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Introduction

Let g  be a bounded symmetric domain in a finite dimensional complex vector
sp a c e  V. W e  d e n o te  b y  G  t h e  identity com ponent o f  t h e  L ie  g ro u p  of
holomorphic automorphisms of 3 .  Then, G is semisimple and acts transitively on
3 .  Regarding g  a s  a  Riemannian symmetric space, one knows that the algebra
D(g) G  of G-invariant differential operators o n  g  is isomorphic to a polynomial
algebra of r indeterminates, where r  is  the real rank o f G, cf. [1, p.277].

O n  th e  other hand, it is now  w idely know n that the  category of (circled)
bounded symmetric domains is equivalent to a certain category of Jordan triple
systems, [2], [4], [7, p. 85] a n d  [1 0 , § 2 ]. A n  advantage of the shift from  Lie
theoretic methods to Jordan theoretic ones is a  transparent and  an  elementary
description of the structure of bounded symmetric domains. This motivates an
investigation of D (g) G  by making use of Jordan triple systems and the purpose of
this paper is , in  the  sam e sp irit as [6], to give explicitly a  se t o f  algebraically
independent generators of D (g ) G  w ithout using the classification of g.

L et us explain the content of this paper. A  Jordan  trip le  system (JTS for
short) over R is a  real vector space V equipped with a trilinear mapping {•, -,• } :
V x  V x  V —> V such that

(0.1) {u, y, w} = {w, y, u},

(0.2) {a, b, {u, y, w}} — {u, y, {a, b, w}} = {{a, b, u}, y, w} — {u, {b, a, y}, w}

hold for all u, y, w, a, b e  V. A  real JTS V is said to be herm itian if
(1) V is  a  complex vector space,
(2) {u, y ,  w} is C-linear in  u, w and C-antilinear in v.

Let V be a  herm itian  JT S . We define C-linear operators u LII y (u, y e V ) and C-
antilinear operators Q(z) (z E V ) o n  V by

(0.3) (u = lu, 1), wl,
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(0.4) Q(z)w = {z, w, z} .

We note here that (0.2) is rewritten as

(0.5) [a b ,  u  v ]  =  ( ( a  b ) u )  v — u  ( ( b  a ) y ) ,

where [A , B] = A B — BA  for two operators A , B . Now, V is said to be positive if
(u, v):= tr(uIlly) defines a (positive definite) hermitian inner product o n  V  L e t  V
b e  positive . W e  know  tha t zl 1 z (z E  V ) i s  a  positive  semi-definite hermitian
operator. Letting (z E z) 112 b e  the positive semi-definite square root of z E z , we
set
(0.6)z := z) 2
Then, as the notation indicates, L  becomes a  norm o n  V  (cf. [4, 3.17]), called
the spectral norm . Let

:= lz  e V; 11 z <

Then, 3  is a  (circled) bounded symmetric domain and every bounded symmetric
domain arises in this w a y . L e t G be the identity component of the Lie group of
holomorphic automorphisms of g  and we denote by K  the  stabilizer of G  at 0.

L et B(z, w)(z, w e V) be  the Bergman operator :

(0.7) B(z, w):= I — 2z E w + Q(z)Q(w).

O n e  k n o w s  th a t  if z e g ,  t h e n  B (z , z ) is a  p o s i t iv e  definite hermitian
o p e ra to r . Assume further that V is simple and of rank r. Let Pol(V") K  b e  the
algebra of K-invariant polynomial functions on the underlying real vector space V"
o f V and consider the polynomial functions f i  (1 j r) o n  V " defined by

f .(v):= -

2  

(y1 2 i y),q

where g  is  the genus o f  V defined by (1.7) and v ( 2 -i-  1 ) a re  th e  odd powers of y
defined by (3.2). These f i  a r e  show n to be real valued. Then,

Theorem 1. The r polynomial functions f1. .... f  are  algebraically independent
generators o f  Pol(VR )K .

Theorem 2. ( 1 )  For each j (1 j  r ) ,  t h e r e  i s  a  polynomial function p i  on
1/0  x  VR  such that

f i (B (z , z )" 2 v) = p i (z, v) ( z  e g, y e V).

(2) These p i  are G-inv ariant functions on the cotangent bundle T*(g);.--_, g
X  V

°
.

(3) T h e  r dif ferential operators p i (x , 010x) form algebraically  independent
generators of  D(g) G .

A n  explicit expression  fo r pi  is  a ls o  g iv e n  ( s e e  Proposition 3.5). Let
Pol(V" x V 0 )0  b e  t h e  a lgebra  of polynom ial functions o n  V" x V it w hose
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restrictions to  g  x V R  T *  ( g )  are G - invariant. Then,

Theorem 3 . The mapping Pol ( VR )K  f  Of, where

Of (z, w):= f(B(z, z) 1 1 2 w ) (z e2, w e V),

defines an  algebra isomorphism of  Pol(VR )K  o n to  Pol(V R  X  VT.

Notation. L e t  V  b e  a  fin ite  d im ensional com plex  vector space . Its
underlying real vector space will be written as V R . W e identify naturally the
tangent spaces Tv (VR )  a t  1) E V with V R . L e t W  be another finite dimensional
complex vector space. Let g  be  an open subset i n  V  If f  is  a W-valued C`°-
function defined o n  g , then its tangent mapping dz f : V R

 — > WR  at z E is defined
by

d
f (v):= —

d t  
f(z + tv)11 = o •

We set

az f(v ):=  -
2

[(dzf)(v) — i(dz.Riv)],

az f(v ) :=  -
2

E(dzf)(v) + i(d z POO]

Then, dz f = a z f  +  rz f  and it is clear that y 3 f(v ) (resp. 1—+ - z f (y )) is C-linear
(resp. C-antilinear). Moreover, by Cauchy-Riemann equations, f  is holomorphic if
a n d  on ly  if i7z f  = 0  f o r  a l l  z E  g , th e  la tte r  being equivalent to saying that

(y) is C-linear.

§1. Preliminaries

We summarize here fundamental facts of JTS. Their proofs can be found in
[4], [8 ], for example.

1.1. L et V be  a simple positive hermitian JTS. Then,

(1.1) (u, v):= tr(u LI y)

defines a hermitian inner product o n  V . F or every linear operator T o n  V, we
denote by T *  its adjoint operator : (74, y) = (u, T* v). Then, by (0.5) we have

(1.2)

and this gives

(1.3)

(z w)* = wLIlz (z, WE V),

(Q(z)u, v) = (u, Q(z)v)

 

Moreover, by [8, 18.2], we have
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(1.4) Q(v)(u v) = (v 0 u)Q(v).

An element CE V is called a tripotent if lc, c, = c. Every tripotent c gives
an orthogonal direct sum decomposition o f  V  (the  Peirce decomposition o f  V
relative to  c):

V = V 0 (c) 0  V1 1 2 (c) 0  Vi (c),

V; (c):= {v e V; (c c ) v  = jv }  ( j  = 0, 1/2, 1).

Two tripotents c1 , c 2 a re  said to be orthogonal if c D c = 0. E very  elem ent V E V
has the spectral decomposition :

(1.5)y  =  2 1 e 1 + ••• + A n ct, (0 < 2, < < ) n),

with {c 1 , c }  a  family of orthogonal tripotents. Let  {c 1 ,..., c„} be a family of
orthogonal tripotents. By (0.1), (0.5) and (1.2), {c 1 C1c,; 1 n}  is a  commuta-
tive family of selfadjoint operators, so that w e have  a  simultaneous eigenspace
decomposition (called the  Peirce decomposition relative to {c 1 ,..., c„}):

(1.6) V  = C ) V  (orthogonal direct sum),
Ozisjsn

where

{v e V; (ck c k )v =
ik ik

—
1

(S . + )v fo r  1 k n}.
2 

A tripotent c is said to be primitive if c cannot be written as a sum of two non-zero
orthogonal tripotents. A  m axim al orthogonal system of primitive tripotents is
called a f ram e . Then, if {c 1 , Cr } is  a  frame, r equals, by definition, the rank  of
V  W e assume from now o n  th a t V is  of r a n k  r .  L e t V = O i j r

 V  be  the
Peirce decomposition (1.6) relative to a frame {c 1 , . . . ,  Cr }. T h e n , V 0 0  = 101 and
= Cc i . Furthermore, (1 <J  r )  a l l  have the same dimension and we put

a:= dim Vi ;  ( 1 < j  r).

Since dim V0 1 (1 i r) are  also all equal, we set

b:= dim V01 ( 1 r).

The number

(1.7) q:= 2 + a(r — 1) + b

is called the genus of V
Let GL(V ) be the complex Lie group of complex linear automorphisms of V,

and we denote by Aut V the automorphism group o f V:

Aut V := GL(V ); g{u, v, w} = {gu, gv, gw} for all u, v, w e VI .

Then , Aut V  c U(V ), where U(V ) is the unitary group o f V relative to  the inner
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product (1.1). Thus Aut V is  a compact Lie group.

1.2. L e t  3  be  the open unit ball o f  V relative to  the spectral n o r m  .
defined  by  (0 .6). W e rem ark  here  that the spectral n o rm  is  invariant under
Aut V. The domain 9  is  a  (circled) bounded symmetric domain in  V and the
sym m etry  at 0e  g  is g iven by z — z. L et B(z, w) b e  the Bergman operator
defined by (0.7). Then, by (1.2) and (1.3), we have

(1.8) B(z, w)* = B(w, z).

L e t  G  b e  t h e  identity  com ponent o f  t h e  L ie  g ro u p  of holomorphic
automorphisms of g .  Then, G is semisimple (and simple) and acts transitively on
g .  W e have

(1.9) B(gz, gw) = (d z g)B(z, w)(dg)* (g e G, z, w E g).

We note also the following important identity (see [3, p. 21] or [8, 21.8]):

(1.10) Q(B(z, w)u) = B(z, w)Q(u)B(w, z) (z, w, ue V).

Since B(z, z) is positive definite hermitian for z e 9,

hz (u, v):= (B(z, v) (z  e 9, u, y e V)

defines a G - invariant hermitian structure on g .  Thus

(1.11) bz(u, v):= Re hz (u, y)

defines a G-invariant Riemannian structure on g.

1.3. Let X h .,(g )  denote the set of holomorphic vector fields on g .  Every
orthonormal basis e1 , ,  en (n = dim V ) o f V relative to  the  inner product (1.1)
g ives rise  to  a  coordinate system (z 1 , . . . ,  z n )  i n  V  b y  z = E z,e,. Then, each
X e Xhol(g) is written as

(1.12)
a

X = E hi (z) —n  ,
i 1U Z i

where hi are holomorphic functions on g .  Let 0(21, V) be the space of V-valued
holomorphic functions on g .  Putting h(z) = E hi (z)e, in (1.12), we get h e 0(9, V)
and this h is independent of the choice of orthonormal basis of V. It is clear that
the correspondence X„„,(21)3 X h  e  0 (g , V) is bijective. T h i s  being so, we write
the vector field (1.12) as X = h(z)a/az. Thus, if f  is a holomorphic function on g
into another complex vector space W, we have

(1.13) X f (z) = d z f (h(z)).

The space X„,„(21) is a  L ie  algebra by the Poisson bracket :

[h(z) k(z) (dzk(h(z)) — dzh(k(z)))
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Let 13(V) b e  th e  algebra of holomorphic polynomial mappings o f  V into
V. W e  d e n o te  b y  1 (V )  th e  subspace o f  43(V) o f  homogeneous polynomial
m appings o f  d e g r e e  v .  T h e n , 13(V) is a n  a lgebra ic  d ir e c t  s u m  $(V)
= CN °=0 913 , (V ) .  Clearly, we have 13(V) e (9 , V).

Now let g be the Lie algebra of G .  Every X e g is considered as an element of
Xhol(g) by

X f(z) = —

d  

f(exp( — tX)•
dt

where exp is the exponential mapping g -+ G  and f  a holomorphic function on
9 .  F or every v e V, we define q v el3 2 ( V ) and E 0 ( V )  ±  1 32 (V ) by

(1.14) qt,(z):= Q(z)v,

(1.15) — q(z).

Then the following proposition is known, [4, §4] or [10, §2].

Proposition 1.1. (1) If  X = h(z)0 I Oz e g, then h EL 2 = 0  13 v (V).
(2) Let K be the stabilizer of G at 0E 9 .  Then, K is the identity component of

Aut V.
(3) Put

I :=  IT(z)010z; T is a  derivation o f  VI,

p := { „(z)0/Oz; v e V}.

Then, f = Lie K  and g = t + p  is  a Cartan decomposition of g.

§2. Compactification o f  V

To realize the complexification G, of G, we will introduce a compactification
of V defined by Loos [4, §7] (see also [5]). A pair (x, y) of elements of V is said to
be invertible if the operator B(x, y) is invertible, that is, if det B(x, y) 0. N o t e
that (x, y) is invertible if and only if so is (y, x) by (1.8). If (x, y) is invertible, we
set

(2.1) xY := B(x, y) - 1 (x — Q(x)y),

(2.2) (x, y ) ' (f ,  — y).

W e call xY the quasi-inverse of (x, y). W e have

(2.3) B(x, y) -1- = B((x,

Lemma 2.1. I f  z, WE 9 , then (z, w) is invertible.

P ro o f . Note that since B(0, w) = /, (0, w) is invertible. Now, the transitivity
of G  on  g  together with (1.9) proves the le m m a . •
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We define a  r e la t io n  -  in  V x  V by the following:

(x, y ) - (x ', y ') if (x , y  - y ') is invertible and x' =

T h e n , -  is an equivalence re lation. L et X  be the set of equivalence classes. T h e
equivalence class of (x, y) will be denoted by (x : y). V is considered as a subset of
X  b y  the injective mapping x : 0). Then, (X: y)e V  if  a n d  only if (x, y) is
invertible. For each y e V, le t U„:= { (x  : v ); xe V } . Then, by [4, 7.7], there is a
unique structure of smooth algebraic variety on X  such that U„ is an open affine
subvariety, w h ic h  is  iso m o rp h ic  to  V  u n d e r  (x  y)i- 4.x. Moreover, X  i s  a
projective variety by [4, 7.10].

Considering X  as a compact complex manifold, the complexification G , of G
is now realized as the (Zariski-) connected component of the identity of the group
of holomorphic automorphisms of X .  The Lie algebra g, of G , is the set of all
holomorphic vector fields on X .  By restriction, g, may be considered as a Lie
algebra of vector fields on V.

For every y e V, let

(2.4) rv(x a):= (x : a + ((x : a)e X).

Then, t„ is well defined a n d  tv e Ge . Clearly we have t 1 t, 2 tv i +  v2 . L e t S tr  V
denote the structure group o f  V:

Str V:= {g e GL (V); Q(gz) = gQ(z)g* for all z e VI.

W e see easily that geG L (V ) belongs to Str V if and only if

g (z  w )g = (gz)1=1(g* -  w )  ( z , w e V).

This together with (1.2) shows that Str V is stable under gi--* g * .  Now, Str V acts
on  X  by

h(x : a):= (hx : h*  a)  (h e  Str V, (x: a) E X ).

W e denote by H  the  identity component of S tr V. Thus H  is considered as a
subgroup of G . It shou ld  be  no ted  he re  tha t K  = H n U ( V ) .  Finally, for every
ue V, the translation tu : V 9 ) C H X  ue V  is uniquely extended to a n  element of
G .  L e t

:= {t u ; ue V } , U -  : = {tu ; v e V}.

Then, U  ±  are abelian subgroups o f G ,, and  a  computation shows

htu h -

1

 =  thu , = 1r,

for all he H  and u, y e  V. We note here that if (x, y) is invertible, then (1.8) and
(1.10) imply that B(x, y)e Str V. Further, the identity (as elements of Ge )

B (x , y) = Ty xt_ x t_ y tx , (cf. [4, 8.11])

says that B(x, y) e H.
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The Lie algebras u± o f I/ ± are identified as

u + = {constant vector fields on V},

u  =  {q (z )/ z ; v  e

Let ly =  Lie H .  Then, we have a vector space direct sum of Lie subalgebras: gc
= u +  +  +  u - . Let

E:= {geG c ; g(0: 0)e V} .

Then, E  U+ x H x  U -  an d  G c  . F or every v  V, one has (cf. [4, 9.8])

(2.5) exp ( „(z)e/az) = ttanhv • B(tanh v, tanh v)". 
t a n h v ,

with B(tanh v, tanh v) 1 I2  eH, where if v = E A,c, is the spectral decomposition (1.4)
of v, then tanh v := E(tanh 1,)ci . Thus, tanh y e g for any v e V. T h e  following
proposition will be needed later.

Proposition 2.2. Put g:= exp(Uz)010z)eexp p f o r each v e V .  Then,
(1) gv • 0 = tanh v,
(2) di g, = B(tanh v, tanh v)112 /3(z, — tanh v) -  ' EH f o r every ze9.

P ro o f . P u t u = tanh y e g  for simplicity. L e m m a  2.1 implies that if z e
then (z, — u) is invertible. Hence

L u (z : 0) = (z: — u )=  (z ':  0).

Thus, L . induces a  holomorphic mapping gDZ i--+Z — u eV.
(1) Since 0- u = 0 by (2.1), the assertion follows from (2.5).
(2) Let z eg, x e V and se R .  By [3, Theorem 3.7 (b)], we have

(z + sx)_u = z - u + B(z, — u)  (sx) ( - 14) ' ,

provided Is is sufficiently small. W e put y = ( —  u)2 fo r  brevity. Since

(sx)Y = B(sx, y) - '(sx — Q(sx)y)= sB(sx, y) '(x — sQ(x)y)

= s(I + s0(1)) - 1 (x — sQ(x)y)= s(x + s0(1)),

we get

(z + sx)' =  z - u + sB(z, — u) - 1 (x + s0(1)).

Hence, di r _u = B(z, — N ow , the proposition follows from (2.5) and the
c h a in  ru le . •

§ 3. Invariant polynomial functions

W e begin w ith the following two lemmas which are more or less known to
JTS specialists.
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Lemma 3.1. Let { c 1 . . . . .  Cr } b e  a f ram e and put c:= c, + • • • + Cr . T hen , f o r
every pair (j, 1), there is xe V  such that T:= B(x, c)EH satisfies

T 2  = I, Tc;  = T*c ;  = c 1, T c m  = T*c m = cm  f o r  all m  j, 1 .

P ro o f . W e put

2I(c) := Vi (c)fl {x e V; Q(c)x = x}.

Then, b y  [4, 3.13 (c)], 9 1(c) is  a  formally real Jordan algebra with the  product
xy:= {x, c, y}. Note tha t cm  e 91(c) for all m . T h e  proof of [3, 17.1] shows that
for every pair (j, 1), there is x e 9I(c) such that T:= B(x, c) satisfies

T 2  = I ,  Tc;  = c 1, Tc m = cm  f o r  m  j ,  1.

Since x e 9I(c), we have c 0 x = x 0 c  by  [4, 9.13]. Moreover, it holds that

Q(c)Q(x)cm  = Q(x)c„, = Q(x)Q(c)c m f o r  all m,

where the first equality is the consequence of

Q(x)cm = {x, {c, cm , c}, x}

= — {cm , c, {x, c, x}} + 2{{cm , c, x}, c, x} ( b y  (0.1), (0.2))

= — cm x 2 +  2(cm x)x E 91(C).

The above observation yields

Tcm = B(x, c)c m = cm  — 2(x 0 c)cm  +  Q(x)Q(c)cm

= cm  — 2(c I=1 x)c„, + Q(c)Q(x)c„, = B(c, x)c m  = T*c,„

for a ll m . T h is  proves the le m m a . •

Corollary 3.2. L et {c1 , . . . ,  Cr } be  a f ram e . Then, for each permutation a  of  r
letters, there is ke K  such that kc„, = cr,( „0  f o r all m.

P ro o f . It s u f f i c e s  t o  s h o w  th e  coro lla ry  i n  t h e  c a s e  w h e re  a  are
transpositions. Let a  b e  the transposition of j ,  /  a n d  T e H  b e  a s  in  Lemma
3.1. Consider the polar decomposition T =U IT I of the operator T, where U is
unitary and I Ti =  (T* T) 1 1 2  positive definite selfadjoint. Since T* e H, we have I TI
= exp( log T* T)e II , so that UeHfl U(V ) = K .  Since I TI cm  =  cm  fo r  all m, this
U is  a  required o n e .  •

Lemma 3.3. L et {c1 , ,  c r }, {d 1 ,..., d r } be f ram es. Then, there is k E K  such
that ke n , = dm  f o r all m.

P ro o f . The real subspaces

C:= E  Rcm ,
m = 1

D:= Rdm
m=1
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are maximal flat subspaces in the sense of [4, 3.10]. By [4, 5.3 (a)], there is k, e K
such that k 1 (C ) = D . Since k, e Aut V k i cm  are tripotents, so that the primitivity
and the linear independence of cm  imply that there is a permutation a of r letters
such that k i cm  =  +  4 0 ,0  fo r  a ll m .  By Corollary 3.2, we get k 2  e K  such that

(3.1) k 2 c , „  =  +  dm  f o r  all m.

O n  th e  o th e r  hand, (0.2) sa y s  th a t i(c., E ci )  a re  derivations o f  V. Put
ku) := exp (ni(c;  1=1 ci ))e K .  Then,

ku) cj  = — c»  k u ) cm =  cm  f o r  m  j.

This together with (3.1) proves the le m m a . •

We will fix a  frame {c 1 , cr } o f  V throughout the rest of this sec tion . We
define odd powers V( 2 i -  1 )  ( j  =  1, 2, ...) of an  element ye V  inductively by

(3.2) y u ) :=  y , V( 2 j + 1 ) := 12(1)v ( 2 i - 1 )  ( j  =  1, 2, ...).

Clearly we have

(3.3) V(2i+ 1 ) =  Q(v)j v = 1, 2, ...).

An easy induction argument using (1.4) and (3.3) shows

(3.4) V(2i+ 1 ) =  (V 0  V YV  (j =  1, 2 ,

Letting g  be the genus o f V defined by (1.7), we normalize the inner product
(1.1) as

(u, v)0 := (u, v).

Then, since

b 1
(3.5) tr(c„, cm ) = 1 + -

2  
+ -

2  
a(r —  1) = -

2

for all m,

the normalization of the inner product is made so that the norm of cm  is  one for
every m .  W e put

(3.6) f i(y ):= (1)(

2

i -  1 ) , ( j  =  1, 2, ...).

We note that by (3.4) and (1.2), each f  is real valued. Since Q(kv) = kQ(v)k -
 1 for

all k e K and ye  V , it is clear from (3.3) that f i e Pol (VR )K . W e  note also that if
are all real, then

2

(3.7) E Am cm ) = - t r  E 2,2,! cm  c m  =  E A,2ni (by (3.5)).
m=1q  m = 1 m=1

Theorem  3.4. T he poly nom ial functions h ( 1 . . / - _  r) form  algebraically
independent generators o f  Pol ( VR)K.
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P ro o f .  Let f  ePol(V R ) K a n d  consider the polynomial

F , A r ):= f  ( E Am cm ) ( A m ER).

Take the frames { 1 c 1 , . . . ,  e r c,.}  with e 1 E{ —  1, 1}. Then, since f  is K-invariant,
Lemma 3.3 implies that F  is of the form

F (A1, Ar) = F  OW ,

for some polynomial F o . L e t  a  be an  arbitrary permutation of r letters. Then,
Corollary 3.2 and the K-invariance of f  say that the polynomial F ,  is invariant
under a. Hence, there is a polynomial P  of r  variables such that

(3.8)f (  E /L c.) = P( E ••• E • • E
m = 1 m=1 m = 1 m = 1

Now, consider the polynomial function

R (v) : = f (v ) —  P(fi(v), • • . , f r (v)) ( y e V R),

where f i  a re  defined by (3.6). W e have R e Pol(V R )K . L e t  ye V be arbitrary and
consider its spectral decomposition : y = L I

=  o ui di . If the tripotent d :=  rj! = i d;  is
not maximal, then choose a tripotent d' e V 0 (d), the Peirce 0-space of d, so that

:= d + d' is a m axim al tripotent. Anyhow, the spectral decomposition is refined
as y  =  Ern, =  Am en, w ith  a  frame {d7, d }  and  0  • • • Ar. Then, by
L e m m a  3 .3 ,  th e r e  is  k e K  s u c h  t h a t  kdm

°  =  cm  f o r  all m .  H e n c e  kv

= L.= T h is  to g e th e r  w ith  (3 .7 )  a n d  (3 .8 )  y ie ld s  R = 0. S i n c e  the
polynomials E„,24, (1 j  r)  are algebraically independent a s  is well known, so
are f  1 , ,  f r by (3.7). •

W e now make G  act o n  9  x  VI' by

(3.9) g • (z , w):= (gz, (d g )* w )  ( z  e ,  w e V).

Let Pol(V R  X  V T  b e  th e  algebra of polynomial functions on V R  x  V R whose
restrictions to  g  x V R  are invariant under the action of G defined by (3.9). We
will define an injective mapping of Pol(V R )K  in to  Pol(V R x  V R )G .

Let f ;  e Pol(V R )K  b e  a s  in  (3 .6 ) and  recall tha t B (z , z ) i s  positive definite
hermitian for z  e 9.

Proposition 3 3 . For each j (1 j  r ) ,  there is a unique polynomial function
pi  e Pol(VR  x  V R )G  such that

(3.10) fi(B(z, z) 1 1 2 y) = pi (z, y) ( z  E g ,  y e V).

Moreover, these p;  are  given as

(3.11) Pi(z, 1.)) = ((Q(v)B(z, B (z , z )v )o (j = 1, 2, ...).

Remark 3.6. It is interesting to show directly that the right hand side of (3.11)
is real. B y (1.3), this is clear if j  is  o d d . T o  se e  the case j  =  2m, we note
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B(z, z)(Q(v)B(z, z)) 2 "1 - 1 v

= (Q(B(z, z)v)Q(v))'" - 1 Q(B(z, z)v)v (by (1.10))

= (Q(B(z, z)v)Q(v))'" ((B(z, z)v)Dv)B(z, z)v

= ((B(z, z)v) E v)(Q(B(z, z)v)Q(v))"1 - 1 B (z , z )v  (by (1.4)).

Hence, we get

(1Q 00(z , z))2 "1 -  v, B(z, z)v)o

= (02(B(z, z)v)Q(v)r - 1  B(z, z)v, (v E B(z, z)v)v)o

= ((Q(B(z, z)v)Q(v)r B(z, z)v, Q(v)B(z, z)v)o

= ((Q(v)B(z, z)) 2 m-  v, B(z, z)v) 0( b y  (1.3), (1.10)).

Proof  of Proposition 3.5. Since g  is open in V, the uniqueness is clear. L e t
z e g and v e V . Since B(z, z) 1 1 2  e Str V, we have

(3.12) Q(B(z5 .0 1120  _  B ( z ,Q ( v ) B ( z ,  z
)

lz

Then, by (3.6), (3.3) and (3.12), we get

f i(B(z, z) 1 1 2 v) = (Q(B(z, wiz v y -  B (2 ., z)112v, B(z, z) 1 /2 v)0

= (B(z, z) 1 1 2 (Q(v)B(z, z))j -  v, B(z, z) 1 1 2 v)0

= p i (z, v).

Hence, it remains to prove that pi  a re  G -invarian t. F o r this, we need the
following lemma.

Lemma 3 .7 .  I f  g e G , then dz g e H  f o r all  z e g ,  w here H  i s  the  identity
component o f  Str V.

P ro o f . Let us write g  as g = k g, with keK , y  eV  and g , as in Proposition
2.2. B y  c h a in  r u le ,  i t  s u f f ic e s  to  s h o w  L em m a 3 .7  f o r  g  = k  a n d  gv

separately. Suppose g = k e K . T hen, k  i s  C-linear, s o  th a t  dz k = k  fo r  all
z e  g .  Therefore, dzk e K  c H .  Let g = g„ e exp p. Then, P roposition 2.2 (2) says
tha t dz g„ e H .  •

L e t  u s  r e tu r n  to  t h e  p ro o f o f P roposition  3.5. L e t  g e G ,  z e g  and
v e V . Since H  is  stable under  T — T * ,  Lem m a 3.7 yields

12((dz9) * =  (dg)*

This together with (1.9) completes the proof. •

Proposition 3.8. The mapping Poi( VR )K  f  Of, where

f(z, v):= f(B(z, z) 1 1 2 v) ( z e  g ,  v e V)
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defines an injection of  Pol(V R)  into Pol (VR x  VR )G

P ro o f . The injectivity follows from f ( v )  = f ( 0 ,  v ) .  If  f  ePol(V R )K ,  then
write f  as a polynomial of f 1 , ,  f r by Theorem  3.4. Then, Of is a polynomial of
Pi'..., p r in  P ro p o s it in  3 .5 . •

We establish the surjectivity of f -  O f  in  the  next section.

§ 4 .  G-invariant differential operators on g

Let T * ( g )  g  x V R be  the cotangent bundle of g  with the natural G-action :

(4.1) g • (z, w) = (gz, (dz g)* -  1 w) (g e G, z  e g , w e  V).

If L e C "(g x  V R ) and if V R n w 1—■ L(z, w) is polynomial for each fixed z e g ,  then
we associate a  differential operator L(x, 010x) with the property that

(4.2) L (x , iax)e<x4> = L(x, y)e<" )  ( x  E ,  y e  VR ),

where <x, y> := Re (x, y) 0 . In  this way, one obtains every differential operator on
g  with coefficients in C(g).

T h e  differential operator L(x, 010x) o n  g  is  s a id  to  b e  G-invariant, i f  it
commutes with the G-action :

gL (x , 10x)g -  =  L(x, 0/0x) for all g e G .

It is easy to see that the differential operator L(x, a/Ox) is G-invariant if and only if
the corresponding function L is invariant under the G-action defined by (4.1):

(4.3) L(gz, (d z g)* - w ) = L (z , w ) (z  e g, w e V R ).

Proposition 4.1. Let L(z , w) b e  C  in z eg and poly nom ial in we V ". I f  L
satisfies (4.3), then there is a poly nom ial P of  r variables such that

L(z, w) = P(p,(z, w), p,.(z, w)) ( z  E g, w e  V"),

where p i ePol(V R  x  V R )G  are as in Proposition 3.5.

P ro o f . Set /(w):= L(0, w). Since every element of K  is  a  unitary operator,
we have (d k)* =  k  for all z e g  and k e K .  Hence (4.3) implies / e Pol(VR )K . B y
Theorem 3.4, there is a polynomial P  of r  variables such that

1(w) = 13 ( f  (w), , fr(w)) (w e V").

Now, let z E g .  Considering the spectral decomposition (1.5) of z, we see that
there is y e V such that z  =  ta n h  y . Let g , be as in Proposition 2.2. Then, g v • 0
= tanh y = z  and

(4.4) dog, = B(z, z) 1 1 2 .

By virtue of the G-invariance (4.3) of L , we get
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L(z, w) = L(g v . 0, ((lo gy )*  '(d o gy )*w)

= L(0, B(z, z) 1 I2 w) = 1(B(z, z) 112 w) (by (4.4))

= P(fi(B(z , z ) 112 w), , f r (B(z, z) 112 w))

= 13 (13 1(z, w), Pr(z, w)). •

Since g  is sym m etric , w e know  that th e  algebra D(g) G  of G -invariant
differential operators o n  g  is commutative. Put

Di  = p i (x , 0/0x ) (j = 1, 2, ... , r).

By Proposition 3.5, we have pi e Pol (V ' x V R)G . Hence

Di  e D(g) G ( j  =  1 ,  2, ... , r).

L em m a 4.2. D , . . . . . D  are algebraically independent.

P ro o f . For any polynomial q(x i , ,  x r ) of r variables x 1 , ,  x „  we call the
degree o f  q(x 1, ..... x) t h e  weight o f  q. L et now  q  b e  a polynom ial of r
variables such that q(D i , . . . ,  =  0. Suppose the weight of q  is m .  We denote
b y  ch, th e  sum  o f  th e  monomials in  q  o f weight p. Then, q = = 0  qw  L e t
t e R .  Since y  p i (x, y) is homogeneous of degree 2j, (4.2) yields

D j e <x,ty> 2ip i (x, y)e<"Y> .

Then, we get

q0 (D i , , Dr )e<x4 Y>

= e ( "Y> [( 21`qm (p i (x, Pr(x, y)) + lower order terms in  t].

Hence

q(D i ,..., D r )e ( "Y )

e <x,ty> 2mLt qm(Pi(x, , Pr(x, Y)) + lower order terms in  t].

so  that q(D i ,..., D r ) = 0  leads us to

1 d 2m
q„,(p,(x, y), , p,.(x, y)) = 

( 2 m ) !  c l t 2 m

e-<"Y ) q(D i , Dr )e‹"Y )  = 0

for a ll x, y. Putting x = 0, we obtain

qm(f i(Y), , fr(y)) = qm(Pi(0 , /),(0, Y)) = O.

This implies q„, = 0  by Theorem 3.4, whence q = 0. •

We now arrive at tw o main theorems by virtue of Propositions 4.1, 3.8 and
Lemma 4.2.

Theorem 4 .3 .  D 1 , ,  D r form algebraically independent generators of D(g)G.
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Theorem 4.4. For every f ePol(V R )K ,  put

f (x, y):= f (B(x, x)" y) (x e g, YE V).

Then, 0  defines an algebra isomorphism of Pol (1/R )  onto Pol (V R  x  V R )G .
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