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Introduction

Let 2 be a bounded symmetric domain in a finite dimensional complex vector
space V. We denote by G the identity component of the Lie group of
holomorphic automorphisms of 2. Then, G is semisimple and acts transitively on
2. Regarding 2 as a Riemannian symmetric space, one knows that the algebra
D(2)¢ of G-invariant differential operators on 2 is isomorphic to a polynomial
algebra of r indeterminates, where r is the real rank of G, cf. [1, p.277].

On the other hand, it is now widely known that the category of (circled)
bounded symmetric domains is equivalent to a certain category of Jordan triple
systems, [2], [4], [7, p.85] and [10, §2]. An advantage of the shift from Lie
theoretic methods to Jordan theoretic ones is a transparent and an elementary
description of the structure of bounded symmetric domains. This motivates an
investigation of D(2)® by making use of Jordan triple systems and the purpose of
this paper is, in the same spirit as [6], to give explicitly a set of algebraically
independent generators of D(2)¢ without using the classification of 2.

Let us explain the content of this paper. A Jordan triple system (JTS for
short) over R is a real vector space V equipped with a trilinear mapping {-,-,-}:
Vx Vx V-V such that

0.1) {u, v, w} = {w, v, u},
02)  {a b, {u,v,w}} — {u, v {a, b, wi} = {{a b, u}, v, w} — {u, {b, a, v}, w}

hold for all u, v, w, a, beV. A real JTS Vis said to be hermitian if

(1) Vis a complex vector space,

(2) {u, v, w} is C-linear in u, w and C-antilinear in v.
Let V be a hermitian JTS. We define C-linear operators uJv (u, ve V) and C-
antilinear operators Q(z) (ze V) on V by

0.3) @O v)w = {u, v, w},
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266 Takaaki Nomura

0.4) Q2w = {z, w, z}.
We note here that (0.2) is rewritten as
0.5) [a0b, u0v] = (@Obu)Ov —uld((bOav),

where [A4, B] = AB — BA for two operators A, B. Now, Vis said to be positive if
(u, v):= tr(uv) defines a (positive definite) hermitian inner product on V. Let V
be positive. We know that z[Jz (zeV) is a positive semi-definite hermitian
operator. Letting (z[z)'2? be the positive semi-definite square root of zOz, we
set

(0.6) Izl == Iz O 2)"2 1.

Then, as the notation indicates, |||, becomes a norm on V (cf.[4, 3.17]), called
the spectral norm. Let

D:={zeV; |z|, < 1}.

Then, 2 is a (circled) bounded symmetric domain and every bounded symmetric

domain arises in this way. Let G be the identity component of the Lie group of

holomorphic automorphisms of 2 and we denote by K the stabilizer of G at 0.
Let B(z, w)(z, we V) be the Bergman operator:

0.7) "Bz, w):=1—2z0w + Q(2)Q(w).

One knows that if ze9, then B(z,z) is a positive definite hermitian
operator. Assume further that V is simple and of rank r. Let Pol(V®)X be the
algebra of K-invariant polynomial functions on the underlying real vector space V*
of ¥ and consider the polynomial functions f;(1 < j<r) on V® defined by

2 .
fiv):= = (>, v),
q
where q is the genus of V defined by (1.7) and v~ 1 are the odd powers of v

defined by (3.2). These f; are shown to be real valued. Then,

Theorem 1. The r polynomial functions f,, ..., f, are algebraically independent
generators of Pol(VR)X.

Theorem 2. (1) For each j(1 £ j <), there is a polynomial function p; on
VR x VR such that

fj(B(Z9 Z)I/ZU) = pj(za U) (ZE@, ve V)'
(2) These p; are G-invariant functions on the cotangent bundle T*(2)~ 2
x VR,
(3) The r differential operators p;(x, 0/0x) form algebraically independent
generators of D(D)C.

An explicit expression for p; is also given (see Proposition 3.5). Let
Pol(VR x V®)® be the algebra of polynomial functions on V® x V® whose
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restrictions to 2 x VR ~ T*(9) are G-invariant. Then,
Theorem 3. The mapping Pol(V®)X s fis ®f, where
Df(z, w):= f(B(z, 2)'*w) (z€2, weV),
defines an algebra isomorphism of Pol(V®)K onto Pol(V® x VRS

Notation. Let V be a finite dimensional complex vector space. Its
underlying real vector space will be written as VR We identify naturally the
tangent spaces T,(V®) at veV with V® Let W be another finite dimensional
complex vector space. Let 2 be an open subset in V. If fis a W-valued C*-
function defined on 2, then its tangent mapping d,f: V® —» W® at ze 2 is defined
by

d.f(v):= %f(z + tv)],=o.

We set

0./ ()= L [, o) — itd, f)(iv)].

[\S)

1

0.f(v):= 7 [[@d:1)©) + i(d. f)(iv)].

Then, d,f = d,f+ 0,f and it is clear that v d,f(v) (resp. v+ 8,f(v)) is C-linear
(resp. C-antilinear). Moreover, by Cauchy-Riemann equations, f is holomorphic if
and only if 8,f=0 for all ze2, the latter being equivalent to saying that
v—d,f(v) is C-linear.

§1. Preliminaries

We summarize here fundamental facts of JTS. Their proofs can be found in
[4], [8], for example.

1.1. Let V be a simple positive hermitian JTS. Then,
(L.1) (u, v):=tr(uOv)

defines a hermitian inner product on V. For every linear operator T on V, we
denote by T* its adjoint operator: (T, v) = (u, T*v). Then, by (0.5) we have

(1.2) Ow*=wOz (z, weV),

and this gives

(1.3) (Q(2)u, v) = (u, Q(2)v).
Moreover, by [8, 18.2], we have
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(1.4) O)uOv) = (vDOuwQ(v).

An element ce Vis called a tripotent if {c, ¢, ¢} =c. Every tripotent ¢ gives

an orthogonal direct sum decomposition of V (the Peirce decomposition of V
relative to ¢):

V="Volc)® Vij2(c) @ Vi(o),
Vie):= {veV;(cOcp =jv} (j=0,1/21).

Two tripotents ¢, c, are said to be orthogonal if cCJc = 0. Every element ve V
has the spectral decomposition:

(1.5) v=Aic; 4+ e, O<A; <<,

with {c,,..., ¢,} a family of orthogonal tripotents. Let {c,,..., ¢,} be a family of
orthogonal tripotents. By (0.1), (0.5) and (1.2), {¢;0¢;; 1 <i < n} is a commuta-
tive family of selfadjoint operators, so that we have a simultaneous eigenspace
decomposition (called the Peirce decomposition relative to {cy,..., ¢,}):

(1.6) V=@ V,;

ij
Osisjsn

(orthogonal direct sum),
where

V= {ve Vi(e,Oco =50+ 6p)v for 15k < n}.

N —

A tripotent c is said to be primitive if ¢ cannot be written as a sum of two non-zero
orthogonal tripotents. A maximal orthogonal system of primitive tripotents is
called a frame. Then, if {c,,..., c,} is a frame, r equals, by definition, the rank of
V. We assume from now on that Vis of rank r. Let V= @ogsjs Vij be the
Peirce decomposition (1.6) relative to a frame {c,,..., ¢,}. Then, V,, = {0} and ¥
= Cc;. Furthermore, V,;(1 £i < j <r) all have the same dimension and we put

a:=dimV,;, (1=Zi<j=<r).

j
Since dim Vy; (1 £ i <r) are also all equal, we set

b:=dimV,, (1ZiZr).
The number

(L7 g:=2+a(r—-1)+>

is called the genus of V.
Let GL(V) be the complex Lie group of complex linear automorphisms of ¥,
and we denote by Aut V the automorphism group of V:

Aut V:={geGL(V); g{u, v, w} = {gu, gv, gw}  for all u, v, weV}.

Then , Aut V < U(V), where U(V) is the unitary group of V relative to the inner
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product (1.1). Thus Aut V is a compact Lie group.

1.2. Let 2 be the open unit ball of V relative to the spectral norm |- |
defined by (0.6). We remark here that the spectral norm is invariant under
Aut V. The domain 2 is a (circled) bounded symmetric domain in V and the
symmetry at 0e2 is given by z— —z. Let B(z, w) be the Bergman operator
defined by (0.7). Then, by (1.2) and (1.3), we have

(1.8) B(z, w)* = B(w, 2).

Let G be the identity component of the Lie group of holomorphic
automorphisms of 2. Then, G is semisimple (and simple) and acts transitively on
2. We have

(1.9) B(gz, gw) = (d.9)B(z, w)d.9)* (9€G, z, we D).
We note also the following important identity (see [3, p.21] or [8, 21.8]):
(1.10) Q(B(z, w)u) = B(z, w)Qu)B(w, z) (z, w, ueV).
Since B(z, z) is positive definite hermitian for ze 2,
h,(u, v):= (B(z, 2) " 'u, v) (z€2D, u,veV)
defines a G-invariant hermitian structure on 2. Thus
(1.11) b,(u, v):= Re h,(u, v)
defines a G-invariant Riemannian structure on 2.

1.3. Let X,,,(2) denote the set of holomorphic vector fields on 2. Every
orthonormal basis e, ..., e, (n =dim V) of V relative to the inner product (1.1)
gives rise to a coordinate system (z,,...,z,) in V by z=) ze. Then, each
X e€X,,(92) is written as

" 0

(1.12) X = :;1 hi(z)a_z,-’
where h; are holomorphic functions on 9. Let 0(2, V) be the space of V-valued
holomorphic functions on 2. Putting h(z) = Zh,.(z)ei in (1.12), we get he O(2, V)
and this h is independent of the choice of orthonormal basis of V. 1t is clear that
the correspondence X,,,(2)3 X +—he0(2, V) is bijective. This being so, we write
the vector field (1.12) as X = h(z)d/0z. Thus, if fis a holomorphic function on 2
into another complex vector space W, we have

(1.13) Xf(2) = d.f (h(2)).
The space X,,(2) is a Lie algebra by the Poisson bracket:

0 0 0
l:h(Z) 5, K@ 5] 1= (dk(h(2) — d.h(k(2)) .
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Let (V) be the algebra of holomorphic polynomial mappings of V into
V. We denote by B,(V) the subspace of P(V) of homogeneous polynomial
mappings of degree v. Then, B(V) is an algebraic direct sum PB(V)
=@, B, (V). Clearly, we have B(V) < 0(2, V).

Now let g be the Lie algebra of G. Every X eg is considered as an element of
X401(2) by

d
X (@)= f(exp(—tX)-2)l—o.

where exp is the exponential mapping ¢ — G and f a holomorphic function on
2. For every veV, we define g, B,(V) and &,eBy(V) + B,(V) by

(1.14) 4.,(2):= Q(2)v,
(1.15) ul2):=v — q,(2).
Then the following proposition is known, [4, §4] or [10, §2].

Proposition 1.1. (1) If X = h(z)8/dzeg, then heY >_ B, (V).

(2) Let K be the stabilizer of G at 06 D. Then, K is the identity component of
Aut V.

(3) Put

t:={T(2)0/0z; T is a derivation of V},
p:={&,(2)0/0z; veV}.
Then, t = Lie K and g =t + p is a Cartan decomposition of g.

§2. Compactification of V

To realize the complexification G¢ of G, we will introduce a compactification
of V defined by Loos [4, § 7] (see also [5]). A pair (x, y) of elements of V is said to
be invertible if the operator B(x, y) is invertible, that is, if det B(x, y) # 0. Note
that (x, y) is invertible if and only if so is (y, x) by (1.8). If (x, y) is invertible, we
set

21 x”:= B(x, y)"'(x — Q(x)y),
(2.2) x, Y= =)
We call x” the quasi-inverse of (x, y). We have
(2.3) B(x, y)™' = B((x, )™ ")

Lemma 2.1. [If z, we 2, then (z, w) is invertible.

Proof. Note that since B(0, w) = I, (0, w) is invertible. Now, the transitivity
of G on 2 together with (1.9) proves the lemma. W
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We define a relation ~ in V x V by the following:
(x, y) ~(x', ¥) if (x, y —y') is invertible and x' = x77".

Then, ~ is an equivalence relation. Let X be the set of equivalence classes. The
equivalence class of (x, y) will be denoted by (x: y). Vis considered as a subset of
X by the injective mapping x+>(x:0). Then, (x: y)eV if and only if (x, y) is
invertible. For each veV, let U,:= {(x:v); xeV}. Then, by [4, 7.7], there is a
unique structure of smooth algebraic variety on X such that U, is an open affine
subvariety, which is isomorphic to V under (x:y)—x. Moreover, X is a
projective variety by [4, 7.10].

Considering X as a compact complex manifold, the complexification G of G
is now realized as the (Zariski-) connected component of the identity of the group
of holomorphic automorphisms of X. The Lie algebra gc of G is the set of all
holomorphic vector fields on X. By restriction, gc may be considered as a Lie
algebra of vector fields on V.

For every veV, let

(2.4) f(x:a)y=(x:a+0v) ((x:a)eX).

Then, 7, is well defined and f,e Gc. Clearly we have f, 7, =1, ,,,. Let StrV
denote the structure group of V:

Str Vi= {ge GL(V); Q(gz) = gQ(z)g* for all zeV}.
We see easily that ge GL(V) belongs to Str V if and only if
gzOw)g ™' = (g2)0(g* " 'w) (z, weV).

This together with (1.2) shows that Str V is stable under g+ g*. Now, Str V acts
on X by

h(x: a):= (hx: h* " 'a) (heStrV, (x:a)eX).

We denote by H the identity component of Str V. Thus H is considered as a
subgroup of G¢. It should be noted here that K = HnU(V). Finally, for every

ueV, the translation t,: Vax+>x + ueV is uniquely extended to an element of
Ge. Let

Ut:={t,;ueV}, U :={i,;veV}.
Then, U* are abelian subgroups of G¢, and a computation shows
ht,h™' = t,,, hi,h™ ' = Fn-1,,

for all he H and u, ve V. We note here that if (x, y) is invertible, then (1.8) and
(1.10) imply that B(x, y)eStr V. Further, the identity (as elements of G)

B(x, y) = f«t_ f_,t.v (cf [4,8.11])
says that B(x, y)eH.
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The Lie algebras u* of U* are identified as
u* = {constant vector fields on V},
u” = {q,(2)0/0z; ve V}.

Let h:= Lie H. Then, we have a vector space direct sum of Lie subalgebras: g¢
=u*+h+u". Let

E:={geG¢; g(0: 0)e V}.
Then, E~U* x Hx U~ and G< £. For every veV, one has (cf. [4, 9.8])
(2.5 exp (£,(2)0/02) = tyann,- B(tanh v, tanh v)V/2-F_ .\,

with B(tanh v, tanh v)'/2€ H, where if v = Y A;c; is the spectral decomposition (1.4)
of v, then tanhv:= ) (tanh A)c;. Thus, tanhve P for any veV. The following
proposition will be needed later.

Proposition 2.2. Put g,:= exp(£,(2)0/0z)eexp p for each veV. Then,
(1) g,-0=tanhv,
(2) d,g, = B(tanh v, tanh v)"/2B(z, — tanh v)" '€ H for every ze 2.

Proof. Put u=tanhve2 for simplicity. Lemma 2.1 implies that if ze 2,
then (z, — u) is invertible. Hence

f_(z2:0)=(z: —w)y=(z"": 0).

Thus, f_, induces a holomorphic mapping Z3z+>z "€ V.
(1) Since 07“=0 by (2.1), the assertion follows from (2.5).
(2) Let ze2, xeV and seR. By [3, Theorem 3.7 (b)], we have

(z+sx)™=z""+ Bz, —u)” }sx) """,
provided |s| is sufficiently small. We put y = (— u)® for brevity. Since
(sx) = B(sx, y)~'(sx — Q(sx)y) = sB(sx, ) ' (x — sQ(x)y)
= s(I +50(1))"!(x — sQ(x)y) = s(x + sO(1)),
we get
(z+sx)""=z""+sB(z, —u)~'(x + sO(1)).

Hence, d,f_, = B(z, —u)~'. Now, the proposition follows from (2.5) and the
chain rule. H

§3. Invariant polynomial functions

We begin with the following two lemmas which are more or less known to
JTS specialists.
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Lemma 3.1. Let {c,,..., c,} be a frame and put c:=c, ++-- + c,. Then, for
every pair (j, 1), there is xeV such that T:= B(x, c)e H satisfies

T*=1, Tc;=T*cj=c¢, Tcn,=T*c,=c, foral m#j I
Proof. We put
A(c):= Vy(c)n {xeV; Q(c)x = x}.

Then, by [4, 3.13 (c)], A(c) is a formally real Jordan algebra with the product
xy:= {x, ¢, y}. Note that c,eU(c) for all m. The proof of [3, 17.1] shows that
for every pair (j, l), there is xeU(c) such that T:= B(x, c) satisfies

T?*=1, Te;=¢, Te,=c, for m#j, I
Since xeA(c), we have cOx = xOc by [4, 9.13]. Moreover, it holds that
2(Q2(X¥)cy = Q(x)cp = QX)Q(c)c,  for all m,
where the first equality is the consequence of
Q(x)c, = {x, {c, ¢, €}, x}
—{em ¢ {x, ¢, x}} + 2{{cm ¢, x}, ¢, x} (by (0.1), (0.2))
= — ¢, x? + 2(c,x)x € U(c).

The above observation yields
Tc,, = B(x, ¢)¢c,, = ¢, — 2(x O c)c,, + Q(x)Q(c)c,n
= ¢, — 2(cOx)c,, + Q(c)Q(x)c,, = B(c, x)c,, = T*c,,
for all m. This proves the lemma. H
Corollary 3.2. Let {cy,..., c,} be a frame. Then, for each permutation ¢ of r
letters, there is ke K such that kc,, = ¢, for all m.

Proof. 1t suffices to show the corollary in the case where o are
transpositions. Let o be the transposition of j, /| and Te H be as in Lemma
3.1. Consider the polar decomposition T = U|T| of the operator T, where U is
unitary and |T| = (T*T)"/? positive definite selfadjoint. Since T* e H, we have | T|
=exp(3log T*T)eH, so that Ue HnU(V) = K. Since |T|c,, = c,, for all m, this
U is a required one. MW

Lemma 3.3. Let {c,,..., ¢}, {dy,..., d,} be frames. Then, there is ke K such
that kc,, = d,, for all m.

Proof. The real subspaces

C:.= "Zl Rc,, D:=
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are maximal flat subspaces in the sense of [4, 3.10]. By [4, 5.3 (a)], there is k; e K
such that k,(C) = D. Since k, e Aut ¥, k;c,, are tripotents, so that the primitivity
and the linear independence of c,, imply that there is a permutation o of r letters
such that k¢, = + d,, for all m. By Corollary 3.2, we get k,e K such that

3.1 k¢, = +d, for all m.

On the other hand, (0.2) says that i(c;CJc;) are derivations of V. Put
k= exp(ni(c;0c;))eK. Then,

k9c; = —c;, kY, =c, form#j.

This together with (3.1) proves the lemma. W

We will fix a frame {c,,..., ¢,} of V throughout the rest of this section. We
define odd powers v?~1 (j=1,2,...) of an element ve V inductively by
(3.2) vWi=p, v3¥D:= QgD (j=1,2,..).

Clearly we have
(3.3) Y = oy (j=1,2,..).
An easy induction argument using (1.4) and (3.3) shows
(3.4) v = @Oy (j=1,2,...).
Letting g be the genus of V defined by (1.7), we normalize the inner product

(1.1) as

2

(4, v)o:=—(u, v).
q

Then, since

b 1
(3.5) tr(c,Oc,) =1+ 3 +§a(r —1)=

[\S AN

for all m,

the normalization of the inner product is made so that the norm of c,, is one for
every m. We put

(3.6) fiw):=* "0, (i=12..).

We note that by (3.4) and (1.2), each f; is real valued. Since Q(kv) = kQ()k~?! for
all keK and veV, it is clear from (3.3) that f;e Pol(V®)X. We note also that if 4,
are all real, then

tr

6.) SCY, ) =

QN

3
101-

A¥e,Oc,= Y 22 (by (3.9)).
1 m=1

Theorem 3.4. The polynomial functions f; (1 <j<r) form algebraically
independent generators of Pol (VR)K.
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Proof. Let fePol(V®)X and consider the polynomial
F(Ay, ..., 4)=f( Zl AmCm)  (A,€R).

Take the frames {¢cy,..., ¢,c,} with g;e{—1,1}. Then, since f is K-invariant,
Lemma 3.3 implies that F is of the form

F(Ay, ..., 4) = Fo(d1, ..., A2)

for some polynomial F,. Let ¢ be an arbitrary permutation of r letters. Then,
Corollary 3.2 and the K-invariance of f say that the polynomial F, is invariant
under 0. Hence, there is a polynomial P of r variables such that

(3.8) S Z AmCr) = P( Z A2, Z A Z AZN).
m=1 m=1 m=1 m=1
Now, consider the polynomial function

R():= f(v) — P(f1(v),.... ,()) (veVF),

where f; are defined by (3.6). We have RePol(V®)X. Let veV be arbitrary and
consider its spectral decomposition: v =Y"]_ u;d;. 1f the tripotent d:=)"_, d; is
not maximal, then choose a tripotent d'e V,(d), the Peirce 0-space of d, so that
d°:=d + d’ is a maximal tripotent. Anyhow, the spectral decomposition is refined
as v=3_ A,dS with a frame {d,...,d]} and 0< A, <. <1,. Then, by
Lemma 3.3, there is keK such that kd% =c, for all m. Hence kv
= :.=1 Ajc;. This together with (3.7) and (3.8) yields R =0. Since the
polynomials ), 4}, (1 < j <r) are algebraically independent as is well known, so
are fy,....f, by 3.7). 1
We now make G act on 2 x VR by

(3.9) g-(z, w):=(gz, (d,9)* 'w) (ze2D, weV).

Let Pol(V® x V®)C be the algebra of polynomial functions on VR x V® whose
restrictions to 2 x V® are invariant under the action of G defined by (3.9). We
will define an injective mapping of Pol(V®)¥ into Pol(VR x VRS,

Let fiePol(V™¥ be as in (3.6) and recall that B(z, z) is positive definite
hermitian for ze 2.

Proposition 3.5. For each j (1 £ j £ r), there is a unique polynomial function
pje Pol(V® x VR such that

(3.10) fi(B(z, 2)'?v) = pj(z, v) (z€D, veV).
Moreover, these p; are given as
3.11) pi(z, v) = (Q(v)B(z, 2)Y o, Bz, z)v)y (j=1,2...).

Remark 3.6. It is interesting to show directly that the right hand side of (3.11)
is real. By (1.3), this is clear if j is odd. To see the case j = 2m, we note



276 Takaaki Nomura
B(z, 2)(Q(0)B(z, 2)*" " 'v
= (Q(B(z, 2)v)Q())" ™ ' Q(B(z, z)v)v (by (1.10))
= (Q(B(z, 2)v)Q))"~ " ((B(z, 2)v)Ov) B(z, 2)v
= ((B(z, 2)v) O0)(Q(B(z, 2)v)Q(v))" ™' B(z, z)v  (by (1.4)).
Hence, we get
(Q)B(z, 2))" v, B(z, 2)v),
= ((Q(B(z, 2)v)Q(v)" "' B(z, z)v, (v Bz, 2)v)v),
= ((Q(B(z, 2)v)Q(v))" ™ ' B(z, z)v, Q(v)B(z, 2)v)o
= ((Q)B(z, 2))*""'v, B(z, z)v)o  (by (1.3), (1.10)).

Proof of Proposition 3.5. Since 2 is open in V, the uniqueness is clear. Let
zeP and veV. Since B(z, z)!/?eStr V, we have

(3.12) Q(B(z, z)""*v) = B(z, 2)"*Q(v)B(z, z)"/.
Then, by (3.6), (3.3) and (3.12), we get
fi(B(z, 2)""*v) = (Q(B(z, 2)'*vy ™' B(z, 2)"/*v, B(z, 2)'v),
= (B(z, 2)'*(Q(v) B(z, 2)) " 'v, B(z, 2)'*v),
= pi(z, v).

Hence, it remains to prove that p; are G-invariant. For this, we need the
following lemma.

Lemma 3.7. If geG, then d,geH for all z€ 9, where H is the identity
component of StrV.

Proof. Let us write g as g = kg, with ke K, veV and g, as in Proposition
22. By chain rule, it suffices to show Lemma 3.7 for g=k and g,
separately. Suppose g =keK. Then, k is C-linear, so that d,k =k for all
ze9. Therefore,d,ke K =« H. Letg =g,eexpp. Then, Proposition 2.2 (2) says
that d,g,cH. B

Let us return to the proof of Proposition 3.5. Let geG, ze2 and
veV. Since H is stable under T+ T* Lemma 3.7 yields

Q((d.g)*~'v) = (d.9* "' Q(v)(d.9)~ "
This together with (1.9) completes the proof. W

Proposition 3.8. The mapping Pol(V®)K s fis &f, where
&f(z, v):= f(B(z, 2)"?v) (z€2,veV)
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defines an injection of Pol(V®) into Pol (VR x VRS,

Proof. The injectivity follows from f(v) = @f(0, v). If fePol(V®)X then
write f as a polynomial of f,, ..., f, by Theorem 3.4. Then, &f is a polynomial of
Pi»..., b, in Propositin 3.5. H

We establish the surjectivity of f @f in the next section.

§4. G-invariant differential operators on 2
Let T*(2) ~ 2 x VR be the cotangent bundle of 2 with the natural G-action:
4.1) g-(z, w) = (g2, (d.9)* " 'w) (g€G, zeD, wel).

If LeC®(2 x V®) and if VRaw L(z, w) is polynomial for each fixed ze 9, then
we associate a differential operator L(x, 0/0x) with the property that

4.2) L(x, 8/0x)e<*”” = L(x, y)e*” (xe 2, ye V"),

where (x, y>:= Re(x, y)o. In this way, one obtains every differential operator on
92 with coefficients in C*(2).

The differential operator L(x, 3/dx) on 2 is said to be G-invariant, if it
commutes with the G-action:

gL(x, 0/0x)g~! = L(x, 8/0x) for all geG.

It is easy to see that the differential operator L(x, 0/0x) is G-invariant if and only if
the corresponding function L is invariant under the G-action defined by (4.1):

4.3) L(gz, (d,9)* 'w)=L(z, w) (ze2D, weV®).

Proposition 4.1. Let L(z, w) be C*® in ze D and polynomial in weV®. If L
satisfies (4.3), then there is a polynomial P of r variables such that

L(Z, w)=P(pl(za W),..., pr(z’ W)) (ZE@, WEVR)a
where p;e Pol(V® x V™S are as in Proposition 3.5.

Proof. Set l(w):= L(0, w). Since every element of K is a unitary operator,
we have (d,k)* ™! = k for all ze 2 and ke K. Hence (4.3) implies [€ Pol(V®)X. By
Theorem 3.4, there is a polynomial P of r variables such that

I(W) = P(fl(w)’ afr(w)) (WG VR)

Now, let ze 9. Considering the spectral decomposition (1.5) of z, we see that
there is ve V such that z = tanhov. Let g, be as in Proposition 2.2. Then, g,-0
= tanhov =z and

4.4) dog, = B(z, z)V2.

By virtue of the G-invariance (4.3) of L, we get
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L(z, w) = L(g,- 0, (dog.)* "' (dog,)*w)
= L(O, B(z, 2)'*w) = [(B(z, 2)'/*w)  (by (4.4))
= P(f1(B(z, 2)'*w), ..., f.(B(z, 2)'/*w))
= P(p,(z, w), ..., pz, w)). A

Since 2 is symmetric, we know that the algebra D(2)¢ of G-invariant
differential operators on 2 is commutative. Put

Dj=pix,0/0x) (j=12..,r).
By Proposition 3.5, we have p;e Pol(V® x V®)%. Hence
D;eD@°¢ (j=12...7).
Lemma 4.2. D,,..., D, are algebraically independent.

Proof. For any polynomial g(x,, ..., x,) of r variables x,,..., x,, we call the
degree of g(x,, x3,..., x7) the weight of g. Let now g be a polynomial of r
variables such that ¢(D,,..., D,) =0. Suppose the weight of q is m. We denote
by g, the sum of the monomials in g of weight u. Then, g =Z:‘=oq,‘. Let
teR. Since y— p;(x, y) is homogeneous of degree 2j, (4.2) yields

Dje<x,ty> = tszj(x’ y)e<""”>_
Then, we get
4Dy, ..., D,)e=™
= e 12 g, (p(X, Y),..., p(x, y)) + lower order terms in t].
Hence
gDy, ..., D,)e>"
= e [12"g, (py(x, Y), ..., P,(x, ) + lower order terms in t].

so that g(D,,..., D,) =0 leads us to

2m

e " q(D,, ..., D,)e* =0

1
qm(pl(xa .V), eees p,-(X, y)) = mdthn

for all x, y. Putting x =0, we obtain

qm(fl(y)’ ’fr(y)) = qm(pl(o» y)’ LR pr(07 Y)) = 0

This implies g,, = 0 by Theorem 3.4, whence ¢ =0. W

We now arrive at two main theorems by virtue of Propositions 4.1, 3.8 and
Lemma 4.2.

Theorem 4.3. D,, ..., D, form algebraically independent generators of D(2)°.
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Theorem 4.4. For every fePol (V¥ put
Pf(x, y):= f(B(x, x)'*y) (xe2, yeV).

Then, @ defines an algebra isomorphism of Pol(V'®) onto Pol(V® x VRS,
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