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§ 0 .  Introduction

In  this paper we shall consider the Schrbdinger operator with a  penetrable
wall potential in  l e  formally of the form

H f orm al + q(x)6(1.x — a),

where q(x) is real and smooth on S  = { x ; x  =  a} (a > 0) and 6 denotes the one-
dimensional delta func tion . This operator is said to provide a simple model for
the a-decay (Petzold [15]). O ther applications m ay be found in  th e  references
cited in Antoine-Gesztesy-Shabani [3]. D olph-M cLeod-Thoe [5] treated this
operator (q(x) const.) w ith concern for the analytic continuation of the scattering
matrix, yet at the formal level.

T he first problem one  m eets is to define properly H f o r m a l  
as a selfadjoint

opertor in L 2 (R 3 ). For this purpose, let us consider the quadratic form h (which is
associated with H

f o r m a l )

hEu, v] = form a l U , l l )  =  (Vu, Vv) + (gyu, ?Oa ,
Dom [h] = (R 3 ).

Here y is  the trace operator from  H 1 (10) to  L 2 (Sa ), D om [h] denotes the  form
domain of h, ( , )  means the L 2 (R3 ) inner product, ( , 

) a
 the L 2 (Sa) inner product,

a n d  Hm(G) the Sobolev space o f  order m  over G. h  is  sh o w n  to  b e  a  lower
semibounded closed form , and thus determines a  lower semibounded selfadjoint
operator H .  M ore precisely, H  is  seen  to  be  the  negative Laplacian with the
boundary condition

eu Ou
q(x)(yu)(x) a n +  (x) +  (x)}1s. = 0,

where n+ (n_) denotes the outward (inward) normal to S a .  W e  sh o u ld  note here
that while h  is a  "small" perturbation of h o ,  which is defined by

ho [u, y] =  (Vu, V v), Dom [lk] = H1(10),
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via an infinitesimally h o -bounded form, H — Ho is not H o -bounded, where Ho =
— A, Dom(11 0 ) = H 2 (R 3 ), is the selfadjoint operator associated with h o . W e  sh a ll
adop t th is  ope ra to r H  as the rigorous selfadjoint realization of the formal
expression H 

f o r m a l  
Antoine et al. [3] defined the Hamiltonians corresponding to

H f o r m a l  as the selfadjoint extensions of ( — A I- ,q0(R3\s)r m aking  use of the
decomposition of L 2 (R 3 ) with respect to angular momenta. Here C ( G )  denotes
the set of all infinitely continuously differentiable functions with compact support
in G and -  means the closure.

After having determined the proper selfadjoint operator H corresponding to
H f o rm a l ,  we take interest in the spectral structure of H .  It can be seen that the
nagative part of the spectrum of H consists of a finite number of eigenvalues of
finite m ultiplicity (Theorem  6.5). Further, we can show the difference of the
resolvents of H and Ho i s  a compact operator, which implies that the essential
spectrum of H coincides with the interval [0, cc). A  most interesting problem in
the spectral theory for H is that of absolute continuity. Namely, let E( • ) be the
spectral measure associated with H .  Then the problem is: I s  H  restricted to
E((0, oo))L 2 (R 3 ) a n  a b so lu te ly  c o n tin u o u s  o p e ra to r?  T h is  p ro b lem  is
affirm atively answ ered by m aking use of the so-called lim iting absorption
principle . Our limiting absorption principle for H  states that the resolvent (H
— z) - 1  can be extended to a B(Ls2 (R 3 ), L2

- s(R 3 ))-valued continuous function of z  on
HV o-

p (H)U {0}) w hen  s>  1 /2 . H ere  H is the complex plane with the upper and
low er edges o f (0, co) distinguished such that the upper (low er) edge is the
boundary points from above (below) (see Kuroda [11, Appendix to Chap. IV]), and
o (H )  denotes the point spectrum of H, B (X , Y) the Banach space of bounded
linear operators on X  t o  Y, and L ( R 3 )  the weighted L, space defined by

L (R 3 ) = lu(x); (1 + 12 )s12 U(X) E L 2 (R 3 )}

with the norm II =  (1  +  •1 2 )4 2  u ( ( u =  u  I I , "  i s  the usual L 2 -norm).
Let us recall some notions from scattering theory. In the situation described

above the wave operators 1V±  interwining the pair (H, 110 ), defined as

IV+  =  strong lim it ei t H i t H °
t — ■± 0 0

are shown to exist and to be complete. Thus, let us define the generalized Fourier
transform ..*-± by

= ,

where ,F, •  is  the ordinary Fourier Transform defined by

f( .F u)( ) = (270 - 3 12e  -  
i 4 . x 14(X)dx,

123

and * means adjoint. Then, with the aid of the limiting absorption principle for H
we can construct the distorted plane waves 9 ± ( x ,  ) which are the integral kernels
of .97;±  and satisfy the following Lippmann-Schwinger equation



Schr&linger operators 221

1 e-T-i1411x-Y1
9 + ( x ,  ) =  e t x  -  

4n x  -
 q ( y ) c p ± ( y ,  ) d S y .

O n the  other hand, let A1 ,  A 2 , • • •  be the nonpositive eigenvalues of H  (counting
multiplicity) and  goi (x ), 9 2 (x), ••• the corresponding normalized eigenfunctions of
H .  Then we have the following eigenfunction expansion formula

u(x) = E (u, 9 a)cp„(x)+1.i.m. (2n) - 3 1 2  f  d ( ±_u)()(p ± (x,

where 1.i.m. means limit in  the  mean.
We shall outline here the contents of the present paper. In  §1  we shall define

the proper selfadjoint operator H  corresponding to H f o r m a l  
and characterize the

domain of H .  §2 will be devoted to studying some integral operators connected
with the  resolvent o f H .  The second resolvent equation for H  and  H , will be
discussed in  §3. The existense and completeness of the  wave operators will be
shown in  § 4 . In  § 5  we shall investigate the spectrum of H .  An upper bound on
the total number of the bound states of H  will be given in  § 6 .  I n  §7 we shall
sh o w  th e  lim iting  absorption principle f o r  H , and in  §8 the eigenfunction
expansion theorem concerning H.

Part of the results obtained here has been announced in LNM 1285, 211-214
(ed. I. W . Knowles and  Y . Sait6). A lso, a  detailed discussion of the scattering
matrices will be given elsewhere by one of the authors (S. S.).

§ 1 .  The Schrödinger operator H

Throughout the paper we shall make the following assumption.

Assumption 1.1. q(x) is  a  real-valued, smooth function on S a .

F o r  a  rigorous definition of the Sch&linger operator H f o r m a l ,  
we need some

lemmas concerning the trace operators.

Lemma 1.2. Let y ,  and y_ be the trace operators from 11 1 ({ x ;Ix l> a} ) and
111 ( lx ;Ix i< al), respectively , to L 2 (Sa ). Let u e l l 1 (R 3 ). Then y u  = y_u.

P ro o f .  Since u e ll i ( le )  a n d  C ( R 3 )  is  dense in 111 (R 3 )  we can choose a
sequence {ti n } c C ( R 3 )  su c h  th a t ua u  in  11 1 (1V ) a s  n co. Since y ,  are
bounded operators from 11 1 (R 3 )  to  L 2 (S„) (see, e.g. Mizohata [13, Chap. BI]) ,
respectively, there exists a  constant C  such that

(1. 1) II y± f  Ma ClIfIliv ( { x;ixi a) )
f o r  f E 1/ 1({x;

where u Ila = u)a. In view of (y ± u„)(x)= (y_u n )(x) = (unIsa )(x) for each n, we
have by (1.1)
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(1.2) IlY+u -14,111H1( x;Ix1 > a  ) C u - unduict.dxi<a»

< 2C11u - un 11,1(R 3) .

Letting n tend to  oo in  (1.2), we obtain that y+ u= y_u. Q.E.D.

By the above lemma, we can define the trace operator y from 1-11 (10) to L 2 (S0 )
by yu = y,u(= y _u) for u

L emma 1.3. L et u belong to 1-11 (R3 ). Then we have f o r any E >  0

(1.3) yue Va + 11a11 2 ,

(1.4) 11 Yu la Vu

Pro o f . Since C (R 3 ) is dense in FO R ') and y is a  bounded operator from
H1 (10) to  L 2 (Sa ), it suffices to prove the lemma for u  C (R 3 ). Let UE CNR 3 )
and e>  O. U s in g  the inequality 21p • al < eip1 2 + 6 -1 1(1

,2, we have for any WE S2

(the unit sphere of R 3 )

(1.5) i u(ca0 )12 =  -  2Re I :  ° 1 4
r  (rw) u(rat) dr

'  au 2 oo

E — ( r w )  dr + e - 1 1 u ( ra ) ) 1 2 drI
.  orJ a

2 '3  r2
e c °  

r

(rw) dr + E- 1 l u ( r w ) 1 2  dr.<  

f a a 2  O r

2  au

a a2

Multiplying both sides of (1.5) by a2  and integrating with respect to w over the unit
sphere S2  yield

lu(x)12 dS„ e f
2

dx + fixl?a lu(x)1 2 dx(1.6)
Is„

au
(x)

2

E-11114 V.au<E
 a r

(1.3) follows from (1.6) and

inequality

au
(x) 1Va(x)I. To prove (1.4), we have by Schwarz'

  

(1.7) 1 n(a0)12 = - foe 
—

au 
( r w )d r

a ar
2  < dr f '

r
2

j a r 2
 a

au
—
a r

(rw)
2

dr

         

1
=  - r 2

aJ a

au
—  (r c o )Or

2

dr.

Thus we have
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(1.8) fs,, ti(x)1 2 dS a
au
—
Or

(x)
2

dx < a

 

au
Or

2

allf714112*

     

Q.E.D.

Now we are in  a  position to define a selfadjoint operator corresponding to
H f o rm a l  in  a  rigorous w a y . Consider the quadratic form

(1.9) h[u, (Fu, v) + (qyu, yy)„, Dom [h ] = H 1(10).

Since q is bounded on S a  by Assumption 1.1, it follows from Lemma 1.1 that h is a
symmetric, lower semibounded, closed fo rm . Therefore, by K ato [9, Chap. VI,
Theorem 2.1] we have the following

Theorem 1.4. Let h be the quadratic form defined by (1.9). Then there exists a
unique selfadjoint operator H  such that

(1.10) Dom (H) c Dom [h], (Hu, y) = hru, y] fo r ue Dom (H) and ye Dom [h].

W e adopt th is operator H  as the Schrödinger operator corresponding to
H  f  o r m a l  S tated in the Introduction.

Theorem 1.5. Let A = min q(x). Then
xeSc,

(1.11) H> —  A 2 .

Moreover, we have

(1.12) H > 0 for — —

1  

<  A
a

and

4
(1.13) H (aA  + 1) for

a a a

P ro o f . By Theorem 1.4 we have for any ueDom(H)

(1.14) (Hu, u)= 11Vull 2 + f q(x)I yu(x)1 2  dSx
s„

> V u11 2 +

If A — 
1
—
a

, (1.12) follows immediately from (1.14) and (1.4) of Lem m a 1.3. Let us

assume that — —

2  

<  A < — 1 . Rewriting (1.14), we have
a a

2 2(1.15) (Hu, u) A (—
A a

+ 1)11Y ue + A (2 + —
A a

)IlY1411!
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B y L em m a 1 .3  (putting  =  in (1.3)), we have

(1.16) (Hu, 11V u112 -  A ( 1 ) 0 1117 0  2

+ A ( 2 + vu ii2 + 742  u 112)

4
= - (aA  + 1 )0 4 2 .a

This implies (1.13). To complete the proof, we have only to show that (1.11) holds
1

when A < O. In this case, (1.11) follows from (1.14) and Lemma 1.3 with c  = -

Remark 1.6. The above theorem implies that H  has no negative eigenvalues
1

if A  > -  -
a

. On the other hand, if A  <  - 
1

-
a

, H  can have negative eigenvalues. In

1
fact, let q(x) = V , (constant) such that V , < -  -

a
. Then it is seen that H  has a

negative eigenvalue - A2 (A  > 0), where A is the unique solution of the equation
1  -  e -  2 " 2

, and  a  corresponding eigenfunction is —
1

(e - ' 11x1
 - al e - ' (Ixl + a))

1/0x l
(see Dolph e t al. [5, pp. 326-327], and cf. Theorem 5.3 below).

Now, we shall characterize the domain of H.

Theorem 1.7. ue Dom (H) if  and only  if

ue 11 1 (R 3 ), ueH 2 (lx ;1x1 < a l), ueH 2 (lx ;1x 1> a l)  and
(1.17)

{au au
q(x)(yu)(x)

(x) 
(x )lls O.an +a n _ "

In this case , H u = - A u in the distribution sense and u  is continuous on 10.

814 3
Remark 1.8. Strictly speaking,  (x )  d e n o te s  E <n ± ' e.> y + (

u

)(x),an " 1 ax;
where e, = (1, 0, 0), e2  = (0, 1, 0), e 3 = (0, 0, 1) and (x , y> means the scalar product
of the vectors x and y.

Proof  o f  th e  theorem . F irs t  le t  ue Dom (H). ue 11 1- (R 3 ) is deirect from
Theorem  1.4. Now, by Theorem 1.4 we have for any v e C (Ix; lxi <  al)

(1.18) (Hu)(x) v(x) dx = h[u, v] = (Fu)(x) (17v)(x) dx
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= — f u(x)(Ay)(x)dx,
1x1 <a

where a n d  in  th e  sequel it is understood that all derivatives a re  taken in the
distribution sense. (1.18) implies that Hu = — A u in Ix ; I x1 < al and u e H 2 (Ix ; xl
< al) (see the note added in  proof). Similarly, Hu = — A u in  Ix ; 1x1 > al and

au
u  H 2 ({x ; 1x1 > a}). T herefore , it m akes sense  to  speak  o f  

On +
1,s

°  
• Thus, by

Theorem 1.4 a n d  Green's Theorem (see e.g. Mizohata [13, C hap. III, § 8]) we
obtain for any v e C,(R 3 )

(1.19) (Hu, y) = h[u, y] = (V u)(x) (V y)(x)dx
lx

+  f (V u)(x )(V v )(x )dx  + (qyu, yv) a

1x1 >a

= — Ç(z1u)(x) v(x) dx

— f (Au)(x) y(x) dx
1x1 >a

(Ou 
an _ yv)

( au Y v) + (qyu,O n ,  " a

a

{auO u  = (— Au, + (qyu a n +  + n _ 5IS l a

and, since u  H 2  (fx ; 1x1 0 al) and  Hu = — A u as shown above,

( g y u O u O u  1 .
lan +O n _  s "'' a

 I — 0 for any v C,13 (R 3 ).

Since fyv = Yl sc,; yeCW (R 3 )) is  dense in L 2 (Sa), we have

l '
+
u

a
f l s

"
 =0.On n_ 

W e have thus shown (1.17).
Conversely, le t u  verify (1.17). Define w e L 2 (R 3 ) by w = —  A u (except on

Sa ). T h e n , fo r  any ye Dom(H), we have, as we got (1.19),

(1.20) (Hy , u) = h[y, u] = (Vv, Vu) + (gYv, Yu).

= (y, — Au) + (ayv, qyu e n
u

+ + :„u  I s „
a

=  (ll, w)

This implies that u e Dom (H*) = Dom (H).
F ina lly , l e t  ue Dom (H). B y  w h a t  h a s  b e e n  s h o w n  a b o v e , w e  have

u e 1/ 3 ({x ; xl < a} ) ,  ue H 2 (lx;Ix1 > a l )  a n d  ue 11 1 (1e ). Thus, according to

qyu



226 Teruo Ik ebe and Shin-ichi Shimada

Calder- 611's extension theorem (e.g. Agmon [1, p.171, Theorem 11.12]), there exist
u1 ,  u2 e1-12 (R 3) such that

(1.21)
(ui I oqixi <a) )(x) = u(x) for a.e. x in  {x ; x  < ,

(u2I x:Ixl>a ) ) (X )  = 14(X) for a.e. x in  {x ; x > a).

Since ti e 1-11 (R3), we have in view of Lemma 1.2

(1.22) yu —  Y-)-( 14 21{x;Ixi>a))•

O n the  other hand, Sobolev's lemma (e.g. Reed-Simon [18, p.32, Theorem 3.9])
implies that u ,  and u2 a r e  continuous o n  R3. Hence we have by (1.22)

(1.23) x;Ix1= ai)(X ) =  — ( 14 1 ( x;Ix1 <a ) )(X)

=  Y + ( 4 21(x;Ix l> a) ) (X )  = (U21 1 x;ixl = a  ) ( X )  on Sa.

From (1.21) and (1.23), it follows that u is continuous on R 3 .Q . E . D .

§ 2 . Preliminary lemmas

We shall introduce the following integral operators TK a n d  t„ depending on a
complex parameter K  defined by

( , f ) ( x ) =  — 1  
I

T , 
e 'lx -Y 1

 q(y )f (y )dS y ( x e R 3 )
47i

and

C e ikix-y1
( t f ) ( x )  = 477 i s. ix  y i g(y )f (y )dS y ( x e S a).

B efore  studying  t h e  properties o f  T „ a n d  t  w e  sh a ll s ta te  so m e
lem m as. F irst, by direct computation using polar coordinates, we have

Lemma 2.1. Let e C .  T hen  w e  have for any x e R 3

‘ix-yi
 d S  =  2 T ra( e r(a+ixi) _ eria- 0 CI),

j .
sn lex Y CIX1

(2.1)
1 ma ( i )=  i x ,( a  + — — lx11) ( = 0).

is a

Lemma 2.2. There exists a constant C  such that f o r any x, y e  Sa ,

(2.2) 1,, y idS , C(1 + lloglx yll),

(2.3) jCs,, ix 1 z I lloglz Y lldS z < C,
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and for any x e /23 , 0  <  r < 3 and r + s> 3

(s < 3 )
(1 +1x1rs-3

fR3 — (1 + IY I 2 Y1 2+ 1 x 1 Y
dy C lo g ( 1  +  I x 1 )

(2.4) (s = 3)

(s > 3).

For the  proof, see e.g. Kellogg [10, pp. 301-303] o r  K uroda [12, p.162].

L em m a 2.3. L e t  1m K  > 0. T hen TK i s  a Hilbert-S chm idt operator from
L 2 (Sa ) to L 2 (R 3 ).

P ro o f .  P u t b = 1m K. We compute the  Hilberf-Schmidt norm  of Tx .

27E

II 41r 1 ;1111.s. = f dS y f  dx1q(y)1 
—  2

2= <  +  0 0 ,

saR 3 lx YI b

from which follows the assertion. Q.E.D.

Lemma 2.4. L et K G C .  Then Tx is  a com pact operator from L 2 (Sa) to itself

P ro o f . Define the integral operator G(„g) by

(G(: ) f )(x ) = f X (y.s.;ix- yi> )(y) 4 x — y1 
q(y)f(y)dS y ( x  e  S a ,  e > 0),

n1 

where x,(x) denotes the characteristic function of the set A .  Since we have

+

dS x dS,
fs„xs„

X { yes.;lx -yI>E} (v) 4 n 1 x y i  q(y)
2

  

e 211InKla 2

 max1q(y)1) (4 na2 )2 < + oo,
(

47re y Eso

G(: ) is  a Hilbert-Schmidt, and a fortiori, compact operator from L 2 (Sa ) to itself for
each e>  0. To prove the lemma, we have only to show that G.(: ) converges to
in the operator norm topology when e 10. In fact, using Schwarz' inequality we
have for any f e L 2 (S0 )  and x ESa

eilmox-y1
7c1 Y1

(2.5) I(G ./ .0!) ) — ( 7 ;, f)(x)12
f   

 1q1.011 f (Y)IdS y
y:1.- yi_c 4 x—)

e
ilmox-y1

(max lq (Y )) 2d S y
S „n  y d x -  y l s o  

4 1 r1 x — ) ( fs. 471x —

E

< (m a x  (y)D2 I f (Y)I 2  dS y ( i f a/2),
yes„ 2 47rIx — ylJ 5



(2.7) 11 G(: ) f —  tflIa2  <  (max q ( .01)2 eIImK I e2.11..1 a II f 11.2 •
y .s„ 2
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where we have used the equality

(2.6) fS„n Iy;lx — yrsel

1a
d S  = (c la — 1x11)4rclx—yl Y 21x1

if x e R 3 , la — 1x11 < e < a / 2 .  Integrating the both sides of (2.5) over Sa  yields by
Lemma 2.1 and Fubini's theorem

From (2.7), the claim follows immediately. Q.E.D.

Define the Fourier transform on L 2 (Sa )  by

(2.8) (Fs„f = Pm) - 3 / 2 e . - 1 'x f(x)dS ), ( e R 3).

Then, as is well known (e.g. Mochizuki [14, p. 16]), we have

Proposition 2.5. L et s >  1/2. Then ,1%,„ is a bounded operator from L 2 (S a ) to
L 2

- s(R 3), i.e. there ex ists a constant C  such that

(2.9) C11.1. f o r any f E L 2 (S a ).

Lemma 2.6. L et Im K > 0. Then TK i s  a  bounded operator from  L 2 (Sa )  to
111(R 3).

Proof.

(2.10)( f ) ( )

For any f  E L2 (Sa) w e have by Fubini's

= — f dS y q(y)f (y) (270- 3 /2 f

theorem

dx i'x e iK ix Y1e -

s„ R3
47I1X —  Y1

e -1 4 . Y=  —  ( 2 7 ) 3 1 2  i

s „ 
d S y  

I I
2

— K

2  q ( y ) f ( y )

1

12 K 2 (MS. (q•f))() ,

where we used (2.8) and the fact that

(2.11)
e - '4•Y

= (2 1 0 - 3 1 2  

4n1. — YI Iv K2 •

Take s  such that 1/2 < s <  1. Then, by Proposition 2.5 we can estimate the H 1 -
norm  II TK  f 16  o f Ta f  as follows.



dS x dS y

is„.s„
d S z

—  —  

* M Y )
2e iK(Ix - z1+Iz - yI)
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(2.12) 11 T. f = 
fR3 

g(1 + 11 2 ) »1(. 012

229

—1 2
= g ( 1 + 11 2 ) _ K 2  G-97S„ (q f ) )0

(1V ) 1 + 2 s

<relf1P3 2

} f
V r s l (F S „ (0 ) ( 0 1 2(111 — K 2 1–R 3

= P {  

(

1  +  I 12)1
 + s

}

4ER 3 K212
f )1 1 1 )  – s

s u p ± 12)1 c 2

e{max q(x)11211 11f.3 1112K 2 1 2 xES“

{0

which implies the required result. Q.E.D.

By the above lemma, TT„ (Im  K  > 0) is a  well-defined bounded operator from
L2 (Sa) to itself. F u rtherm ore , w e  have

Lemma 2.7. L et Im K > O. T hen y 7 =

P ro o f . Since yT,, a n d  71 ' a re  bounded operators o n  L2 (Sa) and the set of
continuous functions on Sa  is  dense in L2 (Sa), it suffices to prove that yT„ = on
this set. A ssu m e  that f  is continuous on S a . Then it follows in a standard way
(e.g. Colton-Kress [4, p.47, Theorem 2.12]) that (T„ f)(x) is continuous on R 3 . O n
the other hand, we have for a.e. x e Sa

(yT( f )(x ) = lim  (T„ f )(y ) (y  approaches x along n i ).
y—ox

Therefore, (TT„f)(x )= (T„f)(x )= ( f )(x ) for a.e. x e Sa . Thus the lemma has been
proven. Q.E.D.

Lemma 2.8. L et K E C. T hen (t) 2 is  a Hilbert-Schmidt operator from L2 (50 )
to itself

P ro o f . The kernel of ( )2 is

‘t7r) z lx — zl lz — YI

(  1 V
d S  

Introducing polar coordinates, we have by Lemma 2.2

q(z)q(y).

< e salimKI (max I q(z)I)4 f dS x dS y ( f  d S z

x
zi

1

lz ylzEs„ ,s xs ) 2
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< e8( m a x  I  q(z)D4 d S x d S y C 2 ( 1  +  log x — y11)2 < + 00,zeS„

which proves the lemma. Q.E.D.

Lemma 2.9. L e t s> 1/2. Then TK is  a B(L 2 (Sa ), L i s (R 3 ))-va1ued continuous
function of  K f o r Im K  >  0.

P ro o f . F or any f e L 2 (Sa), we consider the difference

1e i K i x - y i  _
(2.13) (TKf)(x) — ( f )(x ) = f d S  q(Y)f(Y ).47r 5 , ,Y Y1

In  view of the inequality

(2.14) _ IX

<  1K  — K'1#1X y I e _1  mK+ I m K ) I x J  x

x (0 < JL <1),

we have

2 1 - '1I f ( Y ) 1  
(2.15) I(7 ;(f)(x) — (1;4)(x)1   K 1P MaX WW1 dSy

4my e S o S 1 Yll - 1 1
„

Taking y  such that 0 <  t  <  min (s — 1/2, 1), w e get by Schwarz' inequality and
Fubini's theorem

(2.16) II TKif — T e f  II 6,
21-P 2

dx(1 + Ixl`
,

 ) s (  1K IC' 1t i max ig(A )  ( f  dS y  _..
) 2

R3
47r yeS. yl

2 1

(

 - " 2
1K le  max I q (Y )1 )  f d x (1+  lx 1 2 )- s x

yeS„

x  f  d S y  . dSy 1f(Y)1 2

J s1 xc, 1

(21-14 2

47r1 K le I# max I q(y)I) x
yeS„

X dS dx 
1  

If  II! •
Y

R 3.5,, y12-24(1 1X12)s

(2.16) together with Lemma 2.2, (2.4) yields the required result. Q.E.D.

Lemma 2 .1 0 . tk  i s  a B(L 2 (S0 ))-valued continuous function of  K  in C.

P ro o f .  Using (2.15) =  1), we have for f  e L 2 (S a )  and  x e S a .
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(2.18) I (TK.f)(x) — (Ze f)(x)I 2

Integrating the both sides of (2.18) over Sa  and  making use of Schwarz' inequality,
we obtain

(2.19) f  —  I II!
K e 2 a( I lm K I  +11m0) 2

4n
m a x  I  q(Y )l) (47ca2 )2 f II„2

yeS„

which completes the proof. Q.E.D.

Lemma 2.11. L et K e C  and let u e L 2 (S .) .  Then, for any we C,T (I0) we have

(2.20) f  (T „u)(x )( —  — K2 )w(x)dx = — q(x)u(x)w(x)dS x .
R3 s„

I f  linK  > 0, (2.20) holds f o r  any  w e 9 ',  w here Y  = 9 ' (R 3 )  denotes the  se t o f
functions which together w ith all their derivatives fall of f  faster than the inverse of
any polynomial.

P ro o f .  By Fubini's theorem we have for w e C ( IV )

(2.21) L3 (T„u)(x)( — A — K 2)w(x)dx

=  — dS y q(y)u(y) Id x — K2 )w(x).
R3 4 7r x —I 

(

O n the other hand, we have by Green's theorem

eiKlx- Y1

(2.22) d x  A — w(x) = 4nw(y)
R 3 —  YI

for w  e C j)(10). The first part of the lemma follows immediately from (2.21) and
(2.22). The proof of the second half is similar. Q.E.D.

Lemma 2.12. L et Im K  >  0. Suppose that u  is  a non-triv ial solution of  the
homogeneous equation u  = -t o  in L 2 (Sa ). Then v T o is a non-triv ial eigenvector
of H  corresponding to eigenvalue K2 . Conv ersely , if  y is a non-zero eigenvector of  H
corresponding to eigenvalue K2 ,  y v  is a non-zero vector in L 2 (S a )  and satisfies the
equation y v  = tx (yv).

(I K ?el e24a : E
li m K I

maxlq(y)1)2
2

( f
yeS.

dS y lf (Y )i) •
sc,

P ro o f . Assume that u e L ,(S a ), u 0 and u = u. By Lemma 2.11, we have
for any w E q,°(R3)
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s
(2.23)

fR3 
(TK u)(x)( — 4  — K2 ) w(x) dx = —  f

„

 q(x)u(x)w(x) dS x .

Since y T o  belongs to 11 1 (10) by Lemma 2.6 and hence yy = yTK u =  u  =  u by
Lemma 2.7, we have on integration by parts

(2.24)( V v ,  Vw)— K 2 (y, w) + (qyv, yw), = 0 for any we C ( R 3 )

Since C ( R 3 ) is dense in H i  (10 , q °  (R 3 ) is a form core of h by Kato [9, Chap. VI,
Theorem 1.21] and  Lem m a 1.3. So w e have by (2.24)

h[v, w]

Therefore, we obtain by Theorem 1.4

(v, (H — k 2 )w) = 0 f o r  any w e Dom(H),

which implies that v e Dom(H) and (H — K2 )v  = 0. I f  y  =  0 ,  we have by Lemma
2.7 u = u  =  yTK u = yv  = 0, which is a  contradiction. Thus y is non-trivial, and
is an eigenvector with eigenvalue K2 .

Conversely, le t  y  verify  that v e Dom(H), v 0 0  a n d  (H — K2 )v = 0. Since
v e l l i (R 3 )  by Theorem 1.7 and  hence yy e L 2 (Sa ), we have by Theorem 1.4.

(2.25) (Vy, Vw) — k 2 (y, w) + (qyv, yw)a

= h[v, w] — K 2 (v, w) = ((H — K2 )v, w)

= 0f o r  any we H 1 (10).

On the other hand, as we got (2.24) from (2.23), we obtain by Lemma 2.11 and in
view of y v  L2 (Sa ) for any w e

(2.26) (V(Tay), V w) — K2 (Tory, w) + (qyv, yw) a  = 0,

(no te  tha t T c (yv)e11 1 (10) by Lemma 2.6). Therefore, from (2.25) and (2.26) it

follws that

(2.27) (V (Tay — v), V w) — K2 ( TK yv — y, w) = 0 for any w e

By Parseval's identity we can rewrite (2.27) as

(2.28) (.F(T„yv — y), (1 . 12  — k2 ).i1 w) = 0 for any wa g' .

Put w(x) = - 1 (  
h

 2 )(x ) fo r h e .V .  Since w belongs to 9 ',  we obtain by
1. 1—  k

(2.28)

(..*7 (Tay — v), h) = 0 for any he 9°,

and hence

= K 2 (y, w) for any WEH 1 (R 3 ).

(2.29) T.Yv — y = 0 in L2(R3).
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If yy = 0, y = 0 by (2.29), which is a contradiction. Thus yv is a non-zero vector
and  yy = yTK(yv) = t„(yv) b y  (2.29). W e have thus completed th e  proof of the
lemma. Q . E . D .

Lemma 2.13. Let Im K  > 0. Then

(2.30) T,1̀ = — gyR0 (0 ),

which maps from L 2 (R 3 )  to  L 2 (Sa).

P ro o f . By Fubini's theorem we have for u e L2 (Sa) and  y e L2 (R3)

(2.31) (T o, v)

= f  d x
R3 47c

1 dSy
 e ‘K ix

s Ix — YI„
q(y)u(y)) v(x)

e . x _ y i

=I.  dsy u(Y )( — q(Y)sa
dx 

47r —
y(x)

= (u, — qyR0 (R2 )y)a ,

w h e re  w e  h a v e  u s e d  t h e  rea lity  a n d  boundedness o f  g  a n d  (yRo (z)v)(x)
= (Ro(z)v)Is o (x)e L 2 (Sa)  for z  [0, co) as is seen  by  Sobolev's lemma in  view of
Ran(R 0 (z)) = H 2 (R 3 ). The lemma follows from (2.31) immediately. Q . E . D .

Define the integral operators TV ) a n d  T;(1) w ith  a  complex parameter lc by

—1 e'lx-Yl
f ( y )  ( x e  R

3
)(TV ) f)(x ) =   dS 

47r s .Y

and

—1  f  
dS ( f ( y )  ( x e  S a ) .n ) f )(x) = 47c s .Y i

W e remark that if q(x) 1, then  TK  = ) and = 711) ,  respectively.

Lemma 2.14. Let K e C. T h e n

(2.32) (t)*  _

which maps from L 2 (Sa)  to itself

P ro o f .  By Fubini's theorem we have for u, v e L2(S
a)

ei"lx - Y1

( tu ,  v)a = dSx ( 4 7 r
1d S  x —

, g(y)u(y)) v(x)
l y1sr, s„

= dS
q(y)

y u(y)( 4d S x  x  y l   v(x)
sa5 „ I

=  (u, g-tT,v)a,
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from which follows the assertion. Q.E.D.

§ 3 .  The resolvent equation

In  this section, we shall study the resolvent R(z) of H .  As remarked in the
proof of Lemma 2.13, yRo (z) is a  bounded operator from L 2 (R 3 ) to L 2 (Sa). More
precisely, combining Lemmas 2.3 and 2.13 (q(x) 1), we have

Lemma 3.1. L et z0 [0, co). Then yRo (z) is a Hilbert-Schmidt operator from
L 2 (123 )  to  L 2 (SQ).

Theorem 3.2. L et ze p(H)np(H 0 ), where p  denotes the resolvent set. Then
yR(z) is  a  bounded operator from  L 2 (10) to  L 2 (S0 )  and the following resolvent
equation holds:

(3.1) R(z)— R 0 (z) = T,/-z-yR(z),

where and in the sequel, by  .\./  is m eant the branch of  the square root of  z with
TmO .

P ro o f . To prove the first part of the theorem, we have only to show that R(z)
is a  bounded operator from L 2 (R 3 ) to H 1 (R 3 ). From Theorem 1.4, it follows that
Ran R (z )=  D om (H ) H 1 (R 3 ) and Dom(R(z))= L 2 (R 3 ). Let {un }  be such that for
some u e L 2 (R 3 ) and v e 111 (R 3 ), u„—>u in L 2 ( /0 ) and  R(z)u„—> v in  H 1 (R 3 )  as n
-4 c o .  Then, since R(z) is  a  bounded operator from L 2 (10) to itself, we have

R(z)u = lim R(z)u = y  in  L 2 (123 ),
co

and hence R(z) is a  closed operator from L 2 (R 3 ) to  H i (R 3 ). Therefore. from the
closed graph theorem it follows that R(z) belongs to B(L 2 (R 3 ), H 1 (R 3 )).

F in a lly , let u s  s h o w  t h e  reso lven t equa tion . L e t  u e D om  (H ) and
veDom(11 0 ). In  view of Theorem 1.4 and Dom(H 0 ) = H 2 (R 3 ), we have

(3.2) ((H — z)u, v) = h[u, v] — (u, fv) = (u, (H — f)v) + (qYu, Tv),

and hence, on  putting u = R(z)9 and y = R o (f)t/i = R0 (z)*0, we obtain

(3.3) (Ro(z)cp, 0) = (R(z)9, 0) + (qyR(z)9, yR o (f ) ') a

= (R(z)yo — T.,T yR(z)cp, 0),

where we have used Lemma 2.13. The required resolvent equation follows from
(3.3) immediately. Q.E.D.

§ 4. The wave operators

The wave operators lq±  which intertwine H  and H , are defined as
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= strong limit e '  e ' " ° ,
-t ±00

if they exist. I n  this section we shall prove the following

Theorem 4.1. W ±  e x is t  and are complete.

The proof of the above theorem will be given after proving the next

Lemma 4.2. yR(- b 2 ) is a Hilbert-Schmidt operator from L 2 (10) to L 2 (Sa) for
a sufficiently large b > O.

P ro o f . On operating y from left on the resolvent equation (3.1) (z = - b 2 ), we
have, using Lemma 2.7,

(4.1) (1  -  t ib )yR(- b 2 ) = yR o ( - b 2 ).

If we show tha t 1  -  Tib has a  bounded inverse for a suitable b > 0, the the lemma
follows, fo r  yRo ( - b 2 )  i s  a H ilbert-Schm idt opera to r by  L em m a 3.1. Using
Schwarz' inequality, Fubini's theorem and Lemma 2.1, we have for any u e L2 (Sa)

b— lx—y
(4.2) 11 tibu II! =  f  dSx  f  dS i 4 7 r i  x y  q(y)u(y)

s„ s„
— 2blx— Yi 1 2

MAX I q(y)l) dS, f dS y

sas „

114Y)12 dS
Js Ix— y

1 2
= (— max q(y)l) dS (1 -  e -  41") fd S y lu (Y )I2

s -
a

477 yEs„ x b
0

1 2 i r 1
= (

47r Y ES— M aX M A I ). b
e-

4 0 ) ) 1

s„
dS3, 114 (.01 2

s„
dSx

- YI

a
= (m ax  l q(Y)I)2 —

4 b
(1  - 4 a b )Ilu 11!.yeS,,

Therefore, we obtain

(4.3) t i b  < (max ig(y)l) {  a 112(1 - e - 4ab) 

yeS,, 4b

and hence, the operator norm of t i  b is less than unity for sufficiently large b > 0,
which makes possible the Neumann series inversion of 1  -  7;b . Q.E.D.

Proof  o f  Theorem 4.1. It is  know n tha t the  wave operators exist and are
complete if  th e  difference o f  th e  resolvents is  a  trace-class operator (Kato [9,
Chap. X, Theorem 4.8]). O n the other hand, as is well known, an  operator is in
the trace-class if and only if it is a  product of two Hilbert-Schmidt operators (e.g.
Kato [9, p.521]). Thus, from Lemma 2.3, Theorem 3.2 and Lemma 4.2 it follows
tha t R (z )- R o (z) is  in the trace-class. The proof is now complete. Q . E . D .

2
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§5. The spectrum of H

As is mentioned in the previous section, the difference of the resolvents of H
and H , is a  trace-class operator (see the proof of Theorem 4.1). Thus, concerning
the essential spectrum o- ,„(H) of H, we have by Weyl's theorem (e.g. Reed-Simon
[19, p.112, Theorem XIII. 14])

Theorem 5.1. a e s s (H) = o) = [O, co).

As to  the point sectrum of H , we get the following result.

Theorem 5.2. 0-,(H)n (0, 0 0 ) = 4).

P ro o f .  Assume that A > 0, (H — A)u = 0 and u eD om (H ). By Theorem 1.7 u
satisfies

(5.1) + A)u(x) = 0 in { x ;  I x l<  al U Ix; >  al.

In  view of Mizohata [13, Chap. VIII, Lemma 8.4], we have

(5.2) u(x) = 0 in  Ix ;  x  >  a l .

Thus it follows from (5.2) and Theorem 1.7 that

eu
(5.3) (x) = u Is„(x) = O.

Now let us define i(x) by 

 Is. 

tu (x ) a
(5.4) u(x)= O I x I > a.

Then, for any y E  C",° (R3 ), we have by (5.1), (5.3) and Green's theorem

17(x)(4 + A)cp(x)dx = f u(x)thp(x)dx +A  f u(x)cp(x)dx
J R i x i , a ix' <a

which implies

(5.5) (4 + A )û(x) = 0 in R 3
.

Operating the Fourier transform on  the  both sides of (5.5), we have

(A — 12 )(.F117)( )  = O.

Since gf fi e L 2 (R 3 ), we obtain SÜ = 0, and  hence

(5.6) ü(x) = 0 for a.e. x e R 3  .

Therefore, from (5.2), (5.4) and (5.6) it follows that



vk m (r) = tot kmr
k (r < a)

(r > a)fikmr 
—  k  —  1 (k > 1),
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u(x) = 0 in  L2 (R 3 ). Q.E.D.

In  contrast to  th e  above theorem the  poin t 0  m ay o r  m ay not belong to
o-

 p(H ) .  If q  is  constant on S a ,  however, we get the following criterion.

Theorem 5.3. L et q(x ) = V , (constant). Then 0E a ( H )  if  and  only  i f  there
ex is ts  a p o s it iv e  in te g e r n  su c h  th at  aV o  + 2n + 1 = 0. I n  th is  case, the
corresponding eigenspace is spanned by  th e  v e c o to rs  v ( Ix )Y  (m  = -  n , -  n
+ 1, n ) ,  where

v(r)
t rn r < a

=
a

2n + 1
r

-n- 1 r > a,

and IT (n = 0, 1, m  =  -  n, - n  + 1 , n) denote the spherical harmonics which
provide a  basis f or L 2 (S 2 ) (S2 the  unit sphere in R 3 ).

Pro o f . (cf. Colton-Kress [4, pp. 78-79])
Suppose tha t Hu = 0  and ue D om (H ). By Theorem 1.7 we have

(5.7) A u(x) = 0 in  Ix ;  x  <  al u {x; Ix l >  a}.

Thus u(x) is a  Cm-function in the above region by Weyl's lemma (e.g. Reed-Simon
[18, p.53]). Let (r, 0, go) denote the spherical coordinates with r = IxL F o r  each
fixed r  we can expand u  in  a  uniformly convergent series

u(x) = E E vkm(r) 17 ( 0 , 49 ),
k 0 m= —k

where
21r

v,„,(r) = u(r, 0, go)I"k"(0, go)sin 0 dOdcp.
0 0

f i r

Since u e ({x; x 0  a}), we can differentiate under the integral and integrate by
parts using A u = 0  to conclude that vk m  i s  a  solution of the following equation

d22 dk ( k  +  1)
dr 2  V k m r d rv k m v2 km CI ,

which has a  fundamental system of solutions r k  and  r S i n c e  vk m  is bounded
near zero and belongs to L2 (0, op); r2 dr) by Theorem 1.7, vk „, has the form

v00(r) (r < a), = 0  (r > a),

where ak m  and  flk a , are  constan ts. In  view of Theorem vkm is continuous at r
= a  and satisfies the boundary condition

d
Vo vk ,„(a) + (—

d  

v
k m

 ) ( a  - 0 )  -  (
d

—

r  
uk „,)(a +0) =0,

dr 
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where f (a + 0) denotes lirn f (a + E). Therefore, ak m  a n d  #k „, satisfy the following
e j0

equations

aoo =

o ck .a 2k+ nPkm, (c1 1 70 + 2k + noc k „, = 0 (k 1),

from which the required result follows immediately. Q.E.D.

§ 6 .  Bound states of H

Let us define the quadratic form h, depending o n  a  real parameter t  by

(6.1) h,[u, v] = (17u, Vu) + t(gyu, yv)„,

Dom [h1] = 11 1 (R 3 ).

The form h, can be seen to be lower semibounded and closed in exactly the same
w ay a s  fo r  h  ( t = 1). Therefore, Theorem 1.4 applies to  h,. W e denote the
corresponding unique selfadjoint operator by H, (H , = H  (see §1)). Put for n = 1,
2, ... and t E R,

(6.2) y (t)  = sup inf min(hr[u], 0),
(pi ....vt,...... u e l i , ( R 3 ) n k p i ......
ce. jeL2(R 3 ) Mull =1

where h 1 [u] = u ] and  [(p i , is short hand for fu; (u, (pi ) = 0, j
= 1, 2, ... n — 11. Then our min-max principle will read as follows :

Lem m a 6.1. L e t n  an d  tE R  b e  f ix e d . Then, either (a)  0 = j(t) = 1.1n+ 1(0
= + 2( = • • • and there are at most n —  1 eigenvalues of H, (counting multiplicity),
or (b) there are n eigenv alues of  H, (counting multiplicity) and ii„(t) is  the n-th
negative eigenvalue of H, (counting multiplicity) from below.

P ro o f . (cf. Reed-Simon [19, p . 7 6 ,  Theorem  M R 1])
Let N .)  b e  the spectral measure for H , .  First let us show

(6.3) dim ERan(E,(( oo, a)))] < ni f  a  < 1i(t)

(6.4) dim ERan(E,(( — co, a)))] n if a > j (t)

Here we remark that 14(0 is finite for each te  R  and

(6.5) Ran(E,((— cx), ce))) Dom(H 1) Hi(R 3)) if a <  +  co ,

because of the fact that H , is bounded from below by Theorem 1.5.
Suppose that (6.3) is false. Then, for any (10r  1 5 7  2 ,  • • •  P n - 1  we can find u such

th a t  u E  Ran(E,(( — 00, a ) ) n (P2, (P„ -  IV-  a n d ,  b y  (6.5), (H t u, u) cfllu112 .
By Theorem 1.4, this implies that
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inf min(ht[u], 0) <
ucn1(n3)n[vi,v2,...,,p„ -

(u( =1

for any q ,  cp 2 , 9 _  e  L 2 (R 3 ), and hence n n (t) < a , which is a contradiction.
This proves (6.3).

Since ttn (t) < 0 and Theorrem 5.1 holds, we have only to prove (6.4) when i i ( t )
<Œ < O. T h u s ,  suppose that (6.4) is false when n n (t) < c  < O. Then w e can find

9 2 , , su ch  th a t L . h . {9,, (i92, 9„_ 1 1 = Ran(E,(( — cc, a)) ) , where
L. h. A denotes the subspace spanned by A .  Since any u e [9 1 , 9 2 , d i  0
Dom (H) is in Ran(E t t[Œ, con ) , we have by Theorem 1.4, hr [u ] = (Heu, 0411 u112 -
Since D om (H ) is a  form core for II, (e.g. Reed-Simon [17, p.281]), it follows that

t [u] 112 for any u e [91 , ( P2 ,9 „ - - 1 ] ± n11'(R 3 ).

Therefore, noting that a  < 0, we obtain

inf min (hf [u], 0)
uEppi.4.2, ....v-111n1P(R3)

'lull = 1

inf h[u] 04 .
,v,,- il 1 nin(R 3 )

'lull = 1

and hence itn (t) > a , which is a  contradiction. This proves (6.4).
First, suppose that

(6.6) dim [Ran(E,(( — co, lin(t) + = c c for a ll e > O.

Then the situation (a )  ho ld s. In fact, by (6.3) we have

dim [Ran(E,(( — co, p(t) — e)))] < n for a ll e > 0,

and hence

dim [Ran (Et(Din(t) — 8, j (t) 8 )))] = CC for all e > O.

This implies that

(6.7) 1.1(() e ess(H 1)-

Since 14(0 < 0 and t7e s s (11,) = [0, co) by Theorem 5.1, it follows that n n (t) = O. If

P.+ 1(0 > mn (t), we have by putting a =  ( i +  1 (t) + ft„(t)) ( < tin + JO )  in  (6.3)

1
dim [Ran (EA — co , —Gin  1 (t) + p u (t)))] < n  + 1,

2

w hich contradicts (6.6). T h u s , n o t in g  th a t  1,1n +1(0 Yei((), w e  o b ta in  li n (t)
= kt„ •••. Finally, if there are n eigenvalues strictly below n n (t) and A is the n-
th  eigenvalue, we have
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1
dim [Ran (E 1(( — cc, —

2
(g„(t) + 1))))] n,

which contradicts (6.3) (a = R u n (t) + 2) < p„(t)). Thus it is seen that there are at
most n — 1 eigenvalues of H,.

Next, assume that (6.6) fails, i.e., for some eo  > 0

(6.8) dim [Ran(E 1(( — co, g„(t) + e 0 )))] < + cc.

Then the situation (b) arises. In fact, we have by (6.3) an (6.4)

(6.9) dim [Ran (E,(02„(t) — E, it„(t) + e)))] 1 for any e > 0.

O n the  other hand, (6.8) implies

(6.10) dim [Ran (E,((tt n (t) — eo , 1.1„(t) + e)))] < + cc.

Thus it follows from (6.9) an (6.10) that p(t)  is a discrete eigenvalue of H , .  Take .5
>  0 such that (p(t)— p.„(t) + 5) n a(H,)= { p.„(t)} . Then we have by (6.4)

dim [Ran (E 1(( —  cc, 1(t)]))]

=  dim [Ran (E1(( co , i( t)  + J)))]. n .

T hus there  ex ist a t least n  eigenvalues o f  H 1 : 12 • • • <  1 <  li n (t). If 1„
< g„(t), we have by putting a = i(g„(t) + 2„) ( < p.„(t)) in (6.3)

n < dim [Ran (EA — co, 2,J))]

dim [Ran (E i g — co, ct)))] < n,

which is a  contradiction. Therefore, An = p„(t), i.e. k t(t) is the n-th eigenvalue of
H .  The lemma has now been proven. Q.E.D.

Lemma 6.2. For each n , p(t) is monotone nonincreasing in t on [0, co).

P ro o f . Since min (ht [u], 0 ) is  monotone nonincreasing in t  on [0, co), the
required result follows immediately. Q.E.D.

Lemma 6.3. For each n, g n (t) is continuous in  t on  R.

P ro o f . (cf. Simon [21, p.71, Theorem 11. 33])
For each ue11 1 (R 3 )  with 111.4 = 1, we put

f ( t; u )= min (h,[u], 0).

If we show tha t { f ( ;; u); u  H 1 (10), u = 1} is equicontinuous, the conclusion
follows.

Given t o  E R i ,  we have by Lemma 1.3 (e =  [2 (9 .x  q(x)1 + 1)(1t 0 1 + 1)]

(6.11) I (cRu, Yu)al max I q(x) I • II Yu
max19(x)1 

1117142 +2(max q(x)1 + 1)(1t0 1 + 1)
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1
+ 2 (max I q(x)I) (max I q(x) I + 1) (1(01 + 1)1Iu112

2 ( 1 ( 0 1 +  1 )  

11 Vu112 + b,o ,

where we put 1)10 = 2(max I q(x)I + 1) 2 (1(0 1 + 1). Suppose that ht [u] < 0 for some t
such that I t — t 0  <  I .  T h e n  w e  have

f (t ; u) = h 1 [u] =  7 u 2 + t(qyu, yu)„ 0,

which implies

(6.12) 11Vu112 — t(gyu, yu)„ YuLl (Itol + 1 )1(q)'14, Yu)al•

Therefore, from (6.11) and (6.12) it follows that

1(qyu, yu)a( q y u ,  y u ) a l +

and hence

(6.13) I (9Yu, Yu)a I 2b10

if h 1[u] < 0 for some t  such that I t — to  < 1.

Now, for given e > 0, let 6 = min ( 2   ,  1 ).  Let I t — t 0  <  6 .  If ht [u] 0 or
11,0 [u] 0, then we have by  (6.13) t°

11.0; — f (to ; 1)1 I h1 [u] h10 [u] — toll(q)m, < 6 .2b 10e .

The above inequality is trivially satisfied if hr [u] > 0 and  1110 [u] > 0. W e have
thus obtained the required equicontinuity. Q.E.D.

Lemma 6.4. For each n, f t„(t) is strictly  m onotone decreasing on [t 1 , + co)
once tt n (t 1 ) < 0 f o r som e t, 0.

P ro o f .  L et t, be  such  tha t E  ti(t 1 ) < 0  a n d  t, 0 .  Assume that there
exists t2 su ch  th a t t, t2 a n d  lia(( 1) = 1,4'(t2) = E < 0. Then, for any t e [t 1 , (2],
iin (t) = E holds by Lemma 6.2. Therefore, by Lemma 6.1 we can find u, for each
t c [t 1 , tA  which satisfies

(6.14) u, e Dom(H,), u, 0 and (H, —  E)u, = 0.

In  view of Lemma 2.12, we have

(6.15) yu, = t • Tis  _ E (yut) a n d  yu, 0 in  L 2 (Sa ).

This implies that for every t e [ t , ,  t ]  t - 1  i s  an  eigenvalue of which is a
contradiction, for tw-L- E is a compact operator by Lemma 2.4. Therefore, we must
have the lemma in  view of Lemma 6.2. Q.E.D.

N ow , as an analogue of the B irm an-Schw inger bound (e.g. Reed-Simon
[19, p.98, Theorem X111.10]), we shall give a  bound on the total numbr of bound
states of H .  Let E < 0 a n d  define N (E) by
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N (E)= #{ n; p5(l) < E},

where #A  denotes the cardinality of the set A .  Then we have the following

Theorem 6.5. L et E  < O. Then

(6.16) N (E )_  KT./ -E) 2 11L.s. M  < + co ,

w here M  is a constant independent of  E < O. In particular, the total number of
negative eigenvalues o f  H  is finite.

P ro o f . Since ttn (0) = 0 for every n and k i(t) is continuous by Lemma 6.3, it
follows from the intermediate value theorem and Lemma 6.4 that it(1) < E if and
only if ii(t) = E for exactly one te (0 , 1). Using Lemma 2.12 repeatedly, it is seen
that t 2  satisfying the equation /2(t) = E  is  an  eigenvalue of (L _ E )2 . Further,
since ( T )2  i s  a Hilbert-Schmidt operator by Lemma 2.8, we have

N(E) = #1n; u n (t) = E for some t e (0, 1)1

t
- 4

I te(0 ,1);(1k(t)= E,k = 1,2 N(E))

t  — 4

te(0 ,1)41k(t)= E,k = 1 ,2 ,...

te(0,1);t -  2  i s  a n  e igenva lue  o f  (T 1 5 ) 2

<  C 2 (m a x  I q(z)1)4 d S x d S y ( 1  +  log x — y11)2 M  <  +  co,
zEs„ sxso

where C  i s  a  constan t which is independent o f  E  (see th e  proof o f  Lemma
2.8). The above inequality shows the theorem. Q . E . D .

§7. The limiting absorption principle for H

In  this section we shall prove the limiting absorption principle for H.

Theorem 7.1. L et s > I. Then R (z ) can be ex tended to a B(122 (10 , L 2
- s(R 3 ))-

valued continuous function of  z  on  17Vt7,(H)u {O}).

P ro o f . Let us recall the resolvent equation

(7.1) R(z)— R o (z) = T s/F yR(z).

If we assume that (1 — 1 exists, we have on operating y from left on the both
sides of (7.1) and solving for R(z),

(7.2) R(z) = R o (z) + T —  '- ) 'y R 0 (z )
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for ze p(H)np(H o ). H ere w e have used Lemma 2.7. By Lemma 2.9 T / F  is  a
B(L2 (Sa ), Ls(R 3 ))-valued continuous function of z on Im ." -z-  > 0 if s > 1 /2 .  Thus
(T l y )*  is a  B(Ls2 (10), L2 (Sa ))-valued continuous function of z  o n  Im.\ /  >  0  if s
>  1 /2 . O n the  other hand, we have by Lemma 2.13 (q(x) I)

yRo (z) = — (74)* if Im.\./ i  >  O.

Thus, since Ti c =  TV )  i f  q(x) 1, yR o (z) can be extended to a  B(LS(R 3 ), L2 (Sa ))-
valued continuous function of z on I I  if s >  1 / 2 .  Therefore, in  view of the well-
known limiting absorption principle for H o (see e.g. Agmon [2]), the proof of the
above theorem is reduced to the next

Lemma 7.2. L et zell\(o -
p (H)U101). Then (1 — l',1 y ) - 1  ex ists and belongs to

B(L 2 (Sa )). In  this case, (1 — 1 is a  B(L 2 (Sa ))-valued continuous function of  z
on IlVo -

i,(H)u {O}), where B(X ) denotes B(X, X).

We will show this lemma after proving a  series of lemmas. First, we have by
Lemma 2.12

L em m a 7.3. L et Im  z  >  O. T hen le o-
p ( 7t,/ F) if  and only  if  zea p (H).

L em m a 7.4. L et Ce C and let ueL 2 (Sa ) satisfy  the homogeneous equation u
=  -to t  in L 2 (Sa ). Then u is bounded on Sa .

P ro o f . Let k(x, y) be the integral kernel of (Tc)3 . It follows from Lemma 2.2
tha t k(x, y ) is bounded o n  Sa  x  S „ . Thus we have by  Schwarz' inequality

= u(x)I
f  d S

y k(x, 311141Y)
s„

supk ( x ,  y ) 1 1  d S y lu(Y)I
orooes„xs„ s„

supk ( x ,  y)1(4na2 ) 112 I Ma < + 00,

which proves the lemma. Q.E.D.

Lemma 7.5. Under the conditions of Lemma 7.4 u(x) is 11,5lder continuous on
Sa .

P ro o f . We consider the difference

— 1 C — e x '
(7.3) u(x) — u(x') = L.-

q(y)u(y)dSy
47r 

—  1  C  (  1
1

 eicix -vi q(y)u(y)dSy
47E — Ix ' —y l)

= J 1 +  J2'
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We shall estimate J 1 a n d  J 2  as follows. Considering the inequality

lei— < lx —

we have for x, x' e Sa

1 1
(7.4) AICIlx — x'le 2altngi dS 

m
y

s .l x  —  y l

= Aa ICI e2ali ng i Ix  — I,

where A  sup lq(y)u(y)1 < + c o  by A ssum ption 1.1, Lem m a 7.4 a n d  Lemma
yeS„

2.1. We proceed to estimate J 2 .  In  view of the inequality

 

11
I x — y I I x ' —  I

Ix — x' I
lx — yl I x' — y I

we have for x, x' e Sa

  

1
(7.5) 1 J2 1 < —

4

1

7r Ae 2 alingl 1 x — d S  

Ix —  Yllx —  YI

< —
1

Ae2alIngl C — x' 1(1 + Iloglx II),4m

where we used Lemma 2.2. The conclusion follows from (7.3), (7.4) and (7.5).
Q.E.D.

Lemma 7.6. L et ice R  and ueL 2(Sa). Pu t U(x) (To u)(x). Then U(x) has
the following asymptotic behavior

— 1 e imixl 1
x I )

(7.6) U(x) = 
 47r

ei g(y )u(y )dS y + 0(412
I s‘,

as oo, where cox  denotes the unit vector with the direction of X . Further, U(x)
satisfies the following radiation condition

aU
81x1

 ( x ) iyU(x) = 0 (  I
 2 ) a s  1 x I + cc.

xl 1 xl

Pro o f . In  view of the relation

- + + 172 e iglx-yr
lx— y 1x1 ix!

1±  cox . y e iAtx -y1 (x  E  R 3 , 1.Y1 < R < + co),1x12

(where t h  a n d  1/2 a r e  real valued functions satisfying th  =  0
1 1

ly1
2 ,  a n d  ri 2

x 



= 0( ixi , )  when 1x1—> + œ (see  e .g . Ikebe [6, p.11]), we have11'1 

U(x) =
47r lx i

q(y)u(y)dSy
1  e iAki

(e —  1)q(y)u(y)dSy
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1

47, Ix, is .

1 
47r 1, 2 is„w x

• y Y l q ( y ) u ( y ) d S y
1

— 1 e l"lx1

4irJ q ( y ) u ( y ) d S y  +  1 1 +  /2 + 13.

(i = 1, 2, 3) are estimated as follows:

1
-ipkin1

1111 — max 1q011— let  _f 11114(Y)IdSyIx'47r y es.

1 1 a< — max MAI —

1x 1  
f

s .
CItil lx1

1 x12
Iti(AdS y47r yes„

const. r<  lx 12  j s o lu(y)IdSy

const.
,IX12a

const. const.
1121 1114%, 11 31

-X1 1x1
2  MU% •

1 3

These estimates prove (7.6).
Let us show (7.7). By differentiation under the integral sign, we have

OU
(7.8)

lx1
(x )  —  i p , U ( x )

1 )q(y)u(y)dsy

+  1 C  lx12x • Y  e i'L lx - Yl q(y)u(y)dSy47r j sa lx1lx — Y1 3

= J 1 + J2.

Considering ly1 = a, we have

etolx1

47r lx 1 s“f

ti2 e i a l x - Y I  q(y)u(y)dS
1 1

y

I  (1x12 x .y

47c — —
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as I x

-  Y r i -Ix1 - 1 (1 + w x . ( 1
):--cT) + 1 9 ( 112 ) )

+  co, and hence

1 (1 xl 2x  •  Y1 ) 0(  1  

- - )

1 x12 — x • y0  (

lx 1 1 x — y13x 1 2 )

Therefore, we have

a s  lx1-4 + oo .

const. const.
(7.9) J11

lx1
3  Is u(Y )1dS,

I x '
 11141107

cons 1.
1-121

lx 1
2  1114 a •

Thus (7.7) follows from (7.8) and (7.9) immediately. Q.E.D.

Lemma 7.7. L et yeR\101 and  let ueL 2(Sa) satisfy u = To  in  L2 (S a). Then,
fo r  a n  aribitrary un it vector a) we have

(7.10) I e
•

-""" q(y)u(y)dS y = O.
s', 

Pro o f . P u t U(x) (T 0)(x ). Since u(x) is continuous on Sa by Lemma 7.5, U(x)
is continuous o n  R3 (see e.g. Colton-Kress [4, p.47, Theorem 2.12]), and hence

(7.11) ( U  5 )(x) = u(x).

O n the  other hand, by Lemma 2.11 ((7;,u)(x) U(x)), U(x) satisfies the reduced
wave equation

(7.12) (A + it 2 )U(x) = 0 o n  lx;Ix1 < al Ulx; Ix >  al.

F u r t h e r ,
 (O U  

(x) can be continuously extended from tx;Ix1 < a l to  { x ; x 1 a}
an +

and from Ix; > a l  to  Ix ;  x  >  a l w ith  the limiting values

(OU )(±) 1
(7.13) (x) = + -q(x)u(x) + W (x)  ( X e  Sa ),-  2

respectively. Here

W ( x )  =
- 1 e

i P l x - y 1

 q ( y ) u ( y ) d S ,  (the integral exists as an  improper
47r s a na ,  y

au  r) (au 
integral) a n d   (x) are the limits of

an +  )

(x) obtained by approaching Sa(an + )
from Ix ; Ix 1 > a l  and  {x ; Ix 1 < a}, respectively, that is,
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7 0u\ O U
(x) = )(y),

V12 + u n
13, 1> a

aU  )(-) a U(x) = lim t ) ( y ) ,  XE Saan+ y - . ) c  un
iyi <a

(see e.g. Colton-Kress [4 , p .47 ]). Using (7.12), (7.13) a n d  Green's theorem, we
have

(7.14) 0 = {(4 p2 ) U(x) • U(x) —  (A + [12 ) U(x) • U (x)} dx< a  
xi

= J
{ ( G I  U)(x)U(x) —  (A U)(x) U(x)} dx

.1<a

au (-)
( x ) U ( x )f,„{(an+)

(  au „-)
+ )

 (x )U (x)}  dS  x

= ( W(x) U(x) —  W(x) U(x))dS x ,

where we have used the fact that ki and q(x) are real-valued. Similarly, for any b
such that b>  a  we have

(7.15) 0 = {(z1 + it 2 ) U(x) • U(x) — (A + it 2 ) U(x) • U(x)} dx
a < 1 x 1  < b

i s °  {Ganuf ) (x)U(x)
±)

(x)U (x)}dS x
\ f l + j

au au + f y o u ( x )  (
a n +

)(x) U(x)} dS x

Sb +

= — W(X)U(x) —  WOO U(x))dS x

s

au au + f  f (
a n  

)(x) U(x) (

an 
(x) U(x)} dS x .

s b+

Thus we obtain by (7.14) and (7.15)

f (  au  ) au (7.16)
L=b1Vn+ 

)(X) U(X) (
a n +  

) ( X )  U(X)}d,S.,, = 0,
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for any b such that b > a. Once Lemma 7.6 and (7.16) are shown, an argument
similar to Povzner [16, Chap. II, Lemma 5] gives

(7.17)
J .  e

- "̀ .Y 9l0U1s)(Y)dS y =  0  (co e S2 ),

which implies (7.10) by (7.11). Q.E.D.

Lemma 7.8. L et /I. > 0 and let ueL 2 (Sa ) satisfy u =  -t/A.+Lou (or u = 
in  L 2 (Sa). Then u = 0 in  L 2 (Sa ).

P ro o f . Put U(x) ( T „ , , u ) ( x )  ( =  T / T u)(x)). T h e n , by Lemmas 7.6, 7.7 and
2.11, we have

(A + A)U (x)= 0  on {x ; >  a}, U(x) = 0 (
1x 1 2

)  a s  Ix + co .

Thus, in  view of Mizohata [13, Chap. VIII §5, Lemma 8.4], we have

U(x) O o n  Ix ; Ix  >  a l.

Since U(x) is continuous on 10 as mentioned in the proof of Lemma 7.7, we obtain

U(x)_= 0 on  lx ; x i >  a l,

and hence

u(x) = (Ul s )(x) = 0.

Similarly, the case tha t u =1-',/ ,,_ i o u can be proven. Q.E.D.

W e a re  now  in  a  position  to  m ake  use of the Fredholm-Riesz theory of
compact operators in  a  H ilb e r t space, according to which, i f  T  is  a compact
operator in a Hilbert space X , 1 — T is injective if and only if (1 — T) - 1  exists and
belongs to B(X) (see e.g. Riesz-Nagy [20, Chap. IV]). Thus, by Lemmas 2.4. 7.3
and 7.8 we have the following

Lemma 7.9. L et zell\(o -,(H)U {O}). Then (1 — ./ T ) - 1  ex ists and belongs to
B(L 2 (Sa )).

Lemma 7 .1 0 . (1 — is  a  B(L 2 (Sa ))-valued continuous function of  z  on
p (H)U {0}).

P ro o f . The conclusion follows from Lemma 2.10 and the standard estimate

11(1 - ) ' - ( 1  -  ts/P)—)
1 ii

11 rt,/p II 11(1 - 1 11 
-< 1 - 11 -  T IP  11 11 (1 — TVP)— 1 11 • Q.E.D.

The above two lemmas imply Lemma 7.2. Therefore, Theorem 7.1 has now
been proven.
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O nce  the  lim iting absorption principle fo r  H  is established, th e  absolute
continuity of H  on (0, co) readily follows from the same argument as Ikebe-SaitZ5
[ 8 ] .  Thus we have the following

Theorem 7.11. E((0, co))H is an absolutely continuous operator, where E (.) is
the spectral measure associated with H.

§8. Eigenfunction expansions

We shall proceed to show the eigenfunction expansion th eo rem . Our method
is based o n  K uroda [12] and Ikebe [6, 7].

W e shall start with a  well-known formula.

Lemma 8.1. Let s  > 1 . Suppose that ueLs2(10) and Y--v e C (R 3 \{0}). Then
we have

e f + 0 3

(8.1) (u, W± v) = lim— (R(2 + is)u, R 0 (2 + ie)v)d2.

For the  proof, see e.g. Kuroda [11, §5.4].

Lemma 8.2. Let s >  1. Suppose that u e 122 (10) and .9",  v e C(R 3 \[0}) such
that supp ,F•v { ;  a <11 2  1 1 }  (0< Œ G fl). Then we have

E f f l

(8.2) (u, W±  v) = lim — (R(2 + ie)u, R 0 (2 + ie)v)(12.n

Here supp means support.

P ro o f . (cf. K uroda [12, p.151, P roposition  5 .12]) L et J = Rqa, 13]. By
Lemma 8.1 we have only  to  show

(8.3) lim — f (R(2 + ie)u, R 0 (1 + ie)v)d2 = 0.o

By Schwarz' inequality we have

f (R(2 ± ie)u, 12 0 (2 + ic)v)d2
in

1/2 p ) 1 / 2
+ ie)u11 2 (12)

( j 0 (), + ie)v 112 ciA
It

= 1/2 .12 (0 1/2 .

Thus, to prove (8.3) it is sufficient to show

(8.4)1 1 m 1 2 ( e ) =  0 ,

(8.5)1 1 ( e )  . 11u112f o r  all E > 0.
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Using the spectral representation for H ,, we have
f + . E 1(8.6) —

c  

II Ro()- ± iE)v II2 = d(E 0 (12)y, v),n - co n  G I  ___ A)2 + e2

where E0 (.) denotes the spectral measure associated with H , .  Using the fact that
Ho i s  a n  absolutely continuous operator, we have

R0(/1 ig)v112 = (P*  p )() ,

where P,(p) 
7 ( i

2 e+  8 2 )  (the Poisson kernel), p(p) = —
d

(E0 (y)y, y) and  * means

convolution. Further, p(p) belongs to  L 1 (R 1 )  a n d  p(u) = 0 fo r  a.e.p J  since
E,(J)v  = 0. Thus we obtain

12 (e) = f  (P o* P)(A)(1), = ((Po* P)(2 ) P(A))(1.1

11Po* P —  PL(R) — 0 as ciO,

which implies (8.4). Let us show (8.5). As we got (8.6), we have
+

11 (e) = f MR(À , ± ie)u11 2  d), = 13f ,( 2 — A)d(E(p)u, u)
-

+ +

J
d(E(p)u, u) P,(y —  2)d2 =

—

where we used Fubini's theorem and the well-known properties of P (y )  that
+

PE(/4
co

PE( > 0 for all i t  and f Pe (y)du = 1.

This implies (8.5). Q.E.D.

L e t  u s  define th e  generalized Fourier transform ..F±  a n d  t h e  generalized
eigenfunctions ± (x, by

(8.7) =  W t  ,

(8.8) ±(x, = e x + [1 1(1 — q71 ,,q41 ) -  ( e ' 4 * q)](x)

for (x, ) eR 3 x  (R3 \101), respectively. We should note here that by Lemmas 2.14
and 7.2 (1 — q7" ( 141) - 1  ex is t and satisfy the relations

(8.9) (1 — = t±141)-1]* for /0\101.

W e also  rem ark  that ± ( x , )  are regarded as the generalized eigenfunctions of H
in  th e  sense stated in  Theorem 8.6. Further, they a re  seen  to  be  the  integral
kernels of ,f;±  b y  the following theorem.
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Theorem 8.3. For any  ue L 2(R 3 ), ±  h a v e  the form

(8.10) u)( ) = 1.1.m. (2n) - 3 1 2 ± ( x , u(x)dx,
R—o+oo Ix Is R

where 1.1.m. means the lim it in the mean.

P ro o f .  L et u e C ( (R 3)  and v E C ( R 3 \ {0}) such that supp y OE Ix ; Œ < lx1 2

< (0 < < /3). Using (8.7), Lem m a 8.2 and (7.2), we have

(8.11) (..F ± u, y) = (u, W , v)

= iiM — f (R 0 (.1 + is)u, R 0 (2 + OF* v)d.1
ej0 it a

+ (T,/,1±1, (1 "t A ± 0 - 1 7 R 0 (2  ± is)u, R o (À, + is).97 *v)d2
E.1,0 7E a

= , (E) + 2(4
El ° El°

For the first term of the right hand side of (8.11), as is well known (see e.g. Kuroda
[12, p.54]), we have

(8.12)

We shall
have

(8.13)

limcio

consider the

(T ± „(1

J 1 ()  =
f

(F u ) ( )
a<1,;12<fl

second term. In  view of

+ is)u, R o (),

v (x) = (Fu, v).

Parseval's equality and (2.10), we

+ ie) *v)

1
7 .11, 12 _  ( 2 + i e )  -Fs„q( 1z ±  i c r  YR0(2

— (2  +

=
R3{ N I

312

—1
dS y e - q ( y )  x

s„
(A + (27-t) -

v ()
x [(1 +1YR0(À iE)td(Y)}

— (A,j E )

v( )
= — (277)-312 xf

R3

g

—  I 1
2

)
2
 +  E 2

+X ((1 1yR0(2 is)u, q).

Since ((1 — -1',/•,1 ) - 1 yR0 (). + is)u, e 14*q)aa r e continuous in2 and e on [oc, f3]
x [0, 1] by Lemmas 7.2, 2.9 with c/(x) 1 and the fact that yR o (z) = — ( M4)*, we
have
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1
(8.14) lim f  dA

OE
i c  R 0 (.1 + ie)u,y e1 q)(A iI 2)2 e

2 «1

= ((1 — L i c ) - 1 YR0(11 2 ±  i0)u,

where we have made use of the well-known relation

1
lim  d A tr (A — a)2 + e2 

f  ( A ,  e l

if a < a  o r  /3 < a
{ 0f( a, 0 )  if a < a <

in which f (A, e) is a  continuous function of (A, e) for (A, e)e[a, [3] x [0, 1] (see e.g.
Titchmarsh [22, p.31]). Further, from (8.9) and the fact that yRo (z) = — (71,j4)*, it
follws that

(8.15) — -f+,1) - 1 71?0(1 ± i0)u,

= 1YR0(112  + i0)u, (1 — qTY141 ) -  (e`

= — fdx u(x)[rT
i.141 (1 — q -P T!j41) -  1  (ei4 ' q)](x),

R3
where we have used Fubini's theorem in the last equality. Thus, m aking use of
Fubini's theorem a n d  th e  dominated convergence theorem, we see from (8.13),
(8.14) and (8.15) that

(8.16) liM (e)

= (2n) - 3 1 2 d x  u ( x ) [ T Y . 1 41 (1 — q T
(

141) - q ) ] ( x ) ) .
a3 a3

Now we have by (8.8), (8.11) (8.12) and (8.16)

(F ±  u)() = (2n) - 3 /2  f  d x  ± (x, )u(x) for any u e Q°(R 3 ).
R3

Since CW (R3 )  is  dense in L2 (/0), the conclusion follows. Q.E.D.

To prove the continuity and boundedness of (I) ± (x, we need the following
lemma.

L em m a 8.4. L e t K  b e  a  compact set in  R 3 . L e t  f(x, be a continuous
function o f  (x, )e S„ x K .  Then (n.1 41 f(•  , ))(x ) is bounded and continuous in
(x, )E R 3  x  K .  In particular, (71 .,1.141 f (. , ) ) (x )  is continuous in (x, )e S a x  K.

P ro o f . By Lemma 2.1 we have
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1 
RDA ' f(• , ))(x)1 —

1

m ax I f(y, f  , dSy
s„ YI4n (y,4)es„x K

=  -

a

a +m ax I f(y,
x l

lx11a  m ax I f(y,
„2 (Y,4)ES„xK (y ,4)ES x K

which proves the boundeness of (71 ,1_6 f(• , ))(x).
Let us show the con tinu ity . Let us introduce the functions GT(x, with a

real parameter e by

e±i1411x-y11

.
GT1X, =  —  — f ( y ,  ) d S y ,

4 n  
JS„n ly;lx -yl> —

(x, )e R 3 x  K, e> 0. It is easily seen that for each E ,  G n X , is continuous in
(x, in l e  x  K .  Further, GT(x, uniformly converges to  (V A ' f (• , ))(x ) when
e V I .  In fact, we have for a  sufficiently small g

-  (VA ( ( • , ))(x)1

<  m ax I f(y,J dS
(y,4)ES„x K 4nIx — yl Y

S n  I y;lx — YISel

a(e — — 1x11) m ax I ftv, )1
{(y ,4 )eS „xK 21 -3C1

if la —< e

if la

<  m ax I f (y, )1 g
(y,4)eS„x K

if e < —
a

— 2'

w here w e have  used (2.6). T hus th e  continuity o f  (7V
41

f (• , ))(x ) has been
p ro v en . S in c e  ( f ( - ,  ) ) (x )=  (T (1 6  f(•  , ))(x ) (xe Sa ), t h e  a s s e r t io n  f o r
(71 ,141f ( . ,  ))(x ) holds. Q.E.D.

Theorem 8.5. yo± (x, is continuous in ( x ,  ) e /? '  x (R 3 \{0}) and bounded on
R 3 x  K , where K  is any compact set in 10\{0}.

P ro o f  Put 0 (x , = [(1 — q t (4_ 41) -- (e i4 ' q)] (x). Then , is an L 2(Sa)-
valued continuous function o f  e R3 \ {0} by Lemma 7.2 and (8.9). If we show that
0 ± (x, is  a  continuous function of (x , )E S„ x K , the conclusion follows from
(8.8) and Lemma 8.4. Since ± (x, satisfy the equation

(8.17) ±(x, = et 'xq(x) + (qTY141)tif ± (x,

we have, using (8.17) repeatedly,

(8.18) ±(x, = e14.xq(x) + [(qTYj c )(e`4 4 )](x )

[(q -n
)

41)2 (e' 4. 0 ](x ) [(0 1T1141)3 (ei4. C(x)
+ [(q71,,1141)4 0 ± ( . ,  ) ] (x).

1
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It follows from Lemma 8.4 that the first four terms of the right hand side of (8.18)
are continuous in  (x , )eS „ x K .  Thus the proof of this theorem is reduced to
showing the continuity of [(qTY104 0 ± (•, )] (x). Let irT_ (X , y,; be the integral
kernel of (qn . j 41 )4 • T hen , in  the  same way as we proved Lemma 7.5, we can show
th a t  .7(Ax, y; is continuous in  (x, y, o n  Sa x Sa x K .  W e consider the
difference

(8.19) [(q-M 41)40± (., )] (x) — [(9 -P4j401)4 0±( . , 13)](x0)

= f(Ar 4-(x, Y; — 3); ))(P± (x, )dS y

so

+ (Y r+(xo, y ;— (x0, y; 0))111-±(x, )dS y

So

+ y;,Y(T (x o , y; 0)(11/±(x, — tfr± (x, i:)))ds' y

S„

= J 1 +  J  +  J3.

J,(i = 1, 2, 3) are estimated a s  follows :

(8.20) I J1I max ,f(+ (x, y; —  ,14-(xo, y; )11 I t ±(Y, OldsyEso
y

s o

< max 11 ' (x, Y; ,Yr-F(xo; y ; )1 ( 4 1 ra2 )1 1 2± ( •
y es„

J2I maxllf+  (x o , y; — J(T(xo, y; ,D)1( 4 7ra2 ) 1/ 2 II (•, )11a,
yEs„

I J3I max AT
+ (xo, y ;  0)1( 4 7 tc12 )1 1 2± (  •  , (x , ()) a  ,

y esa

It follows from (8.19) and (8.20) that [(qTY6) 4 0 ± (•, f l (x ) is continuous in  (x,
o n  Sa x K .  Thus the  theorem follows. Q.E.D.

Theorem 8.6. L e t  e 10\101. T hen 9 ± ( x ,  )  satis f y  the followng equations

1 e T-iivx-yi
(8.21) 9 ±(x , ) = e t . x  —  —  q(y)(p + (y , )dS y

4n fs  Ix  _yl
(the Lippmann-Schwinger equation),

(8.22) ±(x, —  1 2 )v(x)dx +

+ q(x)9 ± (x, )v (x )dS „ = 0 for any v e C (IV ) .

P ro o f .  By (8.8) we have
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1 r

—
g(y)q) ± (y, = T Y 6(g(9  ( s „)( • , ))(x )

4n i s °  

= T 1141(g ei4)(x)+ T (
+
1 141 (gT1 _46(1 —  gT (

T
i_j41)'( g e i4 ))(x)

=  T 1 (qei4.)(x) ± T 1 (E — (1 — qt(1,1) ± n(1 + qt(_46) -  (qei4.))(x)
= T(.441(( _  gtY j c ) - 1 (ge`4 . ))(x)

= (p ± (x,

which implies (8 .21). L e t u s  show  (8 .22 ). In  view of (8.21), (x, can be
written as

(P±(x, = e i 4 . x  + (T 1 S „ ( ))(X ) ,

Therefore, by Lemma 2.11 we have for any veC,T(R 3 )

4 9 ±(x, A  —11 2 )v(x)dx

= (49 ±(x, — A  —  1 2 )v(x)dx

= ( TT, 1419 ±1S „( ) ) (x ) ( —112)v(x)dx
R3

= —  f  g(x)yo ± (x , )v(x)dS x ,
s„

which implies (8.22). Q.E.D.

Theorem 8.7. .F.-± are  partially  isometric operators with the domain E((0, ce))
L 2 (10) and the range L 2 ( 1 0 ) .  Further, .97

+ have the follow ing properties: Let A be
any  B orel set on R .  Then,

(8.23) ,±E(A )= x { 4;v En} ,97±,

where x A denotes the operator o f  m ultiplication by  the characteristic function of
A .  In particular, if  ueL 2 (R 3 ), and a and 13 are such that 0 < a <f 3, then

(8.24)E ( ( Œ ,  M)u II 2 =  f 1(,±  14)(01 2 g ,

c(<11 2 <iq

(8.25) E((a, fl))u(x) = (270 - 2 1 2  f (g .
t u)(0y9 ± (x,

«<V<13

P ro o f . First, le t us recall the  well-known relations

(8.26) Eo (A ),F* — 4;I(2EA)

(8.27) E(A)1/174. = W±E,(A),



256 Teruo Ikebe and Shin-ichi Shimada

where A  is a Borel set on R  (see e.g. Kuroda [12, §3.4, Theorem 2]). Putting A
= (0, co) in (8.27), we have

E((0, co)) W±  =  W ± E0 ((0, cc)) = W,

from which it follows that

Ran(W.+.) E((0, oo))L 2 (R 3 ).

On the other hand, it follows from Theorem 7.11 that E((0, co))L 2 (R 3 ) is included
in the absolute continuous subspace X „,(H) of L 2 (R 3 ) relative to H .  Therefore, we
have by Theorem 4.1.

E((0, oo))L 2 (R 3 ) X a c (H)= R an(W ± ) c E((0, oo))L 2 (R 3 ),

and hence

Ran (W.,) = E((0 , co)) L 2 (R 3 )

This implies that lf±  a re  partially isometric operators with the domain L 2 (R 3 ) and
the range E((0, oo))L 2 (R 3 ). Thus, it follow s from  (8.7) that ,T,

±  a r e  partially
isometric operators with the domain in E((0, co))L 2 (R 3 ) and the range L 2 (R 3 ). By
(8.7), (8.26) and (8.27) we have

± E(A ) = ..FW t E(A ) = E 0 (A )W t =°:)7  Eo (A ).F *  W t = X  ( 4 ; 1412.A) F .
+

T h is  proves (8.23). L e t u s show  (8 .24 ) and  (8 .25 ). Since g", ± a r e  partially
isometric operators with domain E((0, co))L 2 (R 3 ), it follows that

= E((0, cc)).

Therefore, we have by (8.23) (A  = (a, 13) c (0, co))

E '  °'fin= ,97 *±X, ; „<12<p } ( ) g7 -±,

from which (8.24) and (8.25) follow immediately. Q.E.D.

W e shall now proceed to the eigenfunction expansion theorem.

Theorem  8.8 . Let A 1 , A2, b e  the nonpositive eigenvalues o f  H  (counting
multiplicity) and Iya i , y92 , •••1 a corresponding orthonorrnal system of eigenfunctions
of  H , if  a n y .  Then, for any u e L 2 (R 3 ) w e have the following expansion formula

(8.28) u(x )= E (u, 9 „)9 „(x) + 1.1.m. (270 3 12 cla 9 7 ± 00  9  ± (x , ) .
n cejOont co

f a<141<fi

Further, ueDom (H) if  and  only  if 1•1 2
± ueL 2 (123 ). I n  this case, lye have the

following representation of  H

(8.29) Hu(x)= 1.1.n (u, „(x ) + 1.i.m. (27) - 3 1 2 d a - F + 1 4 W ) ( P ±
a10,/31 co

< fi

fo r  u Dom (H).

P ro o f . A cco rd in g  to  T h eo rem  5 .1  E((—  co, 0]) L 2 (R 3 ) is  s p a n n e d  b y
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{(P (P2 ,  • • • }
 

Therefore, we have for any ue L 2 (R 3 )

(8.30) u(x) = E (u, gon )(pn (x) + 1.1.m. E((Œ, fl))u(x).
Œ10,fitco

(8.28) follows from (8.30) and Theorem 8.7, (8.25). Using Theorem 8.7, (8.24), we
have

(8.31) 2d II E(A)1411 2 = 14 1(gr' 0 ( 0 1 2  g •
R 3

O n the other hand, it follows from Theorem 6.5 that

(8.32) E((—  oo, 0])L 2 (R 3 ) D o m (H ) .

Thus, we have by (8.31) and (8.32)

(8.33) Dom (H)= 1u; ueL 2 (R 3 ), I • 12  F ±  e L2(R 3 )}.

Finally, let us show (8.29). From  the "intertwining" relation W± H , OE H W , (see
e.g. Kuroda [11, §3.4]) a n d  (8.33), it follows that

(8 .34) ,F+H = I•1 2 -F+ •

Therefore, if we replace u by Hu in (8.28), (8.29) follows rom (8.34) and the fact that
(Hu, (p„) = (P.). T h u s  the theorem has been proven. Q.E.D.

Added in proof. The proof of the assertion u e H 2 (R 3 \Sa )  is incom plete. But
this can be proven by the standard argument for showing the global regularity for
solutions to elliptic boundary-value problems (see e.g. Mizohata [13, Chap 3, §12])
if one  takes into account the  already known facts that zlue L 2 (R 3 ), ue 1-1 1 (R 3 )
= Dom [I' ] a n d  tha t h[u, y ] = (Hu, y) for any v e 1-11 (R 3 ).

DEPARTMENT OF MATHEMATICS

KYOTO UNIVERSITY (T. I.)
FUKUI NATIO NAL COLLEGE OF TECHNOLOGY

(S. S.)

References

S. A gm on, Lectures on Elliptic Boundary Value Propblems, V an Nostrand, 1966.
S. A gm on, Spectral properties of Schriidinger operators and  scattering theory, Ann. Scuola
Norm. Sup. Pisa, Ser. IV, 2 (1975), 151-218.
J . P. Antoine, F. Gesztesy and J . Sh ab an i, Exactly solvable models of sphere interactions in
quantum m echanics, J. Phys. A :  M ath . Gen., 20 (1987), 3687-3712.
D. Colton and R. Kress, Integral Equation Methods in Scattering Theory, Wiley-Interscience,
1983.
C. L. Dolph, J .  B. McLeod and D. T h o e , The analytic continuation of the resolvent kernel and



258 Teruo Ikebe and Shin-ichi Shimada

scattering operator associated with the Schr6dinger o p e ra to r , J . Math. Anal. Appl., 16 (1966),
311-332.

[ 6 ] T. Ikebe, Eigenfunction  expansions associa ted  w ith  the Schr6dinger operators a n d  their
applications to  scattering theory, Arch. Rational Mech. Anal., 5 (1960), 1-34.

[ 7 ] T . Ik e b e , Remarks o n  th e  orthogonality of eigenfunctions for the Schr6dinger operator in
R " , J. Fac. Sci. Univ. Tokyo, Sect. I, 17 (1970), 355-361.

[ 8 ] T. Ikebe and Y. Sait6, Limiting absorption method and absolute continuity for the Schrödinger
o p e ra to r , J . M ath. K yoto Univ., 12 (1972), 513-542.

[ 9 ] T . K ato , P erturbation  Theory for Linear Operators, Springer, 1966.
[10] O.D. K ellogg , Foundations of Potential Theory, Springer, 1929.
[11] S . T . K u ro d a , An Introduction to Scattering Theory, Lecture Notes Series No. 51, Aarhus

Univ., 1978.
[12] S . T . K u ro d a , Spectral Theory II, lw anam i, 1979, (in  Japanese).
[13] S . M izohata , The Theory of Partial Differential Equations, Cambridge, 1973.
[14] K . M ochizuki, Scattering Theory for W ave Equaiions, Kinokuniya, 1984 (in Japanese).
[15] J. Petzold, Wie gut gilt das Exponentialgesetz beim a-Zerfall?, Zeits. f. Phys., 155 (1959), 422—

432.
[16] A. Ya. Povzner, The expansion of arbitrary functions in terms of eigenfunctions of the operator

— A u +  cu, A.M.S. T ranslations, Series 2, 60 (1967), 1-49.
[17] M .  R e e d  a n d  B . S im o n , M ethods o f  M o d e r n  M athem atical Physics I: Functional

Analysis, Academic Press, New York, 1972.
[18] M. Reed and B. S im o n , Methods of Modern Mathematical Physics II: Fourier Analysis, Self-

Adjointness, Academic Press, New York, 1975.
[19] M .  R eed  a n d  B. S im o n , M ethods o f  M o d e rn  M athem atical Physics I V :  Analysis of

Operators, Academic Press, New York, 1978.
[20] F  Riesz and B. V on Sz-N agy, Functional Analysis, New Y ork, F. Ungar Publ. Co., 1955.
[21] B. Sim on, Q uantum  Mechanics for Hamiltonians Defined a s  Q uadra tic  F orm s, Princeton

Univ. Press, 1971.
[ 2 2 ]  E . C . Titchm arsh, Introduction to  the Theory of Fourier In tegra ls, Oxford, 1937.


