Algebraically independent generators of invariant differential operators on a bounded symmetric domain

Dedicated to Professor Nobuhiko Tatsuuma on his 60th birthday

By

Takaaki Nomura

Introduction

Let \mathscr{D} be a bounded symmetric domain in a finite dimensional complex vector space V. We denote by G the identity component of the Lie group of holomorphic automorphisms of \mathscr{D}. Then, G is semisimple and acts transitively on \mathscr{D}. Regarding \mathscr{D} as a Riemannian symmetric space, one knows that the algebra $\boldsymbol{D}(\mathscr{D})^{G}$ of G-invariant differential operators on \mathscr{D} is isomorphic to a polynomial algebra of r indeterminates, where r is the real rank of G, cf. [1, p.277].

On the other hand, it is now widely known that the category of (circled) bounded symmetric domains is equivalent to a certain category of Jordan triple systems, [2], [4], [7, p.85] and [10, §2]. An advantage of the shift from Lie theoretic methods to Jordan theoretic ones is a transparent and an elementary description of the structure of bounded symmetric domains. This motivates an investigation of $\boldsymbol{D}(\mathscr{D})^{G}$ by making use of Jordan triple systems and the purpose of this paper is, in the same spirit as [6], to give explicitly a set of algebraically independent generators of $D(\mathscr{D})^{G}$ without using the classification of \mathscr{D}.

Let us explain the content of this paper. A Jordan triple system (JTS for short) over \mathbf{R} is a real vector space V equipped with a trilinear mapping $\{\cdot, \cdot, \cdot\}$: $V \times V \times V \rightarrow V$ such that

$$
\begin{equation*}
\{u, v, w\}=\{w, v, u\} \tag{0.1}
\end{equation*}
$$

$$
\begin{equation*}
\{a, b,\{u, v, w\}\}-\{u, v,\{a, b, w\}\}=\{\{a, b, u\}, v, w\}-\{u,\{b, a, v\}, w\} \tag{0.2}
\end{equation*}
$$

hold for all $u, v, w, a, b \in V$. A real JTS V is said to be hermitian if
(1) V is a complex vector space,
(2) $\{u, v, w\}$ is C-linear in u, w and \mathbf{C}-antilinear in v.

Let V be a hermitian JTS. We define C-linear operators $u \square v(u, v \in V)$ and \mathbf{C} antilinear operators $Q(z)(z \in V)$ on V by

$$
\begin{equation*}
(u \square v) w=\{u, v, w\} \tag{0.3}
\end{equation*}
$$

$$
\begin{equation*}
Q(z) w=\{z, w, z\} . \tag{0.4}
\end{equation*}
$$

We note here that (0.2) is rewritten as

$$
\begin{equation*}
[a \square b, u \square v]=((a \square b) u) \square v-u \square((b \square a) v), \tag{0.5}
\end{equation*}
$$

where $[A, B]=A B-B A$ for two operators A, B. Now, V is said to be positive if $(u, v):=\operatorname{tr}(u \square v)$ defines a (positive definite) hermitian inner product on V. Let V be positive. We know that $z \square z(z \in V)$ is a positive semi-definite hermitian operator. Letting $(z \square z)^{1 / 2}$ be the positive semi-definite square root of $z \square z$, we set

$$
\begin{equation*}
\|z\|_{\infty}:=\left\|(z \square z)^{1 / 2}\right\| . \tag{0.6}
\end{equation*}
$$

Then, as the notation indicates, $\|\cdot\|_{\infty}$ becomes a norm on V (cf. [4, 3.17]), called the spectral norm. Let

$$
\mathscr{D}:=\left\{z \in V ;\|z\|_{\infty}<1\right\} .
$$

Then, \mathscr{D} is a (circled) bounded symmetric domain and every bounded symmetric domain arises in this way. Let G be the identity component of the Lie group of holomorphic automorphisms of \mathscr{D} and we denote by K the stabilizer of G at 0 .

Let $B(z, w)(z, w \in V)$ be the Bergman operator:

$$
\begin{equation*}
B(z, w):=I-2 z \square w+Q(z) Q(w) . \tag{0.7}
\end{equation*}
$$

One knows that if $z \in \mathscr{D}$, then $B(z, z)$ is a positive definite hermitian operator. Assume further that V is simple and of rank r. Let $\operatorname{Pol}\left(V^{\mathbf{R}}\right)^{K}$ be the algebra of K-invariant polynomial functions on the underlying real vector space $V^{\mathbf{R}}$ of V and consider the polynomial functions $f_{j}(1 \leqq j \leqq r)$ on $V^{\mathbf{R}}$ defined by

$$
f_{j}(v):=\frac{2}{q}\left(v^{(2 j-1)}, v\right),
$$

where q is the genus of V defined by (1.7) and $v^{(2 j-1)}$ are the odd powers of v defined by (3.2). These f_{j} are shown to be real valued. Then,

Theorem 1. The r polynomial functions f_{1}, \ldots, f_{r} are algebraically independent generators of $\operatorname{Pol}\left(V^{\mathbf{R}}\right)^{K}$.

Theorem 2. (1) For each $j(1 \leqq j \leqq r)$, there is a polynomial function p_{j} on $V^{\mathbf{R}} \times V^{\mathbf{R}}$ such that

$$
f_{j}\left(B(z, z)^{1 / 2} v\right)=p_{j}(z, v) \quad(z \in \mathscr{D}, v \in V) .
$$

(2) These p_{j} are G-invariant functions on the cotangent bundle $T^{*}(\mathscr{D}) \approx \mathscr{D}$ $\times V^{\mathbf{R}}$.
(3) The r differential operators $p_{j}(x, \partial / \partial x)$ form algebraically independent generators of $\boldsymbol{D}(\mathscr{D})^{G}$.

An explicit expression for p_{j} is also given (see Proposition 3.5). Let $\operatorname{Pol}\left(V^{\mathbf{R}} \times V^{\mathbf{R}}\right)^{\mathbf{G}}$ be the algebra of polynomial functions on $V^{\mathbf{R}} \times V^{\mathbf{R}}$ whose
restrictions to $\mathscr{D} \times V^{\mathbf{R}} \approx T^{*}(\mathscr{D})$ are G-invariant. Then,
Theorem 3. The mapping $\operatorname{Pol}\left(V^{\mathbf{R}}\right)^{K} \ni f \mapsto \Phi f$, where

$$
\Phi f(z, w):=f\left(B(z, z)^{1 / 2} w\right) \quad(z \in \mathscr{D}, w \in V),
$$

defines an algebra isomorphism of $\operatorname{Pol}\left(V^{\mathbf{R}}\right)^{K}$ onto $\operatorname{Pol}\left(V^{\mathbf{R}} \times V^{\mathbf{R}}\right)^{\mathbf{G}}$.
Notation. Let V be a finite dimensional complex vector space. Its underlying real vector space will be written as $V^{\mathbf{R}}$. We identify naturally the tangent spaces $T_{v}\left(V^{\mathbf{R}}\right)$ at $v \in V$ with $V^{\mathbf{R}}$. Let W be another finite dimensional complex vector space. Let \mathscr{D} be an open subset in V. If f is a W-valued C^{∞} function defined on \mathscr{D}, then its tangent mapping $d_{z} f: V^{\mathbf{R}} \rightarrow W^{\mathbf{R}}$ at $z \in \mathscr{D}$ is defined by

$$
d_{z} f(v):=\left.\frac{d}{d t} f(z+t v)\right|_{t=0}
$$

We set

$$
\begin{aligned}
& \partial_{z} f(v):=\frac{1}{2}\left[\left(d_{z} f\right)(v)-i\left(d_{z} f\right)(i v)\right], \\
& \bar{\partial}_{z} f(v):=\frac{1}{2}\left[\left(d_{z} f\right)(v)+i\left(d_{z} f\right)(i v)\right]
\end{aligned}
$$

Then, $d_{z} f=\partial_{z} f+\bar{\partial}_{z} f$ and it is clear that $v \mapsto \partial_{z} f(v)$ (resp. $\left.v \mapsto \bar{\partial}_{z} f(v)\right)$ is C-linear (resp. C-antilinear). Moreover, by Cauchy-Riemann equations, f is holomorphic if and only if $\bar{\partial}_{z} f=0$ for all $z \in \mathscr{D}$, the latter being equivalent to saying that $v \mapsto d_{z} f(v)$ is C-linear.

§ 1. Preliminaries

We summarize here fundamental facts of JTS. Their proofs can be found in [4], [8], for example.
1.1. Let V be a simple positive hermitian JTS. Then,

$$
\begin{equation*}
(u, v):=\operatorname{tr}(u \square v) \tag{1.1}
\end{equation*}
$$

defines a hermitian inner product on V. For every linear operator T on V, we denote by T^{*} its adjoint operator: $(T u, v)=\left(u, T^{*} v\right)$. Then, by (0.5) we have

$$
\begin{equation*}
(z \square w)^{*}=w \square z \quad(z, w \in V), \tag{1.2}
\end{equation*}
$$

and this gives

$$
\begin{equation*}
(Q(z) u, v)=\overline{(u, Q(z) v)} \tag{1.3}
\end{equation*}
$$

Moreover, by [8, 18.2], we have

$$
\begin{equation*}
Q(v)(u \square v)=(v \square u) Q(v) . \tag{1.4}
\end{equation*}
$$

An element $c \in V$ is called a tripotent if $\{c, c, c\}=c$. Every tripotent c gives an orthogonal direct sum decomposition of V (the Peirce decomposition of V relative to c):

$$
\begin{aligned}
V & =V_{0}(c) \oplus V_{1 / 2}(c) \oplus V_{1}(c), \\
V_{j}(c) & :=\{v \in V ;(c \square c) v=j v\} \quad(j=0,1 / 2,1) .
\end{aligned}
$$

Two tripotents c_{1}, c_{2} are said to be orthogonal if $c \square c=0$. Every element $v \in V$ has the spectral decomposition:

$$
\begin{equation*}
v=\lambda_{1} c_{1}+\cdots+\lambda_{n} c_{n} \quad\left(0<\lambda_{1}<\cdots<\lambda_{n}\right), \tag{1.5}
\end{equation*}
$$

with $\left\{c_{1}, \ldots, c_{n}\right\}$ a family of orthogonal tripotents. Let $\left\{c_{1}, \ldots, c_{n}\right\}$ be a family of orthogonal tripotents. By (0.1), (0.5) and (1.2), $\left\{c_{i} \square c_{i} ; 1 \leqq i \leqq n\right\}$ is a commutative family of selfadjoint operators, so that we have a simultaneous eigenspace decomposition (called the Peirce decomposition relative to $\left\{c_{1}, \ldots, c_{n}\right\}$):

$$
\begin{equation*}
V=\underset{0 \leq i \leq j \leq n}{\oplus} V_{i j} \text { (orthogonal direct sum), } \tag{1.6}
\end{equation*}
$$

where

$$
V_{i j}:=\left\{v \in V ;\left(c_{k} \square c_{k}\right) v=\frac{1}{2}\left(\delta_{i k}+\delta_{j k}\right) v \quad \text { for } \quad 1 \leqq k \leqq n\right\} .
$$

A tripotent c is said to be primitive if c cannot be written as a sum of two non-zero orthogonal tripotents. A maximal orthogonal system of primitive tripotents is called a frame. Then, if $\left\{c_{1}, \ldots, c_{r}\right\}$ is a frame, r equals, by definition, the rank of V. We assume from now on that V is of rank r. Let $V=\oplus_{0 \leq i \leq j \leq r} V_{i j}$ be the Peirce decomposition (1.6) relative to a frame $\left\{c_{1}, \ldots, c_{r}\right\}$. Then, $V_{00}=\{0\}$ and $V_{i i}$ $=\mathbf{C} c_{i}$. Furthermore, $V_{i j}(1 \leqq i<j \leqq r)$ all have the same dimension and we put

$$
a:=\operatorname{dim} V_{i j} \quad(1 \leqq i<j \leqq r)
$$

Since $\operatorname{dim} V_{0 i}(1 \leqq i \leqq r)$ are also all equal, we set

$$
b:=\operatorname{dim} V_{0 i} \quad(1 \leqq i \leqq r) .
$$

The number

$$
\begin{equation*}
q:=2+a(r-1)+b \tag{1.7}
\end{equation*}
$$

is called the genus of V.
Let $G L(V)$ be the complex Lie group of complex linear automorphisms of V, and we denote by Aut V the automorphism group of V :

$$
\text { Aut } V:=\{g \in G L(V) ; g\{u, v, w\}=\{g u, g v, g w\} \quad \text { for all } u, v, w \in V\}
$$

Then, Aut $V \subset U(V)$, where $\boldsymbol{U}(V)$ is the unitary group of V relative to the inner
product (1.1). Thus Aut V is a compact Lie group.
1.2. Let \mathscr{D} be the open unit ball of V relative to the spectral norm $\|\cdot\|_{\infty}$ defined by (0.6). We remark here that the spectral norm is invariant under Aut V. The domain \mathscr{D} is a (circled) bounded symmetric domain in V and the symmetry at $0 \in \mathscr{D}$ is given by $z \mapsto-z$. Let $B(z, w)$ be the Bergman operator defined by (0.7). Then, by (1.2) and (1.3), we have

$$
\begin{equation*}
B(z, w)^{*}=B(w, z) . \tag{1.8}
\end{equation*}
$$

Let G be the identity component of the Lie group of holomorphic automorphisms of \mathscr{D}. Then, G is semisimple (and simple) and acts transitively on \mathscr{D}. We have

$$
\begin{equation*}
B(g z, g w)=\left(d_{z} g\right) B(z, w)\left(d_{w} g\right)^{*} \quad(g \in G, z, w \in \mathscr{D}) . \tag{1.9}
\end{equation*}
$$

We note also the following important identity (see [3, p.21] or [8, 21.8]):

$$
\begin{equation*}
Q(B(z, w) u)=B(z, w) Q(u) B(w, z) \quad(z, w, u \in V) . \tag{1.10}
\end{equation*}
$$

Since $B(z, z)$ is positive definite hermitian for $z \in \mathscr{D}$,

$$
h_{z}(u, v):=\left(B(z, z)^{-1} u, v\right) \quad(z \in \mathscr{D}, u, v \in V)
$$

defines a G-invariant hermitian structure on \mathscr{D}. Thus

$$
\begin{equation*}
b_{z}(u, v):=\operatorname{Re} h_{z}(u, v) \tag{1.11}
\end{equation*}
$$

defines a G-invariant Riemannian structure on \mathscr{D}.
1.3. Let $\mathfrak{X}_{\text {hol }}(\mathscr{D})$ denote the set of holomorphic vector fields on \mathscr{D}. Every orthonormal basis $e_{1}, \ldots, e_{n}(n=\operatorname{dim} V)$ of V relative to the inner product (1.1) gives rise to a coordinate system $\left(z_{1}, \ldots, z_{n}\right)$ in V by $z=\sum z_{i} e_{i}$. Then, each $X \in \mathfrak{X}_{\mathrm{hol}}(\mathscr{D})$ is written as

$$
\begin{equation*}
X=\sum_{i=1}^{n} h_{i}(z) \frac{\partial}{\partial z_{i}}, \tag{1.1.}
\end{equation*}
$$

where h_{i} are holomorphic functions on \mathscr{D}. Let $\mathcal{O}(\mathscr{D}, V)$ be the space of V-valued holomorphic functions on \mathscr{D}. Putting $h(z)=\sum h_{i}(z) e_{i}$ in (1.12), we get $h \in \mathcal{O}(\mathscr{D}, V)$ and this h is independent of the choice of orthonormal basis of V. It is clear that the correspondence $\mathfrak{X}_{\text {hol }}(\mathscr{D}) \ni X \mapsto h \in \mathcal{O}(\mathscr{D}, V)$ is bijective. This being so, we write the vector field (1.12) as $X=h(z) \partial / \partial z$. Thus, if f is a holomorphic function on \mathscr{D} into another complex vector space W, we have

$$
\begin{equation*}
X f(z)=d_{z} f(h(z)) \tag{1.13}
\end{equation*}
$$

The space $\mathfrak{X}_{\text {hol }}(\mathscr{D})$ is a Lie algebra by the Poisson bracket:

$$
\left[h(z) \frac{\partial}{\partial z}, k(z) \frac{\partial}{\partial z}\right]:=\left(d_{z} k(h(z))-d_{z} h(k(z))\right) \frac{\partial}{\partial z} .
$$

Let $\mathfrak{P}(V)$ be the algebra of holomorphic polynomial mappings of V into V. We denote by $\mathfrak{P}_{v}(V)$ the subspace of $\mathfrak{P}(V)$ of homogeneous polynomial mappings of degree v. Then, $\mathfrak{P}(V)$ is an algebraic direct sum $\mathfrak{P}(V)$ $=\oplus_{v=0}^{\infty} \mathfrak{P}_{v}(V)$. Clearly, we have $\mathfrak{P}(V) \subset \mathcal{O}(\mathscr{D}, V)$.

Now let \mathfrak{g} be the Lie algebra of G. Every $X \in \mathfrak{g}$ is considered as an element of $\mathfrak{X}_{\text {hol }}(\mathscr{D})$ by

$$
X f(z)=\left.\frac{d}{d t} f(\exp (-t X) \cdot z)\right|_{t=0}
$$

where exp is the exponential mapping $\mathfrak{g} \rightarrow G$ and f a holomorphic function on \mathscr{D}. For every $v \in V$, we define $q_{v} \in \mathfrak{P}_{2}(V)$ and $\xi_{v} \in \mathfrak{P}_{0}(V)+\mathfrak{P}_{2}(V)$ by

$$
\begin{align*}
& q_{v}(z):=Q(z) v, \tag{1.14}\\
& \xi_{v}(z):=v-q_{v}(z) . \tag{1.15}
\end{align*}
$$

Then the following proposition is known, $[4, \S 4]$ or $[10, \S 2]$.
Proposition 1.1. (1) If $X=h(z) \partial / \partial z \in \mathfrak{g}$, then $h \in \sum_{v=0}^{2} \mathfrak{P}_{v}(V)$.
(2) Let K be the stabilizer of G at $0 \in \mathscr{D}$. Then, K is the identity component of Aut V.
(3) Put

$$
\begin{aligned}
& \mathfrak{f}:=\{T(z) \partial / \partial z ; T \text { is a derivation of } V\}, \\
& \mathfrak{p}:=\left\{\xi_{v}(z) \partial / \partial z ; v \in V\right\} .
\end{aligned}
$$

Then, $\mathfrak{f}=$ Lie K and $\mathfrak{g}=\mathfrak{f}+\mathfrak{p}$ is a Cartan decomposition of \mathfrak{g}.

§ 2. Compactification of \boldsymbol{V}

To realize the complexification $G_{\mathbf{c}}$ of G, we will introduce a compactification of V defined by Loos [4, §7] (see also [5]). A pair (x, y) of elements of V is said to be invertible if the operator $B(x, y)$ is invertible, that is, if $\operatorname{det} B(x, y) \neq 0$. Note that (x, y) is invertible if and only if so is (y, x) by (1.8). If (x, y) is invertible, we set

$$
\begin{gather*}
x^{y}:=B(x, y)^{-1}(x-Q(x) y), \tag{2.1}\\
(x, y)^{-1}:=\left(x^{y},-y\right) . \tag{2.2}
\end{gather*}
$$

We call x^{y} the quasi-inverse of (x, y). We have

$$
\begin{equation*}
B(x, y)^{-1}=B\left((x, y)^{-1}\right) \tag{2.3}
\end{equation*}
$$

Lemma 2.1. If $z, w \in \mathscr{D}$, then (z, w) is invertible.
Proof. Note that since $B(0, w)=I,(0, w)$ is invertible. Now, the transitivity of G on \mathscr{D} together with (1.9) proves the lemma.

We define a relation \sim in $V \times V$ by the following:

$$
(x, y) \sim\left(x^{\prime}, y^{\prime}\right) \text { if }\left(x, y-y^{\prime}\right) \text { is invertible and } x^{\prime}=x^{y-y^{\prime}} .
$$

Then, \sim is an equivalence relation. Let X be the set of equivalence classes. The equivalence class of (x, y) will be denoted by $(x: y) . \quad V$ is considered as a subset of X by the injective mapping $x \mapsto(x: 0)$. Then, $(x: y) \in V$ if and only if (x, y) is invertible. For each $v \in V$, let $U_{v}:=\{(x: v) ; x \in V\}$. Then, by [4, 7.7], there is a unique structure of smooth algebraic variety on X such that U_{v} is an open affine subvariety, which is isomorphic to V under $(x: y) \mapsto x$. Moreover, X is a projective variety by [4, 7.10].

Considering X as a compact complex manifold, the complexification $G_{\mathbf{c}}$ of G is now realized as the (Zariski-) connected component of the identity of the group of holomorphic automorphisms of X. The Lie algebra $g_{\mathbf{c}}$ of $G_{\mathbf{c}}$ is the set of all holomorphic vector fields on X. By restriction, $\mathfrak{g}_{\mathbf{c}}$ may be considered as a Lie algebra of vector fields on V.

For every $v \in V$, let

$$
\begin{equation*}
\tilde{t}_{v}(x: a):=(x: a+v) \quad((x: a) \in X) . \tag{2.4}
\end{equation*}
$$

Then, \tilde{t}_{v} is well defined and $\tilde{t}_{v} \in G_{\mathbf{c}}$. Clearly we have $\tilde{t}_{v_{1}}{\tilde{v_{v}}}=\tilde{t}_{v_{1}+v_{2}}$. Let $\operatorname{Str} V$ denote the structure group of V :

$$
\operatorname{Str} V:=\left\{g \in G L(V) ; Q(g z)=g Q(z) g^{*} \quad \text { for all } z \in V\right\} .
$$

We see easily that $g \in G L(V)$ belongs to $\operatorname{Str} V$ if and only if

$$
g(z \square w) g^{-1}=(g z) \square\left(g^{*-1} w\right) \quad(z, w \in V) .
$$

This together with (1.2) shows that Str V is stable under $g \mapsto g^{*}$. Now, Str V acts on X by

$$
h(x: a):=\left(h x: h^{*-1} a\right) \quad(h \in \operatorname{Str} V,(x: a) \in X) .
$$

We denote by H the identity component of $\operatorname{Str} V$. Thus H is considered as a subgroup of $G_{\mathbf{c}}$. It should be noted here that $K=H \cap \boldsymbol{U}(V)$. Finally, for every $u \in V$, the translation $t_{u}: V \ni x \mapsto x+u \in V$ is uniquely extended to an element of $G_{\mathbf{c}}$. Let

$$
U^{+}:=\left\{t_{u} ; u \in V\right\}, \quad U^{-}:=\left\{\tilde{t}_{v} ; v \in V\right\} .
$$

Then, $U^{ \pm}$are abelian subgroups of $G_{\mathbf{c}}$, and a computation shows

$$
h t_{u} h^{-1}=t_{h u}, \quad h \tilde{t}_{v} h^{-1}=\tilde{t}_{h^{*-1}},
$$

for all $h \in H$ and $u, v \in V$. We note here that if (x, y) is invertible, then (1.8) and (1.10) imply that $B(x, y) \in \operatorname{Str} V$. Further, the identity (as elements of $G_{\mathbf{c}}$)

$$
\left.B(x, y)=\tilde{t}_{y x} t_{-x} \tilde{t}_{-y} t_{x y} \quad \text { (cf. [4, 8.11] }\right)
$$

says that $B(x, y) \in H$.

The Lie algebras $\mathfrak{u}^{ \pm}$of $U^{ \pm}$are identified as

$$
\begin{aligned}
& \mathfrak{u}^{+}=\{\text {constant vector fields on } V\}, \\
& \mathfrak{u}^{-}=\left\{q_{v}(z) \partial / \partial z ; v \in V\right\} .
\end{aligned}
$$

Let $\mathfrak{h}:=$ Lie H. Then, we have a vector space direct sum of Lie subalgebras: $\mathfrak{g}_{\mathbf{c}}$ $=\mathfrak{u}^{+}+\mathfrak{b}+\mathfrak{u}^{-}$. Let

$$
\Xi:=\left\{g \in G_{\mathbf{c}} ; g(0: 0) \in V\right\}
$$

Then, $\Xi \approx U^{+} \times H \times U^{-}$and $G \subset \Xi$. For every $v \in V$, one has (cf. [4, 9.8])

$$
\begin{equation*}
\exp \left(\xi_{v}(z) \partial / \partial z\right)=t_{\tanh v} \cdot B(\tanh v, \tanh v)^{1 / 2} \cdot \tilde{t}_{-\tanh v} \tag{2.5}
\end{equation*}
$$

with $B(\tanh v, \tanh v)^{1 / 2} \in H$, where if $v=\sum \lambda_{i} c_{i}$ is the spectral decomposition (1.4) of v, then $\tanh v:=\sum\left(\tanh \lambda_{i}\right) c_{i}$. Thus, $\tanh v \in \mathscr{D}$ for any $v \in V$. The following proposition will be needed later.

Proposition 2.2. Put $g_{v}:=\exp \left(\xi_{v}(z) \partial / \partial z\right) \in \exp \mathfrak{p}$ for each $v \in V$. Then,
(1) $g_{v} \cdot 0=\tanh v$,
(2) $d_{z} g_{v}=B(\tanh v, \tanh v)^{1 / 2} B(z,-\tanh v)^{-1} \in H$ for every $z \in \mathscr{D}$.

Proof. Put $u=\tanh v \in \mathscr{D}$ for simplicity. Lemma 2.1 implies that if $z \in \mathscr{D}$, then $(z,-u)$ is invertible. Hence

$$
\tilde{t}_{-u}(z: 0)=(z:-u)=\left(z^{-u}: 0\right)
$$

Thus, \tilde{t}_{-u} induces a holomorphic mapping $\mathscr{D} \ni z \mapsto z^{-u} \in V$.
(1) Since $0^{-u}=0$ by (2.1), the assertion follows from (2.5).
(2) Let $z \in \mathscr{D}, x \in V$ and $s \in \mathbf{R}$. By [3, Theorem 3.7 (b)], we have

$$
(z+s x)^{-u}=z^{-u}+B(z,-u)^{-1}(s x)^{(-u)^{z}},
$$

provided $|s|$ is sufficiently small. We put $y=(-u)^{z}$ for brevity. Since

$$
\begin{aligned}
(s x)^{y} & =B(s x, y)^{-1}(s x-Q(s x) y)=s B(s x, y)^{-1}(x-s Q(x) y) \\
& =s(I+s O(1))^{-1}(x-s Q(x) y)=s(x+s O(1))
\end{aligned}
$$

we get

$$
(z+s x)^{-u}=z^{-u}+s B(z,-u)^{-1}(x+s O(1)) .
$$

Hence, $d_{z} \tilde{t}_{-u}=B(z,-u)^{-1}$. Now, the proposition follows from (2.5) and the chain rule.

§3. Invariant polynomial functions

We begin with the following two lemmas which are more or less known to JTS specialists.

Lemma 3.1. Let $\left\{c_{1}, \ldots, c_{r}\right\}$ be a frame and put $c:=c_{1}+\cdots+c_{r}$. Then, for every pair (j, l), there is $x \in V$ such that $T:=B(x, c) \in H$ satisfies

$$
T^{2}=I, \quad T c_{j}=T^{*} c_{j}=c_{l}, \quad T c_{m}=T^{*} c_{m}=c_{m} \quad \text { for all } m \neq j, l .
$$

Proof. We put

$$
\mathfrak{A}(c):=V_{1}(c) \cap\{x \in V ; Q(c) x=x\} .
$$

Then, by $[4,3.13$ (c)], $\mathfrak{A}(c)$ is a formally real Jordan algebra with the product $x y:=\{x, c, y\}$. Note that $c_{m} \in \mathfrak{A}(c)$ for all m. The proof of [3,17.1] shows that for every pair (j, l), there is $x \in \mathfrak{A}(c)$ such that $T:=B(x, c)$ satisfies

$$
T^{2}=I, T c_{j}=c_{l}, T c_{m}=c_{m} \text { for } m \neq j, l .
$$

Since $x \in \mathfrak{A}(c)$, we have $c \square x=x \square c$ by [4, 9.13]. Moreover, it holds that

$$
Q(c) Q(x) c_{m}=Q(x) c_{m}=Q(x) Q(c) c_{m} \quad \text { for all } m,
$$

where the first equality is the consequence of

$$
\begin{aligned}
Q(x) c_{m} & =\left\{x,\left\{c, c_{m}, c\right\}, x\right\} \\
& =-\left\{c_{m}, c,\{x, c, x\}\right\}+2\left\{\left\{c_{m}, c, x\right\}, c, x\right\} \quad(\mathrm{by}(0.1),(0.2)) \\
& =-c_{m} x^{2}+2\left(c_{m} x\right) x \in \mathfrak{A}(c) .
\end{aligned}
$$

The above observation yields

$$
\begin{aligned}
T c_{m} & =B(x, c) c_{m}=c_{m}-2(x \square c) c_{m}+Q(x) Q(c) c_{m} \\
& =c_{m}-2(c \square x) c_{m}+Q(c) Q(x) c_{m}=B(c, x) c_{m}=T^{*} c_{m}
\end{aligned}
$$

for all m. This proves the lemma.
Corollary 3.2. Let $\left\{c_{1}, \ldots, c_{r}\right\}$ be a frame. Then, for each permutation σ of r letters, there is $k \in K$ such that $k c_{m}=c_{\sigma(m)}$ for all m.

Proof. It suffices to show the corollary in the case where σ are transpositions. Let σ be the transposition of j, l and $T \in H$ be as in Lemma 3.1. Consider the polar decomposition $T=U|T|$ of the operator T, where U is unitary and $|T|=\left(T^{*} T\right)^{1 / 2}$ positive definite selfadjoint. Since $T^{*} \in H$, we have $|T|$ $=\exp \left(\frac{1}{2} \log T^{*} T\right) \in H$, so that $U \in H \cap \boldsymbol{U}(V)=K$. Since $|T| c_{m}=c_{m}$ for all m, this U is a required one.

Lemma 3.3. Let $\left\{c_{1}, \ldots, c_{r}\right\},\left\{d_{1}, \ldots, d_{r}\right\}$ be frames. Then, there is $k \in K$ such that $k c_{m}=d_{m}$ for all m.

Proof. The real subspaces

$$
C:=\sum_{m=1}^{r} \mathbf{R} c_{m}, \quad D:=\sum_{m=1}^{r} \mathbf{R} d_{m}
$$

are maximal flat subspaces in the sense of [4,3.10]. By [4, 5.3 (a)], there is $k_{1} \in K$ such that $k_{1}(C)=D$. Since $k_{1} \in \operatorname{Aut} V, k_{1} c_{m}$ are tripotents, so that the primitivity and the linear independence of c_{m} imply that there is a permutation σ of r letters such that $k_{1} c_{m}= \pm d_{\sigma(m)}$ for all m. By Corollary 3.2, we get $k_{2} \in K$ such that

$$
\begin{equation*}
k_{2} c_{m}= \pm d_{m} \quad \text { for all } m \tag{3.1}
\end{equation*}
$$

On the other hand, (0.2) says that $i\left(c_{j} \square c_{j}\right)$ are derivations of V. Put $k^{(j)}:=\exp \left(\pi i\left(c_{j} \square c_{j}\right)\right) \in K$. Then,

$$
k^{(j)} c_{j}=-c_{j}, \quad k^{(j)} c_{m}=c_{m} \quad \text { for } m \neq j
$$

This together with (3.1) proves the lemma.
We will fix a frame $\left\{c_{1}, \ldots, c_{r}\right\}$ of V throughout the rest of this section. We define odd powers $v^{(2 j-1)}(j=1,2, \ldots)$ of an element $v \in V$ inductively by

$$
\begin{equation*}
v^{(1)}:=v, \quad v^{(2 j+1)}:=Q(v) v^{(2 j-1)} \quad(j=1,2, \ldots) \tag{3.2}
\end{equation*}
$$

Clearly we have

$$
\begin{equation*}
v^{(2 j+1)}=Q(v)^{j} v \quad(j=1,2, \ldots) \tag{3.3}
\end{equation*}
$$

An easy induction argument using (1.4) and (3.3) shows

$$
\begin{equation*}
v^{(2 j+1)}=(v \square v)^{j} v \quad(j=1,2, \ldots) . \tag{3.4}
\end{equation*}
$$

Letting q be the genus of V defined by (1.7), we normalize the inner product (1.1) as

$$
(u, v)_{0}:=\frac{2}{q}(u, v) .
$$

Then, since

$$
\begin{equation*}
\operatorname{tr}\left(c_{m} \square c_{m}\right)=1+\frac{b}{2}+\frac{1}{2} a(r-1)=\frac{q}{2} \quad \text { for all } m, \tag{3.5}
\end{equation*}
$$

the normalization of the inner product is made so that the norm of c_{m} is one for every m. We put

$$
\begin{equation*}
f_{j}(v):=\left(v^{(2 j-1)}, v\right)_{0} \quad(j=1,2, \ldots) \tag{3.6}
\end{equation*}
$$

We note that by (3.4) and (1.2), each f_{j} is real valued. Since $Q(k v)=k Q(v) k^{-1}$ for all $k \in K$ and $v \in V$, it is clear from (3.3) that $f_{j} \in \operatorname{Pol}\left(V^{\mathbf{R}}\right)^{K}$. We note also that if λ_{m} are all real, then

$$
\begin{equation*}
f_{j}\left(\sum_{m=1}^{r} \lambda_{m} c_{m}\right)=\frac{2}{q} \operatorname{tr} \sum_{m=1}^{r} \lambda_{m}^{2 j} c_{m} \square c_{m}=\sum_{m=1}^{r} \lambda_{m}^{2 j} \quad \text { (by (3.5)). } \tag{3.7}
\end{equation*}
$$

Theorem 3.4. The polynomial functions $f_{j}(1 \leqq j \leqq r)$ form algebraically independent generators of $\operatorname{Pol}\left(V^{\mathbf{R}}\right)^{K}$.

Proof. Let $f \in \operatorname{Pol}\left(V^{\mathbf{R}}\right)^{K}$ and consider the polynomial

$$
F\left(\lambda_{1}, \ldots, \lambda_{r}\right):=f\left(\sum_{m=1}^{r} \lambda_{m} c_{m}\right) \quad\left(\lambda_{m} \in \mathbf{R}\right)
$$

Take the frames $\left\{\varepsilon_{1} c_{1}, \ldots, \varepsilon_{r} c_{r}\right\}$ with $\varepsilon_{j} \in\{-1,1\}$. Then, since f is K-invariant, Lemma 3.3 implies that F is of the form

$$
F\left(\lambda_{1}, \ldots, \lambda_{r}\right)=F_{0}\left(\lambda_{1}^{2}, \ldots, \lambda_{r}^{2}\right)
$$

for some polynomial F_{0}. Let σ be an arbitrary permutation of r letters. Then, Corollary 3.2 and the K-invariance of f say that the polynomial F_{0} is invariant under σ. Hence, there is a polynomial P of r variables such that

$$
\begin{equation*}
f\left(\sum_{m=1}^{r} \lambda_{m} c_{m}\right)=P\left(\sum_{m=1}^{r} \lambda_{m}^{2}, \ldots, \sum_{m=1}^{r} \lambda_{m}^{2 j}, \ldots, \sum_{m=1}^{r} \lambda_{m}^{2 r}\right) . \tag{3.8}
\end{equation*}
$$

Now, consider the polynomial function

$$
R(v):=f(v)-P\left(f_{1}(v), \ldots, f_{r}(v)\right) \quad\left(v \in V^{\mathbf{R}}\right),
$$

where f_{j} are defined by (3.6). We have $R \in \operatorname{Pol}\left(V^{\mathbf{R}}\right)^{K}$. Let $v \in V$ be arbitrary and consider its spectral decomposition: $v=\sum_{j=1}^{n} \mu_{j} d_{j}$. If the tripotent $d:=\sum_{j=1}^{n} d_{j}$ is not maximal, then choose a tripotent $d^{\prime} \in V_{0}(d)$, the Peirce 0 -space of d, so that $d^{0}:=d+d^{\prime}$ is a maximal tripotent. Anyhow, the spectral decomposition is refined as $v=\sum_{m=1}^{r} \lambda_{m} d_{m}^{0}$ with a frame $\left\{d_{1}^{0}, \ldots, d_{r}^{0}\right\}$ and $0 \leqq \lambda_{1} \leqq \cdots \leqq \lambda_{r}$. Then, by Lemma 3.3, there is $k \in K$ such that $k d_{m}^{0}=c_{m}$ for all m. Hence $k v$ $=\sum_{j=1}^{r} \lambda_{j} c_{j}$. This together with (3.7) and (3.8) yields $R=0$. Since the polynomials $\sum_{m} \lambda_{m}^{j}(1 \leqq j \leqq r)$ are algebraically independent as is well known, so are f_{1}, \ldots, f_{r} by (3.7).

We now make G act on $\mathscr{D} \times V^{\mathbf{R}}$ by

$$
\begin{equation*}
g \cdot(z, w):=\left(g z,\left(d_{z} g\right)^{*-1} w\right) \quad(z \in \mathscr{D}, w \in V) . \tag{3.9}
\end{equation*}
$$

Let $\operatorname{Pol}\left(V^{\mathbf{R}} \times V^{\mathbf{R}}\right)^{\mathbf{G}}$ be the algebra of polynomial functions on $V^{\mathbf{R}} \times V^{\mathbf{R}}$ whose restrictions to $\mathscr{D} \times V^{\mathbf{R}}$ are invariant under the action of G defined by (3.9). We will define an injective mapping of $\operatorname{Pol}\left(V^{\mathbf{R}}\right)^{K}$ into $\operatorname{Pol}\left(V^{\mathbf{R}} \times V^{\mathbf{R}}\right)^{G}$.

Let $f_{j} \in \operatorname{Pol}\left(V^{\mathbf{R}}\right)^{K}$ be as in (3.6) and recall that $B(z, z)$ is positive definite hermitian for $z \in \mathscr{D}$.

Proposition 3.5. For each $j(1 \leqq j \leqq r)$, there is a unique polynomial function $p_{j} \in \operatorname{Pol}\left(V^{\mathbf{R}} \times V^{\mathbf{R}}\right)^{\boldsymbol{G}}$ such that

$$
\begin{equation*}
f_{j}\left(B(z, z)^{1 / 2} v\right)=p_{j}(z, v) \quad(z \in \mathscr{D}, v \in V) . \tag{3.10}
\end{equation*}
$$

Moreover, these p_{j} are given as

$$
\begin{equation*}
p_{j}(z, v)=\left((Q(v) B(z, z))^{j-1} v, B(z, z) v\right)_{0} \quad(j=1,2, \ldots) . \tag{3.11}
\end{equation*}
$$

Remark 3.6. It is interesting to show directly that the right hand side of (3.11) is real. By (1.3), this is clear if j is odd. To see the case $j=2 m$, we note

$$
\begin{array}{rlr}
B(z, & z)(Q(v) B(z, z))^{2 m-1} v & \\
& =(Q(B(z, z) v) Q(v))^{m-1} Q(B(z, z) v) v & (\text { by }(1.10)) \\
& =(Q(B(z, z) v) Q(v))^{m-1}((B(z, z) v) \square v) B(z, z) v & \\
& =((B(z, z) v) \square v)(Q(B(z, z) v) Q(v))^{m-1} B(z, z) v & (b y(1.4)) .
\end{array}
$$

Hence, we get

$$
\begin{aligned}
((Q(v) & \left.B(z, z))^{2 m-1} v, B(z, z) v\right)_{0} \\
\quad= & \left((Q(B(z, z) v) Q(v))^{m-1} B(z, z) v,(v \square B(z, z) v) v\right)_{0} \\
= & \left((Q(B(z, z) v) Q(v))^{m-1} B(z, z) v, Q(v) B(z, z) v\right)_{0} \\
& =\overline{\left((Q(v) B(z, z))^{2 m-1} v, B(z, z) v\right)_{0}} \quad(\text { by }(1.3),(1.10)) .
\end{aligned}
$$

Proof of Proposition 3.5. Since \mathscr{D} is open in V, the uniqueness is clear. Let $z \in \mathscr{D}$ and $v \in V$. Since $B(z, z)^{1 / 2} \in \operatorname{Str} V$, we have

$$
\begin{equation*}
Q\left(B(z, z)^{1 / 2} v\right)=B(z, z)^{1 / 2} Q(v) B(z, z)^{1 / 2} . \tag{3.12}
\end{equation*}
$$

Then, by (3.6), (3.3) and (3.12), we get

$$
\begin{aligned}
f_{j}\left(B(z, z)^{1 / 2} v\right) & =\left(Q\left(B(z, z)^{1 / 2} v\right)^{j-1} B(z, z)^{1 / 2} v, B(z, z)^{1 / 2} v\right)_{0} \\
& =\left(B(z, z)^{1 / 2}(Q(v) B(z, z))^{j-1} v, B(z, z)^{1 / 2} v\right)_{0} \\
& =p_{j}(z, v) .
\end{aligned}
$$

Hence, it remains to prove that p_{j} are G-invariant. For this, we need the following lemma.

Lemma 3.7. If $g \in G$, then $d_{z} g \in H$ for all $z \in \mathscr{D}$, where H is the identity component of $\operatorname{Str} V$.

Proof. Let us write g as $g=k g_{v}$ with $k \in K, v \in V$ and g_{v} as in Proposition 2.2. By chain rule, it suffices to show Lemma 3.7 for $g=k$ and g_{v} separately. Suppose $g=k \in K$. Then, k is \mathbf{C}-linear, so that $d_{z} k=k$ for all $z \in \mathscr{D}$. Therefore, $d_{z} k \in K \subset H$. Let $g=g_{v} \in \exp p$. Then, Proposition 2.2 (2) says that $d_{z} g_{v} \in H$.

Let us return to the proof of Proposition 3.5. Let $g \in G, z \in \mathscr{D}$ and $v \in V$. Since H is stable under $T \mapsto T^{*}$, Lemma 3.7 yields

$$
Q\left(\left(d_{z} g\right)^{*-1} v\right)=\left(d_{z} g\right)^{*-1} Q(v)\left(d_{z} g\right)^{-1} .
$$

This together with (1.9) completes the proof.
Proposition 3.8. The mapping $\operatorname{Pol}\left(V^{\mathbf{R}}\right)^{K} \ni f \mapsto \Phi f$, where

$$
\Phi f(z, v):=f\left(B(z, z)^{1 / 2} v\right) \quad(z \in \mathscr{D}, v \in V)
$$

defines an injection of $\operatorname{Pol}\left(V^{\mathbf{R}}\right)$ into $\operatorname{Pol}\left(V^{\mathbf{R}} \times V^{\mathbf{R}}\right)^{G}$.
Proof. The injectivity follows from $f(v)=\Phi f(0, v)$. If $f \in \operatorname{Pol}\left(V^{\mathbf{R}}\right)^{K}$, then write f as a polynomial of f_{1}, \ldots, f_{r} by Theorem 3.4. Then, Φf is a polynomial of p_{1}, \ldots, p_{r} in Propositin 3.5.

We establish the surjectivity of $f \mapsto \Phi f$ in the next section.

§4. G-invariant differential operators on \mathscr{D}

Let $T^{*}(\mathscr{D}) \approx \mathscr{D} \times V^{\mathbf{R}}$ be the cotangent bundle of \mathscr{D} with the natural G-action:

$$
\begin{equation*}
g \cdot(z, w)=\left(g z,\left(d_{z} g\right)^{*-1} w\right) \quad(g \in G, z \in \mathscr{D}, w \in V) . \tag{4.1}
\end{equation*}
$$

If $L \in C^{\infty}\left(\mathscr{D} \times V^{\mathbf{R}}\right)$ and if $V^{\mathbf{R}} \ni w \mapsto L(z, w)$ is polynomial for each fixed $z \in \mathscr{D}$, then we associate a differential operator $L(x, \partial / \partial x)$ with the property that

$$
\begin{equation*}
L(x, \partial / \partial x) e^{\langle x, y\rangle}=L(x, y) e^{\langle x, y\rangle} \quad\left(x \in \mathscr{D}, y \in V^{\mathbf{R}}\right), \tag{4.2}
\end{equation*}
$$

where $\langle x, y\rangle:=\operatorname{Re}(x, y)_{0}$. In this way, one obtains every differential operator on \mathscr{D} with coefficients in $C^{\infty}(\mathscr{D})$.

The differential operator $L(x, \partial / \partial x)$ on \mathscr{D} is said to be G-invariant, if it commutes with the G-action:

$$
g L(x, \partial / \partial x) g^{-1}=L(x, \partial / \partial x) \quad \text { for all } g \in G .
$$

It is easy to see that the differential operator $L(x, \partial / \partial x)$ is G-invariant if and only if the corresponding function L is invariant under the G-action defined by (4.1):

$$
\begin{equation*}
L\left(g z,\left(d_{z} g\right)^{*-1} w\right)=L(z, w) \quad\left(z \in \mathscr{D}, w \in V^{\mathbf{R}}\right) . \tag{4.3}
\end{equation*}
$$

Proposition 4.1. Let $L(z, w)$ be C^{∞} in $z \in \mathscr{D}$ and polynomial in $w \in V^{\mathbf{R}}$. If L satisfies (4.3), then there is a polynomial P of r variables such that

$$
L(z, w)=P\left(p_{1}(z, w), \ldots, p_{r}(z, w)\right) \quad\left(z \in \mathscr{D}, w \in V^{\mathbf{R}}\right),
$$

where $p_{j} \in \operatorname{Pol}\left(V^{\mathbf{R}} \times V^{\mathbf{R}}\right)^{\boldsymbol{G}}$ are as in Proposition 3.5.
Proof. Set $l(w):=L(0, w)$. Since every element of K is a unitary operator, we have $\left(d_{z} k\right)^{*-1}=k$ for all $z \in \mathscr{D}$ and $k \in K$. Hence (4.3) implies $l \in \operatorname{Pol}\left(V^{\mathbf{R}}\right)^{K}$. By Theorem 3.4, there is a polynomial P of r variables such that

$$
l(w)=P\left(f_{1}(w), \ldots, f_{r}(w)\right) \quad\left(w \in V^{\mathbf{R}}\right) .
$$

Now, let $z \in \mathscr{D}$. Considering the spectral decomposition (1.5) of z, we see that there is $v \in V$ such that $z=\tanh v$. Let g_{v} be as in Proposition 2.2. Then, $g_{v} \cdot 0$ $=\tanh v=z$ and

$$
\begin{equation*}
d_{0} g_{v}=B(z, z)^{1 / 2} \tag{4.4}
\end{equation*}
$$

By virtue of the G-invariance (4.3) of L, we get

$$
\begin{aligned}
L(z, w) & =L\left(g_{v} \cdot 0,\left(d_{0} g_{v}\right)^{*-1}\left(d_{0} g_{v}\right)^{*} w\right) \\
& =L\left(0, B(z, z)^{1 / 2} w\right)=l\left(B(z, z)^{1 / 2} w\right) \quad(\text { by }(4.4)) \\
& =P\left(f_{1}\left(B(z, z)^{1 / 2} w\right), \ldots, f_{r}\left(B(z, z)^{1 / 2} w\right)\right) \\
& =P\left(p_{1}(z, w), \ldots, p_{r}(z, w)\right) .
\end{aligned}
$$

Since \mathscr{D} is symmetric, we know that the algebra $D(\mathscr{D})^{G}$ of G-invariant differential operators on \mathscr{D} is commutative. Put

$$
D_{j}=p_{j}(x, \partial / \partial x) \quad(j=1,2, \ldots, r)
$$

By Proposition 3.5, we have $p_{j} \in \operatorname{Pol}\left(V^{\mathbf{R}} \times V^{\mathbf{R}}\right)^{\boldsymbol{G}}$. Hence

$$
D_{j} \in \boldsymbol{D}(\mathscr{D})^{G} \quad(j=1,2, \ldots, r) .
$$

Lemma 4.2. D_{1}, \ldots, D_{r} are algebraically independent.
Proof. For any polynomial $q\left(x_{1}, \ldots, x_{r}\right)$ of r variables x_{1}, \ldots, x_{r}, we call the degree of $q\left(x_{1}, x_{2}^{2}, \ldots, x_{r}^{r}\right)$ the weight of q. Let now q be a polynomial of r variables such that $q\left(D_{1}, \ldots, D_{r}\right)=0$. Suppose the weight of q is m. We denote by q_{μ} the sum of the monomials in q of weight μ. Then, $q=\sum_{\mu=0}^{m} q_{\mu}$. Let $t \in \mathbf{R}$. Since $y \mapsto p_{j}(x, y)$ is homogeneous of degree $2 j$, (4.2) yields

$$
D_{j} e^{\langle x, t y\rangle}=t^{2 j} p_{j}(x, y) e^{\langle x, t y\rangle} .
$$

Then, we get

$$
\begin{aligned}
q_{\mu}\left(D_{1}, \ldots,\right. & \left.D_{r}\right) e^{\langle x, t y\rangle} \\
& =e^{\langle x, t y\rangle}\left[t^{2 \mu} q_{\mu}\left(p_{1}(x, y), \ldots, p_{r}(x, y)\right)+\text { lower order terms in } t\right] .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& q\left(D_{1}, \ldots, D_{r}\right) e^{\langle x, t y\rangle} \\
& \quad=e^{\langle x, t y\rangle}\left[t^{2 m} q_{m}\left(p_{1}(x, y), \ldots, p_{r}(x, y)\right)+\text { lower order terms in } t\right] .
\end{aligned}
$$

so that $q\left(D_{1}, \ldots, D_{r}\right)=0$ leads us to

$$
q_{m}\left(p_{1}(x, y), \ldots, p_{r}(x, y)\right)=\frac{1}{(2 m)!} \frac{d^{2 m}}{d t^{2 m}} e^{-\langle x, t y\rangle} q\left(D_{1}, \ldots, D_{r}\right) e^{\langle x, t y\rangle}=0
$$

for all x, y. Putting $x=0$, we obtain

$$
q_{m}\left(f_{1}(y), \ldots, f_{r}(y)\right)=q_{m}\left(p_{1}(0, y), \ldots, p_{r}(0, y)\right)=0 .
$$

This implies $q_{m}=0$ by Theorem 3.4, whence $q=0$.
We now arrive at two main theorems by virtue of Propositions 4.1, 3.8 and Lemma 4.2.

Theorem 4.3. $\quad D_{1}, \ldots, D_{r}$ form algebraically independent generators of $\boldsymbol{D}(\mathscr{D})^{\boldsymbol{G}}$.

Theorem 4.4. For every $f \in \operatorname{Pol}\left(V^{\mathbf{R}}\right)^{K}$, put

$$
\Phi f(x, y):=f\left(B(x, x)^{1 / 2} y\right) \quad(x \in \mathscr{D}, y \in V) .
$$

Then, Φ defines an algebra isomorphism of $\operatorname{Pol}\left(V^{\mathbf{R}}\right)$ onto $\operatorname{Pol}\left(V^{\mathbf{R}} \times V^{\mathbf{R}}\right)^{G}$.

Department of Mathematics Kyoto University

References

[1] S. Helgason, Groups and geometric analysis, Academic press, New York, 1984.
[2] M. Koecher, An elementary approach to bounded symmetric domains, Lecture Notes, Rice Univ., 1969.
[3] O. Loos, Jordan pairs, Lecture Notes in Math., 460, Springer, Berlin, 1975.
[4] O. Loos, Bounded symmetric domains and Jordan pairs, Lecture Notes, Univ. California at Irvine, 1977.
[5] O. Loos, Homogeneous algebraic varieties defined by Jordan pairs, Monatsh. Math., 86 (1978), 107-129.
[6] T. Nomura, Algebraically independent generators of invariant differential operators on a symmetric cone, J. Reine Angew. Math., 400 (1989), 122-133.
[7] I. Satake, Algebraic structures of symmetric domains, Iwanami Shoten and Princeton Univ. Press, Tokyo and Princeton, 1980.
[8] H. Upmeier, Symmetric Banach manifolds and Jordan C^{*}-algebras, North-Holland, Amsterdam, 1985.
[9] H. Upmeier, Jordan algebras and harmonic analysis on symmetric spaces, Amer. J. Math., 108 (1986), 1-25.
[10] H. Upmeier, Jordan algebras in analysis, operator theory and quantum mechanics, Regional Conf. in Math., 67, Amer. Math. Soc., Rhode Island, 1987.

