .
\end{aligned}
$$

Substituting (2.3) into $\left\{y, c\left(y^{2}\right)\right\}=c\left\{y, y^{2}\right\}=0$, and equating coefficients of z^{k} $(k=0,1,2, \ldots, 2 m+1)$ to zero, we have $a_{i}=c_{k}=d_{k}=0(1 \leqq j \leqq m+1,1 \leqq k$ $\leqq m$). Thus $c\left(x^{2}\right)=c\left(y^{2}\right)=c\left(z^{2}\right)=0$. Since $c\left(F_{0}\right)=0$, we also have $c(x y)=c(x z)$ $=c(y z)=0$. Hence $c\left(F_{1}\right)=0$. By Proposition 2.1, $c\left(F_{p}\right)=0(p \geqq 1)$, and hence c $=0$ on F.
(ii) Since $c\left(F_{1}\right) \subset F_{2 m+1}$, we can write down $a_{0}, r_{2 i}$ and $r_{-2 i}$ according to the direct sum decomposition of $F_{2 m+1}^{C}$ as follows:

$$
\left\{\begin{array}{c}
a_{0}=a_{1} x^{2 m+2}+a_{2} x^{2 m}\left(y^{2}+z^{2}\right)+\cdots+a_{m+2}\left(y^{2}+z^{2}\right)^{m+1} \tag{2.4}\\
r_{2 i}=c_{1} x^{2 m}(y-i z)^{2}+c_{2} x^{2 m-2}(y-i z)^{2}\left(y^{2}+z^{2}\right)+\cdots \\
\\
\quad+c_{m+1}(y-i z)^{2}\left(y^{2}+z^{2}\right)^{m} \\
r_{-2 i}=d_{1} x^{2 m}(y+i z)^{2}+d_{2} x^{2 m-2}(y+i z)^{2}\left(y^{2}+z^{2}\right)+\cdots \\
\\
+d_{m+1}(y+i z)^{2}\left(y^{2}+z^{2}\right)^{m} .
\end{array}\right.
$$

In $F_{2 m+1}$, there is one dimensional subspace of Casimir functions whose basis is $\left(x^{2}+y^{2}+z^{2}\right)^{m+1}$. Hence we need put $b_{0}=\left(K\left(x^{2}+y^{2}+z^{2}\right)^{m+1}-a_{0}\right) / 2$. Substituting (2.4) into $\left\{y, c\left(y^{2}\right)\right\}=0$, and equating coefficients of $z^{k}(k=1,2, \ldots, 2 m+2)$ to zero, we have

$$
\left\{\begin{array}{l}
c\left(x^{2}\right)=4 d_{1} i x^{2}\left(x^{2}+y^{2}+z^{2}\right)^{m}+a_{m+2}\left(x^{2}+y^{2}+z^{2}\right)^{m+1}, \tag{2.5}\\
c\left(y^{2}\right)=4 d_{1} i y^{2}\left(x^{2}+y^{2}+z^{2}\right)^{m}-(1 / 2)\left(a_{m+2}-K+4 d_{1} i\right)\left(x^{2}+y^{2}+z^{2}\right)^{m+1} \\
c\left(z^{2}\right)=4 d_{1} i z^{2}\left(x^{2}+y^{2}+z^{2}\right)^{m}-(1 / 2)\left(a_{m+2}-K+4 d_{1} i\right)\left(x^{2}+y^{2}+z^{2}\right)^{m+1} .
\end{array}\right.
$$

Using (2.5), we also have

$$
\left\{\begin{array}{l}
c(x y)=c\left\{y^{2}, z\right\} / 2=\left\{c\left(y^{2}\right), z\right\} / 2=4 d_{1} i x y\left(x^{2}+y^{2}+z^{2}\right)^{m} \tag{2.6}\\
c(x z)=c\left\{x^{2}, y\right\} / 2=\left\{c\left(x^{2}\right\}, y\right\} / 2=4 d_{1} i x z\left(x^{2}+y^{2}+z^{2}\right)^{m} \\
c(y z)=c\left\{x, y^{2}\right\} / 2=\left\{x, c\left(y^{2}\right)\right\} / 2=4 d_{1} i y z\left(x^{2}+y^{2}+z^{2}\right)^{m}
\end{array}\right.
$$

By equations (2.5) and (2.6), we know that a derivation c can be essentially written as $c\left(u_{1}\right)=u_{1}\left(x^{2}+y^{2}+z^{2}\right)^{m}$ for all $u_{1} \in F_{1}$. (Recall that c is a "real" derivation.) Since F_{1} generates $F_{p}(p \geqq 2)$, we also obtain that $c\left(u_{p}\right)=p u_{p}\left(x^{2}+y^{2}\right.$ $\left.+z^{2}\right)^{m}$ for all $u_{p} \in F_{p}$. Finally we see that a derivation c is outer. In fact, if c is inner, there exists a function $f \in F_{2 m}$ such that $c=\operatorname{ad}(f)$. Then $0=c(x)$ $=\{f, x\}$. Thus we have $c\left(x^{2}\right)=\left\{f, x^{2}\right\}=2 x\{f, x\}=0$. On the other hand, $c\left(x^{2}\right)=x^{2}\left(x^{2}+y^{2}+z^{2}\right) \neq 0$. This is a contradiction.
q.e.d.

We have thus determined the derivation algebra of F. We shall resume all results in

Theorem 2.6. Let $c: F \rightarrow F$ be a derivation. Then $c \equiv \sum_{m \geq 0} \alpha_{m} c^{(2 m)}(\bmod$
$\operatorname{ad}(F))$, where $c^{(2 m)}$ is derivation defined by

$$
\begin{equation*}
c^{(2 m)}\left(u_{p}\right)=p u_{p}\left(x^{2}+y^{2}+z^{2}\right)^{m} \quad \text { for all } u_{p} \in F_{p} \tag{2.7}
\end{equation*}
$$

and α_{m} is some constant depending on c. In particular, all $c^{(2 m)}$ are outer derivations, hence $H^{1}(F, F)$ is infinite dimensional.

Let L be the formal Lie algebra of \mathscr{L} at the origin. (For the precise definition of the formal Lie algebras, see [4].) Then the derivation c obtained in Theorem 2.6 induces a derivation \bar{c} of L. The form of \bar{c} is explicitly given by $\bar{c}=\operatorname{ad}\left(\left(x^{2}\right.\right.$ $\left.+y^{2}+z^{2}\right)^{m}\left(x \partial_{x}+y \partial_{y}+z \partial_{z}\right)$).

We shall consider here C^{∞}-versions of the results obtained in the above theorem. For all non-negative integers m, let $X=\left(x^{2}+y^{2}+z^{2}\right)^{m}\left(x \partial_{x}+y \partial_{y}\right.$ $+z \partial_{z}$) be a smooth vector field on $\mathfrak{s p}(3, R)^{*}=R^{3}$. Then for all $Y=f \partial_{x}+g \partial_{y}$ $+h \partial_{z} \in \mathscr{L}$, we have

$$
\begin{aligned}
\mathscr{L}([X, Y]) P & =-\mathscr{L}(Y) L(X) P=\mathscr{L}(Y)\left\{\left(x^{2}+y^{2}+z^{2}\right)^{m} P\right\} \\
& =Y\left\{\left(x^{2}+y^{2}+z^{2}\right)^{m}\right\} P \\
& =2 m\left(x^{2}+y^{2}+z^{2}\right)^{m-1}(x f+y g+z h) P=0 .
\end{aligned}
$$

(Recall that $\mathscr{L}=\mathscr{I}$ by Theorem 1.2, hence $x f+y g+z h=0$.) This implies $[X, Y] \in \mathscr{L}$ and thus $\operatorname{ad}(X)$ is a derivation of \mathscr{L} for all $m \geqq 0$. This fact is quite different from the case of $\mathfrak{s l}(2, R)$. (See Proposition 3.1 in [3].)

Department of Mathematics
 Maizuru College of Techonology

References

[1] A. Lichnerowicz, Les variétés de Poisson et leurs algèbres de Lie associées, J. Differential Geometry, 12 (1977), 253-300.
[2] N. Nakanishi, On the linear Poisson structures, Seminar on Topology of symplectic manifolds, Kyoto, 1989.
[3] N. Nakanishi, On the structure of infinitesimal automorphisms of linear Poisson manifolds I, preprint.
[4] I. M. Singer and S. Sternberg, The infinite groups of Lie and Cartan I, J. Analyse Math., 15 (1965), 1-114.

