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§0. Introduction

In this paper we shall consider the Schrodinger operator with a penetrable
wall potential in R® formally of the form

Hformal =—4+ Q(x)5(|x| - a),

where g(x) is real and smooth on S, = {x; [x| = a} (a > 0) and 6 denotes the one-
dimensional delta function. This operator is said to provide a simple model for
the a-decay (Petzold [15]). Other applications may be found in the references
cited in Antoine-Gesztesy-Shabani [3]. Dolph-McLeod-Thoe [5] treated this
operator (g(x) = const.) with concern for the analytic continuation of the scattering
matrix, yet at the formal level.

The first problem one meets is to define properly H .., as a selfadjoint
opertor in L,(R?). For this purpose, let us consider the quadratic form h (which is
associated with H ;a1

h[u’ U] = (Hformal u, U) = (Vuv Vl)) + (CIW, 70),,,
Dom[h] = H(R3).

Here y is the trace operator from H!(R®) to L,(S,), Dom[h] denotes the form
domain of h, ( , ) means the L,(R3) inner product, ( , ), the L,(S,) inner product,
and H™(G) the Sobolev space of order m over G. h is shown to be a lower
semibounded closed form, and thus determines a lower semibounded selfadjoint
operator H. More precisely, H is seen to be the negative Laplacian with the
boundary condition

0 0
g () (x) - {—an" () + = (x)}|sn -0,
. -

where n,(n_) denotes the outward (inward) normal to §,. We should note here
that while h is a “small” perturbation of h,, which is defined by

ho[u, v] = (Vu, Vv), Dom[hy] = H*(R?),
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via an infinitesimally h,-bounded form, H — H, is not H,-bounded, where H, =
— 4, Dom(H,) = H*(R3), is the selfadjoint operator associated with hy,. We shall
adopt this operator H as the rigorous selfadjoint realization of the formal
expression H ;y,my. Antoine et al. [3] defined the Hamiltonians corresponding to
Hjpma as the selfadjoint extensions of (— dlcemas,)” making use of the
decomposition of L,(R?) with respect to angular momenta. Here C§(G) denotes
the set of all infinitely continuously differentiable functions with compact support
in G and ~ means the closure.

After having determined the proper selfadjoint operator H corresponding to
H > We take interest in the spectral structure of H. It can be seen that the
nagative part of the spectrum of H consists of a finite number of eigenvalues of
finite multiplicity (Theorem 6.5). Further, we can show the difference of the
resolvents of H and H, is a compact operator, which implies that the essential
spectrum of H coincides with the interval [0, c0). A most interesting problem in
the spectral theory for H is that of absolute continuity. Namely, let E(-) be the
spectral measure associated with H. Then the problem is: Is H restricted to
E((0, ©))L,(R?® an absolutely continuous operator? This problem is
affirmatively answered by making use of the so-called limiting absorption
principle. Our limiting absorption principle for H states that the resolvent (H
— z)~! can be extended to a B(L5(R?), L; *(R*))-valued continuous function of z on
I1\(s,(H)U{0}) when s > 1/2. Here IT is the complex plane with the upper and
lower edges of (0, c0) distinguished such that the upper (lower) edge is the
boundary points from above (below) (see Kuroda [11, Appendix to Chap. IV]), and
o,(H) denotes the point spectrum of H, B(X, Y) the Banach space of bounded
linear operators on X to Y, and L$(R?) the weighted L, space defined by

L5(R?) = {u(x); (1 + |x[***u(x)e L,(R*)}

with the norm |ulo = (1 + 122 ul| (Ju) = lullgo is the usual L,-norm).
Let us recall some notions from scattering theory. In the situation described
above the wave operators W, interwining the pair (H, H,), defined as

W, = strong limit ¢"H ¢~ iHo,
t—>t oo

are shown to exist and to be complete. Thus, let us define the generalized Fourier
transform &, by
F, = FW%,

where & is the ordinary Fourier Transform defined by

(Fu)(&) =(2m)~>"? J e~ ¥ u(x)dx,
R3
and * means adjoint. Then, with the aid of the limiting absorption principle for H
we can construct the distorted plane waves ¢, (x, £) which are the integral kernels
of %, and satisfy the following Lippmann-Schwinger equation
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et L[ 6 Bas
PL(x, &) = i), oyl 100s0n 04,

On the other hand, let A, 4,,--- be the nonpositive eigenvalues of H (counting
multiplicity) and ¢,(x), @,(x), -+ the corresponding normalized eigenfunctions of
H. Then we have the following eigenfunction expansion formula

u(x) = ). (4, 9,)9,(x) + l.i-m-(Zn)_mJ de(F L u) () (x, &),
R3
where Li.m. means limit in the mean.

We shall outline here the contents of the present paper. In §1 we shall define
the proper selfadjoint operator H corresponding to H,,,, and characterize the
domain of H. §2 will be devoted to studying some integral operators connected
with the resolvent of H. The second resolvent equation for H and H, will be
discussed in §3. The existense and completeness of the wave operators will be
shown in §4. In §5 we shall investigate the spectrum of H. An upper bound on
the total number of the bound states of H will be given in §6. In §7 we shall
show the limiting absorption principle for H, and in §8 the eigenfunction
expansion theorem concerning H.

Part of the results obtained here has been announced in LNM 1285, 211-214
(ed. I. W. Knowles and Y. Saitd). Also, a detailed discussion of the scattering
matrices will be given elsewhere by one of the authors (S.S.).

§1. The Schrodinger operator H
Throughout the paper we shall make the following assumption.
Assumption 1.1. ¢(x) is a real-valued, smooth function on §,.

For a rigorous definition of the Schodinger operator H .., We need some
lemmas concerning the trace operators.

Lemma 1.2. Let y, and y_ be the trace operators from H'({x: |x| > a}) and
H'({x; |x| < a}), respectively, to L,(S,). Let ue H'(R®). Then y, u=y_u.

Proof. Since ue H'(R% and CZ(R?) is dense in H'(R3) we can choose a
sequence {u,} = C¥(R?) such that u,—»u in H'(R? as n— oo. Since y, are
bounded operators from H!(R3) to L,(S,) (see, e.g. Mizohata [13, Chap. II]),
respectively, there exists a constant C such that

(1.1) lys flla < C||f||H'(¢x;|x|za;) for fEHl({x§ |x| 2 a})s

where |ull, = /(u4, u),. In view of (y.u,)(x) = (y_u,)(x) = (u,|s,)(x) for each n, we
have by (1.1)
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(1.2) lysu—y_ull, <Cllu—u, ||H‘((x;|x|>a)) + Cllu— “n||Hl(|x;|x|<a))

< 2C||Ll —u, I'H‘(R3)‘
Letting n tend to oo in (1.2), we obtain that y,u=1y_u. Q.E.D.

By the above lemma, we can define the trace operator y from H!(R?3) to L,(S,)
by yu =y, u(=7y_u) for ue H'(R3).

Lemma 1.3. Let u belong to H'(R®). Then we have for any ¢ >0

1
(1.3) ||)’u||3S8||V“||2+;||u||2~

(14) lyull, < /allVul.

Proof. Since C¥(R?®) is dense in H!(R?) and y is a bounded operator from
H(R?) to L,(S,), it suffices to prove the lemma for ue C¥(R?®. Let ue C3(R?)
and ¢ > 0. Using the inequality 2|p-q| < ¢|p|*> + ¢~ !|q|?, we have for any weS?
(the unit sphere of R3)

(1.5) |u(aw)|* = — 2Re J‘w g—:(rw) u(rw) dr

= (rw)

dr-l-a IJ lu(rew)|? dr

a

P2
prl (rw

0 r2
dr +e! — lu(row)|*dr.
e

Multiplying both sides of (1.5) by a? and integrating with respect to w over the unit

(1.5

sphere S? yield
0
(1.6) J Iu(x)IZdSXSBJ o
S. |x|2a 6

¥

2

(x)

dx+£"f lu(x)|? dx
|x|=2a

2
+ &7 lu?

<é||l=

< |Pu(x)|. To prove (1.4), we have by Schwarz’

2 0 Y
dr )
< — r
a r a

0
(1.3) follows from (1.6) and a—l:(x)

inequality

2

a_u (rw)dr Ou

or

(17 Ju(aw)? = ‘ - J

a

2

Thus we have
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2 2

8
dx <a| 2| <a|vul?.

ou
= (%) 5

(1.8) J lu(x)|*dS, < aj
S |x|2a ar

a

Q.E.D.

Now we are in a position to define a selfadjoint operator corresponding to
Homa in a rigorous way. Consider the quadratic form

(1.9) hlu, v] = Vu, Vv) + (qyu, yv),, Dom[h] = H'(R?).

Since ¢ is bounded on S, by Assumption 1.1, it follows from Lemma 1.1 that h is a
symmetric, lower semibounded, closed form. Therefore, by Kato [9, Chap. VI,
Theorem 2.1] we have the following

Theorem 1.4. Let h be the quadratic form defined by (1.9). Then there exists a
unique selfadjoint operator H such that

(1.10) Dom(H) € Dom[h], (Hu, v) = h[u, v] for ue Dom(H) and ve Dom [h].
We adopt this operator H as the Schrodinger operator corresponding to

H,pma stated in the Introduction.

Theorem 1.5. Let A = min q(x). Then

xeSa
(1.11) H> — A2,

Moreover, we have

1
(1.12) H>0 for _ESA
and
4 2 1
(1.13) H>—5(@A+1) for ——-<A<—-.
a a a

Proof. By Theorem 1.4 we have for any ue Dom(H)

(1.14) (Hu, u) = [Vul? + J q(x)| yu(x)|* dS,
N

a

> |[Ful? + Allyull2.

1
IfA>— 7 (1.12) follows immediately from (1.14) and (1.4) of Lemma 1.3. Let us

2 1 ..
assume that — 2 <A< - P Rewriting (1.14), we have

2 2
1.15 Hu,u) > |Vu|?— Al — + 1 2+ A2+ — z.
(1.15) (Hu, ) > | Vull <Aa+ >||7u||a+ < +Aa>llwlla
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By Lemma 1.3 <putting £ =g in (1.3)), we have

2
(1.16) (Hu, u) > |Ful|*> — A<— + 1>a |Pul?
Aa
2 a 2
A2+ — )| = 24 = 2
+ ( +Aa><z“‘7“” +a”"“>
4
=p(aA + 1) )ul?.

This implies (1.13). To complete the proof, we have only to show that (1.11) holds

1
when 4 < 0. In this case, (1.11) follows from (1.14) and Lemma 1.3 with ¢ = — R

Remark 1.6. The above theorem implies that H has no negative eigenvalues

1 . 1 L
ifA>— p On the other hand, if 4 < — ’ H can have negative eigenvalues. In

1
fact, let g(x) = V, (constant) such that V, < — 2 Then it is seen that H has a
negative eigenvalue — A2 (1 > 0), where 4 is the unique solution of the equation
1 —e 24 . . o1
L _Z anda corresponding eigenfunction is — (e ~*!I*I7al — g~ 4(xI+a))
A Vo [x]
(see Dolph et al. [S, pp. 326-327], and cf. Theorem 5.3 below).

Now, we shall characterize the domain of H.

Theorem 1.7. ue Dom(H) if and only if
ue H' (R, ue H*({x; |x| < a}), ue H*({x; |x| > a}) and

(1.17)
ou Ju
q(x)(yu)(x) — {M (%) + g_—(x)} s, = 0.
In this case, Hu = — Au in the distribution sense and u is continuous on R3.

3 3
Remark 1.8. Strictly speaking, —uls (x) denotes Y {ny, e >y 6—“ (x),
8ni “ ji=1 6_)(]-
where e; = (1,0, 0), e, = (0, 1, 0), e; = (0, 0, 1) and {x, y) means the scalar product

of the vectors x and y.

Proof of the theorem. First let ue Dom(H). ue H'(R® is deirect from
Theorem 1.4. Now, by Theorem 1.4 we have for any ve CJ({x; |x| < a})

(1.18) f (Hu)(x) v(x) dx = h[u, v] = f (Fu)(x) (Fo)(x) dx
|x]<a

|x|<a
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= — j u(x)(4v)(x)dx,
|x|<a

where and in the sequel it is understood that all derivatives are taken in the
distribution sense. (1.18) implies that Hu = — Au in {x; |x| < a} and ue H*({x; |x|
< a}) (see the note added in proof). Similarly, Hu = — 4u in {x;|x| > a} and

. 0
ue H*({x; |x| > a}). Therefore, it makes sense to speak of a—u|sa. Thus, by
UE

Theorem 1.4 and Green’s Theorem (see e.g. Mizohata [13, Chap. III, §8]) we
obtain for any ve C(R3)

(1.19) (Hu, v) = h[u, v] = J Vu)(x) (P v)(x)dx

|x|<a
+ J (Vu)(x) (Fo)(x)dx + (qyu, yv),
|x|>a

= — jx|<a(du)(x) v(x) dx — (%‘j Is.0 yv)a

— 0
- J (du)(x) ¥() dx — (5“— 5. yv) + (qyu. o,
|x|>a U a

ou ou
=(— du, v) + <qyu — {am, + m} Is.» Vv>a,

and, since ue H*({x; |x| # a}) and Hu = — Au as shown above,

0 0
<qvu —{ “ ¥ %}lsu, yv)a =0 for any ve CP(R3).

on,

Since {yv = vls,; veCF(R?) is dense in L,(S,), we have

"y 6u+8u o =0
v on, on_| S

We have thus shown (1.17).
Conversely, let u verify (1.17). Define weL,(R®) by w= — du (except on
S,). Then, for any ve Dom(H), we have, as we got (1.19),

(1.20) (Hv, u) = h[v, u] = (V'v, Vu) + (qyv, yu),
ou du
= (v, — du) + (yv, qyu — {an— + 5'1——} |sa>
+ - a
= (v, w)

This implies that ue Dom(H*) = Dom (H).
Finally, let ueDom(H). By what has been shown above, we have
ue H*({x; |x| < a}), ueH*({x;|x|>a}) and ueH'(R*. Thus, according to
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Calder6n’s extension theorem (e.g. Agmon [1, p.171, Theorem 11.12]), there exist
u;, u,€ H*(R? such that

(Uy ] xsxi<a))(X) = u(x)  for ae. x in {x;|x| <a},
(1.21)

(Uz] (xjxy>a))(X) = u(x)  for ae. x in {x;[x|> a).
Since ue H*(R3), we have in view of Lemma 1.2
(122) y—(ull(x;|x|<a)) =yu= y+(u2|(x;|x[>a))'

On the other hand, Sobolev’s lemma (e.g. Reed-Simon [18, p.32, Theorem 3.9])
implies that u, and u, are continuous on R*. Hence we have by (1.22)

(123) (ul l {x;|x|=a) )(X) = y—(ul | {x;]x| <a) )(X)
= y+(u2l(x;|x|>a) )(x) = (u2| {x;|x|=a} )(x) on Sa‘
From (1.21) and (1.23), it follows that u is continuous on R3. Q.E.D.

§2. Preliminary lemmas

We shall introduce the following integral operators T, and T, depending on a
complex parameter x defined by

1 ix|x—y|
(T)x) = — EJ li _— a)f(y)dS, (xeR?
S, ”

and

1 eiklx—yl

(TN = af(y)ds, (xeS,).

E salx_yl

Before studying the properties of T, and T,, we shall state some
lemmas. First, by direct computation using polar coordinates, we have

Lemma 2.1. Let (e C. Then we have for any xe R

et 2na _

I m dSy = m(ecwﬂxl) — ¢bla lel) ¢ #0),
S

2.1) “

1 2na
f s, =P Xl —la—IxI) (C=0).
s, [x =yl x|

Lemma 2.2. There exists a constant C such that for any x, ye€S,,

1
(22 J ——————dS, < C(1 + |log|x — yll),
s, X —zllz =yl

1
(23) llog|z — y[ldS. < C,
S, |x - Zl
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and for any xeR3, 0<r<3 and r+s>3

C
(1 + |x|)r+s—3 (S < 3)
dy Clog(1 + |x)) _
24 j X ra AP S] ey Y
C
(————1 T Ixl (s> 3).

For the proof, see e.g. Kellogg [10, pp.301-303] or Kuroda [12, p. 162].

Lemma 23. Let Imk >0. Then T, is a Hilbert-Schmidt operator from
L,(S,) to L,(R3).

Proof. Put b=Imxk. We compute the Hilbert-Schmidt norm of T,.

4n Tl s. = J

N

—2b|x—y|

2n
2 _ 2
dSyLJdXIq(y)I o = lali< oo,

a

from which follows the assertion. Q.ED.
Lemma 24. Let keC. Then T, is a compact operator from L,(S,) to itself.

Proof. Define the integral operator G by

eixlx—yl

(fo)f)(x) = - J X(yeSu;|x—y|>e) (.V)

N

a

44 Q(Y)f(y')dsy (xeSa’ £> 0)’
nx — yl

where y,(x) denotes the characteristic function of the set 4. Since we have

j ds.ds,
S.xS,

a

eixlx—yl 2

X (veSaslx—y>e) (V) q(y)

4n|x — y|

e2|lmx|a 2
< < maxlq(y)l) (4na?)? < + o,
4ne  yeSa

G® is a Hilbert-Schmidt, and a fortiori, compact operator from L,(S,) to itself for
each ¢ > 0. To prove the lemma, we have only to show that G converges to T,
in the operator norm topology when ¢|0. In fact, using Schwarz' inequality we
have for any fe L,(S,) and xe€S§,

2

25)  1(GYf)x) — (TP < <I olmxllx =l

San {yilx—yl<e}

( | ( )|)2 (J' el'mkllx—YI y ellmkllx—yl ,
< (max |4(y __s><f__ ds>
T s temsteer A =y P\ anlx =y [ f)I7 S,

eltmxllx ]

u P — Lf()I*dS, (if e <a/2),

dnix —y lay)l If(y)IdSy>

< (max|q(y)))? el £ f
yeSa 2 s
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where we have used the equality

1 a
20 J ————dS, = 5— (e — |a — [x]])
5.0 (vilx—ylse) 4n|x — yl 2| x|

if xeR3, |a—|x|| <e&<a/2. Integrating the both sides of (2.5) over S, yields by
Lemma 2.1 and Fubini’s theorem

~ £
2.7) 1GEf — T fl2 < (r:le:gXIq(y)I)2 e‘“"""iez“"“""allfllf-
From (2.7), the claim follows immediately. Q.ED.

Define the Fourier transform Fs, on L,(S,) by

(2.8) (Fs. &) = 2m) ™2 J e “*f(x)dS, ((eR?).

N

a

Then, as is well known (e.g. Mochizuki [14, p.16]), we have

Proposition 2.5. Let s > 1/2. Then F, is a bounded operator from L,(S,) to
L;S(R3), ie. there exists a constant C such that

(2.9) [#s.flo,-s < Clfla for any feL,(S,).

Lemma 2.6. Let Imx > 0. Then T, is a bounded operator from L,(S,) to
H(R3).

Proof. For any fe L,(S,) we have by Fubini’s theorem
eixlx—yl

(2.10) (FTN)E) = — j 4n|x —yl

N

dSy‘I(Y)f(y)(Zn)‘mf dx e €%
( .

—igy
= — (@m0 f S, 5z A0S 0)

a

1
= (Zs. (@),

1g1? — «?

where we used (2.8) and the fact that

211 _ eixl- =yl ){ _ Qn)- 2 e icy
(2.11) J(m()—(n 2 — 2

Take s such that 1/2 <s < 1. Then, by Proposition 2.5 we can estimate the H'-
norm || T, f |y of T, f as follows.
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212) TSl = J dé(1 + 1EI(F TN

R3
2

=J de(1 + |¢1%)
R3

{(1 + P
[E12 — w2
{(1 +1EP)
1E17 — K22
{(1 +1E7

—1
o (Fs, (af))()

<sup
&eR3

} J (1 + |1E1)*I(Fs, @M

= sup
EeR3

}‘Ilf,,(fIf)llé,-s

< sup

ZeR3 ||é|2 - ’\'2|2

}CZ {max g0} 1/ 12,
which implies the required result. Q.ED.

By the above lemma, yT, (Imk > 0) is a well-defined bounded operator from
L,(S,) to itself. Furthermore, we have

Lemma 2.7. Let Imk >0. Then yT, = T,.

Proof. Since yT, and T, are bounded operators on L,(S,) and the set of
continuous functions on S, is dense in L,(S,), it suffices to prove that yT, = T, on
this set. Assume that f is continuous on S,. Then it follows in a standard way
(e.g. Colton-Kress [4, p.47, Theorem 2.12]) that (T, f)(x) is continuous on R3. On
the other hand, we have for a.e.xeS§,

(vTL/U(X)==£§2(71f)(y) (v approaches x along n.).

Therefore, (yT, f)(x) = (T, f)(x) = (T, f)(x) for a.e. xeS,. Thus the lemma has been
proven. Q.E.D.

Lemma 28. Let ke C. Then (T,)? is a Hilbert-Schmidt operator from L,(S,)
to itself.

Proof. The kernel of (T,)? is
< 1 >2J eirllx—zl+]z =y
. dS, ——————q(2)q(y).
an) ) Crix—zllz—y T
Introducing polar coordinates, we have by Lemma 2.2

f ds.ds,
S.xS,

< Ballm] (mgx |q(z)|)4f

S,%S,

2

ixllx=z] +|z=3])
J as. T i)
s, Ix—zllz—yl

2
dedSy<J. dsz--—l—————>
s, Clx—zllz—yl

a
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< ™ (max | g(2))* f dS,dS,C*(1 + [log|x — y|[)2 < + oo,

S.xS

a”Pa

which proves the lemma. Q.E.D.

Lemma 2.9. Let s> 1/2. Then T, is a B(L,(S,), L;*(R%))-valued continuous
Sfunction of k for Imk > 0.

Proof. For any feL,(S,), we consider the difference

1 piklx =yl _ gix’lx =yl

(2.13) (T)x) = (T )x) = Lﬂ ds, =l 4 f(y).
In view of the inequality
(2.14) |eiklx =yl gilx=|

< |k — K'|F|x — ke #mr+Imilx =yl o

x (e~Imrlx=yl 4o mImkix=yhIH (0 <y <),
we have
@19) (TN — (T < Sl = K maxa() L,dSy r,cl_f%

Taking u such that 0 < g < min(s — 1/2, 1), we get by Schwarz’' inequality and
Fubini’s theorem

(2.16) I Tf — T f113,—s
217k 2 VIR
2\—s - 1 -

SLadx(l + |x1%) ( el x|“l}ljslflq(y)|> <L“dSy x— i "

21 ’ 2-
s( |K—K’|“max|q(y)|> dx(1 + |x]*)"° x

4n yeSa R

XJ ds _ j as,|f(yI?
S, Y|x_yl2—2u Sq Y Y

21—;1 2
=< IK—K’I“maXIq(yN) X
yeSa

4n
X dsS d ! Ifi2
x .
P e A U B

(2.16) together with Lemma 2.2, (2.4) yields the required result. Q.E.D.

Lemma 2.10. T, is a B(L,(S,))-valued continuous function of k in C.

Proof. Using (2.15) (u = 1), we have for feL,(S,) and x€eS,.
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(2.18) (TN = (T )

K — K eZa(IlmK|+|lmK’|) 2 2
o (e maxla) (| as,1s01)
T yeSa s,

Integrating the both sides of (2.18) over S, and making use of Schwarz' inequality,
we obtain

(2.19) I Tf =T 12
K — K e2a(||mx|+|lmx’|) 2
o (Bl max a0 ) (47 111,
U yeSa
which completes the proof. Q.E.D.

Lemma 2.11. Let ke C and let ue L,(S,). Then, for any we CT(R3) we have

(2.20) J (Tu)(x)(— 4 — k)w(x)dx = — J q(x)u(x)w(x)dS,.
R3 s

a

If Imk >0, (2.20) holds for any weS, where & = F(R3) denotes the set of
Sfunctions which together with all their derivatives fall off faster than the inverse of
any polynomial.

Proof. By Fubini’s theorem we have for we C3(R?)

(2.21) J (Tuw)(x)(— 4 — k*)w(x)dx
R3

eixlx—-yl 5
= - L ds,q(y)u(y) J;p dx m(— 4 — k*)w(x).

a

On the other hand, we have by Green’s theorem

ix|x—y|
2.22) f dx & (— 4 — K)Pw(x) = dnw(y)
R3 |x - .V|
for we C(R3). The first part of the lemma follows immediately from (2.21) and
(2.22). The proof of the second half is similar. Q.E.D.

Lemma 2.12. Let Imk > 0. Suppose that u is a non-trivial solution of the
homogeneous equation u = T.u in L,(S,). Then v = T,u is a non-trivial eigenvector
of H corresponding to eigenvalue k. Conversely, if v is a non-zero eigenvector of H
corresponding to eigenvalue k2, yv is a non-zero vector in L,(S,) and satisfies the
equation yv = T,(yv).

Proof. Assume that ueL,(S,), u# 0 and u = T,u. By Lemma 2.11, we have
for any we CQ(R?3)
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(2.23) J (Ta)(x)(— 4 — k) w(x)dx = — '[ q(x)u(x) w(x) dS..

N

Since v = T,u belongs to H!(R?) by Lemma 2.6 and hence yv = yT,u = T.u = u by
Lemma 2.7, we have on integration by parts

(2.24) Vv, Pw) — k*(v, w) + (qyv, yw), =0 for any we CZ(R?)

Since CJ(R?) is dense in H'(R?), C$(R?) is a form core of h by Kato [9, Chap. VI,
Theorem 1.21] and Lemma 1.3. So we have by (2.24)

h[v, w] = k*(v, w) for any we H'(R3).
Therefore, we obtain by Theorem 1.4
(v, (H—k*)w) =0 for any we Dom(H),

which implies that ve Dom(H) and (H — x*)v =0. If v =0, we have by Lemma

~

27 u= T =yT.u=yv =0, which is a contradiction. Thus v is non-trivial, and
is an eigenvector with eigenvalue 2.

Conversely, let v verify that ve Dom(H), v#0 and (H — k®v =0. Since
ve H'(R®) by Theorem 1.7 and hence yve L,(S,), we have by Theorem 1.4.

(2.25) Vo, Pw) — k2(v, w) + (qyv, yw),
= hlv, w] — k%(v, w) = (H — k%o, w)
=0 for any we H'(R?).

On the other hand, as we got (2.24) from (2.23), we obtain by Lemma 2.11 and in
view of yve L,(S,) for any we ¥

(2.26) (7 (Teyv), Vw) — k2 (Tyv, w) + (gyv, yw), = 0,
(note that T.(yv)e H'(R®) by Lemma 2.6). Therefore, from (2.25) and (2.26) it
follws that
(2.27) W(T.yv — v), Vw) — k3(T,yo — v, w) =0 for any we¥.
By Parseval’s identity we can rewrite (2.27) as
(2.28) (F(Tyv—v), (|- —kHFw)=0 for any we¥.
Put w(x) = ﬁ"(%ﬁ)(x) for he&. Since w belongs to &, we obtain by
(2.28)
(F(T,yp —v), ) =0 for any he ¥,
and hence

(2.29) T.yo —v =0 in L,(R?).
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If yo =0, v = 0 by (2.29), which is a contradiction. Thus yv is a non-zero vector
and yv = yT,(yv) = T,(yv) by (2.29). We have thus completed the proof of the
lemma. Q.E.D.

Lemma 2.13. Let Imk > 0. Then
(2.30) T¥ = — qyRo(K?),
which maps from L,(R®) to L,(S,).

Proof. By Fubini’s theorem we have for ue L,(S,) and ve L,(R3)
(231 (Tu, v)

_] m _ -
_ f ix <H J s, H"@)“‘y’> o)
R3 S,
—R)|x—y|
= J dS,u(y) < 4w ~ v(x)>
sa

= (u, — qyRy(K*)v),,

where we have used the reality and boundedness of g and (yR,(z)v)(x)

= (Ro(2)v)|s,(x)e L,(S,) for z&[0, o) as is seen by Sobolev’s lemma in view of
Ran(Ry(z)) = H*(R®). The lemma follows from (2.31) immediately. Q.E.D.
Define the integral operators T and T with a complex parameter x by
TW -1 ds e R3
( K f)(X)__“'?“b ylx f(y (xe )
and
N 1 r eixlx ]
(TS fHx) =—— y ﬁf()’) (xeS$,).

vSs,

We remark that if g(x) = 1, then T, = T{") and T, = TW, respectively.
Lemma 2.14. Let ke C. Then

(232) (To* = qT%%,

which maps from L,(S,) to itself.

Proof. By Fubini’s theorem we have for u, ve L,(S,)

- —1 ix|x—y|
(Tou, v), = Lu ds, (F L ds, |e J q( )M(J’)> v(x)

q(y) ei(=Plx—yl )
= j dS (y)( 4n J;,u de m U(X)

= (ua qT —Ev)a’




234 Teruo lkebe and Shin-ichi Shimada

from which follows the assertion. Q.E.D.

§3. The resolvent equation

In this section, we shall study the resolvent R(z) of H. As remarked in the
proof of Lemma 2.13, yR,(z) is a bounded operator from L,(R?) to L,(S,). More
precisely, combining Lemmas 2.3 and 2.13 (g(x) = 1), we have

Lemma 3.1. Let z&§[0, o0). Then yRy(2) is a Hilbert-Schmidt operator from
L,(R?) to L,(S,).

Theorem 3.2. Let zep(H)Np(H,), where p denotes the resolvent set. Then
yR(z) is a bounded operator from L,(R®) to L,(S,) and the following resolvent
equation holds:

(3.1 R(2) — Ro(2) = Tz7R(2),

where and in the sequel, by \/; is meant the branch of the square root of z with
Im./z>0.

Proof. To prove the first part of the theorem, we have only to show that R(z)
is a bounded operator from L,(R%) to H'(R3). From Theorem 1.4, it follows that
Ran R(z) = Dom(H) = H'(R®) and Dom(R(z)) = L,(R®). Let {u,} be such that for
some ueL,(R* and ve H'(R?), u,—>u in L,(R*) and R(z)u, —» v in H'(R?) as n
— o0. Then, since R(z) is a bounded operator from L,(R3) to itself, we have

R(2)u = lim R(z)u, =v in L,(R3),

n—+ o

and hence R(z) is a closed operator from L,(R%) to H'(R®). Therefore, from the
closed graph theorem it follows that R(z) belongs to B(L,(R®), H'(R?)).

Finally, let us show the resolvent equation. Let wueDom(H) and
ve Dom(H,). In view of Theorem 1.4 and Dom(H,) = H?*(R?), we have

(3.2) ((H — z)u, v) = h[u, v] — (u, 2v) = (u, (Ho — 2)v) + (qy1, Y0)a,
and hence, on putting u = R(z)¢ and v = Ry(2)Y = Ry(z)*y, we obtain
(3.3) (Ro(2), ¥) = (R(2)o. ¥) + (q7R(2)@, YRo(DY)a

= (R@2)¢ — Tz7R(2)9, ¥),

where we have used Lemma 2.13. The required resolvent equation follows from
(3.3) immediately. Q.E.D.

§4. The wave operators

The wave operators W, which intertwine H and H, are defined as
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W, = strong limit " e~ *Ho,

t—t o

if they exist. In this section we shall prove the following

Theorem 4.1. W, exist and are complete.

The proof of the above theorem will be given after proving the next
Lemma 4.2. yR(— b?) is a Hilbert-Schmidt operator from L,(R>) to L,(S,) for
a sufficiently large b > 0.

Proof. On operating y from left on the resolvent equation (3.1) (z = — b?), we
have, using Lemma 2.7,

(4.1) (1 = T,)yR(= b?) = yRo(— b?).

If we show that 1 — T;, has a bounded inverse for a suitable b > 0, the the lemma
follows, for yR,(— b?) is a Hilbert-Schmidt operator by Lemma 3.1. Using
Schwarz' inequality, Fubini’s theorem and Lemma 2.1, we have for any ue L,(S,)

2
@2) N Tuli= J ds,
N

a

1 2 e~ 2blx lu(y)I?
< {-—max ds,| dS,———| 4dS
<4n yeSa lq(y)l) fsa Js“ Y lx —yl s, " x =yl
1 2 n - lu(y)|?
=(— S, = (1 —e %9 | ds,
(4n r;;gfltl()})l) L s, (1 —e )L Yyl
(L maxiaon) Et = ety [ as, ez | as, —
“\an s ) s Y s lx—yl

_ 2 @ . _aaw 2
—(ryegflq(y)l) 4b(l e ") lullz.

e ~blx—vl
j ds, TX—M q(y)u(y)
s

a

Therefore, we obtain

43 T TR o
4.3) [ ibIIS(rynegj(lq(y)l) E( —e )} ,

and hence, the operator norm of T;, is less than unity for sufficiently large b > 0,
which makes possible the Neumann series inversion of 1 — T;,. Q.E.D.

Proof of Theorem 4.1. 1t is known that the wave operators exist and are
complete if the difference of the resolvents is a trace-class operator (Kato [9,
Chap. X, Theorem 4.8]). On the other hand, as is well known, an operator is in
the trace-class if and only if it is a product of two Hilbert-Schmidt operators (e.g.
Kato [9, p.521]). Thus, from Lemma 2.3, Theorem 3.2 and Lemma 4.2 it follows
that R(z) — Ry(z) is in the trace-class. The proof is now complete. Q.E.D.
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§5. The spectrum of H

As is mentioned in the previous section, the difference of the resolvents of H
and H, is a trace-class operator (see the proof of Theorem 4.1). Thus, concerning
the essential spectrum o,,(H) of H, we have by Weyl’s theorem (e.g. Reed-Simon
[19, p.112, Theorem XIII. 14])

Theorem 5.1. o,,(H) = g,,(H,) = [0, ).
As to the point sectrum of H, we get the following result.
Theorem 5.2. o ,(H)n(0, ) = ¢.

Proof. Assume that 1 > 0, (H — A)u = 0 and ue Dom(H). By Theorem 1.7 u
satisfies

(5.1 4+ Au(x)=0 in {x;|x|<a}u{x;|x|>a}.
In view of Mizohata [13, Chap. VIII, Lemma 8.4], we have
(5.2) u(x)=0 in {x;|x| > a}.

Thus it follows from (5.2) and Theorem 1.7 that

0
(53) =5, (x) = uls,(x) = 0.
Now let us define i(x) by
Lo Julx) x| <a
54 alx) = { 0 |x| > a.

Then, for any ¢e CP(R?), we have by (5.1), (5.3) and Green’s theorem

J‘ i(x)(4 + Ao(x)dx = J
R3

|x|<a

u(x)4ep(x)dx + Aj u(x)p(x)dx

|x|<a
= j (4 + ADu(x)e(x)dx =0,
|x|<a

which implies

(5.5) (4 + Aii(x) =0 in R3.

Operating the Fourier transform on the both sides of (5.5), we have
(2 — 1E)(Fa) &) = 0.

Since Fiie L,(R?, we obtain #ii =0, and hence

(5.6) i(x) =0 for ae. xeR3.

Therefore, from (5.2), (5.4) and (5.6) it follows that
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u(x) =0 in L,(R®. Q.E.D.

In contrast to the above theorem the point 0 may or may not belong to
o,(H). If q is constant on S,, however, we get the following criterion.

Theorem 5.3. Let q(x) = V, (constant). Then Oea,(H) if and only if there
exists a positive integer n such that aVy+2n+1=0. In this case, the
corresponding eigenspace is spanned by the vecotors v(|x|)Yy (m= —n, —n
+ 1,..., n), where

") r' r<a
or) = R
aZn+1r n—1 r>a

and Y'(n=0,1,...,m= —n, —n+ 1,..., n) denote the spherical harmonics which
provide a basis for L,(S?) (S* the unit sphere in R?).

Proof. (cf. Colton-Kress [4, pp. 78-79])
Suppose that Hu = 0 and ue Dom(H). By Theorem 1.7 we have

(5.7) du(x) =0 in {x;|x| <a}u{x;|x| > a}.

Thus u(x) is a C®-function in the above region by Weyl’s lemma (e.g. Reed-Simon
[18, p.53]). Let (r, 0, ¢) denote the spherical coordinates with r = |x|. For each
fixed r we can expand u in a uniformly convergent series

] k
ux) =3 Y v YO, ),
k=0m=—k

where

2n (*n
Vem(r) = f J u(r, 8, ) Y0, ¢)sinf dbdeo.
o Jo

Since ue C* ({x; |x| # a}), we can differentiate under the integral and integrate by
parts using du = 0 to conclude that v, is a solution of the following equation

d? 2d k(k + 1)

D S Uy — ——a—
dr2 ™ m o dr r?

Ugm = 0,
which has a fundamental system of solutions r* and r~*~'. Since v,,, is bounded
near zero and belongs to L,(0, o0); r?dr) by Theorem 1.7, v,,, has the form
Voo(r) = 0go (r<a), =0 (r> a),
L™ (r <a)
= >

where «,,, and f,,, are constants. In view of Theorem 1.7, v,,, is continuous at r
= a and satisfies the boundary condition

d
Vobin(a) + (E vk".)(a -0 - (di vkm)(a +0)=0,
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where f(a + 0) denotes lim f(a + ¢). Therefore, o, and f,, satisfy the following
el0

equations
%90 = 0,
oma* 1t = B (@Vo + 2k + Doy, =0 (k> 1),
from which the required result follows immediately. Q.E.D.

§6. Bound states of H
Let us define the quadratic form h, depending on a real parameter ¢t by
(6.1) h,[u, v] = Vu, Vv) + t(qyu, yv),,
Dom[h] = H'(R®).

The form h, can be seen to be lower semibounded and closed in exactly the same
way as for h (¢t =1). Therefore, Theorem 1.4 applies to h,. We denote the
corresponding unique selfadjoint operator by H, (H, = H (see §1)). Putforn =1,
2,--- and teR,

(6.2) u,(t)y = sup inf min(h,[u], 0),
Plyes@n-1 ueHY (R3)N[oy,..., @n-1]+
vjeL2(R3) flull =1

where h,[u] = h,[u, u] and [, ¢,...., @,_,]* is short hand for {u; (u, @;) =0, j
=1,2,...,n—1}. Then our min-max principle will read as follows:

Lemma 6.1. Ler n and teR be fixed. Then, either (a) 0= p,(t) = p,+(t)
= W, . ,(t) = - and there are at most n — 1 eigenvalues of H, (counting multiplicity),
or (b) there are n eigenvalues of H, (counting multiplicity) and p,(t) is the n-th
negative eigenvalue of H, (counting multiplicity) from below.

Proof. (cf. Reed-Simon [19, p.76, Theorem XIIL. 1])
Let E,(-) be the spectral measure for H,. First let us show
(6.3) dim [Ran(E,((— o0, @)))] < n if o < p,(t)
(6.4) dim[Ran(E,((— o0, ®)))] = n if o> p,(t)
Here we remark that p,(t) is finite for each te R and
(6.5) Ran(E,((— o0, o)) € Dom(H) (< HY(R?) if « < + o0,

because of the fact that H, is bounded from below by Theorem 1.5.

Suppose that (6.3) is false. Then, for any ¢,, ¢,,..., ¢,_, we can find u such
that ue Ran(E,((— o, 2))N[@,, @5, ..., .-, 1* and, by (6.5), (Hu,u) <alul?
By Theorem 1.4, this implies that
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inf min(h,[u], 0) < «
ueHl(R3)nﬁ¢h,¢zl.,,,.wn -1
e

for any @, @,,..., @, 1€ L,(R%), and hence p,(r) < a, which is a contradiction.
This proves (6.3).

Since p,(t) < 0 and Theorrem 5.1 holds, we have only to prove (6.4) when pu,(t)
<o <0. Thus, suppose that (6.4) is false when u,(t) <« <0. Then we can find
©1, ©2,..., @,—; such that L. h.{¢,, ¢,,..., ¢,_;} = Ran(E,((— oo, ))), where
L.h.A denotes the subspace spanned by A. Since any ue[¢,, ¢,,..., ®,_,1*n
Dom(H,) is in Ran(E([a, o0))), we have by Theorem 1.4, h,[u] = (H,u, u) > o | ul%
Since Dom(H,) is a form core for h, (e.g. Reed-Simon [17,p.281]), it follows that

h[ul > x|ul®> for any uelo,, ¢z ..., 9,— ;] NH'(R?).
Therefore, noting that « < 0, we obtain

inf min (h,[u], 0)

uef@1,02,,, ,on-111NH'(R3)
Jull =1

= inf h[u] = .
uel@1,02,,, ,0n- H]th‘(Rs)
ull =

lull

and hence p,(t) > a, which is a contradiction. This proves (6.4).
First, suppose that

(6.6) dim[Ran(E,((— o0, u,(t) + &)1 = o0 for all &> 0.

Then the situation (a) holds. In fact, by (6.3) we have
dim [Ran(E,((— oo, p,(t) — &)))] <n for all £ >0,

and hence

dim [ Ran (E,([us(t) — & p,(t) + €)1 = oo for all ¢ > 0.
This implies that
6.7) U () ET.(H,).
Since p,(t) <0 and o,,(H,) = [0, o) by Theorem 5.1, it follows that w,(t) = 0. If
Hn+1(t) > p,(t), we have by putting o = 3(1,+1(t) + (1)) (<ptas1(1)) in (6.3)

dim [Ran (E((— 00, 3t +1(0) + )] <1+ 1,

which contradicts (6.6). Thus, noting that pu,,,(t) > p,(t), we obtain pu,(t)
= pt,+,(t)---. Finally, if there are n eigenvalues strictly below yx,(t) and 4 is the n-
th eigenvalue, we have
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. 1
dim [Ran (E,(( — oo, 5(#..(1) + )] = n,

which contradicts (6.3) (x = $(u,(t) + ) < u,(t)). Thus it is seen that there are at
most n — 1 eigenvalues of H,.
Next, assume that (6.6) fails, i.e., for some ¢, > 0

(6.8) dim [Ran (E,(( — o0, u,(t) + &)))] < + 0.

Then the situation (b) arises. In fact, we have by (6.3) an (6.4)
(6.9) dim [Ran (E,((u,(t) — & p,(t) + €))] =1 for any ¢ > 0.
On the other hand, (6.8) implies

(6.10) dim [Ran (E,((t,(t) — €9, ta(t) + &0)))] < + o0.

Thus it follows from (6.9) an (6.10) that u,(t) is a discrete eigenvalue of H,. Take o
> 0 such that (u,(t) — 8, u,(t) + 6)na(H,) = {u,(t)}. Then we have by (6.4)

dim [Ran (E((— oo, p,(t)]))]
= dim [Ran (E,(( — o0, u,(t) + 6)))] = n.

Thus there exist at least n eigenvalues of H,: 4, <1, <--- <4, <p(t). If 2
< u,(t), we have by putting a = 3(u,(t) + 4,) (<u,(t)) in (6.3)

n

n< d,m [Ran(E,(( — o0, ln]))]
< dim[Ran(E,((— o0, ®)))] < n,

which is a contradiction. Therefore, 4, = u,(t), i.e. w,(t) is the n-th eigenvalue of
H,. The lemma has now been proven. Q.E.D.

Lemma 6.2. For each n, u,(t) is monotone nonincreasing in t on [0, ).

Proof. Since min(h,[u], 0) is monotone nonincreasing in ¢t on [0, co), the
required result follows immediately. Q.E.D.

Lemma 6.3. For each n, u,(t) is continuous in t on R.

Proof. (cf. Simon [21, p.71, Theorem II.33])
For each ue H*(R3) with |u| = 1, we put

f(t w) = min (h,[u], 0).

If we show that {f(-; u); ue H'(R®. |lu| = 1} is equicontinuous, the conclusion
follows.

Given tyeR', we have by Lemma 1.3 (¢ = [2(m§x|q(x)| + (|t + DHI7H

I7ull +

max |g(x)|
6.11 u, yu),| < max|q(x)|-|yullZ <
(6.11) [(qyu, yu),| max [q(x)]- [l yull 2max g + D(zal + 1)
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+ 2(max|q(x)|) (max |g(x)| + D (|to] + Dul> < m I7ull? + by,

where we put b, = 2(max|q(x)| + 1)*(|to| + 1). Suppose that h,[u] < 0 for some ¢
such that |t — ty| < 1. Then we have

S5 u)=h[ul = [Vul? + tigyu, yu), <0,
which implies

(6.12) IVull® < — t(qyu, yu)a < [tll(gyu, yu)al < (Ito] + DI(gyu, yu),.
Therefore, from (6.11) and (6.12) it follows that

1
[(qyu, yu),| < 2 [(qyu, yu),| + by,

and hence
(6.13) l(qyu, yu).| < 2b,,
if h[u] <0 for some t such that |t —¢t,] < 1.
Now, for given ¢ > 0, let 6 = min <§—8; 1). Let |t —ty| < 6. If h[u] <0 or
h,[u] <0, then we have by (6.13)
LS w) — fto: Wl < [h[u] — b [ull <1t — toll(qyu, yu),| < é-2b,, <.

The above inequality is trivially satisfied if h[u] >0 and h, [u] >0. We have
thus obtained the required equicontinuity. Q.E.D.

Lemma 6.4. For each n, p,(t) is strictly monotone decreasing on [t;, + o0)
once pu,(ty) <0 for some t; > 0.

Proof. Let t, be such that E = pu,(t;) <0 and t; > 0. Assume that there
exists t, such that ¢, <t, and p,(t,) = u,(t;) = E <0. Then, for any te[t,, t,],
Un(t) = E holds by Lemma 6.2. Therefore, by Lemma 6.1 we can find u, for each
te[t,, t,] which satisfies

(6.14) u,e Dom(H,), u, # 0 and (H, — E)u, = 0.
In view of Lemma 2.12, we have
(6.15) =t Tiy=glyu) and yu, # 0 in L,(S,).

This implies that for every te[t,, t,] t~' is an eigenvalue of T,,—z which is a
contradiction, for T; = is a compact operator by Lemma 2.4. Therefore, we must
have the lemma in view of Lemma 6.2. Q.E.D.

Now, as an analogue of the Birman-Schwinger bound (e.g. Reed-Simon
[19, p.98, Theorem XIII. 10]), we shall give a bound on the total numbr of bound
states of H. Let E <0 and define N(E) by
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N(E) = #{n; p,(1) < E},
where #4 denotes the cardinality of the set A. Then we have the following
Theorem 6.5. Let E <0. Then
(6.16) N(E) < |(Tu=) 5. < M < + oo,

where M is a constant independent of E <O0. In particular, the total number of
negative eigenvalues of H is finite.

Proof. Since u,(0) = 0 for every n and pu,(t) is continuous by Lemma 6.3, it
follows from the intermediate value theorem and Lemma 6.4 that yu,(1) < E if and
only if p,(t) = E for exactly one te(0, 1). Using Lemma 2.12 repeatedly, it is seen
that ¢~ 2 satisfying the equation p,(t) = E is an eigenvalue of (T,,=z)>. Further,
since (7}¢_—E)2 is a Hilbert-Schmidt operator by Lemma 2.8, we have

N(E) = #{n; p,(t) = E  for some t€(0, 1)}

< Y t*
{te(0,1);ux(t)=E,k=1,2,...,N(E)}

t_4

IA

{1e(0,1);u(t) =E,k=1,2,...}

(4

IA

(1e(0,1);1 2 is an eigenvalue of (Tiy=E)?)

< [(Tiy=5) liis.

< Cz(maslxlq(z)|)4j dS.dS,(1 + |log|x — y[)) = M < + o,
#60a S,xS,

where C is a constant which is independent of E (see the proof of Lemma
2.8). The above inequality shows the theorem. Q.E.D.

§7. The limiting absorption principle for H
In this section we shall prove the limiting absorption principle for H.

Theorem 7.1. Let s > 3. Then R(z) can be extended to a B(L5(R3), L; *(R?))-
valued continuous function of z on IT\(c,(H)U{0}).

Proof. Let us recall the resolvent equation

(7.1) R(z) — Ro(2) = T zyR(2).

If we assume that (1 — T;) ! exists, we have on operating y from left on the both
sides of (7.1) and solving for R(z),

(7.2) R(z) = Ro(z) + Tyz(1 — T/2) " '7R,(2)
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for zep(H)np(H,). Here we have used Lemma 2.7. By Lemma 29 T, is a
B(L,(S,), L; 5(R3))-valued continuous function of z on Imﬁ >0ifs>1/2. Thus

(T, 9* is a B(L5(R?), L,(S,))-valued continuous function of z on Im./z >0 if s
> 1/2. On the other hand, we have by Lemma 2.13 (q(x) = 1)

YRo(z) = — (TY*  if Im/Z > 0.

Thus, since T, = T® if g(x) = 1, yRy(z) can be extended to a B(L5(R?), L,(S,))-
valued continuous function of z on IT if s > 1/2. Therefore, in view of the well-
known limiting absorption principle for H, (see e.g. Agmon [2]), the proof of the
above theorem is reduced to the next

Lemma 7.2. Let zeIl\(o,(H)U{0}). Then (1 — T,5)™ ! exists and belongs to
B(L,(S,)). In this case, (1 — 71,,—)‘1 is a B(L,(S,))-valued continuous function of z
on IT\(c,(H)U{0}), where B(X) denotes B(X, X).

We will show this lemma after proving a series of lemmas. First, we have by
Lemma 2.12

Lemma 7.3. Let Im./z > 0. Then leap(TJ;) if and only if zeo,(H).

Lemma 74. Let (€ C and let ueL,(S,) satisfy the homogeneous equation u
= TZu in L,(S,). Then u is bounded on S§,.

Proof. Let k(x, y) be the integral kernel of (72)3. It follows from Lemma 2.2
that k(x, y) is bounded on S, x S,. Thus we have by Schwarz’ inequality

|u(x)| = (T u(x)| =

J dsS k(x, y)u(y)
S,

< sup |k(x,y)lj dS,lu(y)|
S

(x,)€SuxSa

a

< sup  |k(x, y)l(@dna®)? flul, < + oo,
(x)eSuxSa

which proves the lemma. Q.E.D.

Lemma 7.5. Under the conditions of Lemma 7.4 u(x) is Holder continuous on
Proof. We consider the difference

4n [x — yl

1 | | |
ey - PLE St w(v)dS
4n L“ (lx -yl Ix = y|> q(y)u(y)ds,

=J1+J2.

-1 iClx—yl _ LiClx"—y|
(1.3) u(x)—u(x')=—f T yu(y)ds,
S,
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We shall estimate J, and J, as follows. Considering the inequality
|eiC|x—yI _ eiCIx’—y|| <|{||lx — x'|ellmC||x—x’l,

we have for x, x'€S§,

1 1
74 J) < —A|l]]x — x'|e2altml
(7.4) 431 € = AlLllx = xle L a8,

= Aa|{]e2™|x — x|,
where A = sup|q(y)u(y)] < + oo by Assumption 1.1, Lemma 7.4 and Lemma
2.1. We prgcéed to estimate J,. In view of the inequality

1 1 ‘ [x — x|
- ’ S ’ ?
Ix =yl IxX'=yl| = [x=yllx" =yl

we have for x, x'€S,

1

1
7.5 | J,] < —Aez““"‘g'lx - X/lf _
(7.3) | < 4 X =l =l

N

ds
! 2a|lm{] ' '

< — Ae®™HC | x — X'|(1 + |log]|x — x'|]),
4n

where we used Lemma 2.2. The conclusion follows from (7.3), (7.4) and (7.5).
Q.E.D.

Lemma 7.6. Let peR and ueL,(S,). Put U(x)=(Tu)(x). Then U(x) has
the following asymptotic behavior

— 1 eiixl

Sll

. 1
eV q(y)u(y)ds, + 0<—2>
[x]

as |x| = oo, where w, denotes the unit vector with the direction of x. Further, U(x)
satisfies the following radiation condition

ou 1
(7.7 m(x) —ipU(x) = 0<W> as |x| - + 0.

Proof. 1In view of the relation

inlx—yl
¢ — ! eiplxl —inoxy +inlxing 4 2 eimlx =yl

Ix —yl Ix] [x]

1 .
+ |—x—|7a)x-ye”‘"‘_y' (xeR3, |y| <R < + ),

where #n, and n, are real valued functions satisfying 5, =0<|y—|>, and 7,

x|



Schrédinger operators 245

_ 0<I|—xy|_|2> when |x| - + oo (see e.g. Ikebe [6, p.11]), we have

— 1 e+lxl

Ux)=— e~ =Y g(y)u(y)dS
x| Jg

1 einlxl . ]
I Tipoxy (o-inlxim _
an Ixl ), e (e )a(y)u(y)ds,

1 1 .
_ iplx—y|
an ] ), nye q(y)u(y)ds,

11 .
- . iulx—y|
an P L Wy ye q(y)u(y)ds,

— 1 el o
=T g ), ¢ A0S, + 1t 1+ Iy,

I, (i=1,2,3) are estimated as follows:

1 .
|, |<—max|q(y)||—l—J le=#=m — 1] |u(y)|dS,

1 a
< 4, max Iq(y)lI J CIuIIXIWIu(y)IdSy

 const.
< Ix |2J lu(y)| dS,

const.
—W”u”a»
const. const.
Ll < 5l 1] < 55 Nul

These estimates prove (7.6).

Let us show (7.7). By differentiation under the integral sign, we have

78 Y- iU

0] x|
iu einlx=yl <|x|2 —xy )
an -1 u(y)ds
4n La [x —y| \Ux||x — y] q(y)u(y)ds,

! X2 =Xy e
) i £ OO
sﬂ

=J1+J2.

Considering |y| = a, we have
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e (n(z) o)

as |x| = + oo, and hence

1 [x]2 —x-y ) (1)
—1)=0(—5).
|x — yl <IXI|x =yl |x|?

Ix|> — x-y ( 1 >
Lad NS A, ) as |x| - + 0.
Ix||x — y[? x>

Therefore, we have

const. const.
. < — as, < —=- ,
(7.9 [ Jyl < xP L lu(y)|dS, P llull,
const.

Jol £ 5 llull,-
l 2| |x|2 || ”a

Thus (7.7) follows from (7.8) and (7.9) immediately. Q.E.D.

Lemma 7.7. Let ue R\{0} and let ue L,(S,) satisfy u = T,u in Ly(S,). Then,
for an aribitrary unit vector w we have

(7.10) f e " q(y)u(y)ds, = 0.
S,

a

Proof. Put U(x) = (T,u)(x). Since u(x) is continuous on S, by Lemma 7.5, U(x)
is continuous on R? (see e.g. Colton-Kress [4, p.47, Theorem 2.12]), and hence

(7.11) (U ls.)(x) = u(x).

On the other hand, by Lemma 2.11 ((T,u)(x) = U(x)), U(x) satisfies the reduced
wave equation

(7.12) 4+ pHU(x)=0 on {x;|x| <a}u{x;|x|>a}.

ou
Further, ——?(x) can be continuously extended from {x; x| < a} to {x; |x| < a}

and from {x+ x| > a} to {x;|x| > a} with the limiting values

ouU (1) 1
(7.13) <an ) (x) = irzq(x)u(x)+ W(x) (xeS,),

respectively. Here

—1 0 iplx—y|
W(x)=—— j ( > <e )q( Yu(y)dS, (the integral exists as an improper
4n ) \On, ’ |x — y|

(%)
(x) are the limits of v
on, on,

from {x;|x|>a} and {x:|x| < a}, respectively, that is,

integral) and

)(x) obtained by approaching S,
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oU M . ou
() - i (2o

-)
ad (x) = lim ou (y), xe8§,
on, y—x \On,

[yl <a

(see e.g. Colton-Kress [4, p.47]). Using (7.12), (7.13) and Green's theorem, we
have

~

(7.14) 0=| {d+PUK UK - @+ p)UR) Ux)}dx
J|x|<a
= {AU)x)U(x) — (4U)(x) U(x)} dx

Vx| <a

" oU ) _ oU \(7)
- {<6n+> (x)U(x)—<6n+> (x)U(x)}dS,

vS,

= | WUKX - WX UK)S,,

JS,

where we have used the fact that p and q(x) are real-valued. Similarly, for any b
such that b > a we have

(7.15) 0= f {4+ 1)U TR — (@ + )UK UK} dx
a<|x|<b

. f {(w )m(x)U(x) —(aU )W(x) U(x)}dsx
s, on, on,
oU — oU
; L,, {( - )(x)um - ( é,n+)(>c) U(x)}dsx

S f (W(x)U(x) — W(x)U(x))dS,
S,

ou — ou
+ Lb {<6n+ )(x) U(x) — <6n+>(x) U(x)} ds,.

Thus we obtain by (7.14) and (7.15)

(7.16) f {(w )(x)u‘o?)— ( aU)(x) U(x)}dsﬁo,
xl=b on, on,
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for any b such that b >a. Once Lemma 7.6 and (7.16) are shown, an argument

similar to Povzner [16, Chap. II, Lemma 5] gives

(7.17) J e "q(y)(Uls,)(y)dS, =0 (weS?),
S

a

which implies (7.10) by (7.11). Q.E.D.
Lemma 7.8. Let A > 0 and let ue L,(S,) satisfy u = T/mu (or u= TJW u)
in Ly(S,). Then u=0 in Ly(S,).
Proof. Put U(x) = (T z750u)(x) (= T,zu)(x)). Then, by Lemmas 7.6, 7.7 and
2.11, we have

4+ AHU(x)=0 on {x;|x|>a}, U(x)=0<|—xi|5> as |x| - + .

Thus, in view of Mizohata [13, Chap. VIII §5, Lemma 8.4], we have
Ux)=0 on {x;|x|>a}.
Since U(x) is continuous on R3 as mentioned in the proof of Lemma 7.7, we obtain
Uix)=0 on {x;]|x| >a},
and hence
u(x) = (Uls,)(x) = 0.
Similarly, the case that u = T‘/mu can be proven. Q.E.D.

We are now in a position to make use of the Fredholm-Riesz theory of
compact operators in a Hilbert space, according to which, if T is a compact
operator in a Hilbert space X, 1 — T is injective if and only if (1 — 7)™ ! exists and
belongs to B(X) (see e.g. Riesz-Nagy [20, Chap. IV]). Thus, by Lemmas 2.4, 7.3
and 7.8 we have the following

Lemma 7.9. Ler zeIl\(o,(H)U{0}). Then (1 — '73,—)‘1 exists and belongs to
B(L(S,)).

Lemma 7.10. (1 — 7’\/2—)_1 is a B(L,(S,))-valued continuous function of z on
I\(o,(H)U {0}).

Proof. The conclusion follows from Lemma 2.10 and the standard estimate
=T = =Tz

1T — Tzl (= Tyz) 7t
T ITz=TzI10 - Tz Q.E.D.

The above two lemmas imply Lemma 7.2. Therefore, Theorem 7.1 has now
been proven.
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Once the limiting absorption principle for H is established, the absolute
continuity of H on (0, o) readily follows from the same argument as Ikebe-Saito
[8]. Thus we have the following

Theorem 7.11. E((0, 00))H is an absolutely continuous operator, where E(-) is
the spectral measure associated with H.

§8. Eigenfunction expansions

We shall proceed to show the eigenfunction expansion theorem. Our method
is based on Kuroda [12] and lIkebe [6, 7].
We shall start with a well-known formula.

Lemma 8.1. Letr s > 3. Suppose that ue Ly(R?) and Fve CP(R*\{0}). Then
we have

+ oo
@8.1) (4, We) = lim % J (R(A + ig)u, Ro(A + ig)v)dA.

For the proof, see e.g. Kuroda [11, §5.4].
Lemma 8.2. Let s> 3. Suppose that ueL$(R®) and Fve CP(R3\{0}) such
that supp Fvc {&;a < | < B} (0<a<pP). Then we have
B
(8.2) (4. Wyo) = lim % J (R(A + ig)u, Ro(A + ig)v)dA.

Here supp means support.
Proof. (cf. Kuroda [12, p.151, Proposition 5.12]) Let J = R\[a, f]. By

Lemma 8.1 we have only to show

8.3) lim % j (R(A + ig)u, Ry + ie)o)di = 0.
¢ J

By Schwarz’ inequality we have

% J (R(A + ie)u, Ry(A + i) v)dl’
J

e 12 /¢ 1/2
< (—J IR(4 + ie)ullzd/l) (—J [ Ro(4 i8)0||2d1>
Tty TJy

=1,(e)"2 - I(e)""2.

Thus, to prove (8.3) it is sufficient to show
(8.4) lcllrg I,(e) =0,

(8.5) I,(e) < |ul* for all £>0.
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Using the spectral representation for H,, we have

+ 1

(8.6) % | Ro(A £ ig)v||? = f d(Eo()v, v),

€
e T (= A+

where Eq(-) denotes the spectral measure associated with H,. Using the fact that
H, is an absolutely continuous operator, we have

% IRo(A + ig)o]|? = (P, * p)(d),

. d
where P,(u) = n(u_zs-ks_z)(the Poisson kernel), p(p)=(—l;(Eo(u)v, v) and * means
convolution. Further, p(x) belongs to L,(R') and p(u) =0 for aepueJ since
Eo(J)v =0. Thus we obtain

I(e) = J (P, * p)(A)dA = j ((pe* P)(A) — p(A))dA
J J

< |[P.*xp— P”Ll(nl) —0 as ¢|0,
which implies (8.4). Let us show (8.5). As we got (8.6), we have

+

Ii(e) = %J IR(A £ ie)ul|*di = J dij Py(u — A)d(E(w)u, u)
J J

+ + o
< J d(E(p)u, u)f Py(u — A)dA = |lu|?,
where we used Fubini’s theorem and the well-known properties of P,(u) that

+ o

P () >0 for all u and J P.(w)du = 1.

—

This implies (8.5). Q.E.D.

Let us define the generalized Fourier transform %, and the generalized
eigenfunctions ¢.(x, &) by

8.7) Fo=FWE,

(8.8) @1(x, &) =% + [THe(1 —qTHg) ™' (€ 91(x)

for (x, £)e R® x (R3\{0}), respectively. We should note here that by Lemmas 2.14
and 7.2 (1 — qT'%),) " exist and satisfy the relations

(8.9) (1—gTH) ' =101 = Ty '1*  for EeR3\{0}.

We also remark that ¢4 (x, &) are regarded as the generalized eigenfunctions of H
in the sense stated in Theorem 8.6. Further, they are seen to be the integral
kernels of &, by the following theorem.
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Theorem 8.3. For any ue L,(R®), &, have the form

(8.10) (FLu)(E) = Lim, (2n)'3/2J 04 (x, &) u(x)dx,
|x|sR

R—-+ o
where 1.i.m. means the limit in the mean.

Proof. Let ueCF(R?) and ve CF(R*\{0}) such that supp v = {x; a < |x|?
<p} 0<a<p). Using (8.7), Lemma 8.2 and (7.2), we have

8.11) (Fiu, v) = (u, W F*v)

B
- lilrg%f (Ro(A + ig)u, Ro(A + ie) F*v)dA
e [* -
+ lim 2 J (Turw(l — Trazm) "9Ro(4 + ighu, Ro(A + ie)F*v)dA

= lslfg Ji(e) + lelfg J,(e).

For the first term of the right hand side of (8.11), as is well known (see e.g. Kuroda
[12, p.54]), we have

8.12) leilrg Ji(e) = f dE(Fu)(&) v(x) = (Fu, v).

a<|g2<p

We shall consider the second term. In view of Parseval’s equality and (2.10), we
have

B.13)  (Tyge(l — Tyagm) ™ 'WRo(A + ig)u, Ro(A + ie)F *v)

1 = = _ . v
- (= i e = T R 0 )
— _ ! -3/2 —igy
= J;pd{{ T (2n) L“dSye q(y) x
v(8)

x [(1 — T\/;__i,?)_l'yRO('l + IE)U](_V)} m

v(¢)

= _ -3/2 -
@ Ladé(/l—|c|2>2+szx

X (1 = Tz " 'yRo(A £ ie)u, € g),.

Since ((1 — T35 'yRo(A + ig)u, e¥'q), are continuous in A and & on (o, B]

x [0, 1] by Lemmas 7.2, 2.9 with g(x) = 1 and the fact that yR(z) = — (T}d)*, we
have
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8.14 tim [ a2 1 | — T VYR (G + i), €€
( ) ) elf,(;l a ; ) W(( - x/l+i£) Y 0( T lS)u, e q)a

=((1 = Ty1) " "PR(IE? £ i0)u, €% q),,

where we have made use of the well-known relation

. 1
lmjﬂna——j?mﬂ

£l0 )?

_j0 ifa<aor f<a
f(a,0) fa<a<§p.

in which f(4, ¢) is a continuous function of (4, &) for (4, ¢)e[a, f] x [0, 1] (see e.g.
Titchmarsh [22, p.31]). Further, from (8.9) and the fact that yR,(z) = — (T)*, it
follws that

(815) (1= Ty "7Ro(1EI? + iO)u, q),
= (YRo(I¢]* + iO)u, (1 — %iél) He'€q)),

= _f dx u(x) [THe(1 — qTY) " (e 9)1(x),
R3

where we have used Fubini’s theorem in the last equality. Thus, making use of
Fubini’s theorem and the dominated convergence theorem, we see from (8.13),
(8.14) and (8.15) that

(8.16) lim J5(e)
=(2n)~? LJ(K(J‘Rde u(x) [THy(1 — gT )1 (€ q)](X)) b(&).
Now we have by (8.8), (8.11) (8.12) and (8.16)
(97114)(6)=(2ﬂ)_3/2j dx ¢4 (x, &u(x) for any ue C(RY).
.
Since C2(R?) is dense in L,(R?), the conclusion follows. QED.

To prove the continuity and boundedness of ¢ (x, £), we need the following
lemma.

Lemma 84. Let K be a compact set in R®. Let f(x, &) be a continuous
function of (x, {)eS, x K. Then (T}, f(-, &))(x) is bounded and continuous in
(x, &)e R® x K. In particular, ( T‘l{ﬂf , E)(x) is continuous in (x, £)eS, x K.

Proof. By Lemma 2.1 we have
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(Tl S é))(X)I<— pmax 1Sy, é)IL Py

a+|x|—la—|x||

a
2 > <a ma L),
20.desixk /09 x| @ Ok G )l

which proves the boundeness of (T'}, f(-, &)(x).

Let us show the continuity. Let us introduce the functions G%(x, &) with a
real parameter ¢ by

1 e iltlx=y]

GPx, &= —

4n S0 {yilx—yl>e) |x

f(y, )ds,,

(x, &)eR® x K, ¢ > 0. It is easily seen that for each & G%(x, &) is continuous in
(x, &) in R® x K. Further, G'(x, &) uniformly converges to (T¢], f(-, £)(x) when
¢10. In fact, we have for a sufficiently small ¢

|GR(x, &) — (T £+, )x)|

1
dr|x — y|

IA

max [ f(y, I

,&)eSax K
0-8)eSa S,0 {y;lx—ylse)

- a(e — a— |||

{()‘_é)esuxxlf(y, 9] 2]

0 if la—|x||>¢

if la—|x||<e

< —

< (y‘ggg}xxlf(y, Hle ife<a >
where we have used (2.6). Thus the continuity of (T{),f(-, &))(x) has been
proven. Since (T‘i‘fﬂf(-. Ox) = (T f(-, O)x) (xeS,), the assertion for
(THq /(. O)(x) holds. Q.E.D.

Theorem 8.5. ¢ (x, &) is continuous in (x, £)e R* x (R*\{0}) and bounded on
R® x K, where K is any compact set in R*\{0}.

Proof. Put Y, (x. &) = [(1 — gTH:) " (€€ @)1(x). Then ¥, (-, &) is an Ly(S,)-
valued continuous function of ¢ € R*\{0} by Lemma 7.2 and (8.9). If we show that
¥4 (x, &) is a continuous function of (x, £)eS, x K, the conclusion follows from
(8.8) and Lemma 8.4. Since ¥, (x, ¢) satisfy the equation

8.17) Va(x, &) = e q(x) + (qTH DY 1 (x, &),
we have, using (8.17) repeatedly,
(8.18) Va(x, &) = e¥7q(x) + [aTHy) (€% 9)(x)

+ [(@TH)* € P1(x) + [(aTH:)? (€ 9)1(x)
+ LT )* Y £ (-, EI(x)
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It follows from Lemma 8.4 that the first four terms of the right hand side of (8.18)
are continuous in (x, £{)eS, x K. Thus the proof of this theorem is reduced to
showing the continuity of [(¢T%):)*V (-, &1(x). Let Az (x, y,; &) be the integral
kernel of (qT‘;‘{é,)“. Then, in the same way as we proved Lemma 7.5, we can show
that #'z(x, y; &) is continuous in (x, y, &) on S, x S, x K. We consider the
difference

(8.19) [@TH)* ¥ 2 (-, O1) — [GTHeo)* ¥ 1 (-, €0)1(xo)

= J (A 5(x, 5 &) — H5(xo, y3s OW 1 (x, §)dS
Sll
+ f (A5 (x0, ¥: &) — H5(x0, ¥ E)W 1 (x, E)dS
Sa

+ j Kz (X0, Vi Co) £ (x, &) — W 1(x, &o))dS
S(l

=J1+J2+J3.

Ji(i =1,2,3) are estimated as follows:

(820) [/l <max|[Hz(x, y:¢) — Hx(xo, y; f)lj Y+ (y. OIdS,
YESa Sa

< max [ A 5 (x, y; &) — H(x0, y; E)(dma®)'* |4 (

||a’

|Jal < r;lg:ﬂ-%/x(xoa 3 &) — Hz(xo, ¥ E)l(@na®) 2 1Y (-, &) llus

| /3] < max| A (xo, y; Eo)l(@ma®)' 2 Y 4 (-, &) — Y1 (x, Eo)las

It follows from (8.19) and (8.20) that [(q ¢|)4Wi &)](x) is continuous in (x, ¢)
on S, x K. Thus the theorem follows. Q.E.D.

Theorem 8.6. Let e R*\{0}. Then ¢.(x, &) satisfy the followng equations

. 1 Filgllx -yl
—eitx | T . &)dS
(8.21) pi(x, &) =e 4“Lu ] 4@ +(y, €)dS,

(the Lippmann-Schwinger equation),

(8.22) J @1(x, O(— 4 —|€P)u(x)dx +

+ J q(x)@ 4 (x, E)o(x)dS, =0 for any ve CF(R?).
S

a

Proof. By (8.8) we have
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1 Filgllx—yl
B HJ e dWex O4S, = Tela@lex1s)( )
sn

= T (qe)(x) + TH(@THg (1 — aTHy) "' (ge*)(x)

= T, (ge*)(x) + T ([— (1 — qTHg) + 1101 + qTH) " (ge®))(x)
= THy((1 — qT(xlfﬂ)_l(qei{'))(x)
= @4(x, &) — e,

which implies (8.21). Let us show (8.22). In view of (8.21), ¢.(x, £) can be
written as

P1(x, &) =€ + (Tx (@ 15, (-, ©))(x),

Therefore, by Lemma 2.11 we have for any ve CJ(R?)

J @1(x, &)(— 4 — |&P)o(x)dx
R3
= J (@(x, &) — (= 4 — [&P)v(x)dx
R3
= f (Tz 199215, (s D))= 4 — [E*)o(x)dx
R3

_ f 4(x) 9+ (x. E)o(x)dS,.
S,

which implies (8.22). Q.E.D.

Theorem 8.7. %, are partially isometric operators with the domain E((0, c0))
L,(R®) and the range L,(R®). Further, , have the following properties: Let A be
any Borel set on R. Then,

(8.23) FLE(A) = 1 g102en Tt »

where x, denotes the operator of multiplication by the characteristic function of
A. In particular, if ue L,(R®), and « and B are such that 0 < a < B, then

(8.24) I E((e, B)ul? =J (F L u)(&)dE,
a<|E2<p

(8.25) E((a, B))u(x) = (27r)'3’zj (F:u) ()4 (x, E)dE.
a<|&2<p

Proof. First, let us recall the well-known relations
(8.26) FE(MF* = Y z122¢0) »
(8.27) E()W, = W, Eqo(A),
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where A is a Borel set on R (see e.g. Kuroda [12, §3.4, Theorem 2]). Putting A
= (0, o) in (8.27), we have

E((0, 00)) Wy = WLE((0, 00)) = Wy,
from which it follows that
Ran(W.) < E((0, 00)) L,(R).

On the other hand, it follows from Theorem 7.11 that E((0, 00))L,(R?) is included
in the absolute continuous subspace 2,.(H) of L,(R?) relative to H. Therefore, we
have by Theorem 4.1.

E((0, 0)) L,(R?) = X,.(H) = Ran(W,) < E((0, o)) L,(R?),
and hence
Ran(W,) = E((0, o)) L,(R>).

This implies that W, are partially isometric operators with the domain L,(R?3) and
the range E((0, ©0))L,(R?®). Thus, it follows from (8.7) that &, are partially
isometric operators with the domain in E((0, 00))L,(R?) and the range L,(R*). By
(8.7), (8.26) and (8.27) we have

FLE(A) = FWEEA) = FE(A)WX = FE(MF*FWE = 1 siei2en) Fs-
2

4) and (8.25). Since &, are partially

This proves (8.23). Let us show (8.
0, 00)) L,(R3), it follows that

isometric operators with domain E((
F17 4+ = E((0, ).
Therefore, we have by (8.23) (4 = (a, ) = (0, c0))
E(0 B) = F4 L (gacigr<m (O) P,
from which (8.24) and (8.25) follow immediately. Q.E.D.
We shall now proceed to the eigenfunction expansion theorem.

Theorem 8.8. Let Ay, A, -+ be the nonpositive eigenvalues of H (counting
multiplicity) and {@,, ¢,,---} a corresponding orthonormal system of eigenfunctions
of H, if any. Then, for any ueL,(R*) we have the following expansion formula

(8:28)  u(x) =) (4, @)p,(x) + Lim. (2n)'3’zj d(F . u)(O)e+(x, &).
" 20t a<lgl<p

Further, ue Dom(H) if and only if |-|*#,ueL,(R®. In this case, we have the
following representation of H

(829)  Hu(x) =) 4,(u, @,),(x) + }52} (27r)'3’2f dS(F +u) (O +(x, ).
n At a<|g|<p

Sfor ue Dom(H).
Proof. According to Theorem 5.1 E((— oo, 0]) L,(R% is spanned by



Schrédinger operators 257
{@1, @3,---}. Therefore, we have for any ueL,(R>)

(8.30) u(x) = Z(u ) Pu(x) + nzr: E((a, B))u(x).

(8.28) follows from (8.30) and Theorem 8.7, (8.25). Using Theorem 8.7, (8.24), we
have

(8.31) J 12d||E(/1)u||2=f I I(F L w) (@) dE.
(] R3

On the other hand, it follows from Theorem 6.5 that

8.32) E((— o, 0]) L,(R*) = Dom(H).
Thus, we have by (8.31) and (8.32)

(8.33) Dom(H) = {u; ue L,(R?), |- |*F . ueL,(R%}.

Finally, let us show (8.29). From the “intertwining” relation W, H, c HW, (see
e.g. Kuroda [11, §3.4]) and (8.33), it follows that

(8.34) F.H=|1F,.

Therefore, if we replace u by Hu in (8.28), (8.29) follows rom (8.34) and the fact that
(Hu, ¢,) = A,(u, ¢,). Thus the theorem has been proven. Q.E.D.

Added in proof. The proof of the assertion ue H*(R3\S,) is incomplete. But
this can be proven by the standard argument for showing the global regularity for
solutions to elliptic boundary-value problems (see e.g. Mizohata [13, Chap 3, §12])
if one takes into account the already known facts that dueL,(R?), ue H'(R?)
= Dom [h] and that h[u, v] = (Hu, v) for any ve H!(R3).
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