Spectral and scattering theory for the Schrödinger operators with penetrable wall potentials

Dedicated to Professor Tosio Kato on his 70 th birthday

By

Teruo Ikebe and Shin-ichi Shimada

§0. Introduction

In this paper we shall consider the Schrödinger operator with a penetrable wall potential in R^{3} formally of the form

$$
H_{\text {formal }}=-\Delta+q(x) \delta(|x|-a),
$$

where $q(x)$ is real and smooth on $S_{a}=\{x ;|x|=a\}(a>0)$ and δ denotes the onedimensional delta function. This operator is said to provide a simple model for the α-decay (Petzold [15]). Other applications may be found in the references cited in Antoine-Gesztesy-Shabani [3]. Dolph-McLeod-Thoe [5] treated this operator $(q(x) \equiv$ const.) with concern for the analytic continuation of the scattering matrix, yet at the formal level.

The first problem one meets is to define properly $H_{\text {formal }}$ as a selfadjoint opertor in $L_{2}\left(\boldsymbol{R}^{3}\right)$. For this purpose, let us consider the quadratic form h (which is associated with $H_{\text {formal }}$)

$$
\begin{aligned}
& h[u, v]=\left(H_{\text {formal }} u, v\right)=(\nabla u, \nabla v)+(q \gamma u, \gamma v)_{a}, \\
& \operatorname{Dom}[h]=H^{1}\left(\boldsymbol{R}^{3}\right) .
\end{aligned}
$$

Here γ is the trace operator from $H^{1}\left(\boldsymbol{R}^{3}\right)$ to $L_{2}\left(S_{a}\right)$, $\operatorname{Dom}[h]$ denotes the form domain of $h,($,$) means the L_{2}\left(R^{3}\right)$ inner product, (, $)_{a}$ the $L_{2}\left(S_{a}\right)$ inner product, and $H^{m}(G)$ the Sobolev space of order m over $G . h$ is shown to be a lower semibounded closed form, and thus determines a lower semibounded selfadjoint operator H. More precisely, H is seen to be the negative Laplacian with the boundary condition

$$
q(x)(\gamma u)(x)-\left.\left\{\frac{\partial u}{\partial n_{+}}(x)+\frac{\partial u}{\partial n_{-}}(x)\right\}\right|_{s_{a}}=0
$$

where $n_{+}\left(n_{-}\right)$denotes the outward (inward) normal to S_{a}. We should note here that while h is a "small" perturbation of h_{0}, which is defined by

$$
h_{0}[u, v]=(\nabla u, \nabla v), \operatorname{Dom}\left[h_{0}\right]=H^{1}\left(\boldsymbol{R}^{3}\right),
$$

via an infinitesimally h_{0}-bounded form, $H-H_{0}$ is not H_{0}-bounded, where $H_{0}=$ $-\Delta, \operatorname{Dom}\left(H_{0}\right)=H^{2}\left(\boldsymbol{R}^{3}\right)$, is the selfadjoint operator associated with h_{0}. We shall adopt this operator H as the rigorous selfadjoint realization of the formal expression $H_{\text {formal }}$. Antoine et al. [3] defined the Hamiltonians corresponding to $H_{\text {formal }}$ as the selfadjoint extensions of $\left(-\left.\Delta\right|_{C_{0}^{\infty}\left(\boldsymbol{R}^{3} \mid S_{a}\right)}\right)^{\sim}$ making use of the decomposition of $L_{2}\left(\boldsymbol{R}^{3}\right)$ with respect to angular momenta. Here $C_{0}^{\infty}(G)$ denotes the set of all infinitely continuously differentiable functions with compact support in G and ~ means the closure.

After having determined the proper selfadjoint operator H corresponding to $H_{\text {formal }}$, we take interest in the spectral structure of H. It can be seen that the nagative part of the spectrum of H consists of a finite number of eigenvalues of finite multiplicity (Theorem 6.5). Further, we can show the difference of the resolvents of H and H_{0} is a compact operator, which implies that the essential spectrum of H coincides with the interval [$0, \infty$). A most interesting problem in the spectral theory for H is that of absolute continuity. Namely, let $E(\cdot)$ be the spectral measure associated with H. Then the problem is: Is H restricted to $E((0, \infty)) L_{2}\left(\boldsymbol{R}^{3}\right) \quad$ an absolutely continuous operator? This problem is affirmatively answered by making use of the so-called limiting absorption principle. Our limiting absorption principle for H states that the resolvent (H $-z)^{-1}$ can be extended to a $\boldsymbol{B}\left(L_{2}^{s}\left(\boldsymbol{R}^{3}\right), L_{2}^{-s}\left(\boldsymbol{R}^{3}\right)\right)$-valued continuous function of z on $\Pi \backslash\left(\sigma_{p}(H) \cup\{0\}\right)$ when $s>1 / 2$. Here Π is the complex plane with the upper and lower edges of $(0, \infty)$ distinguished such that the upper (lower) edge is the boundary points from above (below) (see Kuroda [11, Appendix to Chap. IV]), and $\sigma_{p}(H)$ denotes the point spectrum of $H, \boldsymbol{B}(X, Y)$ the Banach space of bounded linear operators on X to Y, and $L_{2}^{s}\left(R^{3}\right)$ the weighted L_{2} space defined by

$$
L_{2}^{s}\left(\boldsymbol{R}^{3}\right)=\left\{u(x) ;\left(1+|x|^{2}\right)^{s / 2} u(x) \in L_{2}\left(\boldsymbol{R}^{3}\right)\right\}
$$

with the norm $\|u\|_{0, s}=\left\|\left(1+|\cdot|^{2}\right)^{s / 2} u\right\|\left(\|u\|=\|u\|_{0,0}\right.$ is the usual L_{2}-norm $)$.
Let us recall some notions from scattering theory. In the situation described above the wave operators $W_{ \pm}$interwining the pair $\left(H, H_{0}\right)$, defined as

$$
W_{ \pm}=\text {strong } \operatorname{limit}_{t \rightarrow \pm} e^{i t H} e^{-i t H_{0}}
$$

are shown to exist and to be complete. Thus, let us define the generalized Fourier transform $\mathscr{F}_{ \pm}$by

$$
\mathscr{F}_{ \pm}=\mathscr{F} W_{ \pm}^{*},
$$

where \mathscr{F} is the ordinary Fourier Transform defined by

$$
(\mathscr{F} u)(\xi)=(2 \pi)^{-3 / 2} \int_{\boldsymbol{R}^{3}} e^{-i \xi \cdot x} u(x) d x
$$

and * means adjoint. Then, with the aid of the limiting absorption principle for H we can construct the distorted plane waves $\varphi_{ \pm}(x, \xi)$ which are the integral kernels of $\mathscr{F}_{ \pm}$and satisfy the following Lippmann-Schwinger equation

$$
\varphi_{ \pm}(x, \xi)=e^{i \xi \cdot x}-\frac{1}{4 \pi} \int_{S_{a}} \frac{e^{\mp i|\xi||x-y|}}{|x-y|} q(y) \varphi_{ \pm}(y, \xi) d S_{y} .
$$

On the other hand, let $\lambda_{1}, \lambda_{2}, \cdots$ be the nonpositive eigenvalues of H (counting multiplicity) and $\varphi_{1}(x), \varphi_{2}(x), \cdots$ the corresponding normalized eigenfunctions of H. Then we have the following eigenfunction expansion formula

$$
u(x)=\sum\left(u, \varphi_{n}\right) \varphi_{n}(x)+\text { 1.i.m. }(2 \pi)^{-3 / 2} \int_{\mathbf{R}^{3}} d \xi\left(\mathscr{F}_{ \pm} u\right)(\xi) \varphi_{ \pm}(x, \xi)
$$

where l.i.m. means limit in the mean.
We shall outline here the contents of the present paper. In § 1 we shall define the proper selfadjoint operator H corresponding to $H_{\text {formal }}$ and characterize the domain of H. $\S 2$ will be devoted to studying some integral operators connected with the resolvent of H. The second resolvent equation for H and H_{0} will be discussed in $\S 3$. The existense and completeness of the wave operators will be shown in $\S 4$. In $\S 5$ we shall investigate the spectrum of H. An upper bound on the total number of the bound states of H will be given in $\S 6$. In $\S 7$ we shall show the limiting absorption principle for H, and in $\S 8$ the eigenfunction expansion theorem concerning H.

Part of the results obtained here has been announced in LNM 1285, 211-214 (ed. I. W. Knowles and Y. Saitō). Also, a detailed discussion of the scattering matrices will be given elsewhere by one of the authors (S.S.).

§ 1. The Schrödinger operator H

Throughout the paper we shall make the following assumption.
Assumption 1.1. $q(x)$ is a real-valued, smooth function on S_{a}.
For a rigorous definition of the Schödinger operator $H_{\text {formal }}$, we need some lemmas concerning the trace operators.

Lemma 1.2. Let γ_{+}and γ_{-}be the trace operators from $H^{1}(\{x ;|x|>a\})$ and $H^{1}(\{x ;|x|<a\})$, respectively, to $L_{2}\left(S_{a}\right)$. Let $u \in H^{1}\left(\boldsymbol{R}^{3}\right)$. Then $\gamma+u=\gamma_{-} u$.

Proof. Since $u \in H^{1}\left(\boldsymbol{R}^{3}\right)$ and $C_{0}^{\infty}\left(\boldsymbol{R}^{3}\right)$ is dense in $H^{1}\left(\boldsymbol{R}^{3}\right)$ we can choose a sequence $\left\{u_{n}\right\} \subset C_{0}^{\infty}\left(\boldsymbol{R}^{3}\right)$ such that $u_{n} \rightarrow u$ in $H^{1}\left(\boldsymbol{R}^{3}\right)$ as $n \rightarrow \infty$. Since $\gamma_{ \pm}$are bounded operators from $H^{1}\left(\boldsymbol{R}^{3}\right)$ to $L_{2}\left(S_{a}\right)$ (see, e.g. Mizohata [13, Chap. III]), respectively, there exists a constant C such that

$$
\begin{equation*}
\left\|\gamma_{ \pm} f\right\|_{a} \leq C\|f\|_{H^{\prime}(|x ;|x| \gtrless a|)} \quad \text { for } f \in H^{1}(\{x ;|x| \gtrless a\}), \tag{1.1}
\end{equation*}
$$

where $\|u\|_{a}=\sqrt{(u, u)_{a}}$. In view of $\left(\gamma_{+} u_{n}\right)(x)=\left(\gamma_{-} u_{n}\right)(x)=\left(u_{n} \mid s_{a}\right)(x)$ for each n, we have by (1.1)

$$
\begin{align*}
&\left\|\gamma_{+} u-\gamma_{-} u\right\|_{a} \leq C\left\|u-u_{n}\right\|_{H^{1}(|x:|x|>a|)}+C\left\|u-u_{n}\right\|_{H^{1}(|x ;|x|<a|)} \tag{1.2}\\
& \leq 2 C\left\|u-u_{n}\right\|_{H^{1}\left(R^{3}\right)}
\end{align*}
$$

Letting n tend to ∞ in (1.2), we obtain that $\gamma_{+} u=\gamma_{-} u$.
Q.E.D.

By the above lemma, we can define the trace operator γ from $H^{1}\left(\boldsymbol{R}^{3}\right)$ to $L_{2}\left(S_{a}\right)$ by $\gamma u=\gamma_{+} u\left(=\gamma_{-} u\right)$ for $u \in H^{1}\left(\boldsymbol{R}^{3}\right)$.

Lemma 1.3. Let u belong to $H^{1}\left(\boldsymbol{R}^{3}\right)$. Then we have for any $\varepsilon>0$

$$
\begin{gather*}
\|\gamma u\|_{a}^{2} \leq \varepsilon\|\nabla u\|^{2}+\frac{1}{\varepsilon}\|u\|^{2}, \tag{1.3}\\
\|\gamma u\|_{a} \leq \sqrt{a}\|\nabla u\| . \tag{1.4}
\end{gather*}
$$

Proof. Since $C_{0}^{\infty}\left(\boldsymbol{R}^{3}\right)$ is dense in $H^{1}\left(\boldsymbol{R}^{3}\right)$ and γ is a bounded operator from $H^{1}\left(\boldsymbol{R}^{3}\right)$ to $L_{2}\left(S_{a}\right)$, it suffices to prove the lemma for $u \in C_{0}^{\infty}\left(\boldsymbol{R}^{3}\right)$. Let $u \in C_{0}^{\infty}\left(\boldsymbol{R}^{3}\right)$ and $\varepsilon>0$. Using the inequality $2|p \cdot q| \leq \varepsilon|p|^{2}+\varepsilon^{-1}|q|^{2}$, we have for any $\omega \in S^{2}$ (the unit sphere of \boldsymbol{R}^{3})

$$
\begin{align*}
|u(a \omega)|^{2} & =-2 \operatorname{Re} \int_{a}^{\infty} \frac{\partial u}{\partial r}(r \omega) \overline{u(r \omega)} d r \tag{1.5}\\
& \leq \varepsilon \int_{a}^{\infty}\left|\frac{\partial u}{\partial r}(r \omega)\right|^{2} d r+\varepsilon^{-1} \int_{a}^{\infty}|u(r \omega)|^{2} d r \\
& \leq \varepsilon \int_{a}^{\infty} \frac{r^{2}}{a^{2}}\left|\frac{\partial u}{\partial r}(r \omega)\right|^{2} d r+\varepsilon^{-1} \int_{a}^{\infty} \frac{r^{2}}{a^{2}}|u(r \omega)|^{2} d r
\end{align*}
$$

Multiplying both sides of (1.5) by a^{2} and integrating with respect to ω over the unit sphere S^{2} yield

$$
\begin{align*}
\int_{S_{a}}|u(x)|^{2} d S_{x} \leq \varepsilon \int_{|x| \geq a}\left|\frac{\partial u}{\partial r}(x)\right|^{2} d x+\varepsilon^{-1} \int_{|x| \geq a} & |u(x)|^{2} d x \tag{1.6}\\
& \leq \varepsilon\left\|\frac{\partial u}{\partial r}\right\|^{2}+\varepsilon^{-1}\|u\|^{2}
\end{align*}
$$

(1.3) follows from (1.6) and $\left|\frac{\partial u}{\partial r}(x)\right| \leq|\nabla u(x)| . \quad$ To prove (1.4), we have by Schwarz' inequality

$$
\begin{align*}
\left.|u(a \omega)|^{2}=\left|-\int_{a}^{\infty} \frac{\partial u}{\partial r}(r \omega) d r\right|^{2} \leq \int_{a}^{\infty} \frac{d r}{r^{2}} \int_{a}^{\infty} r^{2} \right\rvert\, & \left.\frac{\partial u}{\partial r}(r \omega)\right|^{2} d r \tag{1.7}\\
& =\frac{1}{a} \int_{a}^{\infty} r^{2}\left|\frac{\partial u}{\partial r}(r \omega)\right|^{2} d r
\end{align*}
$$

Thus we have

$$
\begin{equation*}
\int_{S_{a}}|u(x)|^{2} d S_{x} \leq a \int_{|x| \geq a}\left|\frac{\partial u}{\partial r}(x)\right|^{2} d x \leq a\left\|\frac{\partial u}{\partial r}\right\|^{2} \leq a\|\nabla u\|^{2} . \tag{1.8}
\end{equation*}
$$

Q.E.D.

Now we are in a position to define a selfadjoint operator corresponding to $H_{\text {formal }}$ in a rigorous way. Consider the quadratic form

$$
\begin{equation*}
h[u, v]=(\nabla u, \nabla v)+(q \gamma u, \gamma v)_{a}, \operatorname{Dom}[h]=H^{1}\left(\boldsymbol{R}^{3}\right) . \tag{1.9}
\end{equation*}
$$

Since q is bounded on S_{a} by Assumption 1.1, it follows from Lemma 1.1 that h is a symmetric, lower semibounded, closed form. Therefore, by Kato [9, Chap. VI, Theorem 2.1] we have the following

Theorem 1.4. Let h be the quadratic form defined by (1.9). Then there exists a unique selfadjoint operator H such that

$$
\begin{equation*}
\operatorname{Dom}(H) \subset \operatorname{Dom}[h],(H u, v)=h[u, v] \text { for } u \in \operatorname{Dom}(H) \text { and } v \in \operatorname{Dom}[h] \tag{1.10}
\end{equation*}
$$

We adopt this operator H as the Schrödinger operator corresponding to $H_{\text {formal }}$ stated in the Introduction.

Theorem 1.5. Let $A=\min _{x \in S_{a}} q(x)$. Then

$$
\begin{equation*}
H \geq-A^{2} \tag{1.11}
\end{equation*}
$$

Moreover, we have

$$
\begin{equation*}
H \geq 0 \quad \text { for }-\frac{1}{a} \leq A \tag{1.12}
\end{equation*}
$$

and

$$
\begin{equation*}
H \geq \frac{4}{a^{2}}(a A+1) \quad \text { for }-\frac{2}{a} \leq A \leq-\frac{1}{a} . \tag{1.13}
\end{equation*}
$$

Proof. By Theorem 1.4 we have for any $u \in \operatorname{Dom}(H)$

$$
\begin{align*}
(H u, u) & =\|\nabla u\|^{2}+\int_{S_{a}} q(x)|\gamma u(x)|^{2} d S_{x} \tag{1.14}\\
& \geq\|\nabla u\|^{2}+A\|\gamma u\|_{a}^{2} .
\end{align*}
$$

If $A \geq-\frac{1}{a}$, (1.12) follows immediately from (1.14) and (1.4) of Lemma 1.3. Let us assume that $-\frac{2}{a} \leq A \leq-\frac{1}{a}$. Rewriting (1.14), we have

$$
\begin{equation*}
(H u, u) \geq\|\nabla u\|^{2}-A\left(\frac{2}{A a}+1\right)\|\gamma u\|_{a}^{2}+A\left(2+\frac{2}{A a}\right)\|\gamma u\|_{a}^{2} . \tag{1.15}
\end{equation*}
$$

By Lemma 1.3 (putting $\varepsilon=\frac{a}{2}$ in (1.3)), we have

$$
\begin{align*}
(H u, u) \geq & \|\nabla u\|^{2}-A\left(\frac{2}{A a}+1\right) a\|\nabla u\|^{2} \tag{1.16}\\
& +A\left(2+\frac{2}{A a}\right)\left(\frac{a}{2}\|\nabla u\|^{2}+\frac{2}{a}\|u\|^{2}\right) \\
= & \frac{4}{a^{2}}(a A+1)\|u\|^{2} .
\end{align*}
$$

This implies (1.13). To complete the proof, we have only to show that (1.11) holds when $A<0$. In this case, (1.11) follows from (1.14) and Lemma 1.3 with $\varepsilon=-\frac{1}{A}$.

Remark 1.6. The above theorem implies that H has no negative eigenvalues if $A \geq-\frac{1}{a}$. On the other hand, if $A<-\frac{1}{a}, H$ can have negative eigenvalues. In fact, let $q(x)=V_{0}$ (constant) such that $V_{0}<-\frac{1}{a}$. Then it is seen that H has a negative eigenvalue $-\lambda^{2}(\lambda>0)$, where λ is the unique solution of the equation $\frac{1-e^{-2 a \lambda}}{\lambda}=-\frac{2}{V_{0}}$, and a corresponding eigenfunction is $\frac{1}{|x|}\left(e^{-\lambda| | x|-a|}-e^{-\lambda(|x|+a)}\right)$ (see Dolph et al. [5, pp. 326-327], and cf. Theorem 5.3 below).

Now, we shall characterize the domain of H.

Theorem 1.7. $u \in \operatorname{Dom}(H)$ if and only if

$$
u \in H^{1}\left(\boldsymbol{R}^{3}\right), u \in H^{2}(\{x ;|x|<a\}), u \in H^{2}(\{x ;|x|>a\}) \text { and }
$$

$$
\begin{equation*}
q(x)(\gamma u)(x)-\left\{\frac{\partial u}{\partial n_{+}}(x)+\frac{\partial u}{\partial n_{-}}(x)\right\}| |_{s_{a}}=0 \tag{1.17}
\end{equation*}
$$

In this case, $H u=-\Delta u$ in the distribution sense and u is continuous on \boldsymbol{R}^{3}.
Remark 1.8. Strictly speaking, $\left.\frac{\partial u}{\partial n_{ \pm}}\right|_{s_{a}}(x)$ denotes $\sum_{j=1}^{3}\left\langle n_{ \pm}, e_{j}\right\rangle \gamma_{ \pm}\left(\frac{\partial u}{\partial x_{j}}\right)(x)$, where $e_{1}=(1,0,0), e_{2}=(0,1,0), e_{3}=(0,0,1)$ and $\langle x, y\rangle$ means the scalar product of the vectors x and y.

Proof of the theorem. First let $u \in \operatorname{Dom}(H) . u \in H^{1}\left(\boldsymbol{R}^{3}\right)$ is deirect from Theorem 1.4. Now, by Theorem 1.4 we have for any $v \in C_{0}^{\infty}(\{x ;|x|<a\})$

$$
\begin{equation*}
\int_{|x|<a}(H u)(x) \overline{v(x)} d x=h[u, v]=\int_{|x|<a}(\nabla u)(x) \overline{(\nabla v)(x)} d x \tag{1.18}
\end{equation*}
$$

$$
=-\int_{|x|<a} u(x) \overline{(\Delta v)(x)} d x
$$

where and in the sequel it is understood that all derivatives are taken in the distribution sense. (1.18) implies that $H u=-\Delta u$ in $\{x ;|x|<a\}$ and $u \in H^{2}(\{x ;|x|$ $<a\}$) (see the note added in proof). Similarly, $H u=-\Delta u$ in $\{x ;|x|>a\}$ and $u \in H^{2}(\{x ;|x|>a\})$. Therefore, it makes sense to speak of $\left.\frac{\partial u}{\partial n_{ \pm}}\right|_{s_{a}}$. Thus, by Theorem 1.4 and Green's Theorem (see e.g. Mizohata [13, Chap. III, §8]) we obtain for any $v \in C_{0}^{\infty}\left(\boldsymbol{R}^{3}\right)$

$$
\begin{align*}
(H u, v)= & h[u, v]=\int_{|x|<a}(\nabla u)(x) \overline{(\nabla v)(x)} d x \tag{1.19}\\
& +\int_{|x|>a}(\nabla u)(x) \overline{(\nabla v)(x)} d x+(q \gamma u, \gamma v)_{a} \\
= & -\int_{|x|<a}(\Delta u)(x) \overline{v(x)} d x-\left(\left.\frac{\partial u}{\partial n_{-}}\right|_{s_{a}}, \gamma v\right)_{a} \\
& -\int_{|x|>a}(\Delta u)(x) \overline{v(x)} d x-\left(\left.\frac{\partial u}{\partial n_{+}}\right|_{s_{a}}, \gamma v\right)_{a}+(q \gamma u, \gamma v)_{a} \\
= & (-\Delta u, v)+\left(q \gamma u-\left.\left\{\frac{\partial u}{\partial n_{+}}+\frac{\partial u}{\partial n_{-}}\right\}\right|_{s_{a}}, \gamma v\right)_{a},
\end{align*}
$$

and, since $u \in H^{2}(\{x ;|x| \neq a\})$ and $H u=-\Delta u$ as shown above,

$$
\left(q \gamma u-\left.\left\{\frac{\partial u}{\partial n_{+}}+\frac{\partial u}{\partial n_{-}}\right\}\right|_{s_{a}}, \gamma v\right)_{a}=0 \quad \text { for any } v \in C_{0}^{\infty}\left(\boldsymbol{R}^{3}\right)
$$

Since $\left\{\gamma v=\left.v\right|_{S_{a}} ; v \in C_{0}^{\infty}\left(\boldsymbol{R}^{3}\right)\right)$ is dense in $L_{2}\left(S_{a}\right)$, we have

$$
\left.q \gamma u-\left\{\frac{\partial u}{\partial n_{+}}+\frac{\partial u}{\partial n_{-}}\right\} \right\rvert\, s_{a}=0 .
$$

We have thus shown (1.17).
Conversely, let u verify (1.17). Define $w \in L_{2}\left(\boldsymbol{R}^{3}\right)$ by $w=-\Delta u$ (except on S_{a}). Then, for any $v \in \operatorname{Dom}(H)$, we have, as we got (1.19),

$$
\begin{align*}
(H v, u) & =h[v, u]=(\nabla v, \nabla u)+(q \gamma v, \gamma u)_{a} \tag{1.20}\\
& =(v,-\Delta u)+\left(\gamma v, q \gamma u-\left.\left\{\frac{\partial u}{\partial n_{+}}+\frac{\partial u}{\partial n_{-}}\right\}\right|_{s_{a}}\right)_{a} \\
& =(v, w)
\end{align*}
$$

This implies that $u \in \operatorname{Dom}\left(H^{*}\right)=\operatorname{Dom}(H)$.
Finally, let $u \in \operatorname{Dom}(H)$. By what has been shown above, we have $u \in H^{2}(\{x ;|x|<a\}), u \in H^{2}(\{x ;|x|>a\})$ and $u \in H^{1}\left(\boldsymbol{R}^{3}\right)$. Thus, according to

Calderón's extension theorem (e.g. Agmon [1, p. 171, Theorem 11.12]), there exist $u_{1}, u_{2} \in H^{2}\left(\boldsymbol{R}^{3}\right)$ such that

$$
\begin{array}{ll}
\left(\left.u_{1}\right|_{(x:|x|<a \mid}\right)(x)=u(x) & \text { for a.e. } x \text { in }\{x ;|x|<a\}, \\
\left(\left.u_{2}\right|_{\{x:|x|>a \mid}\right)(x)=u(x) & \text { for a.e. } x \text { in }\{x ;|x|>a) . \tag{1.21}
\end{array}
$$

Since $u \in H^{1}\left(\boldsymbol{R}^{3}\right)$, we have in view of Lemma 1.2

$$
\begin{equation*}
\gamma_{-}\left(\left.u_{1}\right|_{\{x:|x|<a\}}\right)=\gamma u=\gamma_{+}\left(\left.u_{2}\right|_{\{x ;|x|>a \mid}\right) . \tag{1.22}
\end{equation*}
$$

On the other hand, Sobolev's lemma (e.g. Reed-Simon [18, p.32, Theorem 3.9]) implies that u_{1} and u_{2} are continuous on \boldsymbol{R}^{3}. Hence we have by (1.22)

$$
\begin{align*}
& \left(\left.u_{1}\right|_{\{x:|x|=a \mid}\right)(x)=\gamma_{-}\left(\left.u_{1}\right|_{\{x ;|x|<a\}}\right)(x) \tag{1.23}\\
& \quad=\gamma_{+}\left(\left.u_{2}\right|_{\{x ;|x|>a\}}\right)(x)=\left(\left.u_{2}\right|_{\{x ;|x|=a \mid}\right)(x) \text { on } S_{a} .
\end{align*}
$$

From (1.21) and (1.23), it follows that u is continuous on \boldsymbol{R}^{3}.
Q.E.D.

§ 2. Preliminary lemmas

We shall introduce the following integral operators T_{κ} and \widetilde{T}_{κ} depending on a complex parameter κ defined by

$$
\left(T_{\kappa} f\right)(x)=-\frac{1}{4 \pi} \int_{S_{a}} \frac{e^{i \kappa|x-y|}}{|x-y|} q(y) f(y) d S_{y} \quad\left(x \in R^{3}\right)
$$

and

$$
\left(\tilde{T}_{\kappa} f\right)(x)=-\frac{1}{4 \pi} \int_{S_{a}} \frac{e^{i \kappa|x-y|}}{|x-y|} q(y) f(y) d S_{y} \quad\left(x \in S_{a}\right) .
$$

Before studying the properties of T_{κ} and \tilde{T}_{κ}, we shall state some lemmas. First, by direct computation using polar coordinates, we have

Lemma 2.1. Let $\zeta \in \boldsymbol{C}$. Then we have for any $x \in \boldsymbol{R}^{3}$

$$
\begin{align*}
& \int_{S_{a}} \frac{e^{\zeta|x-y|}}{|x-y|} d S_{y}=\frac{2 \pi a}{\zeta|x|}\left(e^{\zeta(a+|x|)}-e^{\zeta|a-|x||}\right) \quad(\zeta \neq 0) \tag{2.1}\\
& \int_{S_{a}} \frac{1}{|x-y|} d S_{y}=\frac{2 \pi a}{|x|}(a+|x|-|a-|x||) \quad(\zeta=0)
\end{align*}
$$

Lemma 2.2. There exists a constant C such that for any $x, y \in S_{a}$,

$$
\begin{gather*}
\int_{S_{a}} \frac{1}{|x-z||z-y|} d S_{z} \leq C(1+|\log | x-y| |) \tag{2.2}\\
\int_{S_{a}} \frac{1}{|x-z|}|\log | z-y| | d S_{z} \leq C \tag{2.3}
\end{gather*}
$$

and for any $x \in \boldsymbol{R}^{3}, 0<r<3$ and $r+s>3$

$$
\int_{\mathbf{R}^{3}} \frac{d y}{|x-y|^{r}\left(1+|y|^{2}\right)^{s / 2}} \leq \begin{cases}\frac{C}{(1+|x|)^{r+s-3}} & (s<3) \tag{2.4}\\ \frac{C \log (1+|x|)}{(1+|x|)^{r}} & (s=3) \\ \frac{C}{(1+|x|)^{r}} & (s>3)\end{cases}
$$

For the proof, see e.g. Kellogg [10, pp.301-303] or Kuroda [12, p. 162].
Lemma 2.3. Let $\operatorname{Im} \kappa>0$. Then T_{κ} is a Hilbert-Schmidt operator from $L_{2}\left(S_{a}\right)$ to $L_{2}\left(R^{3}\right)$.

Proof. Put $b=\operatorname{Im} \kappa$. We compute the Hilbert-Schmidt norm of T_{κ}.

$$
\left\|4 \pi T_{\kappa}\right\|_{\text {H.S. }}^{2}=\int_{S_{a}} d S_{y} \int_{\mathbf{R}^{3}} d x|q(y)|^{2} \frac{e^{-2 b|x-y|}}{|x-y|^{2}}=\frac{2 \pi}{b}\|q\|_{a}^{2}<+\infty,
$$

from which follows the assertion.
Q.E.D.

Lemma 2.4. Let $\kappa \in \boldsymbol{C}$. Then \tilde{T}_{κ} is a compact operator from $L_{2}\left(S_{a}\right)$ to itself.
Proof. Define the integral operator $G_{\kappa}^{(t)}$ by

$$
\left(G_{\kappa}^{(\varepsilon)} f\right)(x)=-\int_{S_{a}} \chi_{\left|y \in S_{a} ;|x-y|>\varepsilon\right|}(y) \frac{e^{i \kappa|x-y|}}{4 \pi|x-y|} q(y) f(y) d S_{y} \quad\left(x \in S_{a}, \varepsilon>0\right),
$$

where $\chi_{A}(x)$ denotes the characteristic function of the set A. Since we have

$$
\begin{aligned}
& \int_{S_{a} \times S_{a}} d S_{x} d S_{y}\left|\chi_{\left\{y \in S_{a} ;|x-y|>\varepsilon \mid\right.}(y) \frac{e^{i \kappa|x-y|}}{4 \pi|x-y|} q(y)\right|^{2} \\
& \leq\left(\frac{e^{2| | \ln \kappa \mid a}}{4 \pi \varepsilon} \max _{y \in S_{a}}|q(y)|\right)^{2}\left(4 \pi a^{2}\right)^{2}<+\infty,
\end{aligned}
$$

$G_{k}^{(\varepsilon)}$ is a Hilbert-Schmidt, and a fortiori, compact operator from $L_{2}\left(S_{a}\right)$ to itself for each $\varepsilon>0$. To prove the lemma, we have only to show that $G_{\kappa}^{(\varepsilon)}$ converges to \widetilde{T}_{κ} in the operator norm topology when $\varepsilon \downarrow 0$. In fact, using Schwarz' inequality we have for any $f \in L_{2}\left(S_{a}\right)$ and $x \in S_{a}$

$$
\begin{align*}
& \left|\left(G_{\kappa}^{(\varepsilon)} f\right)(x)-\left(\widetilde{T}_{\kappa} f\right)(x)\right|^{2} \leq\left(\int_{S_{a} \cap|y ;|x-y| \leq \varepsilon|} \frac{e^{|\operatorname{lm} \kappa|| | x-y \mid}}{4 \pi|x-y|}|q(y)||f(y)| d S_{y}\right)^{2} \tag{2.5}\\
\leq & \left(\max _{y \in S_{a}} \mid q(y)\right)^{2}\left(\int_{S_{a} \cap\{y ;|x-y| \leq \varepsilon \mid} \frac{e^{\mid \operatorname{l|m\kappa ||x-y|}}}{4 \pi|x-y|} d S_{y}\right)\left(\int_{S_{a}} \frac{e^{||\mathrm{m} \kappa|| x-y \mid}}{4 \pi|x-y|}|f(y)|^{2} d S_{y}\right) \\
\leq & \left.\left(\max _{y \in S_{a}}|q(y)|\right)^{2} e^{\varepsilon| | m \kappa \mid} \frac{\varepsilon}{2} \int_{S_{a}} \frac{e^{||\mathrm{m} \kappa|| x-y \mid}}{4 \pi|x-y|}|f(y)|^{2} d S_{y} \quad \text { (if } \varepsilon \leq a / 2\right),
\end{align*}
$$

where we have used the equality

$$
\begin{equation*}
\int_{S_{a} \cap\{y ;|x-y| \leq \varepsilon\}} \frac{1}{4 \pi|x-y|} d S_{y}=\frac{a}{2|x|}(\varepsilon-|a-|x||) \tag{2.6}
\end{equation*}
$$

if $x \in \boldsymbol{R}^{3},|a-|x||<\varepsilon \leq a / 2$. Integrating the both sides of (2.5) over S_{a} yields by Lemma 2.1 and Fubini's theorem

$$
\begin{equation*}
\left\|G_{\kappa}^{(\varepsilon)} f-\tilde{T}_{\kappa} f\right\|_{a}^{2} \leq\left(\max _{y \in S_{a}}|q(y)|\right)^{2} e^{\varepsilon|\mathrm{mk\mid}|} \frac{\varepsilon}{2} e^{2 a|\mathrm{~m} \mathrm{\kappa \mid}|} a\|f\|_{a}^{2} \tag{2.7}
\end{equation*}
$$

From (2.7), the claim follows immediately.
Q.E.D.

Define the Fourier transform $\mathscr{F}_{S_{a}}$ on $L_{2}\left(S_{a}\right)$ by

$$
\begin{equation*}
\left(\mathscr{F}_{S_{a}} f\right)(\xi)=(2 \pi)^{-3 / 2} \int_{S_{a}} e^{-i \xi \cdot x} f(x) d S_{x} \quad\left(\xi \in \boldsymbol{R}^{3}\right) \tag{2.8}
\end{equation*}
$$

Then, as is well known (e.g. Mochizuki [14, p. 16]), we have
Proposition 2.5. Let $s>1 / 2$. Then $\mathscr{F}_{s_{a}}$ is a bounded operator from $L_{2}\left(S_{a}\right)$ to $L_{2}^{-s}\left(\boldsymbol{R}^{3}\right)$, i.e. there exists a constant C such that

$$
\begin{equation*}
\left\|\mathscr{F}_{S_{a}} f\right\|_{0,-s} \leq C\|f\|_{a} \quad \text { for any } f \in L_{2}\left(S_{a}\right) . \tag{2.9}
\end{equation*}
$$

Lemma 2.6. Let $\operatorname{Im} \kappa>0$. Then T_{κ} is a bounded operator from $L_{2}\left(S_{a}\right)$ to $H^{1}\left(\boldsymbol{R}^{3}\right)$.

Proof. For any $f \in L_{2}\left(S_{a}\right)$ we have by Fubini's theorem

$$
\begin{align*}
\left(\mathscr{F} T_{\kappa} f\right)(\xi) & =-\int_{S_{a}} d S_{y} q(y) f(y)(2 \pi)^{-3 / 2} \int_{\mathbf{R}^{3}} d x e^{-i \xi \cdot x} \frac{e^{i \kappa|x-y|}}{4 \pi|x-y|} \tag{2.10}\\
& =-(2 \pi)^{-3 / 2} \int_{S_{u}} d S_{y} \frac{e^{-i \xi \cdot y}}{|\xi|^{2}-\kappa^{2}} q(y) f(y) \\
& =-\frac{1}{|\xi|^{2}-\kappa^{2}}\left(\mathscr{F}_{S_{u}}(q f)\right)(\xi),
\end{align*}
$$

where we used (2.8) and the fact that

$$
\begin{equation*}
\mathscr{F}\left(\frac{e^{i \kappa|\cdot-y|}}{4 \pi|\cdot-y|}\right)(\xi)=(2 \pi)^{-3 / 2} \frac{e^{-i \xi \cdot y}}{|\xi|^{2}-\kappa^{2}} \tag{2.11}
\end{equation*}
$$

Take s such that $1 / 2<s<1$. Then, by Proposition 2.5 we can estimate the H^{1} norm $\left\|T_{\kappa} f\right\|_{H^{1}}$ of $T_{\kappa} f$ as follows.

$$
\begin{align*}
\left\|T_{\kappa} f\right\|_{\boldsymbol{H}^{1}}^{2} & =\int_{\mathbf{R}^{3}} d \xi\left(1+|\xi|^{2}\right)\left|\left(\mathscr{F} T_{\kappa} f\right)(\xi)\right|^{2} \tag{2.12}\\
& =\int_{\mathbf{R}^{3}} d \xi\left(1+|\xi|^{2}\right)\left|\frac{-1}{|\xi|^{2}-\kappa^{2}}\left(\mathscr{F}_{S_{a}}(q f)\right)(\xi)\right|^{2} \\
& \leq \sup _{\xi \in \mathbf{R}^{3}}\left\{\frac{\left(1+|\xi|^{2}\right)^{1+s}}{\|\left.\xi\right|^{2}-\left.\kappa^{2}\right|^{2}}\right\} \int_{\mathbf{R}^{3}} d \xi\left(1+|\xi|^{2}\right)^{-s}\left|\left(\mathscr{F}_{S_{a}}(q f)\right)(\xi)\right|^{2} \\
& =\sup _{\xi \in \boldsymbol{R}^{3}}\left\{\frac{\left(1+|\xi|^{2}\right)^{1+s}}{\|\left.\xi\right|^{2}-\left.\kappa^{2}\right|^{2}}\right\} \cdot\left\|\mathscr{F}_{S_{a}}(q f)\right\|_{0,-s}^{2} \\
& \leq \sup _{\xi \in \mathbf{R}^{3}}\left\{\frac{\left(1+|\xi|^{2}\right)^{1+s}}{\|\left.\xi\right|^{2}-\left.\kappa^{2}\right|^{2}}\right\} C^{2}\left\{\max _{x \in S_{a}}|q(x)|\right\}^{2}\|f\|_{a}^{2},
\end{align*}
$$

which implies the required result.
Q.E.D.

By the above lemma, $\gamma T_{\kappa}(\operatorname{Im} \kappa>0)$ is a well-defined bounded operator from $L_{2}\left(S_{a}\right)$ to itself. Furthermore, we have

Lemma 2.7. Let $\operatorname{Im} \kappa>0$. Then $\gamma T_{\kappa}=\widetilde{T}_{\kappa}$.
Proof. Since γT_{κ} and \widetilde{T}_{κ} are bounded operators on $L_{2}\left(S_{a}\right)$ and the set of continuous functions on S_{a} is dense in $L_{2}\left(S_{a}\right)$, it suffices to prove that $\gamma T_{\kappa}=\widetilde{T}_{\kappa}$ on this set. Assume that f is continuous on S_{a}. Then it follows in a standard way (e.g. Colton-Kress [4, p.47, Theorem 2.12]) that $\left(T_{\kappa} f\right)(x)$ is continuous on \boldsymbol{R}^{3}. On the other hand, we have for a.e. $x \in S_{a}$

$$
\left(\gamma T_{\kappa} f\right)(x)=\lim _{y \rightarrow x}\left(T_{\kappa} f\right)(y) \quad\left(y \text { approaches } x \text { along } n_{ \pm}\right) .
$$

Therefore, $\left(\gamma T_{\kappa} f\right)(x)=\left(T_{\kappa} f\right)(x)=\left(\widetilde{T}_{\kappa} f\right)(x)$ for a.e. $x \in S_{a}$. Thus the lemma has been proven.
Q.E.D.

Lemma 2.8. Let $\kappa \in \boldsymbol{C}$. Then $\left(\tilde{T}_{\kappa}\right)^{2}$ is a Hilbert-Schmidt operator from $L_{2}\left(S_{a}\right)$ to itself.

Proof. The kernel of $\left(\widetilde{T}_{k}\right)^{2}$ is

$$
\left(\frac{1}{4 \pi}\right)^{2} \int_{S_{a}} d S_{z} \frac{e^{i \kappa(|x-z|+|z-y|)}}{|x-z||z-y|} q(z) q(y) .
$$

Introducing polar coordinates, we have by Lemma 2.2

$$
\begin{aligned}
& \int_{S_{a} \times S_{a}} d S_{x} d S_{y}\left|\int_{S_{a}} d S_{z} \frac{e^{i \kappa(|x-z|+|z-y|)}}{|x-z||z-y|} q(z) q(y)\right|^{2} \\
& \quad \leq e^{8 q|\operatorname{Im\kappa }|}\left(\max _{z \in S_{a}}|q(z)|\right)^{4} \int_{S_{a} \times S_{a}} d S_{x} d S_{y}\left(\int_{S_{a}} d S_{z} \frac{1}{|x-z||z-y|}\right)^{2}
\end{aligned}
$$

$$
\leq e^{8 a| | m \kappa \mid}\left(\max _{z \in S_{a}}|q(z)|\right)^{4} \int_{S_{a} \times S_{a}} d S_{x} d S_{y} C^{2}(1+|\log | x-y| |)^{2}<+\infty,
$$

which proves the lemma.
Q.E.D.

Lemma 2.9. Let $s>1 / 2$. Then T_{κ} is a $\boldsymbol{B}\left(L_{2}\left(S_{a}\right), L_{2}^{-s}\left(\boldsymbol{R}^{3}\right)\right)$-valued continuous function of κ for $\operatorname{Im} \kappa \geq 0$.

Proof. For any $f \in L_{2}\left(S_{a}\right)$, we consider the difference

$$
\begin{equation*}
\left(T_{\kappa} f\right)(x)-\left(T_{\kappa^{\prime}} f\right)(x)=\frac{-1}{4 \pi} \int_{S_{a}} d S_{y} \frac{e^{i \kappa|x-y|}-e^{i \kappa^{\prime}|x-y|}}{|x-y|} q(y) f(y) . \tag{2.13}
\end{equation*}
$$

In view of the inequality

$$
\begin{align*}
& \left|e^{i \kappa|x-y|}-e^{i \kappa^{\prime}|x-y|}\right| \tag{2.14}\\
& \quad \leq\left|\kappa-\kappa^{\prime}\right| \mu|x-y|^{\mu} e^{-\mu\left(\operatorname{lm} \kappa+\operatorname{Im} \kappa^{\prime}\right)|x-y|} \times \\
& \quad \times\left(e^{-\operatorname{Im} \kappa|x-y|}+e^{-\operatorname{Im} \kappa^{\prime}|x-y|}\right)^{1-\mu} \quad(0 \leq \mu \leq 1),
\end{align*}
$$

we have

$$
\begin{equation*}
\left|\left(T_{\kappa} f\right)(x)-\left(T_{\kappa^{\prime}} f\right)(x)\right| \leq \frac{2^{1-\mu}}{4 \pi}\left|\kappa-\kappa^{\prime}\right|^{\mu} \max _{y \in S_{a}}|q(y)| \int_{S_{a}} d S_{y} \frac{|f(y)|}{|x-y|^{1-\mu}} . \tag{2.15}
\end{equation*}
$$

Taking μ such that $0<\mu<\min (s-1 / 2,1)$, we get by Schwarz' inequality and Fubini's theorem

$$
\begin{align*}
& \left\|T_{\kappa} f-T_{\kappa^{\prime}} f\right\|_{0,-s}^{2} \tag{2.16}\\
& \begin{aligned}
& \leq \int_{\mathbf{R}^{3}} d x\left(1+|x|^{2}\right)^{-s}\left(\frac{2^{1-\mu}}{4 \pi}\left|\kappa-\kappa^{\prime}\right|^{\mu} \max _{y \in S_{a}}|q(y)|\right)^{2}\left(\int_{S_{a}} d S_{y} \frac{|f(y)|}{|x-y|^{1-\mu}}\right)^{2} \\
& \leq\left(\frac{2^{1-\mu}}{4 \pi}\left|\kappa-\kappa^{\prime}\right|^{\mu} \max _{y \in S_{a}}|q(y)|\right)^{2} \int_{R^{3}} d x\left(1+|x|^{2}\right)^{-s} \times \\
& \times \int_{S_{a}} d S_{y} \frac{1}{|x-y|^{2-2 \mu}} \int_{S_{a}} d S_{y}|f(y)|^{2} \\
&=\left(\frac{2^{1-\mu}}{4 \pi}\left|\kappa-\kappa^{\prime}\right|^{\mu} \max _{y \in S_{a}}|q(y)|\right)^{2} \times \\
& \quad \times \int_{S_{a}} d S_{y} \int_{R^{3}} d x \frac{1}{|x-y|^{2-2 \mu}\left(1+|x|^{2}\right)^{s}}\|f\|_{a}^{2} .
\end{aligned}
\end{align*}
$$

(2.16) together with Lemma 2.2, (2.4) yields the required result.
Q.E.D.

Lemma 2.10. \tilde{T}_{κ} is a $\boldsymbol{B}\left(L_{2}\left(S_{a}\right)\right)$-valued continuous function of κ in \boldsymbol{C}.
Proof. Using (2.15) $(\mu=1)$, we have for $f \in L_{2}\left(S_{a}\right)$ and $x \in S_{a}$.

$$
\begin{align*}
& \left|\left(\tilde{T}_{\kappa} f\right)(x)-\left(\widetilde{T}_{\kappa^{\prime}} f\right)(x)\right|^{2} \tag{2.18}\\
& \quad \leq\left(\frac{\left|\kappa-\kappa^{\prime}\right| e^{2 a\left(|I m \kappa|+\left|I m \kappa^{\prime}\right|\right)}}{4 \pi} \max _{y \in S_{a}}|q(y)|\right)^{2}\left(\int_{S_{a}} d S_{y}|f(y)|\right)^{2} .
\end{align*}
$$

Integrating the both sides of (2.18) over S_{a} and making use of Schwarz' inequality, we obtain

$$
\begin{align*}
\| \widetilde{T}_{\kappa} f- & \widetilde{T}_{\kappa^{\prime}} f \|_{a}^{2} \tag{2.19}\\
& \leq\left(\frac{\left|\kappa-\kappa^{\prime}\right| e^{2 a\left(|\mathrm{Im} \kappa|+\left|\mathrm{m} \kappa^{\prime}\right|\right)}}{4 \pi} \max _{y \in S_{a}}|q(y)|\right)^{2}\left(4 \pi a^{2}\right)^{2}\|f\|_{a}^{2},
\end{align*}
$$

which completes the proof.
Q.E.D.

Lemma 2.11. Let $\kappa \in C$ and let $u \in L_{2}\left(S_{a}\right)$. Then, for any $w \in C_{0}^{\infty}\left(\boldsymbol{R}^{3}\right)$ we have

$$
\begin{equation*}
\int_{R^{3}}\left(T_{\kappa} u\right)(x)\left(-\Delta-\kappa^{2}\right) w(x) d x=-\int_{S_{a}} q(x) u(x) w(x) d S_{x} . \tag{2.20}
\end{equation*}
$$

If $\operatorname{Im} \kappa \geq 0$, (2.20) holds for any $w \in \mathscr{S}$, where $\mathscr{S}=\mathscr{S}\left(\boldsymbol{R}^{3}\right)$ denotes the set of functions which together with all their derivatives fall off faster than the inverse of any polynomial.

Proof. By Fubini's theorem we have for $w \in C_{0}^{\infty}\left(\boldsymbol{R}^{3}\right)$

$$
\begin{align*}
\int_{\mathbf{R}^{3}} & \left(T_{\kappa} u\right)(x)\left(-\Delta-\kappa^{2}\right) w(x) d x \tag{2.21}\\
& =-\int_{S_{a}} d S_{y} q(y) u(y) \int_{\mathbf{R}^{3}} d x \frac{e^{i \kappa|x-y|}}{4 \pi|x-y|}\left(-\Delta-\kappa^{2}\right) w(x) .
\end{align*}
$$

On the other hand, we have by Green's theorem

$$
\begin{equation*}
\int_{\mathbf{R}^{3}} d x \frac{e^{i \kappa|x-y|}}{|x-y|}(-\Delta-\kappa)^{2} w(x)=4 \pi w(y) \tag{2.22}
\end{equation*}
$$

for $w \in C_{0}^{\infty}\left(\boldsymbol{R}^{3}\right)$. The first part of the lemma follows immediately from (2.21) and (2.22). The proof of the second half is similar.
Q.E.D.

Lemma 2.12. Let $\operatorname{Im} \kappa>0$. Suppose that u is a non-trivial solution of the homogeneous equation $u=\widetilde{T}_{\kappa} u$ in $L_{2}\left(S_{a}\right)$. Then $v \equiv T_{\kappa} u$ is a non-trivial eigenvector of H corresponding to eigenvalue κ^{2}. Conversely, if v is a non-zero eigenvector of H corresponding to eigenvalue $\kappa^{2}, \gamma v$ is a non-zero vector in $L_{2}\left(S_{a}\right)$ and satisfies the equation $\gamma v=\widetilde{T}_{\kappa}(\gamma v)$.

Proof. Assume that $u \in L_{2}\left(S_{a}\right), u \neq 0$ and $u=\widetilde{T}_{\kappa} u$. By Lemma 2.11, we have for any $w \in C_{0}^{\infty}\left(R^{3}\right)$

$$
\begin{equation*}
\int_{\mathbf{R}^{3}}\left(T_{\kappa} u\right)(x)\left(-\Delta-\kappa^{2}\right) \overline{w(x)} d x=-\int_{S_{a}} q(x) u(x) \overline{w(x)} d S_{x} . \tag{2.23}
\end{equation*}
$$

Since $v \equiv T_{\kappa} u$ belongs to $H^{1}\left(\boldsymbol{R}^{3}\right)$ by Lemma 2.6 and hence $\gamma v=\gamma T_{\kappa} u=\widetilde{T}_{\kappa} u=u$ by Lemma 2.7, we have on integration by parts

$$
\begin{equation*}
(\nabla v, \nabla w)-\kappa^{2}(v, w)+(q \gamma v, \gamma w)_{a}=0 \quad \text { for any } w \in C_{0}^{\infty}\left(\boldsymbol{R}^{3}\right) \tag{2.24}
\end{equation*}
$$

Since $C_{0}^{\infty}\left(\boldsymbol{R}^{3}\right)$ is dense in $H^{1}\left(\boldsymbol{R}^{3}\right), C_{0}^{\infty}\left(\boldsymbol{R}^{3}\right)$ is a form core of h by Kato [9, Chap. VI, Theorem 1.21] and Lemma 1.3. So we have by (2.24)

$$
h[v, w]=\kappa^{2}(v, w) \quad \text { for any } w \in H^{1}\left(\boldsymbol{R}^{3}\right) .
$$

Therefore, we obtain by Theorem 1.4

$$
\left(v,\left(H-\bar{\kappa}^{2}\right) w\right)=0 \quad \text { for any } w \in \operatorname{Dom}(H),
$$

which implies that $v \in \operatorname{Dom}(H)$ and $\left(H-\kappa^{2}\right) v=0$. If $v=0$, we have by Lemma $2.7 u=\widetilde{T}_{\kappa} u=\gamma T_{\kappa} u=\gamma v=0$, which is a contradiction. Thus v is non-trivial, and is an eigenvector with eigenvalue κ^{2}.

Conversely, let v verify that $v \in \operatorname{Dom}(H), v \neq 0$ and $\left(H-\kappa^{2}\right) v=0$. Since $v \in H^{1}\left(\boldsymbol{R}^{3}\right)$ by Theorem 1.7 and hence $\gamma v \in L_{2}\left(S_{a}\right)$, we have by Theorem 1.4.

$$
\begin{align*}
& (\nabla v, \nabla w)-\kappa^{2}(v, w)+(q \gamma v, \gamma w)_{a} \tag{2.25}\\
& \quad=h[v, w]-\kappa^{2}(v, w)=\left(\left(H-\kappa^{2}\right) v, w\right) \\
& \quad=0 \quad \text { for any } w \in H^{1}\left(\boldsymbol{R}^{3}\right) .
\end{align*}
$$

On the other hand, as we got (2.24) from (2.23), we obtain by Lemma 2.11 and in view of $\gamma v \in L_{2}\left(S_{a}\right)$ for any $w \in \mathscr{S}$

$$
\begin{equation*}
\left(\nabla\left(T_{\kappa} \gamma v\right), \nabla w\right)-\kappa^{2}\left(T_{\kappa} \gamma v, w\right)+(q \gamma v, \gamma w)_{a}=0, \tag{2.26}
\end{equation*}
$$

(note that $T_{\kappa}(\gamma v) \in H^{1}\left(\boldsymbol{R}^{3}\right)$ by Lemma 2.6). Therefore, from (2.25) and (2.26) it follws that

$$
\begin{equation*}
\left(\nabla\left(T_{\kappa} \gamma v-v\right), \nabla w\right)-\kappa^{2}\left(T_{\kappa} \gamma v-v, w\right)=0 \quad \text { for any } w \in \mathscr{S} . \tag{2.27}
\end{equation*}
$$

By Parseval's identity we can rewrite (2.27) as

$$
\begin{equation*}
\left(\mathscr{F}\left(T_{\kappa} \gamma v-v\right),\left(|\cdot|^{2}-\bar{\kappa}^{2}\right) \mathscr{F} w\right)=0 \quad \text { for any } w \in \mathscr{S} . \tag{2.28}
\end{equation*}
$$

Put $w(x)=\mathscr{F}^{-1}\left(\frac{h}{|\cdot|-\bar{\kappa}^{2}}\right)(x)$ for $h \in \mathscr{S}$. Since w belongs to \mathscr{S}, we obtain by (2.28)

$$
\left(\mathscr{F}\left(T_{k} \gamma v-v\right), h\right)=0 \quad \text { for any } h \in \mathscr{S},
$$

and hence

$$
\begin{equation*}
T_{\kappa} \gamma v-v=0 \text { in } L_{2}\left(\boldsymbol{R}^{3}\right) . \tag{2.29}
\end{equation*}
$$

If $\gamma v=0, v=0$ by (2.29), which is a contradiction. Thus γv is a non-zero vector and $\gamma v=\gamma T_{\kappa}(\gamma v)=\widetilde{T}_{\kappa}(\gamma v)$ by (2.29). We have thus completed the proof of the lemma.
Q.E.D.

Lemma 2.13. Let $\operatorname{Im} \kappa>0$. Then

$$
\begin{equation*}
T_{\kappa}^{*}=-q \gamma R_{0}\left(\bar{\kappa}^{2}\right), \tag{2.30}
\end{equation*}
$$

which maps from $L_{2}\left(\boldsymbol{R}^{3}\right)$ to $L_{2}\left(S_{a}\right)$.
Proof. By Fubini's theorem we have for $u \in L_{2}\left(S_{a}\right)$ and $v \in L_{2}\left(R^{3}\right)$

$$
\begin{align*}
& \left(T_{\kappa} u, v\right) \tag{2.31}\\
& =\int_{\mathbf{R}^{3}} d x\left(\frac{-1}{4 \pi} \int_{S_{a}} d S_{y} \frac{e^{i \kappa}|x-y|}{|x-y|} q(y) u(y)\right) \overline{v(x)} \\
& =\int_{S_{a}} d S_{y} u(y) \overline{\left(\frac{-q(y)}{4 \pi} \int_{\mathbf{R}^{3}} d x \frac{e^{i(-\bar{\kappa}|x-y|}}{|x-y|} v(x)\right)} \\
& =\left(u,-q \gamma R_{0}\left(\bar{\kappa}^{2}\right) v\right)_{a}
\end{align*}
$$

where we have used the reality and boundedness of q and $\left(\gamma R_{0}(z) v\right)(x)$ $=\left.\left(R_{0}(z) v\right)\right|_{S_{a}}(x) \in L_{2}\left(S_{a}\right)$ for $z \notin[0, \infty)$ as is seen by Sobolev's lemma in view of $\operatorname{Ran}\left(R_{0}(z)\right)=H^{2}\left(\boldsymbol{R}^{3}\right)$. The lemma follows from (2.31) immediately. Q.E.D.

Define the integral operators $T_{\kappa}^{(1)}$ and $\widetilde{T}_{\kappa}^{(1)}$ with a complex parameter κ by

$$
\left(T_{\kappa}^{(1)} f\right)(x)=\frac{-1}{4 \pi} \int_{S_{a}} d S_{y} \frac{e^{i \kappa|x-y|}}{|x-y|} f(y) \quad\left(x \in R^{3}\right)
$$

and

$$
\left(\widetilde{T}_{\kappa}^{(1)} f\right)(x)=\frac{-1}{4 \pi} \int_{S_{a}} d S_{y} \frac{e^{i \kappa|x-y|}}{|x-y|} f(y) \quad\left(x \in S_{a}\right)
$$

We remark that if $q(x) \equiv 1$, then $T_{\kappa}=T_{\kappa}^{(1)}$ and $\tilde{T}_{\kappa}=\tilde{T}_{\kappa}^{(1)}$, respectively.
Lemma 2.14. Let $\kappa \in C$. Then

$$
\begin{equation*}
\left(\tilde{T}_{\kappa}\right)^{*}=q \tilde{T}_{-\kappa}^{(1)} \tag{2.32}
\end{equation*}
$$

which maps from $L_{2}\left(S_{a}\right)$ to itself.
Proof. By Fubini's theorem we have for $u, v \in L_{2}\left(S_{a}\right)$

$$
\begin{aligned}
\left(\tilde{T}_{k} u, v\right)_{a} & =\int_{S_{a}} d S_{x}\left(\frac{-1}{4 \pi} \int_{S_{a}} d S_{y} \frac{e^{i \kappa|x-y|}}{|x-y|} q(y) u(y)\right) \overline{v(x)} \\
& =\int_{S_{a}} d S_{y} u(y) \overline{\left(\frac{-q(y)}{4 \pi} \int_{S_{a}} d S_{x} \frac{e^{i(-\kappa)|x-y|}}{|x-y|} v(x)\right)} \\
& =\left(u, q \tilde{T}_{-\kappa}^{(1)} v\right)_{a}
\end{aligned}
$$

from which follows the assertion.
Q.E.D.

§3. The resolvent equation

In this section, we shall study the resolvent $R(z)$ of H. As remarked in the proof of Lemma 2.13, $\gamma R_{0}(z)$ is a bounded operator from $L_{2}\left(\boldsymbol{R}^{3}\right)$ to $L_{2}\left(S_{a}\right)$. More precisely, combining Lemmas 2.3 and $2.13(q(x) \equiv 1)$, we have

Lemma 3.1. Let $z \notin[0, \infty)$. Then $\gamma R_{0}(z)$ is a Hilbert-Schmidt operator from $L_{2}\left(R^{3}\right)$ to $L_{2}\left(S_{a}\right)$.

Theorem 3.2. Let $z \in \rho(H) \cap \rho\left(H_{0}\right)$, where ρ denotes the resolvent set. Then $\gamma R(z)$ is a bounded operator from $L_{2}\left(\boldsymbol{R}^{3}\right)$ to $L_{2}\left(S_{a}\right)$ and the following resolvent equation holds:

$$
\begin{equation*}
R(z)-R_{0}(z)=T_{\sqrt{2}} \gamma R(z) \tag{3.1}
\end{equation*}
$$

where and in the sequel, by \sqrt{z} is meant the branch of the square root of z with $\operatorname{Im} \sqrt{z} \geq 0$.

Proof. To prove the first part of the theorem, we have only to show that $R(z)$ is a bounded operator from $L_{2}\left(\boldsymbol{R}^{3}\right)$ to $H^{1}\left(\boldsymbol{R}^{3}\right)$. From Theorem 1.4, it follows that $\operatorname{Ran} R(z)=\operatorname{Dom}(H) \subset H^{1}\left(\boldsymbol{R}^{3}\right)$ and $\operatorname{Dom}(R(z))=L_{2}\left(\boldsymbol{R}^{3}\right)$. Let $\left\{u_{n}\right\}$ be such that for some $u \in L_{2}\left(\boldsymbol{R}^{3}\right)$ and $v \in H^{1}\left(\boldsymbol{R}^{3}\right), u_{n} \rightarrow u$ in $L_{2}\left(\boldsymbol{R}^{3}\right)$ and $R(z) u_{n} \rightarrow v$ in $H^{1}\left(\boldsymbol{R}^{3}\right)$ as n $\rightarrow \infty$. Then, since $R(z)$ is a bounded operator from $L_{2}\left(R^{3}\right)$ to itself, we have

$$
R(z) u=\lim _{n \rightarrow \infty} R(z) u_{n}=v \quad \text { in } L_{2}\left(R^{3}\right)
$$

and hence $R(z)$ is a closed operator from $L_{2}\left(R^{3}\right)$ to $H^{1}\left(R^{3}\right)$. Therefore, from the closed graph theorem it follows that $R(z)$ belongs to $\boldsymbol{B}\left(L_{2}\left(\boldsymbol{R}^{3}\right), H^{1}\left(\boldsymbol{R}^{3}\right)\right.$).

Finally, let us show the resolvent equation. Let $u \in \operatorname{Dom}(H)$ and $v \in \operatorname{Dom}\left(H_{0}\right)$. In view of Theorem 1.4 and $\operatorname{Dom}\left(H_{0}\right)=H^{2}\left(\boldsymbol{R}^{3}\right)$, we have

$$
\begin{equation*}
((H-z) u, v)=h[u, v]-(u, \bar{z} v)=\left(u,\left(H_{0}-\bar{z}\right) v\right)+(q \gamma u, \gamma v)_{a}, \tag{3.2}
\end{equation*}
$$

and hence, on putting $u=R(z) \varphi$ and $v=R_{0}(\bar{z}) \psi=R_{0}(z)^{*} \psi$, we obtain

$$
\begin{align*}
\left(R_{0}(z) \varphi, \psi\right) & =(R(z) \varphi, \psi)+\left(q \gamma R(z) \varphi, \gamma R_{0}(\bar{z}) \psi\right)_{a} \tag{3.3}\\
& =\left(R(z) \varphi-T_{\sqrt{z}} \gamma R(z) \varphi, \psi\right),
\end{align*}
$$

where we have used Lemma 2.13. The required resolvent equation follows from (3.3) immediately.
Q.E.D.
§4. The wave operators
The wave operators $W_{ \pm}$which intertwine H and H_{0} are defined as

$$
W_{ \pm}=\underset{t \rightarrow \pm \infty}{\operatorname{strong} \operatorname{limit}} e^{i t H} e^{-i t H_{0}},
$$

if they exist. In this section we shall prove the following
Theorem 4.1. $W_{ \pm}$exist and are complete.
The proof of the above theorem will be given after proving the next
Lemma 4.2. $\quad \gamma R\left(-b^{2}\right)$ is a Hilbert-Schmidt operator from $L_{2}\left(\boldsymbol{R}^{3}\right)$ to $L_{2}\left(S_{a}\right)$ for a sufficiently large $b>0$.

Proof. On operating γ from left on the resolvent equation (3.1) $\left(z=-b^{2}\right)$, we have, using Lemma 2.7,

$$
\begin{equation*}
\left(1-\tilde{T}_{i b}\right) \gamma R\left(-b^{2}\right)=\gamma R_{0}\left(-b^{2}\right) \tag{4.1}
\end{equation*}
$$

If we show that $1-\tilde{T}_{i b}$ has a bounded inverse for a suitable $b>0$, the the lemma follows, for $\gamma R_{0}\left(-b^{2}\right)$ is a Hilbert-Schmidt operator by Lemma 3.1. Using Schwarz' inequality, Fubini's theorem and Lemma 2.1, we have for any $u \in L_{2}\left(S_{a}\right)$

$$
\begin{align*}
& \left\|\tilde{T}_{i b} u\right\|_{a}^{2}=\int_{S_{a}} d S_{x}\left|\int_{S_{a}} d S_{y} \frac{e^{-b|x-y|}}{-4 \pi|x-y|} q(y) u(y)\right|^{2} \tag{4.2}\\
& \quad \leq\left(\frac{1}{4 \pi} \max _{y \in S_{a}}|q(y)|\right)^{2} \int_{S_{a}} d S_{x} \int_{S_{a}} d S_{y} \frac{e^{-2 b|x-y|}}{|x-y|} \int_{S_{a}} d S_{y} \frac{|u(y)|^{2}}{|x-y|} \\
& \quad=\left(\frac{1}{4 \pi} \max _{y \in S_{a}}|q(y)|\right)^{2} \int_{S_{a}} d S_{x} \frac{\pi}{b}\left(1-e^{-4 b a}\right) \int_{S_{a}} d S_{y} \frac{|u(y)|^{2}}{|x-y|} \\
& \quad=\left(\frac{1}{4 \pi} \max _{y \in S_{a}}|q(y)|\right)^{2} \frac{\pi}{b}\left(1-e^{-4 a b}\right) \int_{S_{a}} d S_{y}|u(y)|^{2} \int_{S_{a}} d S_{x} \frac{1}{|x-y|} \\
& \quad=\left(\max _{y \in S_{a}} \mid q(y)\right)^{2} \frac{a}{4 b}\left(1-e^{-4 a b}\right)\|u\|_{a}^{2} .
\end{align*}
$$

Therefore, we obtain

$$
\begin{equation*}
\left\|\tilde{T}_{i b}\right\| \leq\left(\max _{y \in S_{a}}|q(y)|\right)\left\{\frac{a}{4 b}\left(1-e^{-4 a b}\right)\right\}^{1 / 2}, \tag{4.3}
\end{equation*}
$$

and hence, the operator norm of $\tilde{T}_{i b}$ is less than unity for sufficiently large $b>0$, which makes possible the Neumann series inversion of $1-\widetilde{T}_{i b}$.
Q.E.D.

Proof of Theorem 4.1. It is known that the wave operators exist and are complete if the difference of the resolvents is a trace-class operator (Kato [9, Chap. X, Theorem 4.8]). On the other hand, as is well known, an operator is in the trace-class if and only if it is a product of two Hilbert-Schmidt operators (e.g. Kato [9, p. 521]). Thus, from Lemma 2.3, Theorem 3.2 and Lemma 4.2 it follows that $R(z)-R_{0}(z)$ is in the trace-class. The proof is now complete. Q.E.D.

§ 5. The spectrum of \boldsymbol{H}

As is mentioned in the previous section, the difference of the resolvents of H and H_{0} is a trace-class operator (see the proof of Theorem 4.1). Thus, concerning the essential spectrum $\sigma_{\text {ess }}(H)$ of H, we have by Weyl's theorem (e.g. Reed-Simon [19, p.112, Theorem XIII. 14])

Theorem 5.1. $\quad \sigma_{\text {ess }}(H)=\sigma_{\text {ess }}\left(H_{0}\right)=[0, \infty)$.
As to the point sectrum of H, we get the following result.
Theorem 5.2. $\quad \sigma_{p}(H) \cap(0, \infty)=\phi$.
Proof. Assume that $\lambda>0,(H-\lambda) u=0$ and $u \in \operatorname{Dom}(H)$. By Theorem $1.7 u$ satisfies

$$
\begin{equation*}
(\Delta+\lambda) u(x)=0 \quad \text { in } \quad\{x ;|x|<a\} \cup\{x ;|x|>a\} . \tag{5.1}
\end{equation*}
$$

In view of Mizohata [13, Chap. VIII, Lemma 8.4], we have

$$
\begin{equation*}
u(x)=0 \quad \text { in }\{x ;|x|>a\} . \tag{5.2}
\end{equation*}
$$

Thus it follows from (5.2) and Theorem 1.7 that

$$
\begin{equation*}
\left.\frac{\partial u}{\partial n_{-}}\right|_{s_{a}}(x)=\left.u\right|_{s_{a}}(x)=0 \tag{5.3}
\end{equation*}
$$

Now let us define $\tilde{u}(x)$ by

$$
\tilde{u}(x)= \begin{cases}u(x) & |x| \leq a \tag{5.4}\\ 0 & |x|>a\end{cases}
$$

Then, for any $\varphi \in C_{0}^{\infty}\left(\boldsymbol{R}^{3}\right)$, we have by (5.1), (5.3) and Green's theorem

$$
\begin{aligned}
\int_{\mathbf{R}^{3}} \tilde{u}(x)(\Delta+\lambda) \varphi(x) d x & =\int_{|x|<a} u(x) \Delta \varphi(x) d x+\lambda \int_{|x|<a} u(x) \varphi(x) d x \\
& =\int_{|x|<a}(\Delta+\lambda) u(x) \varphi(x) d x=0
\end{aligned}
$$

which implies

$$
\begin{equation*}
(\Delta+\lambda) \tilde{u}(x)=0 \quad \text { in } \boldsymbol{R}^{3} . \tag{5.5}
\end{equation*}
$$

Operating the Fourier transform on the both sides of (5.5), we have

$$
\left(\lambda-|\xi|^{2}\right)(\mathscr{F} \tilde{u})(\xi)=0 .
$$

Since $\mathscr{F} \tilde{u} \in L_{2}\left(\boldsymbol{R}^{3}\right)$, we obtain $\mathscr{F} \tilde{u}=0$, and hence

$$
\begin{equation*}
\tilde{u}(x)=0 \quad \text { for a.e. } x \in R^{3} \tag{5.6}
\end{equation*}
$$

Therefore, from (5.2), (5.4) and (5.6) it follows that

$$
u(x)=0 \quad \text { in } L_{2}\left(R^{3}\right)
$$

Q.E.D.

In contrast to the above theorem the point 0 may or may not belong to $\sigma_{p}(H)$. If q is constant on S_{a}, however, we get the following criterion.

Theorem 5.3. Let $q(x)=V_{0}$ (constant). Then $0 \in \sigma_{p}(H)$ if and only if there exists a positive integer n such that $a V_{0}+2 n+1=0$. In this case, the corresponding eigenspace is spanned by the vecotors $v(|x|) Y_{n}^{m}(m=-n,-n$ $+1, \ldots, n$), where

$$
v(r)= \begin{cases}r^{n} & r \leq a \\ a^{2 n+1} r^{-n-1} & r \geq a .\end{cases}
$$

and $Y_{n}^{m}(n=0,1, \ldots, m=-n,-n+1, \ldots, n)$ denote the spherical harmonics which provide a basis for $L_{2}\left(S^{2}\right)\left(S^{2}\right.$ the unit sphere in $\left.R^{3}\right)$.

Proof. (cf. Colton-Kress [4, pp. 78-79])
Suppose that $H u=0$ and $u \in \operatorname{Dom}(H)$. By Theorem 1.7 we have

$$
\begin{equation*}
\Delta u(x)=0 \quad \text { in }\{x ;|x|<a\} \cup\{x ;|x|>a\} . \tag{5.7}
\end{equation*}
$$

Thus $u(x)$ is a C^{∞}-function in the above region by Weyl's lemma (e.g. Reed-Simon [18, p.53]). Let (r, θ, φ) denote the spherical coordinates with $r=|x|$. For each fixed r we can expand u in a uniformly convergent series

$$
u(x)=\sum_{k=0}^{\infty} \sum_{m=-k}^{k} v_{k m}(r) Y_{k}^{m}(\theta, \varphi),
$$

where

$$
v_{k m}(r)=\int_{0}^{2 \pi} \int_{0}^{\pi} u(r, \theta, \varphi) \overline{Y_{k}^{m}(\theta, \varphi)} \sin \theta d \theta d \varphi
$$

Since $u \in C^{\infty}(\{x ;|x| \neq a\})$, we can differentiate under the integral and integrate by parts using $\Delta u=0$ to conclude that $v_{k m}$ is a solution of the following equation

$$
\frac{d^{2}}{d r^{2}} v_{k m}+\frac{2}{r} \frac{d}{d r} v_{k m}-\frac{k(k+1)}{r^{2}} v_{k m}=0
$$

which has a fundamental system of solutions r^{k} and r^{-k-1}. Since $v_{k m}$ is bounded near zero and belongs to $\left.L_{2}(0, \infty) ; r^{2} d r\right)$ by Theorem 1.7, $v_{k m}$ has the form

$$
\begin{aligned}
& v_{00}(r)=\alpha_{00}(r<a),=0 \quad(r>a), \\
& v_{k m}(r)=\left\{\begin{array}{ll}
\alpha_{k m} r^{k} & (r<a) \\
\beta_{k m} r^{-k-1} & (r>a)
\end{array} \quad(k \geq 1),\right.
\end{aligned}
$$

where $\alpha_{k m}$ and $\beta_{k m}$ are constants. In view of Theorem 1.7, $v_{k m}$ is continuous at r $=a$ and satisfies the boundary condition

$$
V_{0} v_{k m}(a)+\left(\frac{d}{d r} v_{k m}\right)(a-0)-\left(\frac{d}{d r} v_{k m}\right)(a+0)=0
$$

where $f(a \pm 0)$ denotes $\lim _{\varepsilon \downarrow 0} f(a \pm \varepsilon)$. Therefore, $\alpha_{k m}$ and $\beta_{k m}$ satisfy the following equations

$$
\begin{aligned}
& \alpha_{00}=0, \\
& \alpha_{k m} a^{2 k+1}=\beta_{k m},\left(a V_{0}+2 k+1\right) \alpha_{k m}=0 \quad(k \geq 1),
\end{aligned}
$$

from which the required result follows immediately.
Q.E.D.

§6. Bound states of \boldsymbol{H}

Let us define the quadratic form h_{t} depending on a real parameter t by

$$
\begin{align*}
& h_{t}[u, v]=(\nabla u, \nabla v)+t(q \gamma u, \gamma v)_{a}, \tag{6.1}\\
& \operatorname{Dom}\left[h_{t}\right]=H^{1}\left(\boldsymbol{R}^{3}\right) .
\end{align*}
$$

The form h_{t} can be seen to be lower semibounded and closed in exactly the same way as for $h(t=1)$. Therefore, Theorem 1.4 applies to h_{t}. We denote the corresponding unique selfadjoint operator by $H_{t}\left(H_{1}=H\right.$ (see §1)). Put for $n=1$, $2, \cdots$ and $t \in \boldsymbol{R}$,
where $h_{t}[u]=h_{t}[u, u]$ and $\left[\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n-1}\right]^{\perp}$ is short hand for $\left\{u ;\left(u, \varphi_{j}\right)=0, j\right.$ $=1,2, \ldots, n-1\}$. Then our min-max principle will read as follows:

Lemma 6.1. Let n and $t \in \boldsymbol{R}$ be fixed. Then, either (a) $0=\mu_{n}(t)=\mu_{n+1}(t)$ $=\mu_{n+2}(t)=\cdots$ and there are at most $n-1$ eigenvalues of H_{t} (counting multiplicity), or (b) there are n eigenvalues of H_{t} (counting multiplicity) and $\mu_{n}(t)$ is the n-th negative eigenvalue of H_{t} (counting multiplicity) from below.

Proof. (cf. Reed-Simon [19, p. 76, Theorem XIII. 1])
Let $E_{t}(\cdot)$ be the spectral measure for H_{t}. First let us show

$$
\begin{array}{ll}
\operatorname{dim}\left[\operatorname{Ran}\left(E_{t}((-\infty, \alpha))\right)\right]<n & \text { if } \alpha<\mu_{n}(t) \\
\operatorname{dim}\left[\operatorname{Ran}\left(E_{t}((-\infty, \alpha))\right)\right] \geq n & \text { if } \alpha>\mu_{n}(t) \tag{6.4}
\end{array}
$$

Here we remark that $\mu_{n}(t)$ is finite for each $t \in \boldsymbol{R}$ and

$$
\begin{equation*}
\operatorname{Ran}\left(E_{t}((-\infty, \alpha))\right) \subset \operatorname{Dom}\left(H_{t}\right) \quad\left(\subset H^{1}\left(\boldsymbol{R}^{3}\right)\right) \text { if } \alpha<+\infty, \tag{6.5}
\end{equation*}
$$

because of the fact that H_{t} is bounded from below by Theorem 1.5.
Suppose that (6.3) is false. Then, for any $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n-1}$ we can find u such that $u \in \operatorname{Ran}\left(E_{t}((-\infty, \alpha))\right) \cap\left[\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n-1}\right]^{\perp}$ and, by $(6.5),\left(H_{t} u, u\right) \leq \alpha\|u\|^{2}$. By Theorem 1.4, this implies that

$$
\inf _{\substack{u \in \boldsymbol{H}^{1}\left(\boldsymbol{R}^{3}\right) \cap\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n-1}\right]^{+} \\\|u\|=1}} \min \left(h_{t}[u], 0\right) \leq \alpha
$$

for any $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n-1} \in L_{2}\left(\boldsymbol{R}^{3}\right)$, and hence $\mu_{n}(t) \leq \alpha$, which is a contradiction. This proves (6.3).

Since $\mu_{n}(t) \leq 0$ and Theorrem 5.1 holds, we have only to prove (6.4) when $\mu_{n}(t)$ $<\alpha \leq 0$. Thus, suppose that (6.4) is false when $\mu_{n}(t)<\alpha \leq 0$. Then we can find $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n-1}$ such that L.h. $\left\{\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n-1}\right\}=\operatorname{Ran}\left(E_{t}((-\infty, \alpha))\right)$, where L.h.A denotes the subspace spanned by A. Since any $u \in\left[\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n-1}\right]^{\perp} \cap$ $\operatorname{Dom}\left(H_{t}\right)$ is in $\operatorname{Ran}\left(E_{t}([\alpha, \infty))\right.$), we have by Theorem 1.4, $h_{t}[u]=\left(H_{t} u, u\right) \geq \alpha\|u\|^{2}$. Since $\operatorname{Dom}\left(H_{t}\right)$ is a form core for h_{t} (e.g. Reed-Simon [17, p.281]), it follows that

$$
h_{t}[u] \geq \alpha\|u\|^{2} \quad \text { for any } u \in\left[\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n-1}\right]^{\perp} \cap H^{1}\left(\boldsymbol{R}^{3}\right)
$$

Therefore, noting that $\alpha \leq 0$, we obtain

$$
\begin{aligned}
& \inf _{u \in\left[\varphi_{1}, \varphi_{2}, \ldots, \boldsymbol{\varphi}_{n} \boldsymbol{\varphi}_{n=1}^{1}=1\right.} \min \left(h H_{t}^{1}[u], 0\right) \\
& =\inf _{u \in\left[\varphi_{1}, \varphi_{2}, \ldots \varphi_{n}, \varphi_{n}=1\right]^{1} \cap H^{1}\left(\boldsymbol{R}^{3}\right)} h_{t}[u] \geq \alpha .
\end{aligned}
$$

and hence $\mu_{n}(t) \geq \alpha$, which is a contradiction. This proves (6.4).
First, suppose that

$$
\begin{equation*}
\operatorname{dim}\left[\operatorname{Ran}\left(E_{t}\left(\left(-\infty, \mu_{n}(t)+\varepsilon\right)\right)\right)\right]=\infty \quad \text { for all } \varepsilon>0 \tag{6.6}
\end{equation*}
$$

Then the situation (a) holds. In fact, by (6.3) we have

$$
\operatorname{dim}\left[\operatorname{Ran}\left(E_{t}\left(\left(-\infty, \mu_{n}(t)-\varepsilon\right)\right)\right)\right]<n \quad \text { for all } \varepsilon>0
$$

and hence

$$
\operatorname{dim}\left[\operatorname{Ran}\left(E_{t}\left(\left[\mu_{n}(t)-\varepsilon, \mu_{n}(t)+\varepsilon\right)\right)\right)\right]=\infty \quad \text { for all } \varepsilon>0
$$

This implies that

$$
\begin{equation*}
\mu_{n}(t) \in \sigma_{e s s}\left(H_{t}\right) \tag{6.7}
\end{equation*}
$$

Since $\mu_{n}(t) \leq 0$ and $\sigma_{\text {ess }}\left(H_{t}\right)=[0, \infty)$ by Theorem 5.1, it follows that $\mu_{n}(t)=0$. If $\mu_{n+1}(t)>\mu_{n}(t)$, we have by putting $\alpha=\frac{1}{2}\left(\mu_{n+1}(t)+\mu_{n}(t)\right)\left(<\mu_{n+1}(t)\right)$ in (6.3)

$$
\operatorname{dim}\left[\operatorname { R a n } \left(E_{t}\left(\left(-\infty, \frac{1}{2}\left(\mu_{n+1}(t)+\mu_{n}(t)\right)\right)\right]<n+1\right.\right.
$$

which contradicts (6.6). Thus, noting that $\mu_{n+1}(t) \geq \mu_{n}(t)$, we obtain $\mu_{n}(t)$ $=\mu_{n+1}(t) \cdots$. Finally, if there are n eigenvalues strictly below $\mu_{n}(t)$ and λ is the $n-$ th eigenvalue, we have

$$
\operatorname{dim}\left[\operatorname{Ran}\left(E_{t}\left(\left(-\infty, \frac{1}{2}\left(\mu_{n}(t)+\lambda\right)\right)\right)\right)\right] \geq n,
$$

which contradicts (6.3) $\left(\alpha=\frac{1}{2}\left(\mu_{n}(t)+\lambda\right)<\mu_{n}(t)\right)$. Thus it is seen that there are at most $n-1$ eigenvalues of H_{t}.

Next, assume that (6.6) fails, i.e., for some $\varepsilon_{0}>0$

$$
\begin{equation*}
\operatorname{dim}\left[\operatorname{Ran}\left(E_{t}\left(\left(-\infty, \mu_{n}(t)+\varepsilon_{0}\right)\right)\right)\right]<+\infty \tag{6.8}
\end{equation*}
$$

Then the situation (b) arises. In fact, we have by (6.3) an (6.4)

$$
\begin{equation*}
\operatorname{dim}\left[\operatorname{Ran}\left(E_{t}\left(\left(\mu_{n}(t)-\varepsilon, \mu_{n}(t)+\varepsilon\right)\right)\right)\right] \geq 1 \quad \text { for any } \varepsilon>0 . \tag{6.9}
\end{equation*}
$$

On the other hand, (6.8) implies

$$
\begin{equation*}
\operatorname{dim}\left[\operatorname{Ran}\left(E_{t}\left(\left(\mu_{n}(t)-\varepsilon_{0}, \mu_{n}(t)+\varepsilon_{0}\right)\right)\right)\right]<+\infty \tag{6.10}
\end{equation*}
$$

Thus it follows from (6.9) an (6.10) that $\mu_{n}(t)$ is a discrete eigenvalue of H_{1}. Take δ >0 such that $\left(\mu_{n}(t)-\delta, \mu_{n}(t)+\delta\right) \cap \sigma\left(H_{t}\right)=\left\{\mu_{n}(t)\right\}$. Then we have by (6.4)

$$
\begin{aligned}
& \operatorname{dim}\left[\operatorname{Ran}\left(E_{t}\left(\left(-\infty, \mu_{n}(t)\right]\right)\right)\right] \\
& \quad=\operatorname{dim}\left[\operatorname{Ran}\left(E_{t}\left(\left(-\infty, \mu_{n}(t)+\delta\right)\right)\right)\right] \geq n .
\end{aligned}
$$

Thus there exist at least n eigenvalues of $H_{t}: \lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n} \leq \mu_{n}(t)$. If λ_{n} $<\mu_{n}(t)$, we have by putting $\alpha=\frac{1}{2}\left(\mu_{n}(t)+\lambda_{n}\right)\left(<\mu_{n}(t)\right)$ in (6.3)

$$
\begin{aligned}
n & \leq \operatorname{dim}\left[\operatorname{Ran}\left(E_{t}\left(\left(-\infty, \lambda_{n}\right]\right)\right)\right] \\
& \leq \operatorname{dim}\left[\operatorname{Ran}\left(E_{t}((-\infty, \alpha))\right)\right]<n,
\end{aligned}
$$

which is a contradiction. Therefore, $\lambda_{n}=\mu_{n}(t)$, i.e. $\mu_{n}(t)$ is the n-th eigenvalue of H_{t}. The lemma has now been proven.
Q.E.D.

Lemma 6.2. For each $n, \mu_{n}(t)$ is monotone nonincreasing in t on $[0, \infty)$.
Proof. Since $\min \left(h_{t}[u], 0\right)$ is monotone nonincreasing in t on $[0, \infty)$, the required result follows immediately.
Q.E.D.

Lemma 6.3. For each $n, \mu_{n}(t)$ is continuous in t on \boldsymbol{R}.
Proof. (cf. Simon [21, p. 71, Theorem II. 33])
For each $u \in H^{1}\left(\boldsymbol{R}^{3}\right)$ with $\|u\|=1$, we put

$$
f(t ; u)=\min \left(h_{t}[u], 0\right)
$$

If we show that $\left\{f(\cdot ; u) ; u \in H^{1}\left(\boldsymbol{R}^{3}\right),\|u\|=1\right\}$ is equicontinuous, the conclusion follows.

Given $t_{0} \in \boldsymbol{R}^{1}$, we have by Lemma $1.3\left(\varepsilon=\left[2\left(\max _{x \in S_{a}}|q(x)|+1\right)\left(\left|t_{0}\right|+1\right)\right]^{-1}\right)$

$$
\begin{equation*}
\left|(q \gamma u, \gamma u)_{a}\right| \leq \max _{x \in S_{a}}|q(x)| \cdot\|\gamma u\|_{a}^{2} \leq \frac{\max |q(x)|}{2(\max |q(x)|+1)\left(\left|t_{0}\right|+1\right)}\|\nabla u\|^{2}+ \tag{6.11}
\end{equation*}
$$

$$
+2(\max |q(x)|)(\max |q(x)|+1)\left(\left|t_{0}\right|+1\right)\|u\|^{2} \leq \frac{1}{2\left(\left|t_{0}\right|+1\right)}\|\nabla u\|^{2}+b_{t_{0}},
$$

where we put $b_{t_{0}}=2(\max |q(x)|+1)^{2}\left(\left|t_{0}\right|+1\right)$. Suppose that $h_{t}[u] \leq 0$ for some t such that $\left|t-t_{0}\right|<1$. Then we have

$$
f(t ; u)=h_{t}[u]=\|\nabla u\|^{2}+t(q \gamma u, \gamma u)_{a} \leq 0,
$$

which implies

$$
\begin{equation*}
\|\nabla u\|^{2} \leq-t(q \gamma u, \gamma u)_{a} \leq|t|\left|(q \gamma u, \gamma u)_{a}\right| \leq\left(\left|t_{0}\right|+1\right)\left|(q \gamma u, \gamma u)_{a}\right| . \tag{6.12}
\end{equation*}
$$

Therefore, from (6.11) and (6.12) it follows that

$$
\left|(q \gamma u, \gamma u)_{a}\right| \leq \frac{1}{2}\left|(q \gamma u, \gamma u)_{a}\right|+b_{t_{0}},
$$

and hence

$$
\begin{equation*}
\left|(q \gamma u, \gamma u)_{a}\right| \leq 2 b_{t_{0}} \tag{6.13}
\end{equation*}
$$

if $h_{t}[u] \leq 0$ for some t such that $\left|t-t_{0}\right|<1$.
Now, for given $\varepsilon>0$, let $\delta=\min \left(\frac{\varepsilon}{2 b_{t_{0}}}, 1\right) . \quad$ Let $\left|t-t_{0}\right|<\delta . \quad$ If $h_{t}[u] \leq 0$ or $h_{t_{0}}[u] \leq 0$, then we have by (6.13)

$$
\left|f(t ; u)-f\left(t_{0} ; u\right)\right| \leq\left|h_{t}[u]-h_{t_{0}}[u]\right| \leq\left|t-t_{0}\right|\left|(q \gamma u, \gamma u)_{a}\right|<\delta \cdot 2 b_{t_{0}} \leq \varepsilon .
$$

The above inequality is trivially satisfied if $h_{t}[u]>0$ and $h_{t_{0}}[u]>0$. We have thus obtained the required equicontinuity.
Q.E.D.

Lemma 6.4. For each $n, \mu_{n}(t)$ is strictly monotone decreasing on $\left[t_{1},+\infty\right)$ once $\mu_{n}\left(t_{1}\right)<0$ for some $t_{1} \geq 0$.

Proof. Let t_{1} be such that $E \equiv \mu_{n}\left(t_{1}\right)<0$ and $t_{1} \geq 0$. Assume that there exists t_{2} such that $t_{1} \leq t_{2}$ and $\mu_{n}\left(t_{1}\right)=\mu_{n}\left(t_{2}\right)=E<0$. Then, for any $t \in\left[t_{1}, t_{2}\right]$, $\mu_{n}(t)=E$ holds by Lemma 6.2. Therefore, by Lemma 6.1 we can find u_{t} for each $t \in\left[t_{1}, t_{2}\right]$ which satisfies

$$
\begin{equation*}
u_{t} \in \operatorname{Dom}\left(H_{t}\right), u_{t} \neq 0 \text { and }\left(H_{t}-E\right) u_{t}=0 . \tag{6.14}
\end{equation*}
$$

In view of Lemma 2.12, we have

$$
\begin{equation*}
\gamma u_{t}=t \cdot \widetilde{T}_{i \sqrt{ }-\bar{E}}\left(\gamma u_{t}\right) \quad \text { and } \quad \gamma u_{t} \neq 0 \text { in } L_{2}\left(S_{a}\right) . \tag{6.15}
\end{equation*}
$$

This implies that for every $t \in\left[t_{1}, t_{2}\right] t^{-1}$ is an eigenvalue of $\tilde{T}_{i \sqrt{-E}}$, which is a contradiction, for $\tilde{T}_{i \sqrt{ } \bar{E}}$ is a compact operator by Lemma 2.4. Therefore, we must have the lemma in view of Lemma 6.2.
Q.E.D.

Now, as an analogue of the Birman-Schwinger bound (e.g. Reed-Simon [19, p.98, Theorem XIII.10]), we shall give a bound on the total numbr of bound states of H. Let $E<0$ and define $N(E)$ by

$$
N(E)=\#\left\{n ; \mu_{n}(1)<E\right\},
$$

where $\# A$ denotes the cardinality of the set A. Then we have the following
Theorem 6.5. Let $E<0$. Then

$$
\begin{equation*}
N(E) \leq\left\|\left(\tilde{T}_{i \sqrt{-E}}\right)^{2}\right\|_{H . S .}^{2} \leq M<+\infty, \tag{6.16}
\end{equation*}
$$

where M is a constant independent of $E<0$. In particular, the total number of negative eigenvalues of H is finite.

Proof. Since $\mu_{n}(0)=0$ for every n and $\mu_{n}(t)$ is continuous by Lemma 6.3, it follows from the intermediate value theorem and Lemma 6.4 that $\mu_{n}(1)<E$ if and only if $\mu_{n}(t)=E$ for exactly one $t \in(0,1)$. Using Lemma 2.12 repeatedly, it is seen that t^{-2} satisfying the equation $\mu_{n}(t)=E$ is an eigenvalue of $\left(\widetilde{T}_{i \sqrt{-E}}\right)^{2}$. Further, since $\left(\tilde{T}_{i \sqrt{-E}}\right)^{2}$ is a Hilbert-Schmidt operator by Lemma 2.8, we have

$$
\begin{aligned}
N(E) & =\#\left\{n ; \mu_{n}(t)=E \quad \text { for some } t \in(0,1)\right\} \\
& \leq \sum_{\left\{t \in(0,1) ; \mu_{k}(t)=E, k=1,2, \ldots, N(E) \mid\right.} t^{-4} \\
& \leq \sum_{\left\{t \in(0,1) ; \mu_{k}(t)=E, k=1,2, \ldots,\right\}^{-4}} t^{-4} \\
& \leq \sum_{\left\{t \in(0,1) ; t^{-2}\right.} \sum_{\text {is an eigenvalue of } \left.\left(\tilde{T}_{i \sqrt{-E}}\right)^{2}\right\}^{-4}} t^{-4} \\
& \leq\left\|\left(\widetilde{T}_{i \sqrt{-E}}\right)^{2}\right\|_{H . S .}^{2} \\
& \leq C^{2}\left(\max _{z \in S_{a}}|q(z)|^{4} \int_{S_{a} \times S_{a}} d S_{x} d S_{y}(1+|\log | x-y \mid)^{2} \equiv M<+\infty,\right.
\end{aligned}
$$

where C is a constant which is independent of E (see the proof of Lemma 2.8). The above inequality shows the theorem.
Q.E.D.

§ 7. The limiting absorption principle for \boldsymbol{H}

In this section we shall prove the limiting absorption principle for H.
Theorem 7.1. Let $s>\frac{1}{2}$. Then $R(z)$ can be extended to a $\boldsymbol{B}\left(L_{2}^{s}\left(\boldsymbol{R}^{3}\right), L_{2}^{-s}\left(\boldsymbol{R}^{3}\right)\right)$ valued continuous function of z on $\Pi \backslash\left(\sigma_{p}(H) \cup\{0\}\right)$.

Proof. Let us recall the resolvent equation

$$
\begin{equation*}
R(z)-R_{0}(z)=T_{\sqrt{z}} \gamma R(z) . \tag{7.1}
\end{equation*}
$$

If we assume that $\left(1-\tilde{T}_{\sqrt{z}}\right)^{-1}$ exists, we have on operating γ from left on the both sides of (7.1) and solving for $R(z)$,

$$
\begin{equation*}
R(z)=R_{0}(z)+T_{\sqrt{z}}\left(1-\tilde{T}_{\sqrt{z}}\right)^{-1} \gamma R_{0}(z) \tag{7.2}
\end{equation*}
$$

for $z \in \rho(H) \cap \rho\left(H_{0}\right)$. Here we have used Lemma 2.7. By Lemma 2.9 $T_{\sqrt{2}}$ is a $\boldsymbol{B}\left(L_{2}\left(S_{a}\right), L_{2}^{-s}\left(\boldsymbol{R}^{3}\right)\right.$)-valued continuous function of z on $\operatorname{Im} \sqrt{z} \geq 0$ if $s>1 / 2$. Thus $\left(T_{\sqrt{z}}\right)^{*}$ is a $\boldsymbol{B}\left(L_{2}^{s}\left(\boldsymbol{R}^{3}\right), L_{2}\left(S_{a}\right)\right)$-valued continuous function of z on $\operatorname{Im} \sqrt{z} \geq 0$ if s $>1 / 2$. On the other hand, we have by Lemma $2.13(q(x) \equiv 1)$

$$
\gamma R_{0}(z)=-\left(T_{\sqrt{\bar{z}}}^{(1)}\right)^{*} \quad \text { if } \operatorname{Im} \sqrt{\bar{z}}>0 .
$$

Thus, since $T_{\kappa}=T_{\kappa}^{(1)}$ if $q(x) \equiv 1, \gamma R_{0}(z)$ can be extended to a $\boldsymbol{B}\left(L_{2}^{s}\left(\boldsymbol{R}^{3}\right), L_{2}\left(S_{a}\right)\right.$)valued continuous function of z on Π if $s>1 / 2$. Therefore, in view of the wellknown limiting absorption principle for H_{0} (see e.g. Agmon [2]), the proof of the above theorem is reduced to the next

Lemma 7.2. Let $z \in \Pi \backslash\left(\sigma_{p}(H) \cup\{0\}\right)$. Then $\left(1-\tilde{T}_{\sqrt{ }}\right)^{-1}$ exists and belongs to $\boldsymbol{B}\left(L_{2}\left(S_{a}\right)\right)$. In this case, $\left(1-\tilde{T}_{\sqrt{ }}\right)^{-1}$ is a $\boldsymbol{B}\left(L_{2}\left(S_{a}\right)\right)$-valued continuous function of z on $\Pi \backslash\left(\sigma_{p}(H) \cup\{0\}\right)$, where $\boldsymbol{B}(X)$ denotes $\boldsymbol{B}(X, X)$.

We will show this lemma after proving a series of lemmas. First, we have by Lemma 2.12

Lemma 7.3. Let $\operatorname{Im} \sqrt{z}>0$. Then $1 \in \sigma_{p}\left(\widetilde{T}_{\sqrt{z}}\right)$ if and only if $z \in \sigma_{p}(H)$.
Lemma 7.4. Let $\zeta \in \boldsymbol{C}$ and let $u \in L_{2}\left(S_{a}\right)$ satisfy the homogeneous equation u $=\tilde{T}_{\zeta} u$ in $L_{2}\left(S_{a}\right)$. Then u is bounded on S_{a}.

Proof. Let $k(x, y)$ be the integral kernel of $\left(\widetilde{T}_{\zeta}\right)^{3}$. It follows from Lemma 2.2 that $k(x, y)$ is bounded on $S_{a} \times S_{a}$. Thus we have by Schwarz' inequality

$$
\begin{aligned}
|u(x)| & =\left|\left(\widetilde{T}_{\zeta}\right)^{3} u(x)\right|=\left|\int_{S_{a}} d S_{y} k(x, y) u(y)\right| \\
& \leq \sup _{(x, y) \in S_{a} \times S_{a}}|k(x, y)| \int_{S_{a}} d S_{y}|u(y)| \\
& \leq \sup _{(x, y) \in S_{a} \times S_{a}}|k(x, y)|\left(4 \pi a^{2}\right)^{1 / 2}\|u\|_{a}<+\infty
\end{aligned}
$$

which proves the lemma.
Q.E.D.

Lemma 7.5. Under the conditions of Lemma $7.4 u(x)$ is Hölder continuous on S_{a}.

Proof. We consider the difference

$$
\begin{align*}
u(x)-u\left(x^{\prime}\right)= & \frac{-1}{4 \pi} \int_{S_{a}} \frac{e^{i \zeta|x-y|}-e^{i \xi\left|x^{\prime}-y\right|}}{|x-y|} q(y) u(y) d S_{y} \tag{7.3}\\
& +\frac{-1}{4 \pi} \int_{S_{a}}\left(\frac{1}{|x-y|}-\frac{1}{\left|x^{\prime}-y\right|}\right) e^{i \zeta\left|x^{\prime}-y\right|} q(y) u(y) d S_{y} \\
= & J_{1}+J_{2} .
\end{align*}
$$

We shall estimate J_{1} and J_{2} as follows. Considering the inequality

$$
\left|e^{i \zeta|x-y|}-e^{i \zeta\left|x^{\prime}-y\right|}\right| \leq|\zeta|\left|x-x^{\prime}\right| e^{||m \zeta|| x-x^{\prime} \mid}
$$

we have for $x, x^{\prime} \in S_{a}$

$$
\begin{align*}
\left|J_{1}\right| & \leq \frac{1}{4 \pi} A|\zeta|\left|x-x^{\prime}\right| e^{2 a|\ln \zeta|} \int_{S_{a}} d S_{y} \frac{1}{|x-y|} \tag{7.4}\\
& =A a|\zeta| e^{2 a| | m \zeta \mid}\left|x-x^{\prime}\right|
\end{align*}
$$

where $A=\sup _{y \in S_{a}}|q(y) u(y)|<+\infty$ by Assumption 1.1, Lemma 7.4 and Lemma 2.1. We proceed to estimate J_{2}. In view of the inequality

$$
\left|\frac{1}{|x-y|}-\frac{1}{\left|x^{\prime}-y\right|}\right| \leq \frac{\left|x-x^{\prime}\right|}{|x-y|\left|x^{\prime}-y\right|}
$$

we have for $x, x^{\prime} \in S_{a}$

$$
\begin{align*}
\left|J_{2}\right| & \leq \frac{1}{4 \pi} A e^{2 a| | m \zeta \mid}\left|x-x^{\prime}\right| \int_{S_{a}} d S_{y} \frac{1}{|x-y|\left|x^{\prime}-y\right|} \tag{7.5}\\
& \leq \frac{1}{4 \pi} A e^{2 a| | \mathrm{m} \zeta \mid} C\left|x-x^{\prime}\right|\left(1+|\log | x-x^{\prime}| |\right)
\end{align*}
$$

where we used Lemma 2.2. The conclusion follows from (7.3), (7.4) and (7.5).
Q.E.D.

Lemma 7.6. Let $\mu \in \boldsymbol{R}$ and $u \in L_{2}\left(S_{a}\right) . \quad$ Put $U(x) \equiv\left(T_{\mu} u\right)(x) . \quad$ Then $U(x)$ has the following asymptotic behavior

$$
\begin{equation*}
U(x)=\frac{-1}{4 \pi} \frac{e^{i \mu|x|}}{|x|} \int_{S_{a}} e^{i \mu \omega_{x} \cdot y} q(y) u(y) d S_{y}+O\left(\frac{1}{|x|^{2}}\right) \tag{7.6}
\end{equation*}
$$

as $|x| \rightarrow \infty$, where ω_{x} denotes the unit vector with the direction of x. Further, $U(x)$ satisfies the following radiation condition

$$
\begin{equation*}
\frac{\partial U}{\partial|x|}(x)-i \mu U(x)=O\left(\frac{1}{|x|^{2}}\right) \quad \text { as }|x| \rightarrow+\infty \tag{7.7}
\end{equation*}
$$

Proof. In view of the relation

$$
\begin{aligned}
\frac{e^{i \mu|x-y|}}{|x-y|}= & \frac{1}{|x|} e^{i \mu|x|-i \mu \omega_{x} \cdot y+i \mu|x| \eta_{1}}+\frac{\eta_{2}}{|x|} e^{i \mu|x-y|} \\
& +\frac{1}{|x|^{2}} \omega_{x} \cdot y e^{i \mu|x-y|} \quad\left(x \in R^{3},|y|<R<+\infty\right)
\end{aligned}
$$

where η_{1} and η_{2} are real valued functions satisfying $\eta_{1}=O\left(\frac{|y|}{|x|^{2}}\right)$, and η_{2}
$=O\left(\frac{|y|}{|x|^{2}}\right)$ when $|x| \rightarrow+\infty$ (see e.g. Ikebe [6, p.11]), we have

$$
\begin{aligned}
U(x)= & \frac{-1}{4 \pi} \frac{e^{i \mu|x|}}{|x|} \int_{S_{a}} e^{-i \mu \omega_{x} \cdot y} q(y) u(y) d S_{y} \\
& -\frac{1}{4 \pi} \frac{e^{i \mu|x|}}{|x|} \int_{S_{a}} e^{-i \mu \omega_{x} \cdot y}\left(e^{-i \mu|x| \eta_{1}}-1\right) q(y) u(y) d S_{y} \\
& -\frac{1}{4 \pi} \frac{1}{|x|} \int_{S_{a}} \eta_{2} e^{i \mu|x-y|} q(y) u(y) d S_{y} \\
& -\frac{1}{4 \pi} \frac{1}{|x|^{2}} \int_{S_{a}} \omega_{x} \cdot y e^{i \mu|x-y|} q(y) u(y) d S_{y} \\
= & \frac{-1}{4 \pi} \frac{e^{i \mu|x|}}{|x|} \int_{S_{a}} e^{-i \mu \omega_{x} \cdot y} q(y) u(y) d S_{y}+I_{1}+I_{2}+I_{3} .
\end{aligned}
$$

$I_{i}(i=1,2,3)$ are estimated as follows:

$$
\begin{aligned}
\left|I_{1}\right| & \leq \frac{1}{4 \pi} \max _{y \in S_{a}}|q(y)| \frac{1}{|x|} \int_{S_{a}}\left|e^{-i \mu|x| \eta_{1}}-1\right||u(y)| d S_{y} \\
& \leq \frac{1}{4 \pi} \max _{y \in S_{a}}|q(y)| \frac{1}{|x|} \int_{S_{a}} C|\mu||x| \frac{a}{|x|^{2}}|u(y)| d S_{y} \\
& \leq \frac{\text { const. }}{|x|^{2}} \int_{S_{a}}|u(y)| d S_{y} \\
& \leq \frac{\text { const. }}{|x|^{2}}\|u\|_{a}, \\
\left|I_{2}\right| & \leq \frac{\text { const. }}{|x|^{3}}\|u\|_{a}, \quad\left|I_{3}\right| \leq \frac{\text { const. }}{|x|^{2}}\|u\|_{a} .
\end{aligned}
$$

These estimates prove (7.6).
Let us show (7.7). By differentiation under the integral sign, we have

$$
\begin{align*}
\frac{\partial U}{\partial|x|}(x)- & i \mu U(x) \tag{7.8}\\
= & -\frac{i \mu}{4 \pi} \int_{S_{a}} \frac{e^{i \mu|x-y|}}{|x-y|}\left(\frac{|x|^{2}-x \cdot y}{|x||x-y|}-1\right) q(y) u(y) d S_{y} \\
& +\frac{1}{4 \pi} \int_{S_{a}} \frac{|x|^{2}-x \cdot y}{|x||x-y|^{3}} e^{i \mu|x-y|} q(y) u(y) d S_{y} \\
= & J_{1}+J_{2} .
\end{align*}
$$

Considering $|y|=a$, we have

$$
|x-y|^{-1}=|x|^{-1}\left(1+\omega_{x} \cdot\left(\frac{y}{|x|}\right)+O\left(\frac{1}{|x|^{2}}\right)\right)
$$

as $|x| \rightarrow+\infty$, and hence

$$
\begin{aligned}
& \frac{1}{|x-y|}\left(\frac{|x|^{2}-x \cdot y}{|x||x-y|}-1\right)=O\left(\frac{1}{|x|^{3}}\right), \\
& \frac{|x|^{2}-x \cdot y}{|x||x-y|^{3}}=O\left(\frac{1}{|x|^{2}}\right) \quad \text { as }|x| \rightarrow+\infty .
\end{aligned}
$$

Therefore, we have

$$
\begin{align*}
& \left|J_{1}\right| \leq \frac{\text { const. }}{|x|^{3}} \int_{S_{a}}|u(y)| d S_{y} \leq \frac{\text { const. }}{|x|^{3}}\|u\|_{a}, \tag{7.9}\\
& \left|J_{2}\right| \leq \frac{\text { const. }}{|x|^{2}}\|u\|_{a} .
\end{align*}
$$

Thus (7.7) follows from (7.8) and (7.9) immediately.
Q.E.D.

Lemma 7.7. Let $\mu \in \boldsymbol{R} \backslash\{0\}$ and let $u \in L_{2}\left(S_{a}\right)$ satisfy $u=\tilde{T}_{\mu} u$ in $L_{2}\left(S_{a}\right)$. Then, for an aribitrary unit vector ω we have

$$
\begin{equation*}
\int_{S_{a}} e^{-i \mu \omega \cdot y} q(y) u(y) d S_{y}=0 \tag{7.10}
\end{equation*}
$$

Proof. Put $U(x) \equiv\left(T_{\mu} u\right)(x)$. Since $u(x)$ is continuous on S_{a} by Lemma 7.5, $U(x)$ is continuous on \boldsymbol{R}^{3} (see e.g. Colton-Kress [4, p.47, Theorem 2.12]), and hence

$$
\begin{equation*}
\left(\left.U\right|_{S_{d}}\right)(x)=u(x) \tag{7.11}
\end{equation*}
$$

On the other hand, by Lemma $2.11\left(\left(T_{\mu} u\right)(x) \equiv U(x)\right), U(x)$ satisfies the reduced wave equation

$$
\begin{equation*}
\left(\Delta+\mu^{2}\right) U(x)=0 \quad \text { on }\{x ;|x|<a\} \cup\{x ;|x|>a\} . \tag{7.12}
\end{equation*}
$$

Further, $\left(\frac{\partial U}{\partial n_{+}}\right)(x)$ can be continuously extended from $\{x ;|x|<a\}$ to $\{x ;|x| \leq a\}$ and from $\{x ;|x|>a\}$ to $\{x ;|x| \geq a\}$ with the limiting values

$$
\begin{equation*}
\left(\frac{\partial U}{\partial n_{+}}\right)^{(\pm)}(x)= \pm \frac{1}{2} q(x) u(x)+W(x) \quad\left(x \in S_{a}\right), \tag{7.13}
\end{equation*}
$$

respectively. Here
$W(x)=\frac{-1}{4 \pi} \int_{S_{a}}\left(\frac{\partial}{\partial n_{+}}\right)_{y}\left(\frac{e^{i \mu|x-y|}}{|x-y|}\right) q(y) u(y) d S_{y} \quad$ (the integral exists as an improper integral) and $\left(\frac{\partial U}{\partial n_{+}}\right)^{(\pm)}(x)$ are the limits of $\left(\frac{\partial U}{\partial n_{+}}\right)(x)$ obtained by approaching S_{a} from $\{x ;|x|>a\}$ and $\{x ;|x|<a\}$, respectively, that is,

$$
\begin{aligned}
& \left(\frac{\partial U}{\partial n_{+}}\right)^{(+)}(x)=\lim _{\substack{y \rightarrow x \\
|y|>a}}\left(\frac{\partial U}{\partial n_{+}}\right)(y), \\
& \left(\frac{\partial U}{\partial n_{+}}\right)^{(-)}(x)=\lim _{\substack{y \rightarrow x \\
|y|<a}}\left(\frac{\partial U}{\partial n_{+}}\right)(y), \quad x \in S_{a}
\end{aligned}
$$

(see e.g. Colton-Kress [4, p.47]). Using (7.12), (7.13) and Green's theorem, we have

$$
\begin{align*}
0 & =\int_{|x|<a}\left\{\left(\Delta+\mu^{2}\right) U(x) \cdot \overline{U(x)}-\overline{\left(\Delta+\mu^{2}\right) U(x)} \cdot U(x)\right\} d x \tag{7.14}\\
& =\int_{|x|<a}\{(\Delta U)(x) \overline{U(x)}-\overline{(\Delta U)(x)} U(x)\} d x \\
& =\int_{S_{a}}\left\{\left(\frac{\partial U}{\partial n_{+}}\right)^{(-)}(x) \overline{U(x)}-\overline{\left.\left(\frac{\partial U}{\partial n_{+}}\right)^{(-)}(x) U(x)\right\} d S_{x}}\right. \\
& =\int_{S_{a}}(W(x) \overline{U(x)}-\overline{W(x)} U(x)) d S_{x}
\end{align*}
$$

where we have used the fact that μ and $q(x)$ are real-valued. Similarly, for any b such that $b>a$ we have

$$
\begin{align*}
0= & \int_{a<|x|<b}\left\{\left(\Delta+\mu^{2}\right) U(x) \cdot \overline{U(x)}-\overline{\left(\Delta+\mu^{2}\right) U(x)} \cdot U(x)\right\} d x \tag{7.15}\\
= & -\int_{S_{a}}\left\{\left(\frac{\partial U}{\partial n_{+}}\right)^{(+)}(x) \overline{U(x)}-\overline{\left(\frac{\partial U}{\partial n_{+}}\right)^{(+)}}(x) U(x)\right\} d S_{x} \\
& +\int_{S_{b}}\left\{\left(\frac{\partial U}{\partial n_{+}}\right)(x) \overline{U(x)}-\overline{\left(\frac{\partial U}{\partial n_{+}}\right)(x)} U(x)\right\} d S_{x} \\
= & -\int_{S_{a}}(W(x) \overline{U(x)}-\overline{W(x)} U(x)) d S_{x} \\
& +\int_{S_{b}}\left\{\left(\frac{\partial U}{\partial n_{+}}\right)(x) \overline{U(x)}-\overline{\left(\frac{\partial U}{\partial n_{+}}\right)(x)} U(x)\right\} d S_{x} .
\end{align*}
$$

Thus we obtain by (7.14) and (7.15)

$$
\begin{equation*}
\int_{|x|=b}\left\{\left(\frac{\partial U}{\partial n_{+}}\right)(x) \overline{U(x)}-\overline{\left(\frac{\partial U}{\partial n_{+}}\right)(x)} U(x)\right\} d S_{x}=0 \tag{7.16}
\end{equation*}
$$

for any b such that $b>a$. Once Lemma 7.6 and (7.16) are shown, an argument similar to Povzner [16, Chap. II, Lemma 5] gives

$$
\begin{equation*}
\int_{S_{a}} e^{-i \mu \omega \cdot y} q(y)\left(\left.U\right|_{S_{a}}\right)(y) d S_{y}=0 \quad\left(\omega \in S^{2}\right), \tag{7.17}
\end{equation*}
$$

which implies (7.10) by (7.11).
Q.E.D.

Lemma 7.8. Let $\lambda>0$ and let $u \in L_{2}\left(S_{a}\right)$ satisfy $u=\widetilde{T}_{\sqrt{\lambda+i 0}} u\left(\right.$ or $u=\widetilde{T}_{\sqrt{\lambda-i 0}} u$) in $L_{2}\left(S_{a}\right)$. Then $u=0$ in $L_{2}\left(S_{a}\right)$.

Proof. Put $\left.U(x) \equiv\left(T_{\sqrt{\lambda+i 0}} u\right)(x)\left(=T_{\sqrt{\lambda}} u\right)(x)\right)$. Then, by Lemmas 7.6, 7.7 and 2.11, we have

$$
(\Delta+\lambda) U(x)=0 \text { on }\{x ;|x|>a\}, U(x)=O\left(\frac{1}{|x|^{2}}\right) \text { as }|x| \rightarrow+\infty .
$$

Thus, in view of Mizohata [13, Chap. VIII §5, Lemma 8.4], we have

$$
U(x) \equiv 0 \quad \text { on }\{x ;|x|>a\} .
$$

Since $U(x)$ is continuous on \boldsymbol{R}^{3} as mentioned in the proof of Lemma 7.7, we obtain

$$
U(x) \equiv 0 \quad \text { on }\{x ;|x| \geq a\},
$$

and hence

$$
u(x)=\left(\left.U\right|_{s_{u}}\right)(x)=0 .
$$

Similarly, the case that $u=\tilde{T}_{\sqrt{\lambda-i 0}} u$ can be proven.
Q.E.D.

We are now in a position to make use of the Fredholm-Riesz theory of compact operators in a Hilbert space, according to which, if T is a compact operator in a Hilbert space $X, 1-T$ is injective if and only if $(1-T)^{-1}$ exists and belongs to $\boldsymbol{B}(X)$ (see e.g. Riesz-Nagy [20, Chap. IV]). Thus, by Lemmas 2.4, 7.3 and 7.8 we have the following

Lemma 7.9. Let $z \in \Pi \backslash\left(\sigma_{p}(H) \cup\{0\}\right)$. Then $\left(1-\widetilde{T}_{\sqrt{ }}\right)^{-1}$ exists and belongs to $B\left(L_{2}\left(S_{a}\right)\right)$.

Lemma 7.10. $\left(1-\tilde{T}_{\sqrt{z}}\right)^{-1}$ is a $\boldsymbol{B}\left(L_{2}\left(S_{a}\right)\right)$-valued continuous function of z on $\Pi \backslash\left(\sigma_{p}(H) \cup\{0\}\right)$.

Proof. The conclusion follows from Lemma 2.10 and the standard estimate

$$
\begin{align*}
& \left\|\left(1-\widetilde{T}_{\sqrt{z}}\right)^{-1}-\left(1-\widetilde{T}_{\sqrt{z}}\right)^{-1}\right\| \\
& \quad \leq \frac{\left\|\widetilde{T}_{\sqrt{z}}-\widetilde{T}_{\sqrt{z^{\prime}}}\right\|\left\|\left(1-\widetilde{T}_{\sqrt{z}}\right)^{-1}\right\|}{1-\left\|\widetilde{T}_{\sqrt{z}}-\widetilde{T}_{\sqrt{z}}\right\|\left\|\left(1-\widetilde{T}_{\sqrt{z}}\right)^{-1}\right\|} .
\end{align*}
$$

The above two lemmas imply Lemma 7.2. Therefore, Theorem 7.1 has now been proven.

Once the limiting absorption principle for H is established, the absolute continuity of H on $(0, \infty)$ readily follows from the same argument as Ikebe-Saito [8]. Thus we have the following

Theorem 7.11. $E((0, \infty)) H$ is an absolutely continuous operator, where $E(\cdot)$ is the spectral measure associated with H.

§ 8. Eigenfunction expansions

We shall proceed to show the eigenfunction expansion theorem. Our method is based on Kuroda [12] and Ikebe [6, 7].

We shall start with a well-known formula.
Lemma 8.1. Let $s>\frac{1}{2}$. Suppose that $u \in L_{2}^{s}\left(\boldsymbol{R}^{3}\right)$ and $\mathscr{F} v \in C_{0}^{\infty}\left(\boldsymbol{R}^{3} \backslash\{0\}\right)$. Then we have

$$
\begin{equation*}
\left(u, W_{ \pm} v\right)=\lim _{\varepsilon \downarrow 0} \frac{\varepsilon}{\pi} \int_{-\infty}^{+\infty}\left(R(\lambda \pm i \varepsilon) u, R_{0}(\lambda \pm i \varepsilon) v\right) d \lambda \tag{8.1}
\end{equation*}
$$

For the proof, see e.g. Kuroda [11, §5.4].
Lemma 8.2. Let $s>\frac{1}{2}$. Suppose that $u \in L_{2}^{s}\left(\boldsymbol{R}^{3}\right)$ and $\mathscr{F} v \in C_{0}^{\infty}\left(\boldsymbol{R}^{3} \backslash\{0\}\right)$ such that supp $\mathscr{F} v \subset\left\{\xi ; \alpha<|\xi|^{2}<\beta\right\}(0<\alpha<\beta)$. Then we have

$$
\begin{equation*}
\left(u, W_{ \pm} v\right)=\lim _{\varepsilon \downarrow 0} \frac{\varepsilon}{\pi} \int_{\alpha}^{\beta}\left(R(\lambda \pm i \varepsilon) u, R_{0}(\lambda \pm i \varepsilon) v\right) d \lambda . \tag{8.2}
\end{equation*}
$$

Here supp means support.
Proof. (cf. Kuroda [12, p. 151, Proposition 5.12]) Let $J=\boldsymbol{R} \backslash[\alpha, \beta]$. By Lemma 8.1 we have only to show

$$
\begin{equation*}
\lim _{\varepsilon \downarrow 0} \frac{\varepsilon}{\pi} \int_{J}\left(R(\lambda \pm i \varepsilon) u, R_{0}(\lambda \pm i \varepsilon) v\right) d \lambda=0 \tag{8.3}
\end{equation*}
$$

By Schwarz' inequality we have

$$
\begin{aligned}
& \left|\frac{\varepsilon}{\pi} \int_{J}\left(R(\lambda \pm i \varepsilon) u, R_{0}(\lambda \pm i \varepsilon) v\right) d \lambda\right| \\
& \quad \leq\left(\frac{\varepsilon}{\pi} \int_{J}\|R(\lambda \pm i \varepsilon) u\|^{2} d \lambda\right)^{1 / 2}\left(\frac{\varepsilon}{\pi} \int_{J}\left\|R_{0}(\lambda \pm i \varepsilon) v\right\|^{2} d \lambda\right)^{1 / 2} \\
& \quad=I_{1}(\varepsilon)^{1 / 2} \cdot I_{2}(\varepsilon)^{1 / 2} .
\end{aligned}
$$

Thus, to prove (8.3) it is sufficient to show

$$
\begin{equation*}
\lim _{\varepsilon \downarrow 0} I_{2}(\varepsilon)=0, \tag{8.4}
\end{equation*}
$$

$$
\begin{equation*}
I_{1}(\varepsilon) \leq\|u\|^{2} \quad \text { for all } \varepsilon>0 . \tag{8.5}
\end{equation*}
$$

Using the spectral representation for H_{0}, we have

$$
\begin{equation*}
\frac{\varepsilon}{\pi}\left\|R_{0}(\lambda \pm i \varepsilon) v\right\|^{2}=\int_{-\infty}^{+\infty} \frac{\varepsilon}{\pi} \cdot \frac{1}{(\mu-\lambda)^{2}+\varepsilon^{2}} d\left(E_{0}(\mu) v, v\right) \tag{8.6}
\end{equation*}
$$

where $E_{0}(\cdot)$ denotes the spectral measure associated with H_{0}. Using the fact that H_{0} is an absolutely continuous operator, we have

$$
\frac{\varepsilon}{\pi}\left\|R_{0}(\lambda \pm i \varepsilon) v\right\|^{2}=\left(P_{\varepsilon} * \rho\right)(\lambda)
$$

where $P_{\varepsilon}(\mu)=\frac{\varepsilon}{\pi\left(\mu^{2}+\varepsilon^{2}\right)}$ (the Poisson kernel), $\rho(\mu)=\frac{d}{d \mu}\left(E_{0}(\mu) v, v\right)$ and * means convolution. Further, $\rho(\mu)$ belongs to $L_{1}\left(\boldsymbol{R}^{1}\right)$ and $\rho(\mu)=0$ for a.e. $\mu \in J$ since $E_{0}(J) v=0$. Thus we obtain

$$
\begin{aligned}
I_{2}(\varepsilon) & =\int_{J}\left(P_{\varepsilon} * \rho\right)(\lambda) d \lambda=\int_{J}\left(\left(p_{\varepsilon} * \rho\right)(\lambda)-\rho(\lambda)\right) d \lambda \\
& \leq\left\|P_{\varepsilon} * \rho-\rho\right\|_{L_{1}\left(\mathbf{R}^{\prime}\right)} \longrightarrow 0 \text { as } \varepsilon \downarrow 0,
\end{aligned}
$$

which implies (8.4). Let us show (8.5). As we got (8.6), we have

$$
\begin{aligned}
I_{1}(\varepsilon)=\frac{\varepsilon}{\pi} \int_{J}\|R(\lambda \pm i \varepsilon) u\|^{2} d \lambda & =\int_{J} d \lambda \int_{-\infty}^{+\infty} P_{\varepsilon}(\mu-\lambda) d(E(\mu) u, u) \\
& \leq \int_{-\infty}^{+\infty} d(E(\mu) u, u) \int_{-\infty}^{+\infty} P_{\varepsilon}(\mu-\lambda) d \lambda=\|u\|^{2},
\end{aligned}
$$

where we used Fubini's theorem and the well-known properties of $P_{\varepsilon}(\mu)$ that

$$
P_{\varepsilon}(\mu)>0 \quad \text { for all } \mu \text { and } \int_{-\infty}^{+\infty} P_{\varepsilon}(\mu) d \mu=1
$$

This implies (8.5).

Abstract

Q.E.D.

Let us define the generalized Fourier transform $\mathscr{F}_{ \pm}$and the generalized eigenfunctions $\varphi_{ \pm}(x, \xi)$ by

$$
\begin{gather*}
\mathscr{F}_{ \pm}=\mathscr{F} W_{ \pm}^{*} \tag{8.7}\\
\varphi_{ \pm}(x, \xi)=e^{i \xi \cdot x}+\left[T_{\mp}^{(1)}\left(\xi \mid\left(1-q \widetilde{T}_{\mp|\xi|}^{(1)}\right)^{-1}\left(e^{i \xi \cdot} q\right)\right](x)\right. \tag{8.8}
\end{gather*}
$$

for $(x, \xi) \in \boldsymbol{R}^{3} \times\left(\boldsymbol{R}^{3} \backslash\{0\}\right)$, respectively. We should note here that by Lemmas 2.14 and $\left.7.2\left(1-q \widetilde{T}_{\mp}^{(1)}\right)_{\xi \mid}\right)^{-1}$ exist and satisfy the relations

$$
\begin{equation*}
\left(1-q \widetilde{T}_{\mp}^{(1)}|\xi|\right)^{-1}=\left[\left(1-\widetilde{T}_{ \pm|\xi|}\right)^{-1}\right]^{*} \quad \text { for } \xi \in \boldsymbol{R}^{3} \backslash\{0\} . \tag{8.9}
\end{equation*}
$$

We also remark that $\varphi_{ \pm}(x, \xi)$ are regarded as the generalized eigenfunctions of H in the sense stated in Theorem 8.6. Further, they are seen to be the integral kernels of $\mathscr{F}_{ \pm}$by the following theorem.

Theorem 8.3. For any $u \in L_{2}\left(\boldsymbol{R}^{3}\right), \mathscr{F}_{ \pm}$have the form

$$
\begin{equation*}
\left(\mathscr{F}_{ \pm} u\right)(\xi)=\operatorname{li.i.m.~}_{R \rightarrow+\infty}(2 \pi)^{-3 / 2} \int_{|x| \leq R} \overline{\varphi_{ \pm}(x, \xi)} u(x) d x, \tag{8.10}
\end{equation*}
$$

where li.m. means the limit in the mean.
Proof. Let $u \in C_{0}^{\infty}\left(\boldsymbol{R}^{3}\right)$ and $v \in C_{0}^{\infty}\left(\boldsymbol{R}^{3} \backslash\{0\}\right)$ such that supp $v \subset\left\{x ; \alpha<|x|^{2}\right.$ $<\beta\}(0<\alpha<\beta)$. Using (8.7), Lemma 8.2 and (7.2), we have

$$
\begin{align*}
& \left(\mathscr{F}_{ \pm} u, v\right)=\left(u, W_{ \pm} \mathscr{F}^{*} v\right) \tag{8.11}\\
& =\lim _{\varepsilon \downarrow 0} \frac{\varepsilon}{\pi} \int_{\alpha}^{\beta}\left(R_{0}(\lambda \pm i \varepsilon) u, R_{0}(\lambda \pm i \varepsilon) \mathscr{F}^{*} v\right) d \lambda \\
& \quad+\lim _{\varepsilon \downarrow 0} \frac{\varepsilon}{\pi} \int_{\alpha}^{\beta}\left(T_{\sqrt{\lambda \pm i \varepsilon}}\left(1-\widetilde{T}_{\sqrt{\lambda \pm i \varepsilon}}\right)^{-1} \gamma R_{0}(\lambda \pm i \varepsilon) u, R_{0}(\lambda \pm i \varepsilon) \mathscr{F} * v\right) d \lambda \\
& \quad=\lim _{\varepsilon \downarrow 0} J_{1}(\varepsilon)+\lim _{\varepsilon \downarrow 0} J_{2}(\varepsilon) .
\end{align*}
$$

For the first term of the right hand side of (8.11), as is well known (see e.g. Kuroda [12, p.54]), we have

$$
\begin{equation*}
\lim _{\varepsilon \downarrow 0} J_{1}(\varepsilon)=\int_{\alpha<|\xi|^{2}<\beta} d \xi(\mathscr{F} u)(\xi) \overline{v(x)}=(\mathscr{F} u, v) . \tag{8.12}
\end{equation*}
$$

We shall consider the second term. In view of Parseval's equality and (2.10), we have

$$
\begin{align*}
& \left(T_{\sqrt{\lambda \pm i \varepsilon}}\left(1-\tilde{T}_{\sqrt{\lambda \pm i \varepsilon}}\right)^{-1} \gamma R_{0}(\lambda \pm i \varepsilon) u, R_{0}(\lambda \pm i \varepsilon) \mathscr{F} * v\right) \tag{8.13}\\
& =\left(-\frac{1}{|\cdot|^{2}-(\lambda \pm i \varepsilon)} \mathscr{F}_{S_{a}} q\left(1-\tilde{T}_{\sqrt{\lambda \pm i \varepsilon}}\right)^{-1} \gamma R_{0}(\lambda \pm i \varepsilon) u, \frac{v}{|\cdot|^{2}-(\lambda \pm i \varepsilon)}\right) \\
& =\int_{\mathbf{R}^{3}} d \xi\left\{-\frac{1}{|\xi|^{2}-(\lambda \pm i \varepsilon)}(2 \pi)^{-3 / 2} \int_{S_{a}} d S_{y} e^{-i \xi \cdot y} q(y) \times\right. \\
& \left.\quad \times\left[\left(1-\tilde{T}_{\sqrt{\lambda \pm i \varepsilon}}\right)^{-1} \gamma R_{0}(\lambda \pm i \varepsilon) u\right](y)\right\} \frac{\overline{v(\xi)}}{|\xi|^{2}-(\lambda \mp i \varepsilon)} \\
& =-(2 \pi)^{-3 / 2} \int_{\mathbf{R}^{3}} d \xi \frac{\overline{v(\xi)}}{\left(\lambda-|\xi|^{2}\right)^{2}+\varepsilon^{2}} \times \\
& \quad \times\left(\left(1-\tilde{T}_{\sqrt{\lambda \pm i \varepsilon}}\right)^{-1} \gamma R_{0}(\lambda \pm i \varepsilon) u, e^{i \xi \cdot} q\right)_{a} .
\end{align*}
$$

Since $\left(\left(1-\tilde{T}_{\sqrt{\lambda \pm i \epsilon}}\right)^{-1} \gamma R_{0}(\lambda \pm i \varepsilon) u, e^{i \xi \cdot} q\right)_{a}$ are continuous in λ and ε on $[\alpha, \beta]$ $\times[0,1]$ by Lemmas $7.2,2.9$ with $q(x) \equiv 1$ and the fact that $\gamma R_{0}(z)=-\left(T_{\sqrt{2}}^{(1)}\right)^{*}$, we have

$$
\begin{align*}
& \lim _{\varepsilon \downharpoonright 0} \int_{\alpha}^{\beta} d \lambda \frac{\varepsilon}{\pi} \cdot \frac{1}{\left(\lambda-|\xi|^{2}\right)^{2}+\varepsilon^{2}}\left(\left(1-\tilde{T}_{\sqrt{\lambda+i \epsilon}}\right)^{-1} \gamma R_{0}(\lambda \pm i \varepsilon) u, e^{i \xi \cdot} q\right)_{a} \tag{8.14}\\
& \quad=\left(\left(1-\widetilde{T}_{ \pm|\xi|}\right)^{-1} \gamma R_{0}\left(|\xi|^{2} \pm i 0\right) u, e^{i \xi \cdot} q\right)_{a},
\end{align*}
$$

where we have made use of the well-known relation

$$
\begin{aligned}
& \lim _{\varepsilon \downarrow 0} \int_{\alpha}^{\beta} d \lambda \frac{\varepsilon}{\pi} \cdot \frac{1}{(\lambda-a)^{2}+\varepsilon^{2}} f(\lambda, \varepsilon) \\
&= \begin{cases}0 & \text { if } a<\alpha \text { or } \beta<a \\
f(a, 0) & \text { if } \alpha<a<\beta\end{cases}
\end{aligned}
$$

in which $f(\lambda, \varepsilon)$ is a continuous function of (λ, ε) for $(\lambda, \varepsilon) \in[\alpha, \beta] \times[0,1]$ (see e.g. Titchmarsh [22, p.31]). Further, from (8.9) and the fact that $\gamma R_{0}(z)=-\left(T_{\sqrt{2}}^{(1)}\right)^{*}$, it follws that

$$
\begin{align*}
((1- & \left.\left.\widetilde{T}_{ \pm|\xi|}\right)^{-1} \gamma R_{0}\left(|\xi|^{2} \pm i 0\right) u, e^{i \xi \cdot} q\right)_{a} \tag{8.15}\\
& =\left(\gamma R_{0}\left(|\xi|^{2} \pm i 0\right) u,\left(1-q \widetilde{T}_{\mp|\xi|}^{(1)}\right)^{-1}\left(e^{i \xi \cdot} q\right)\right)_{a} \\
& =-\int_{R^{3}} d x u(x) \overline{\left[T_{\mp|\xi|}^{(1)}\left(1-q \widetilde{T}_{\mp|\xi|}^{(1)}\right)^{-1}\left(e^{i \xi \cdot} q\right)\right](x)}
\end{align*}
$$

where we have used Fubini's theorem in the last equality. Thus, making use of Fubini's theorem and the dominated convergence theorem, we see from (8.13), (8.14) and (8.15) that

$$
\left.\begin{array}{l}
\lim _{\varepsilon \downarrow 0} J_{2}(\varepsilon) \tag{8.16}\\
\quad=(2 \pi)^{-3 / 2} \int_{\mathbf{R}^{3}} d \xi\left(\int_{\mathbf{R}^{3}} d x u(x) \overline{\left[T_{\mp}^{(1)}|\xi|\right.}(1-q \widetilde{T} \widetilde{\mp \mid(1)} \mid)^{-1}\left(e^{i \xi \cdot} q\right)\right](x)
\end{array}\right) \overline{v(\xi)} .
$$

Now we have by (8.8), (8.11) (8.12) and (8.16)

$$
\left(\mathscr{F}_{ \pm} u\right)(\xi)=(2 \pi)^{-3 / 2} \int_{\boldsymbol{R}^{3}} d x \overline{\varphi_{ \pm}(x, \xi)} u(x) \quad \text { for any } u \in C_{0}^{\infty}\left(\boldsymbol{R}^{3}\right)
$$

Since $C_{0}^{\infty}\left(\boldsymbol{R}^{3}\right)$ is dense in $L_{2}\left(\boldsymbol{R}^{3}\right)$, the conclusion follows.
Q.E.D.

To prove the continuity and boundedness of $\varphi_{ \pm}(x, \xi)$, we need the following lemma.

Lemma 8.4. Let K be a compact set in \boldsymbol{R}^{3}. Let $f(x, \xi)$ be a continuous function of $(x, \xi) \in S_{a} \times K$. Then $\left(T_{ \pm|\xi|}^{(1)} f(\cdot, \xi)\right)(x)$ is bounded and continuous in $(x, \xi) \in \boldsymbol{R}^{3} \times K$. In particular, $\left(\widetilde{T}_{ \pm}^{(1)}|\xi| f(\cdot, \xi)\right)(x)$ is continuous in $(x, \xi) \in S_{a} \times K$.

Proof. By Lemma 2.1 we have

$$
\begin{aligned}
\left|\left(T_{ \pm|\xi|}^{(1)} f(\cdot, \xi)\right)(x)\right| & \leq \frac{1}{4 \pi} \max _{(y, \xi) \in S_{a} \times K}|f(y, \xi)| \int_{S_{a}} \frac{1}{|x-y|} d S_{y} \\
& =\frac{a}{2} \max _{(y, \xi) \in S_{a} \times K}|f(y, \xi)| \frac{a+|x|-|a-|x||}{|x|} \leq a \max _{(y, \xi) \in S_{a \times K}}|f(y, \xi)|,
\end{aligned}
$$

which proves the boundeness of $\left(T_{ \pm\lfloor\mid 1}^{(1)} f(\cdot, \xi)\right)(x)$.
Let us show the continuity. Let us introduce the functions $G_{ \pm}^{(\varepsilon)}(x, \xi)$ with a real parameter ε by

$$
G_{ \pm}^{(\varepsilon)}(x, \xi)=-\frac{1}{4 \pi} \int_{S_{a} \cap|y ;|x-y|>\varepsilon|} \frac{e^{ \pm i|\xi||x-y|}}{|x-y|} f(y, \xi) d S_{y},
$$

$(x, \xi) \in \boldsymbol{R}^{3} \times K, \varepsilon>0$. It is easily seen that for each $\varepsilon, G_{ \pm}^{(\varepsilon)}(x, \xi)$ is continuous in (x, ξ) in $\boldsymbol{R}^{3} \times K$. Further, $G_{ \pm}^{(\varepsilon)}(x, \xi)$ uniformly converges to $\left(T_{ \pm|\xi|}^{(1)} f(\cdot, \xi)\right)(x)$ when $\varepsilon \downarrow 0$. In fact, we have for a sufficiently small ε

$$
\begin{aligned}
& \left|G_{ \pm}^{(\varepsilon)}(x, \xi)-\left(T_{ \pm|\xi|}^{(1)} f(\cdot, \xi)\right)(x)\right| \\
& \leq \max _{(y, \xi) \in S_{a} \times K}|f(y, \xi)| \int_{S_{a} \cap(y ;|x-y| \leq \varepsilon)} \frac{1}{4 \pi|x-y|} d S_{y} \\
& =\left\{\begin{array}{cc}
\max _{(, \xi) \in S_{a} \times K}|f(y, \xi)| \frac{a(\varepsilon-|a-|x||)}{2|x|} & \text { if }|a-|x||<\varepsilon \\
0 & \text { if }|a-|x|| \geq \varepsilon
\end{array}\right. \\
& \leq \max _{(y, \xi) \in S_{a} \times K}|f(y, \xi)| \varepsilon \quad \text { if } \varepsilon \leq \frac{a}{2},
\end{aligned}
$$

where we have used (2.6). Thus the continuity of $\left(T_{ \pm|\xi|}^{(1)} f(\cdot, \xi)\right)(x)$ has been proven. Since $\left(\widetilde{T}_{ \pm|\xi|}^{(1)} f(\cdot, \xi)\right)(x)=\left(T_{ \pm|\xi|}^{(1)} f(\cdot, \xi)\right)(x) \quad\left(x \in S_{a}\right)$, the assertion for $\left(\tilde{T}_{ \pm|\xi|}^{(1)} f(\cdot, \xi)\right)(x)$ holds.
Q.E.D.

Theorem 8.5. $\quad \varphi_{ \pm}(x, \xi)$ is continuous in $(x, \xi) \in \boldsymbol{R}^{3} \times\left(\boldsymbol{R}^{3} \backslash\{0\}\right)$ and bounded on $\boldsymbol{R}^{3} \times K$, where K is any compact set in $\boldsymbol{R}^{3} \backslash\{0\}$.

Proof. Put $\psi_{ \pm}(x, \xi)=\left[\left(1-q \tilde{T}_{\mp}^{(1)}|\xi|\right)^{-1}\left(e^{i \xi \cdot q)}\right](x)\right.$. Then $\psi_{ \pm}(\cdot, \xi)$ is an $L_{2}\left(S_{a}\right)-$ valued continuous function of $\xi \in \boldsymbol{R}^{3} \backslash\{0\}$ by Lemma 7.2 and (8.9). If we show that $\psi_{ \pm}(x, \xi)$ is a continuous function of $(x, \xi) \in S_{a} \times K$, the conclusion follows from (8.8) and Lemma 8.4. Since $\psi_{ \pm}(x, \xi)$ satisfy the equation

$$
\begin{equation*}
\psi_{ \pm}(x, \xi)=e^{i \xi \cdot x} q(x)+\left(q \widetilde{T}_{\mp \mid(1)}^{(1)}\right) \psi_{ \pm}(x, \xi), \tag{8.17}
\end{equation*}
$$

we have, using (8.17) repeatedly,

$$
\begin{align*}
\psi_{ \pm} & (x, \xi)=e^{i \xi \cdot x} q(x)+\left[\left(q \widetilde{T}_{\mp}^{(1)}\right)\left(e^{i \xi \cdot} \cdot q\right)\right](x) \tag{8.18}\\
& +\left[\left(q \widetilde{T}_{\mp|(\mid)|}^{(1)}\right)^{2}\left(e^{i \xi \cdot} \cdot q\right)\right](x)+\left[\left(q \widetilde{T}_{\mp|\xi|}^{(1)}\right)^{3}\left(e^{i \xi \cdot} q\right)\right](x) \\
& +\left[\left(q \widetilde{T}_{\mp|\xi|}^{(1)}\right)^{4} \psi_{ \pm}(\cdot, \xi)\right](x) .
\end{align*}
$$

It follows from Lemma 8.4 that the first four terms of the right hand side of (8.18) are continuous in $(x, \xi) \in S_{a} \times K$. Thus the proof of this theorem is reduced to showing the continuity of $\left[\left(q \tilde{T}_{\mp}^{(1)}|\xi|\right)^{4} \psi_{ \pm}(\cdot, \xi)\right](x)$. Let $\mathscr{K}_{\mp}(x, y, ; \xi)$ be the integral kernel of $\left(q \widetilde{T} \widetilde{\mp}_{\mid(1)}^{(1)}\right)^{4}$. Then, in the same way as we proved Lemma 7.5, we can show that $\mathscr{K}_{\mp}(x, y ; \xi)$ is continuous in (x, y, ξ) on $S_{a} \times S_{a} \times K$. We consider the difference

$$
\begin{align*}
& {\left[\left(q \widetilde{T}_{\mp|\xi|}^{(1)}\right)^{4} \psi_{ \pm}(\cdot, \xi)\right](x)-\left[\left(q \widetilde{T}_{\mp}^{(1)} \mid \xi_{0}\right)^{4} \psi_{ \pm}\left(\cdot, \xi_{0}\right)\right]\left(x_{0}\right) } \tag{8.19}\\
&= \int_{S_{a}}\left(\mathscr{K}_{\mp}(x, y ; \xi)-\mathscr{K}_{\mp}\left(x_{0}, y ; \xi\right)\right) \psi_{ \pm}(x, \xi) d S_{y} \\
& \quad+\int_{S_{a}}\left(\mathscr{K}_{\mp}\left(x_{0}, y ; \xi\right)-\mathscr{K}_{\mp}\left(x_{0}, y ; \xi_{0}\right)\right) \psi_{ \pm}(x, \xi) d S_{y} \\
&+\int_{S_{a}} \mathscr{K}_{\mp}\left(x_{0}, y ; \xi_{0}\right)\left(\psi_{ \pm}(x, \xi)-\psi_{ \pm}\left(x, \xi_{0}\right)\right) d S_{y} \\
&= J_{1}+J_{2}+J_{3} .
\end{align*}
$$

$J_{i}(i=1,2,3)$ are estimated as follows:

$$
\begin{align*}
& \left|J_{1}\right| \leq \max _{y \in S_{a}}\left|\mathscr{K}_{\mp}(x, y ; \xi)-\mathscr{K}_{\mp}\left(x_{0}, y ; \xi\right)\right| \int_{S_{a}}\left|\psi_{ \pm}(y, \xi)\right| d S_{y} \tag{8.20}\\
& \leq \max _{y \in S_{a}}\left|\mathscr{K}_{\mp}(x, y ; \xi)-\mathscr{K}_{\mp}\left(x_{0}, y ; \xi\right)\right|\left(4 \pi a^{2}\right)^{1 / 2}\left\|\psi_{ \pm}(\cdot, \xi)\right\|_{a}, \\
& \left|J_{2}\right| \leq \max _{y \in S_{a}}\left|\mathscr{K}_{\mp}\left(x_{0}, y ; \xi\right)-\mathscr{K}_{\mp}\left(x_{0}, y ; \xi_{0}\right)\right|\left(4 \pi a^{2}\right)^{1 / 2}\left\|\psi_{ \pm}(\cdot, \xi)\right\|_{a}, \\
& \left|J_{3}\right| \leq \max _{y \in S_{a}}\left|\mathscr{K}_{\mp}\left(x_{0}, y ; \xi_{0}\right)\right|\left(4 \pi a^{2}\right)^{1 / 2}\left\|\psi_{ \pm}(\cdot, \xi)-\psi_{ \pm}\left(x, \xi_{0}\right)\right\|_{a},
\end{align*}
$$

It follows from (8.19) and (8.20) that $\left[\left(q \widetilde{T}(1){ }_{\mp|\xi|}{ }^{4} \psi_{ \pm}(\cdot, \xi)\right](x)\right.$ is continuous in (x, ξ) on $S_{a} \times K$. Thus the theorem follows.
Q.E.D.

Theorem 8.6. Let $\xi \in R^{3} \backslash\{0\}$. Then $\varphi_{ \pm}(x, \xi)$ satisfy the followng equations

$$
\begin{equation*}
\varphi_{ \pm}(x, \xi)=e^{i \xi \cdot x}-\frac{1}{4 \pi} \int_{S_{a}} \frac{e^{\mp i|\xi||x-y|}}{|x-y|} q(y) \varphi_{ \pm}(y, \xi) d S_{y} \tag{8.21}
\end{equation*}
$$

(the Lippmann-Schwinger equation),

$$
\begin{align*}
& \int_{\mathbf{R}^{3}} \varphi_{ \pm}(x, \xi)\left(-\Delta-|\xi|^{2}\right) v(x) d x+ \tag{8.22}\\
& \quad+\int_{S_{a}} q(x) \varphi_{ \pm}(x, \xi) v(x) d S_{x}=0 \quad \text { for any } v \in C_{0}^{\infty}\left(\boldsymbol{R}^{3}\right) .
\end{align*}
$$

Proof. By (8.8) we have

$$
\begin{aligned}
& -\frac{1}{4 \pi} \int_{S_{a}} \frac{e^{\mp i|\xi|| | x-y \mid}}{|x-y|} q(y) \varphi_{ \pm}(y, \xi) d S_{y}=T_{\mp|\xi|}^{(1)}\left(q\left(\varphi_{ \pm} \mid S_{s}\right)(\cdot, \xi)\right)(x) \\
& =T_{\mp|\xi|}^{(1)}\left(q e^{i \xi \cdot}\right)(x)+T_{\mp}^{(1)}\left(\xi \mid \widetilde{T}_{\mp \mp|\xi|}^{(1)}\left(1-q \widetilde{T}_{\mp|\xi|}^{(1)}\right)^{-1}\left(q e^{i \xi \cdot}\right)\right)(x) \\
& \left.=T_{\mp}^{(1)}\right) \\
& =T_{\mp| |}^{(1)}\left(q e^{i \xi \cdot}\right)\left((1-q)+T_{\mp}^{(1)} \widetilde{T}_{\mp|\xi|}^{(1)}\left(\left[-\left(1-q \widetilde{T}_{\mp|\xi|}^{(1)}\right)^{-1}\left(q e^{i \xi \cdot}\right)\right)(x)\right.\right. \\
& =\varphi_{ \pm}(x, \xi)-e^{i \xi \cdot x},
\end{aligned}
$$

which implies (8.21). Let us show (8.22). In view of (8.21), $\varphi_{ \pm}(x, \xi)$ can be written as

$$
\varphi_{ \pm}(x, \xi)=e^{i \xi \cdot x}+\left(T_{\mp|\xi|}\left(\left.\varphi_{ \pm}\right|_{S_{a}}(\cdot, \xi)\right)(x),\right.
$$

Therefore, by Lemma 2.11 we have for any $v \in C_{0}^{\infty}\left(\boldsymbol{R}^{3}\right)$

$$
\begin{aligned}
\int_{\mathbf{R}^{3}} \varphi_{ \pm} & (x, \xi)\left(-\Delta-|\xi|^{2}\right) v(x) d x \\
& =\int_{\mathbf{R}^{3}}\left(\varphi_{ \pm}(x, \xi)-e^{i \xi \cdot x}\right)\left(-\Delta-|\xi|^{2}\right) v(x) d x \\
& =\int_{\mathbf{R}^{3}}\left(\left.T_{\mp|\xi|} \varphi_{ \pm}\right|_{S_{a}}(\cdot, \xi)\right)(x)\left(-\Delta-|\xi|^{2}\right) v(x) d x \\
& =-\int_{S_{a}} q(x) \varphi_{ \pm}(x, \xi) v(x) d S_{x},
\end{aligned}
$$

which implies (8.22).
Q.E.D.

Theorem 8.7. $\mathscr{F}_{ \pm}$are partially isometric operators with the domain $E((0, \infty))$ $L_{2}\left(\boldsymbol{R}^{3}\right)$ and the range $L_{2}\left(\boldsymbol{R}^{3}\right)$. Further, $\mathscr{F}_{ \pm}$have the following properties: Let Λ be any Borel set on \boldsymbol{R}. Then,

$$
\begin{equation*}
\mathscr{F}_{ \pm} E(\Lambda)=\chi_{\left\{\xi ;|\xi|^{2} \in \Lambda \mid\right.} \mathscr{F}_{ \pm}, \tag{8.23}
\end{equation*}
$$

where χ_{A} denotes the operator of multiplication by the characteristic function of A. In particular, if $u \in L_{2}\left(\boldsymbol{R}^{3}\right)$, and α and β are such that $0<\alpha<\beta$, then

$$
\begin{gather*}
\|E((\alpha, \beta)) u\|^{2}=\int_{\alpha<|\xi|^{2}<\beta}\left|\left(\mathscr{F}_{ \pm} u\right)(\xi)\right|^{2} d \xi \tag{8.24}\\
E((\alpha, \beta)) u(x)=(2 \pi)^{-3 / 2} \int_{\alpha<|\xi|^{2}<\beta}\left(\mathscr{F}_{ \pm} u\right)(\xi) \varphi_{ \pm}(x, \xi) d \xi . \tag{8.25}
\end{gather*}
$$

Proof. First, let us recall the well-known relations

$$
\begin{gather*}
\mathscr{F} E_{0}(\Lambda) \mathscr{F}^{*}=\chi_{\left\{\xi:|\xi|^{2} \in \Lambda \mid\right.}, \tag{8.26}\\
E(\Lambda) W_{ \pm}=W_{ \pm} E_{0}(\Lambda), \tag{8.27}
\end{gather*}
$$

where Λ is a Borel set on \boldsymbol{R} (see e.g. Kuroda [12, §3.4, Theorem 2]). Putting Λ $=(0, \infty)$ in (8.27), we have

$$
E((0, \infty)) W_{ \pm}=W_{ \pm} E_{0}((0, \infty))=W_{ \pm},
$$

from which it follows that

$$
\operatorname{Ran}\left(W_{ \pm}\right) \subset E((0, \infty)) L_{2}\left(\boldsymbol{R}^{3}\right)
$$

On the other hand, it follows from Theorem 7.11 that $E((0, \infty)) L_{2}\left(\boldsymbol{R}^{3}\right)$ is included in the absolute continuous subspace $\mathscr{X}_{a c}(H)$ of $L_{2}\left(\boldsymbol{R}^{3}\right)$ relative to H. Therefore, we have by Theorem 4.1.

$$
E((0, \infty)) L_{2}\left(\boldsymbol{R}^{3}\right) \subset \mathfrak{X}_{a c}(H)=\operatorname{Ran}\left(W_{ \pm}\right) \subset E((0, \infty)) L_{2}\left(\boldsymbol{R}^{3}\right)
$$

and hence

$$
\operatorname{Ran}\left(W_{ \pm}\right)=E((0, \infty)) L_{2}\left(\boldsymbol{R}^{3}\right)
$$

This implies that $W_{ \pm}$are partially isometric operators with the domain $L_{2}\left(\boldsymbol{R}^{3}\right)$ and the range $E((0, \infty)) L_{2}\left(\boldsymbol{R}^{3}\right)$. Thus, it follows from (8.7) that $\mathscr{F}_{ \pm}$are partially isometric operators with the domain in $E((0, \infty)) L_{2}\left(\boldsymbol{R}^{3}\right)$ and the range $L_{2}\left(\boldsymbol{R}^{3}\right)$. By (8.7), (8.26) and (8.27) we have

$$
\mathscr{F}_{ \pm} E(\Lambda)=\mathscr{F} W_{ \pm}^{*} E(\Lambda)=\mathscr{F} E_{0}(\Lambda) W_{ \pm}^{*}=\mathscr{F} E_{0}(\Lambda) \mathscr{F} * \mathscr{F} W_{ \pm}^{*}=\chi_{\{\xi ;|\xi| \in \Lambda\}} \mathscr{F}_{ \pm} .
$$

This proves (8.23). Let us show (8.24) and (8.25). Since $\mathscr{F}_{ \pm}$are partially isometric operators with domain $E((0, \infty)) L_{2}\left(\boldsymbol{R}^{3}\right)$, it follows that

$$
\mathscr{F}_{ \pm}^{*} \mathscr{F}_{ \pm}=E((0, \infty)) .
$$

Therefore, we have by $(8.23)(\Lambda=(\alpha, \beta) \subset(0, \infty))$

$$
E((\alpha, \beta))=\mathscr{F}_{ \pm}^{*} \chi_{\left(\xi ; \alpha<|\xi|^{2}<\beta \mid\right.}(\xi) \mathscr{F}_{ \pm},
$$

from which (8.24) and (8.25) follow immediately.
Q.E.D.

We shall now proceed to the eigenfunction expansion theorem.
Theorem 8.8. Let $\lambda_{1}, \lambda_{2}, \cdots$ be the nonpositive eigenvalues of H (counting multiplicity) and $\left\{\varphi_{1}, \varphi_{2}, \cdots\right\}$ a corresponding orthonormal system of eigenfunctions of H, if any. Then, for any $u \in L_{2}\left(\boldsymbol{R}^{3}\right)$ we have the following expansion formula

$$
\begin{equation*}
u(x)=\sum_{n}\left(u, \varphi_{n}\right) \varphi_{n}(x)+\underset{\alpha \backslash 0, \beta \nmid \infty}{\operatorname{li.m.}}(2 \pi)^{-3 / 2} \int_{\alpha<|\xi|<\beta} d \xi\left(\mathscr{F}_{ \pm} u\right)(\xi) \varphi_{ \pm}(x, \xi) . \tag{8.28}
\end{equation*}
$$

Further, $u \in \operatorname{Dom}(H)$ if and only if $|\cdot|^{2} \mathscr{F}_{ \pm} u \in L_{2}\left(\boldsymbol{R}^{3}\right)$. In this case, we have the following representation of H

$$
\begin{equation*}
H u(x)=\sum_{n} \lambda_{n}\left(u, \varphi_{n}\right) \varphi_{n}(x)+\underset{\alpha \backslash 0, \beta \uparrow \infty}{\operatorname{li.m.m.}}(2 \pi)^{-3 / 2} \int_{\alpha<|\xi|<\beta} d \xi\left(\mathscr{F}_{ \pm} u\right)(\xi) \varphi_{ \pm}(x, \xi) . \tag{8.29}
\end{equation*}
$$

for $u \in \operatorname{Dom}(H)$.
Proof. According to Theorem $5.1 \quad E((-\infty, 0]) L_{2}\left(R^{3}\right)$ is spanned by
$\left\{\varphi_{1}, \varphi_{2}, \cdots\right\}$. Therefore, we have for any $u \in L_{2}\left(\boldsymbol{R}^{3}\right)$

$$
\begin{equation*}
u(x)=\sum_{n}\left(u, \varphi_{n}\right) \varphi_{n}(x)+\underset{\alpha \downarrow 0, \beta \uparrow \infty}{\operatorname{li.im.}} E((\alpha, \beta)) u(x) . \tag{8.30}
\end{equation*}
$$

(8.28) follows from (8.30) and Theorem 8.7, (8.25). Using Theorem 8.7, (8.24), we have

$$
\begin{equation*}
\int_{0}^{\infty} \lambda^{2} d\|E(\lambda) u\|^{2}=\int_{\mathbf{R}^{3}}|\xi|^{4}\left|\left(\mathscr{F}_{ \pm} u\right)(\xi)\right|^{2} d \xi . \tag{8.31}
\end{equation*}
$$

On the other hand, it follows from Theorem 6.5 that

$$
\begin{equation*}
E((-\infty, 0]) L_{2}\left(\boldsymbol{R}^{3}\right) \subset \operatorname{Dom}(H) . \tag{8.32}
\end{equation*}
$$

Thus, we have by (8.31) and (8.32)

$$
\begin{equation*}
\operatorname{Dom}(H)=\left\{u ; u \in L_{2}\left(\boldsymbol{R}^{3}\right),|\cdot|^{2} \mathscr{F}_{ \pm} u \in L_{2}\left(\boldsymbol{R}^{3}\right)\right\} . \tag{8.33}
\end{equation*}
$$

Finally, let us show (8.29). From the "intertwining" relation $W_{ \pm} H_{0} \subset H W_{ \pm}$(see e.g. Kuroda [11, §3.4]) and (8.33), it follows that

$$
\begin{equation*}
\mathscr{F}_{ \pm} H=|\cdot|^{2} \mathscr{F}_{ \pm} . \tag{8.34}
\end{equation*}
$$

Therefore, if we replace u by $H u$ in (8.28), (8.29) follows rom (8.34) and the fact that $\left(H u, \varphi_{n}\right)=\lambda_{n}\left(u, \varphi_{n}\right)$. Thus the theorem has been proven.
Q.E.D.

Added in proof. The proof of the assertion $u \in H^{2}\left(\boldsymbol{R}^{3} \backslash S_{a}\right)$ is incomplete. But this can be proven by the standard argument for showing the global regularity for solutions to elliptic boundary-value problems (see e.g. Mizohata [13, Chap 3, § 12]) if one takes into account the already known facts that $\Delta u \in L_{2}\left(\boldsymbol{R}^{3}\right), u \in H^{1}\left(\boldsymbol{R}^{3}\right)$ $=\operatorname{Dom}[h]$ and that $h[u, v]=(H u, v)$ for any $v \in H^{1}\left(\boldsymbol{R}^{3}\right)$.

Department of Mathematics
Кyoto University (T. I.)
Fukui National College of Technology (S. S.)

References

[1] S. Agmon, Lectures on Elliptic Boundary Value Propblems, Van Nostrand, 1966.
[2] S. Agmon, Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Norm. Sup. Pisa, Ser. IV, 2 (1975), 151-218.
[3] J. P. Antoine, F. Gesztesy and J. Shabani, Exactly solvable models of sphere interactions in quantum mechanics, J. Phys. A: Math. Gen., 20 (1987), 3687-3712.
[4] D. Colton and R. Kress, Integral Equation Methods in Scattering Theory, Wiley-Interscience, 1983.
[5] C. L. Dolph, J. B. McLeod and D. Thoe, The analytic continuation of the resolvent kernel and
scattering operator associated with the Schrödinger operator, J. Math. Anal. Appl., 16 (1966), 311-332.
[6] T. Ikebe, Eigenfunction expansions associated with the Schrödinger operators and their applications to scattering theory, Arch. Rational Mech. Anal., 5 (1960), 1-34.
[7] T. Ikebe, Remarks on the orthogonality of eigenfunctions for the Schrödinger operator in R^{n}, J. Fac. Sci. Univ. Tokyo, Sect. I, 17 (1970), 355-361.
[8] T. Ikebe and Y. Saitō, Limiting absorption method and absolute continuity for the Schrödinger operator, J. Math. Kyoto Univ., 12 (1972), 513-542.
[9] T. Kato, Perturbation Theory for Linear Operators, Springer, 1966.
[10] O.D. Kellogg, Foundations of Potential Theory, Springer, 1929.
[11] S. T. Kuroda, An Introduction to Scattering Theory, Lecture Notes Series No. 51, Aarhus Univ., 1978.
[12] S. T. Kuroda, Spectral Theory II, Iwanami, 1979, (in Japanese).
[13] S. Mizohata, The Theory of Partial Differential Equations, Cambridge, 1973.
[14] K. Mochizuki, Scattering Theory for Wave Equaiions, Kinokuniya, 1984 (in Japanese).
[15] J. Petzold, Wie gut gilt das Exponentialgesetz beim α-Zerfall?, Zeits. f. Phys., 155 (1959), 422432.
[16] A. Ya. Povzner, The expansion of arbitrary functions in terms of eigenfunctions of the operator $-\Delta u+c u$, A.M.S. Translations, Series 2,60 (1967), 1-49.
[17] M. Reed and B. Simon, Methods of Modern Mathematical Physics I: Functional Analysis, Academic Press, New York, 1972.
[18] M. Reed and B. Simon, Methods of Modern Mathematical Physics II: Fourier Analysis, SelfAdjointness, Academic Press, New York, 1975.
[19] M. Reed and B. Simon, Methods of Modern Mathematical Physics IV: Analysis of Operators, Academic Press, New York, 1978.
[20] F Riesz and B. Von Sz-Nagy, Functional Analysis, New York, F. Ungar Publ. Co., 1955.
[21] B. Simon, Quantum Mechanics for Hamiltonians Defined as Quadratic Forms, Princeton Univ. Press, 1971.
[22] E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Oxford, 1937.

