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Erdos-Reényi-type laws applied to Gaussian processes

By

Yong K. CHol

1. Introduction

The Erdos-Rényi law of large numbers applied to standard normal random
variables is as follows:

Theorem A. Let {&;:j=1,2,...} be independent standard normal random
~variables with partial sums Sq =0 and S, =&, + --- +¢&,. Then for each ¢ >0

Sj+[c logn] — N

. i
hmn—’oo max, <j<n—[clogn] [C lOg n] - 2/6’ a.s.

where [y] denotes the greatest integer not exceeding y.

Many extensions and developments, in various directions, of Erdés-Rényi-type
laws for i.i.d.r.v.’s have been obtained in [2], [9], [14], [25-27] and others.

Recently, Choi [5] has extended the ErdGs-Rényi law to stationary Gaussian
sequences in dependent situations, under milder conditions than those of Deo [10].
The Erdés-Rényi law for Wiener processes has the following form:

Theorem B. Let W(t)(0 <t < ) be a standard Wiener process. Then for
each ¢ >0
Wt + c log T) — W)
(2c)? log T

llmT—'oosupostsT-clogT = 1’ a.s.

Csorgd and Révész [7] obtained the following result for the increments of
W)

Theorem C. Let ar(0 < T< o) be a nondecreasing function of T for which

(1.1) O<ar<T

(1.2) ar/T is nonincreasing
log (T,

(1.3) limg ..., og (T/ay) _
log log T
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Then

Wt + ar) — W) B
log (T/ay) + log log T)}'/2 7

(1.4) limp_, o, SUPg </ <T—ar Gar a.s.
T

and

. [ Wt + s) — W(1)]
15  limp., =1, as
(1.5) My Sngi;iZg"T {2ar(log(T/ay) + log log T)}'/? a-s

Remark. By virtue of (1.3), 2a,{log (T/a;) + log log T} in the denominators
of (1.4) and (1.5) can be replaced by 2a;log (T/as). But we stated them in this
form because it is a right form when we do not assume (1.3), cf. Csdrgé-Révész

[7].

Many authors have investigated the asymptotic behavior on the increments of
Wiener processes and related processes. See, for example, [3], [4], [6] and [8].

In section 2, we extend the above Theorem C to Gaussian processes with
stationary increments which contain fractional Brownian motions. Our result is
as follows: let {£(1); 0 <t < oo} be a continuous, centered Gaussian process with
£(0) = 0 and stationary increments: E{(&(t) — &(s))?} = o?(|t — s|). Assume that
a(t), t >0, is a nondecreasing continuous, regularly varying function with index
y(0 <y < 1) at oo (for details, see Kéno [15-16], Qualls and Watanabe [22-23]),
and that o(t) satisfies

f o(e ) dy < + .

0

Further assume that either
(1.6) a2(t) is concave
or

(1.7) o2(t) is twice continuously differentiable which satisfies the condition
[(6%(1))'] < ca®(t)/t? for a constant c.

Let a; be as in Theorem C. Then we have

¢t +ar) —&(0)

1.8 limy_, <t<T-a =1, .S.
(1.8) M7~ SUPO<r<T-ar {2(log(T/ay) + log log T)}'?a(ay) as
and

(1.9) limy, o SUPy /o ror T U {U) 1, a.s.

9st<T-ar12(log(T/ay) + log log T)}2a(a;)

In section 3 we investigate the analogous of the above (1.8) and (1.9) for
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stationary Gaussian processes. More precisely, let {£(f); — o0 <t < o0} be a
centered stationary Gaussian process with E(f)2 =1 and continuous sample
functions. Set a2(t) = E{(&(1) — £(0))%} and let r(t) = EE(0)E(r) be
continuous. Assume that r(t) - 0 as t — oo, a(t) is nondecreasing and satisfies

J a(e™’)dy < + .

0
Suppose that a;(0 < T< o) is an increasing function of T for which
(1.10) 0<a; <T° for all large T>0 and some 0 <6 <1
(1.11) ar/T is nonincreasing.

If r(t) is convex for t > 0, then we obtain

' E(t+5)— &) TR
‘ . < 1 0, .S.
(1.12) lim supy wsupgilséaTT—ar (2 log T)UZO'((IT) + &3

and

(1L13)  liminf,._ S0+ ar) — 5(0) > /1—-0. as

SupOSiST—aT(Z log T)l/za(ar

On the other hand, instead of the convexity of r(t), we shall consider the
convergence rate of r(t) to zero. Let r(t) be such that

(1.14) lim,, ,r ()"’ =0 for some v >0

where r'(t) = dr(t)/dt and the range of a; be such that

(1.15) 0 <a; < T for all large T> 0 and some 0 < 6 < 1/2.
Then we also have (1.12) and (1.13).

In particular, suppose that either

(1.16) r(t) is convex for t >0
or
(1.17) lim,_,  r(t)t' =0 for some v>0

and that the range of a; is such that

(1.18) for every 0 << 1, 0<ap<T® for all large T> 0.

Then we have

. ¢t + ar) — &)
(1.19) limg. sup(,s,sr_”(2 log T) 7o (ay) =1, a.s.

. E(t+5)— &)
1.20 limy_, _ =1, s,
(29 MreSPosistor D log TV Potan)
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Moreover, if r(t) and ar are such that

(1.21) lim,_, , r(t)(log )!** =0 for some v >0
and .
(1.22) 0 <ayp <(log T)® for all large T> 0 and some 0 <w <v

then we also have (1.19) and (1.20).
Thus we see that the convergence rate of r(t) to zero and the range of ar are
correspondingly related in obtaining the results (1.19) and (1.20).

However, the above arguments leave open the following problems: (i) Are
there any other conditions on r(t) or ar so that (1.19) and (1.20) may hold in the
wider range of ap than (1.18)? (ii) Are there any other conditions on a; or
r(t)(except the case of the convexity of r(t)) so that (1.13) may hold in the wider
range on ay than (1.15)?

In the last section 4 we shall prove the theorems in sections 2 and 3.

2. Gaussian Processes with stationary increments

Let {£(1); 0 <t < oo} be a continuous, centered Gaussian process with ¢(0)
=0 and stationary increments: E{(¢(t) — &(s))*} = o*(|t — s|). Throughout sec-
tion 2, we shall assume that o(t), t > 0, is a nondecreasing continuous, regularly
varying function -with index y at oo for some 0 <y <1 and that o(t) satisfies

2.1 J o(e™?)dy < + .
0
For 0 < a; < T, denote

E(t+ag) — &)
2(log(T/ay) + log log T)}'?a(ay)’

) Ee+ 9)— &)
B*(T. ar) = SUPo << 1-ur (3{1og (T/ay) + log log T} Polar)

B(T, a7) = SupOsxsT—uT{

Our theorems are as follows:

Theorem 2.1. Let a,(T> 0) be a nondecreasing function of T for which

(2.2) O<ar<T
(2.3) ar/T is nonincreasing.
Then

limsupy., B*(T, a;) <1, a.s.

Theorem 2.2. Let ay satisfy the conditions (2.2), (2.3) and
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. log(T/ay) _
(24) llmT_‘w W = 00

Assume that for t > 0, either

(2.5) o(t) is concave
or
(2.6) a(t) is twice continuously differentiable which satisfies

[(62(8))'] < ca®(t)/t>  for some c > 0.
Then
liminf;_, , B(T, a;) > 1, a.s.
Combining Theorems 2.1 and 2.2, we immediately obtain

Theorem 2.3. Under the assumptions of Theorem 2.2,

¢t +ap).— &)

27 limg s =1, as
@7 limyeSuposicr ™ [2(log (T/aq) + log log T)} o (ay) as
and

(28)  limyp SUPy_ 2y _a U {U) 1, as

oSl T {2(log(T/ay) + log log T)}Y?0(ay)

Example 1. Let {£(1);0<t< o} be a continuous, centered Gaussian
process with £(0) =0 and E{(((t) — &(s))*} = a2(|t — s|), where o(t) = t*(0 < «
< 1). This process is a fractional Brownian motion of index a. Now if 0
< a < 1/2, then a%(t) is concave and if 0 < a < 1, then o2(¢) satisfies the condition
(2.6). Therefore, Theorem 2.3 can be applied to every fractional Brownian
motion. In particular, in case of a =1/2, Theorem 2.3 immediately implies
Theorem C for the Wiener process. Furthermore, for 0 <« < 1 if ar = T?(log T)"
for all large T> 0, for some 0 < # <1 and 7 > 0, then Theorem 2.3 (2.7) implies

. ¢t +ag) — &)
. l -0 <t<T—a1T 7~ 1. 172, a — - Ll ikl
(2.9) My, SUPgc et "2 log T)(a, J1-0 a.s

If ar =1, then it also implies

e+ 1—& _

(2.10) limT_.wSUPos.squ—

1, a.s.

(2.10) contains as a special case the well-known result of Chan [4] for the Wiener
process.
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3. Stationary Gaussian processes

Let {&(f); — oo <t < o0} be a centered stationary Gaussian process with
EE(t)? = 1 and continuous sample functions. Set o2(t) = E{&(f) — £(0)}* and let
the correlation function r(t) = E£(0)&(t) be continuous. In this section we shall
assume that r(t) » 0 as t — oo, o(t) is nondecreasing and satisfies

0

(3.1) ra(e-y’)dy< + 0.

For 0 < a; < T, denote

D(T. ar) = NPosisT a3 00 (T/ag) P o(ay)’

~ E(t+5)— &)
D*(T, a) = SngirsiaTT—"T {2 log(Tap)}'?a(asr)’

Our main results of this section are as follows:

Theorem 3.1. Let ap(T> 0) be a nondecreasing function of T for which

(3.2) O<ar<T
(3.3) ar/T is nonincreasing.
Then

limsupr_,D*(T, a;) < 1, a.s.

Theorem 3.1 clearly implies
Corollary 1. Instead of the condition (3.2) in Theorem 3.1, if we impose
(3.2 0<ayp < T for all large T> 0 and some 0 <0 <1

then we have

t — ¢t
limsupy_,  SUP <y < 7y S+ é())s,/l +0, a.s.

0stsT-ar (2 log T)?olar

Theorem 3.2. Let ap(T> 0) be an increasing function of T for which
(3.4) 0 <ay; < T° for all large T> 0 and some 0 <0 < 1
(3.5) ar/ T is nonincreasing.

Assume that r(t) is convex for t >0. Then
(3.6) liminf,, o D(T, a;) > 1, a.s.

Theorem 3.3. Let ar(T>0) be an increasing function of T for which
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3.7) 0<ar<T® for all large T> 0 and some 0 <0 < 1/2
(3.8) ar/T is nonincreasing.
Assume that
(3.9 lim,_, r()t**" =0  for some v>0
where r'(t) = dr(t)/dt. Then we have (3.6).

Corollary 2. Under the assumptions of Theorems 3.2 or 3.3, we have

. ¢t +ar) — &)
llmmfrﬂ,osup(,s,sr_aT(2 og TT)”ZG(aT) > J/1-4, a.s.

If instead of (3.7) we impose the stronger conditions (3.10) and (3.17) below,
then the condition (3.9) on r(t) can be correspondingly weakened as in the
following (3.13) and (3.16).

Theorem 3.4. Let a(T=0) be an increasing function of T for which we
assume that

(3.10) for every 0 <0< 1,0<a,<T®  for all large T> 0
(3.11) ar/T is nonincreasing.

Assume also that either

(3.12) r(t) is convex for t >0

or

(3.13) lim,, ,r(6)t' =0 for some v > 0.

Then

(3.14) fimy.,, dital —cO _

SupOSrsT—ar(z lOg T)l/ZO.(aT)

. Et+s)— &)
3.15 lim,, _ =1, s,
1 e SR ss T e D log TV Poan) O

Theorem 3.5. Assume that
(3.16) lim,, r(t)(log )'** =0  for some v > 0.
Let ap(T=0) be an increasing function of T for which we assume that
(3.17) 0 <a; <(log T) for all large T> 0 and some 0 < w < v
(3.18) ar/(log T)* is nonincreasing for some d > 0.
Then we have (3.14) and (3.15).

A simple illustration is the following:
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Example 2. Let the correlation function r(f)=e " O <a<2) be
given. Set ar =c log T(c > 0) in Theorems 3.4 and 3.5. Then all assumptions of
Theorems 3.4 and 3.5 are satisfied and hence we obtain (3.14) and (3.15).

Remark. Our above results hold on the shorter interval a; than those of
Pickands [21] and Nisio [20]: Let {X(r); — oo <t < o0} be a separable, centered
stationary Gaussian process with EX(1)> =1 and o%(1) = E{X (1) — X(0)}%. Let
a(t) be nondecreasing and satisfy

J o(e™*)dy < + .

]

Let
limy_, o sup,>r(t) <O0.
Then
limT_,wsupOS,srﬂ”—Z= 1, a.s.
(2 log T)
4. Proofs

Hereafter we shall let ¢ denote an absolute constant changing in lines if
necessary. For our proofs, we shall first give the Fernique lemma [13] in a form
similar to those appearing in Kono [15], Marcus and Shepp [18], Marcus [19]
and Berman [1]. Let D = {t; t=(t;,....t4). ;< t; < b, i=1,...,N} be a real
N-dimensional parameter space. We assume that the space D has the usual
Euclidean metric

It—s|?= Z?]:l({i —s5)%

Let {X(t): teD} be a real valued, separable Gaussian process with EX(t)
= 0. Suppose that

0 <supp EX(1)?=T*<
and
E{X(®) - X(s)}* < *(It —s]),
where @(-) is a nondecreasing continuous function that satisfies

4.1) r<p(e-v’)dy< + .

0

This condition (4.1) guarantees that the process X(t) has continuous sample
functions.

Lemma 4.1. Let {X(1); te D} be given as the above statements. Then for A
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>0, x>1and A>(2,/Nlog2v (1/\/5)), we have

P {sup,e[, Xt > x{r +(2/2+24 r ¢(\/N12-v2)dy}}
0

< @M + ‘p)n?]:l(bi;ai v 1)6_"2/2

where m v n = max {m, n} and

2

1 A
V= Z:’:lexp{z — 2"(7 — 2N log 2)} < + .
The proofs of our theorems are mainly based on the following lemmas:

Lemma 4.2. (Slepian, [24]) Ler {&;5i=1,2,...,n} and {n;;i=1,2,....,n} be
Jjointly standardized normal random variables with covariance (;, £;) < covariance
(ni, mp), i #j. Then for any real u,,...,u,,

P{(<u;j=1,2,...n} <P{ni<u;j=1,2,...,n}.

Lemma 4.3. (Leadbetter et al. [17]) Let {&5j=1,2,....n} be jointly
standardized normal random variables with covariance (;, &) = A;; such that

6 = maX,¢j|AiJ| < I.

Then for any real numbers u and integers | < ¢, <{, < - <{, <n with k <n,

uZ
P{maxlsjskf“ S u} S (p(u)k + Czlsi<jsk|r,-j|exp<— 1 + |r |>
ij

where ri;= A, ., ,, ¢ = c(d) is a constant independent of n, u and k and &(-) denotes
the standard normal distribution function.

Lemma 4.4. Let £i(j=1,2,...,n), 0, k and r;; be as in Lemma 4.3. Assume
that |r,~j| < Pi-j| <1 (l #j)

(i) If p<pm™'"" and u = (2 — n)log k)*/?

where y and v are positive constants such that 0 <n <v and 0 <5+ p < 1, then
W2
Z:= lei<jsk|rij|exp<_ m) < ck !+

where 0o = (n + 2u)/(1 + p) and the constant ¢ is independent of n and k.

(i) If p, <m™ and u= (2 — n) log k)'/?
where v and n are positive constants such that 0 <n < (1 — Syw/(1 + v+ 8), then

Y <ck™%

where 6o = {v(1 =) —n(1 + 6+ v)}/{(1 + (1 + 0)} >0 and the constant c is
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independent of n and k.
(iii) If p,, <c(logm™ 7", m=273,...,k—1,
<39, m=1,

and u = {2 log k — (1 + p)log log k}'/* where v and p are constants such that 0 < p
< v, then

Y < c(log k)=%
where 5, =v — p >0 and c is independent of n and k.

Proof. For 0 <« <1, we split Y into two parts:

u?
22215i<j5k lrijlexp< )

li=jl<[ke] 1+ |ryl

Ll2
+lei<j5k |r|’j|exp<_ >

1= 15 (k] 1+ [rl
=YW+ ¥ say.
We first prove (i). Let « =n/v<1. Then

L ooq- (2 —n)logk
W <p icick lT—J171 Vexp{-———‘
2 Zl‘ifljfs’ﬁﬁ] T+p

2—n
<ck'TTERY ,mT' Y

2—1
< ck! Twu=ck 1o

where 6, = (n + 2u)/(1 + p). Next,

1)) ) 2 —uzlr,-jl
Y SClei<j5k i = J exp(— u”)exp 1+ |ryl
ij

[i=Jl>k*]

< Ckz::lo:[kal]m—l—ve—(z—ﬂ)logkexp {0(2 _ n)(log k)k—a(l+v)}
Sck‘l""IJ‘ X—l_vdXSCk_l*'n-'”=Ck-1.
[k*]

(i) Let 0 < a=(1 + 16 —8)/{(1 +v)(1+8)} <1 Then

2—1n
) +a _
Y < ck exp( T 5log k>

— ck{n(l +d+v)—v(1=8)P{(1+v)(1+)}

and

YR <Y e il exp{—u? + (2 —n)(log k)i —jI7"}

[i=jl>k*]
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<ck? *exp{—u* + k™2 — n)log k}
< ck? v exp(— u?) = ck™**"
— Ck(n(l+6+v)—v(l-6))/((1+v)(1 +¢5)).
(iii) Let 0 < @ < (I — 8)/(1 + ). Then
Y < gk +eexp(—{2 log k —(1 + p)log log k}/(1 + 8))
< Ck—{l—é—a(1+6i)/(l+b)(log k)”/“”)
and
% < ck?(log k) Vexp(— u?)
-exp {c(2 log k —(1 + p)log log k)(log k)~ "}
< ck*(log k)~ *~vexp{— 2 log k + (1 + p)log log k}
= c(log k)~"**.

4.1. Proofs of Theorems 2.1 and 2.2. From Lemma 4.1, we get a useful lemma
for proving our Theorem 2.1:

Lemma 4.5. Let 2 ={(t,5);0<t<T—a;,0<s<ay} be a 2-dimensional
space. Set

gt +s)— <)

X(t, S) = -O‘—(QT)—’ (t, S)e.@
and
o(2) = 20(22), z>0
alar)

where ¢(z) is a nondecreasing continuous, regularly varying function with index y at
oo for some 0 <y <1 and ¢(z) satisfies (4.1). Then for any ¢ >0 there exists a
constant C,. depending only on € such that for all u>0

T .
P{sup, gea X (t, 5) > u} < C,—e 2+,
ar

Proof. Clearly it follows that EX(t, s) =0,
I = sup »e0 EX(t, 5)* =1
and

a?(|ty — ty] + |8y — 831) + a?(Ity — t5])
az(a,—)

E{X(t;,s) — X(t5,5)}* <2

< 4
N Uz(ar)

= (02({(t1 - tz)z +(s; — 32)2}1/2)~

o2 (2{(ty — 1,)* + (s, — 55)*}'73)
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Since o(-) is a regularly varying function, we can show that for every ¢ > 0 we can
find a small ¢ > 0 such that

4.2) 22 +2)4 F 0(2cap2 ) dy < ¢/2
4]

for large T, where A 1S a constant such that A

> {2. /N log 2v (1/\/_)} Indeed, if a; is bounded, then (4.2) is obvious from
(2.1) by taking ¢ > 0 small enough. When a; is not bounded (i.e. ar > as T

- ), let M < 2\/§caT. Now

@ 2+2)AJ @(/2car27")dy = (2f+2 ra(z 2¢2 " ap)dy
0

2A (logz(Z\/ZL‘a'r/M))”2 2
=2J/2+ 2)a(a )J 6(2\/§C2_Y ar)dy
T

+ (2\/E + 2 j a(z\/icz_yzaT)dy
(GT) {log2(2v2car/M)}}/2
=1, + I, say.
As for I,
{log2(2¥2Z car/MN'12 £ (D —y2
I, < const. j Mg__ar)d
0 o(ar)

and we can choose M sufficiently large so that

I, < const. j (2/2c277"}dy
0

for some B> 0. The last inequality can be easily obtained if we express the
regularly varying function in its canonical form (cf. Feller [12], p. 282). As for I,,
using the condition (2.1), we can easily obtain

r o(M271)
I, < const. —_—
o olag)

for all large T. Let u = x(1 +¢/2), x> 1. From (4.2) and Lemma 4.1 we have

dt < &)2

P{sup,yea X (t, 5) > u}
= P{SUP"'”S-””X (t5) > x{1+ 22 + 2)AJ <P(\/5ca12‘”2)dy}}
0

SK(ELV 1)(& Y l)e-xz/z
car car

T .
< CE’_e~u2/(2+£ )
ar
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where K is a constant.

Proof of Theorem 2.1. As in Lemma 4.5, set

¢t +s) — £(1)
(ar)

and ¢(z) = 26(2z)/a(ayr), z > 0. Applying Lemma 4.5, we have for any 0 < e < |

P{B*(T, a;) > /1 + ¢}

X(t, s)= , (t,s5)eD

(4.3) = P{sup(,,s,egw > {2(1 + ¢)(log(T/ay) + log log T)}”z}
alar)
T 2(1
< Cs,a—Texp{— ; ++:) (log(T/ay) + log log T)}.

Taking ¢ < 2¢ for given ¢ and setting §, = (2¢ — ¢)/(2 + ¢&'), the last term of (4.3) is
less than or equal to C,.(log T)"'~%'. For given ke N (set of positive integers), let
T, = exp(k®) where o =1 — (6,/2). Then we have

P{B*(T,, ar,) > /1 + g} < C, k™ 1+ —du/2)),

Applying the Borel-Cantelli lemma, we have
limsup, ., , B*(T;, ar,) < /1 +¢, a.s.
The remainder of the proof is to show that
4.4) lim supy_ , B*(T, a;) < limsup,_,, B*(T, ar,).
Let Tbe in T,_, <T<T,. By (23), T, —ay, > T—ay. Thus we have

St +5)—<&@)
{2(log(T;/ar,) + log log T;)}'*a(ar,)

log(T;-,/ar,_,) +loglog T, _, llza(ark_l)
log(T,/ar,) + log log T; olar,)

B*(Ty, ar,) = supg sea

B*(T, ay).

By using the condition (2.3) again, we have

> log(%;-,/ar,_,) + log log T; > (Li—y/ar,_)0og T,—y

log(Ti/ar,) +loglog T,  —  (T/ag)log T,
(Te—i/ar, ) Ty <7;¢—1>2
4.5 > kol > = exp {2((k — 1)* — k*
) (R/ar) T g ) Teelkm )
>exp{—2ak — 1"} — 1 as k — o0.

By 23), for T, ., < T< T,

T
1> 8 s Tty expf—agk — 171,
aTk k
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Thus it follows from the regularity of o(-) at oo that

olar,_,) - olexp{— alk — 1" '}ag,)

4.6 1
“.6) = olar) = )

— 1 as k — o0.

This proves the inequality (4.4).
Before proving Theorem 2.2 we begin with the lemma:

Lemma 4.6. Let a; be as in Theorem 2.2. Take 0 <o <1 and set T,
= exp(k*), ke N. Then

liminfy, , B(T, a;) > liminf, ., B(T, ar,), a.s.
Proof. Let T, < T< T,,,. Denote
D, ={(t,5;0<t<T, —ar,ar <s<ar,, }
Since T, — ay, < T— ar, we have

E(t + aq) — (1)
{2(log(Ty/az,) + log log Tk)}”za(ark)
[t + ar,) — &t + 9)|
2(log(T;/ay,) + log log 7::)}1/20'(“1',()
{IOg(le/aTkH) + log log T, 4, }1/2 alar,.,)
log(Ti/ar,) + log log T, olar,)

' £+ a7,) — £t + 9)]
P, s1e@s {2(log(T;/ay,) + log log T)}'?a(ar,)

B(T, ar,) < supo<i<ti-ar,

+ Sup(t.s)e@k {

B(T, ar)

As in (4.5) and (4.6), we have

log(n+1/aTk+,) + log log Ty 4, 1z a(aTkH)
— 1 as k — 0.
log(T;/az,) + log log T, o(ar,)
Let us prove that
t — ¢t
@4.7) lim, ..., IS0 + az) — L+ 9) ~0, as

SUP(, 51 {2(log(T;/ar,) + log log T;)}'o(ay,)

If ar is a constant in T, then the proof of (4.7) is not necessary. Set

S(t+s)— &t +ar,)
U(an)

X(t, s) = , (t,5)eD,

and o(z) = 206(2z)/o(ar,), z>0. Now, for 0 <a <1
Irees o T <exp(ak®™1)
ar, k

and
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48) Tes “ 90 < explaket) — 1

a'rk

Since o(-) is regularly varying at oo, it follows from (4.8) that for any &’ > 0

2
smm%mm#=ﬁ%t§@—ﬂ <@V
k

provided k is sufficiently large. It is easy to show that
E{X(ty, 5,) — X(t3, 52)}* < @*({(t; — 1)* + (s, — 55)*}'/2).

To make use of Lemma 4.1, set A = car, where ¢ is small enough. As in the proof
of (4.2), we obtain that for any ¢ >0 we can choose a small ¢ > 0 so that

22 +2)4 f @(2car,27)dy < ¢

for all large k. For given ¢ > 0 and large k, we set
x = ¢{2(log(T/ar,) + log log T)}'*/(I" + ¢).
Choosing ¢” = ¢ = €2, we have
x > {2(log(Ti/az,) + log log T,)}'/%/(2e).
Now applying Lemma 4.1, we have for any ¢ >0

4.9)

“ €@ + ar,) — c(t +9)| >
P, s)e@i {2(log Y;/aTk) + log log T)}IIZ ((11' )

sP{sup(,,s,egklé(t+ark)—é(t+5)| S xX{T+ (22 + 24 f 0(J/2127 dy}}

alar,)

T 1
< Cz—kexp{— F(log(Tk/ar,‘) + log log Tk)}

aTk
('i' 1)
T, \ @ - L
= Ce<_k> (log Tp) ™ 4:*.
aTk

For & < 1/2, the last term of (4.9) is less than or equal to C,k~*“*». Taking ¢
< min(1/2, \/&/2), the series

5 plap &0 + ar) — &t + 9) .,
k ©92 (2 (log(T;/ar,) + log log T;)} s (ay,)
is convergent and using the Borel-Cantelli lemma, we obtain (4.7).

Proof of Theorem 2.2. The proof will be shown in two steps.

Step 1. First consider the case in which the condition (2.5) be satisfied. For
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given T large, define a positive integer hy by hy = [T/a;] where [y] denotes the
greatest integer not exceeding y. It is obvious from (2.3) and (2.4) that h; is
nondecreasing and hp—> o0 as T—oo. For i=1,2,.. ,hy, let us define the
incremental random variable

Yr(i) = E(iar) — (G — Day).

Then, Y;(i)/o(ag) is a standard normal random variable. From the concavity of
o2(t) it follows that for m:=|i —j| > 1

covariance (Yp(i), Yr(j))
= E{¢(iar)¢(jar) — Eiar)&((j — Dag) — &(( — Dar)¢(jar)
+ &((i — Dap)e((j — Dap)}
({o*((m + Day) — o*(may)} — {o®(may) — ¢*((m — 1)ay)})

Applying Lemma 4.2 for ; = Yr(j)/a(ar), j=1.2,....hy, we have for any 0 <¢
<1

P{B(T. ay) < /1 —¢}
E(t +aq) — &) <

o (ar) {2(1 — ¢)(log(T/ay) + log log T)}”z}

= P{SUPOStsT—aT

< P{supl ,.:(TT“T)) < {21 — #)(log(T/ay) + log log T)}”Z}

< D(uphr

where ur = {2(1 — ¢)(log(T/ay) + log log T)}'/?. Since, for large T,

T —1+¢
fD(uﬁgexp(—c{—log T} )
ar
we have

(4.10) P{B(T. aT)<\/m}Sexp{—c<I>e< ! >H}.

ar log T

Step 2. Next we consider the case in which the condition (2.6) is
satisfied. Choose large integer N and real number T satisfying N < (log T)®' for
some B, > 0. Define a positive integer k; by k; = [T/(Nay)]. Then by (2.3) and
(2.4), ky is nondecreasing and k;y »> o0 as T—oo. For i=1,...,[T], we also
define

X (i) = &(Niag) — E((Ni — Day).

Then X 1(i)/o(ay) is a standard normal random variable. It follows from (2.4) that
for any 0 <¢ <e< 1 and large T
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4.11)

P{B(T, a;) < /1 — ¢}

St an) = C0 _ o1 g)(log(T/ar) + log log T)}”Z}
o(ar)

&t +ayp) —E@) o 1/2
————a(aT) < {2(1 — ¢)log kr} }

~

{SuPO <t<T-—-ar

IA

P{SUPOSrsT—aT

Xo(i
< P{Suplsjsk-r% < {2(1 —¢)log kT}I/Z}.
T

Define
rr(i, j) = correlation (X (i), X r(j)), i #j
and let m = |i — j|; then by the assumption (2.6) we have

4.12)
re(i, )l <cl{o*((Nm+1)ar)—o*(Nmag)} — {o*(Nmar)— o*(Nm—1)ar)}|/o*(ar)

(Nm+1l)at Nmar
J (0%(x)) dx — J (62(x)) dx

Nmar (Nm—1l)ar

Nmart x+ar
< cf ( j I(az(y))”ldy> dx/o*(ar)
(

Nm—1l)ar x

NmaTr x+ar 2
Scf <J g (Z’V)dy)dx/az(ar)
(Nm—1l)ar x y

ca?((Nm + 1)ag)az?
= o*(ar)(Nm — 1)’a;?’

<c /Uz(ar)

Since o(t) is regularly varying with index y(0 < y < 1) at oo, it follows that for any
{ >0 there exists C; > 0 such that

o((Nm + 1)aq) -
T < C(Nm + 1) .

Taking { = (1 — y)/2 for y fixed, we get

a?((Nm + 1)a,)

< 2 1+y
(@) < CA(Nm+ 1)H*7,

Thus from (4.12) we have

Nm + 1
Nm — 1
< 4Cy2(Nm)_“'V’.

2
[re(i, DI < C72< > (Nm + 1)=a-»

(4.13)

Choosing N so large that N > (8C2)'/" = for given 7, the last term of (4.13) is less
than m™"(v =1 —9y). Now let us apply Lemma 4.3 and Lemma 4.4 (ii) for
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alar) '
0 = max ;|covariance (§;, &) < 1;

X)) .
= L i=1,2,..,k
ée’ o(ar) / !

and
ur={Q2 —n)log kr}'*, n=2¢, ¢ <v(1 —§)/{2(1 + 6 + v)}.
Then the last term of (4.11) is less than or equal to
D(up)™ + cky .
Thus we have
(4.14) P{B(T, a;) < /1 — &} <exp(— ks*) + cky~%.

Comparing (4.10) with (4.14) under the condition (2.4), we see that it is sufficient to
estimate the inequality (4.14). The condition (2.4) also implies that there exists B,
big enough such that for large T

(4.15) log(T/ar) > B, log log T
and
4.16) B, > 1/(ado)

where 1 > o > 0 is that given in Lemma 4.6 and J, is that in (4.14). Hence from
(4.15) we have k; > c(log T)?* for some ¢ >0. Let T, =exp(k®) as in Lemma
4.6. Then the inequality (4.14) yields

P{B(T;, ar) < /1 — &} < exp(— ck*®*) + ck =P’
and hence from (4.16)

Y, P{B(T, ar,) < /1 —&} <o0.

Using the Borel-Cantelli lemma, we obtain

liminf,, o B(T,, ar,) = /1 — ¢, a.s.

Letting Thbe in T, < T< T, for given T;, the proof of Theorem 2.2 immediately
follows from Lemma 4.6.

4.2. Proofs of theorems in section 3. The method of the proofs is similar to those
in section 4.1. In Lemma 4.1, if we set

=22 +2)4 r 0(/2427"")dy
0

and u = x(1 +¢), x > 1, then by choosing sufficiently small 4, we can easily obtain
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the following

Lemma 4.7. Let 2 ={(t,5);0<t<T—a;,0<s<ay} be as in Lemma
42. Set

clt+s) — <)

X(t, s)= o(ay) , (t,8)eD
and
_ 20(22)
via) = olar) ’ 0

where @(z) is the function defined in (4.1). Then for any ¢ >0 there exists a
constant K, depending only on € such that for all u> 0

2

Proof of Theorem 3.1. Applying Lemma 4.7, we have for any & > 0

P{D*(T, a;) > /1 + &}

= P{sup(,'s,egé(t—tr% > {2(1 + s)log(TaT)}”z}
(4.17) <K, TaTexp{— ﬁ(Z(l + ¢)log (TaT))}

2+2¢
< K, (Tap)! " z+e .

Taking ¢ < 2¢ for given ¢ and setting §, = (2¢ — ¢)/(2 + ¢, the last term of 4.17)
is less than or equal to K,.T7%. For given keN, let T, = exp(k*) O<a
< 1). Then we have

P{D*(T;, ar,) > \/1+ 6} < K, exp(— 3,k).
Since ¢ is arbitrary, we obtain
limsup,_, , D*(T;, ar,) < 1, a.s.
Now let us prove
(4.18) limsupy_,,, D*(T, a7) < limsup,,, D*(T,, ar,).
Since Ty —ar, > T—ay for T,_, < T< T;, we have

St +5)— &)
{2 log(Taz,)}' P a(ar,)
> <10g(7;(_ 147, - 1) )1/2 U(ark- 1)
~\ log(Tar,) olar,)

D*(Tl‘u aTk) = sup(t,s)e@

D*(T; ay).
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By (3.5), we have

T,
AT o < exp{a(k — 1)}
ar,., k-1

and

log(T,-1ar,_,) > T ar, _, > 1

— 1 k .
log(Tar) -  Tar, ~ exp{2alk— 1y 1} e

Since a(t)—»ﬁ as t— oo,

U(ark_l)

— 1 as k — 0.
O.(aTk)

1>

This proves (4.18) and thus the proof of Theorem 3.1 is complete.
For proving Theorems 3.2-3.4, we shall need the following

Lemma 4.8. Let ar be as in Theorem 3.2. Take 0 <0 <1 and set T,
= k'%/log k, keN. Then we have

liminf,;_, o D(T, ap) = liminf, _ o, D(T,, ar,), a.s.
Proof. Let T, < T<T.,,. Denote
2, =1{t.s):0<t< Ty —ar, ap, <s<ap,}.
Since T, — ar, < T— ar, we have

é([ + aTk) - é(t)
D(T;, ar,) < SUPo<i<T-ar {2 log(n/an)}”zo(an)

E(t + ap) — E()
< SUPo<i<T-ar {2 log('l;(/aTk)}I/ZG(aTk)
. E(t + ag) — &t + 9)]
P2 13 log (T, far,)} o ar,)
log(nﬂ/am.))“z on,.) pp
< log (T, /ar,) olapy D)

+ su 1€(t + ag,) — C(t + )|
P, sie@x 2 lOg(TL/di)}llza(aT")'

By (3.5),
ar T 1\
Lkt < <l1 _
and thus

1/0
1 lOg(n+l/aTk+1)S7;(+l/aTk+1 S<l+l> _}1 as k——>00
log(Ty/ar,) T./ar, k
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Since a(t)—»ﬁ as t — o0,

alar,.,,)

1 <
0'(“1',()

—1 as k — o0.

Now let us prove

(420) My SUP e Tt —SUE Iy

{2 log(%/ar,)} Polar)

Set

_ &+ ) — &l + ap)

X(t, s) oar)
Tx

, (t, s)e 2,

and ¢(z2) = 26(22)/0(ar,), z>0. For some ¢ >0, we have from (3.4) and (4.19)

1\1/6 1
aTki»l_aTkS{(l-’-E) _ljaTk

Sc%Sc(log k7°—>0 as k— .
Thus for large k and any & >0

A A Ny S S

SUpP(, sea EX (L, S az(ar )
k

Take A > 0 so small that for large k and any ¢ >0
22 +2)4 Lw 0(J/2227)dy = (2\/2 + 2)4 Lw%)z_—yz)dy <.
For given ¢ > 0 and large k we set
x = £{2 log(T/az,)} "> /(I + €).
Choosing &¢" = ¢ = g2, it follows from (3.4) that
x > {2(1 — O)log T,}'1*/(2¢).
Now applying Lemma 4.1, we have for any ¢ >0

|E(t + ap,) — E(t + 3)
P{Sup(t,s)e%‘ {2 log(Tl‘c/aTk)}l/Za(aTk) > 8}

< P{sup(,,s,egklé(t + a:‘()a_)é(t +9l S +2y2+ 2MJ°° q)(\/ﬂz—yz)dy}}
Tk 0
(1 —6)log Tk>

< ZKSEaTkexp<— 4

1-6
< Ke'I;_‘T‘wT_Z) < Ksk_{W_ZW.



212 Yong K. Choi
Taking ¢ < ((1 — 8)/12)"/2, the series

18t + ar,) — &t + )
ka{sup(l.s)egk {2 log(n/aTk)}”za(aTk) > 8}

is convergent and hence we obtain (4.20). This proves Lemma 4.8.
Proof of Theorem 3.2. Define
Yr(i) = E(iag) — &(( — Dag), i=1,2,....hy

where hy = [T/ar], as in Step 1 of the proof of Theorem 2.2. Then it follows from
the convexity of r(¢) that for m=|i —j| > 1

covariance (Y (i), Yr(j))

= {r(mag) — r((m — az)} — {r((m + D)ay) — r(mag)}
<0.

From Lemma 4.2, we have for any 0 <e < 1

P{D(T, a;) < /1 — ¢}

< P{suplsjs,,T:(TT(JT.)) < {2(1 —¢€) 10g(T/aT)}1/2}
(421) < ({2(1 — ¢)log(T/ay)} 12)r

<exp(— c(T/ar)) < exp(— cT" ).
As in Lemma 4.8, let T, = k'®/log k. Then (4.21) yields
P{D(T;, ar,) < /1 — &} < exp(— ck =949,

Thus

Y, P{D(T;, ap,) < /1 — ¢} < o
and

liminf,_, , D(T;, ar,) > /1 — ¢, a.s.

The proof of Theorem 3.2 immediately follows from Lemma 4.8.

Proof of Theorem 3.3. For given T large, define a positive integer k; by k4
= [T/(2ay)]. For i=1,2,....,[T], we also define

X1(i) = &2iar) — &((2i — Day).
Then X;(i)/o(ar) is a standard normal variable. Define
rr(i, j) = correlation (X +(i), X 1(j)), i #J

and let m = |i — j|; then by (3.9) we have for large T
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lrr(i, )l < ¢l E{X () X 7(j)}
< c{|r@maz) — r((2m — Dag)| + [r(2m + Vay) — r(2may)|}

2mar (2m+ 1l)ar
SC{J |r’(t)|dt+j |r'(t)|dt
(2m—1)ar 2mar

2mar (2m+ 1l)ar
c{j t'l_vdt+j 1 vde
(2m—1)ar 2mar

< c{((2m - l)aT)_I_vaT + (2maT)_1_"aT}

IA

IA

um Y om=1,2,. kp— 1

where p is small enough. Now let us apply Lemmas 4.3 and 4.4 (i) for

_ X4()
alar) '

3 =1,2,...[T];

0:= max; ;|covariance (¢;, &) < 1;

Xr())
a(ar) ’

élj= j=1,2,...,kr

and
up = {2(1 — ¢)log(T/ap)}'*, n=2e < v, e < (1 — p)/2.

Then we have

P{D(T, a;) < /1 —¢}
4.22) < P{SUpl Sjskr%]% <{2(1-¢ IOE(T/QT)}I/Z}
T
< P(urfm + clky) ™1 H%

<exp{— cTU 79} 4 T -0 1%%)

where 8, = (n +2u)/(1 + p). For given keN, set T, = k'/*/log k.

(1 —6)(—1+4+6y)/6 < — 1, it follows from (4.22) that

Y P{D(T;, ar,) < /1—¢} <

and

liminf,_ , D(T,, ar,) = /1 — ¢, a.s.

Thus the proof of Theorem 3.3 immediately follows from Lemma 4.8.

213

Since

Proof of Theorem 3.4. In the case when r(t) is convex, the proof immediately
follows from Corollaries 1 and 2. Under the condition (3.13), it is sufficient to

prove
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St +ap) — &)

4.23 My o SUPo </ <7 —ap o >
( ) my SUPo<i<T T(2 log T)l/zo.(a_’_)

a.s.

Let us define X (i), 6 and rr(i, j) as in the proof of Theorem 3.3. Then by (3.13)
we have for large T

rr(i )l < clE{X7() X ()}
= c¢|2r(2mar) — r(2m — Dag) — r((2m + ay)|
< c[r((2m — Day)|
<c{@m— Nag}™"
<m,m=12,.  ky—1

Apply Lemmas 4.3 and 4.4 (i) with uy = {2(1 — ¢)log(T/ap)}'?, 0<e <1, n=2¢
< (1 —6&)v/(1 +v+9). Then we have

P{D(T, a;) < /1 — ¢

< P{SUPI s,-sné(za% <{2(1 —¢) log(T/ar)}”z}

< O(up)t + ckyp %
<exp{— cTW 9%} 4 T~ 170%,

Defining T, as in Lemma 4.8, we have

P{D(T,, ar,) < /1 — &} <exp{— ck!! 790} 4 ¢k~ (1 =%/,

Since 0 is arbitrary, choosing 0 so that /(1 — 0) < d,, the series

Y P{D(T,, ar) < /1 —¢}

is convergent and hence

liminf, . ,D(T;, ap,) = /1 — ¢, a.s.

Using Lemma 4.8 and (3.10), we obtain (4.23).

Proof of Theorem 3.5. Again let X (i),  and r(i, j) be defined as in the
proof of Theorem 3.3. Then it follows from (3.16) that for large T

lrr(i, ) < ¢l E{X () X r(j)} ]
< clr((2m — 1)ay)|
< cf{log2m —1)+logas} 17"
<cllogm ™', m=223,... kr—1,
<4, m= 1.

Applying Lemmas 4.3 and 4.4(iii) with
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up = {2 log(T/ar) — (1 + p)log log(T/ay)}''?, 0<p<v,

we obtain for 0 <e < 1 and large T

P{D(T, a;) < /1 — &}
X1(j

< P{Suplsjskr(TT) <{2(1 - E)IOg(T/aT)}I/Z}

)
o

X7())
alar)
< ®(up)*™ + c(log(T/ar)) " **.

< P{suplsjs,w < {2log(T/ag) — (1 + p)log log(T/aT)}”z}

Since
®(ur) < exp{— (T/a;)" ' (log(T/ap)y'?},
we have
P{D(T, a;) < /1 —¢} <exp{— c(log T)'*} + c(log T)~ .

For given keN, set T, =exp(k'’), where 0<w<t<v—p for p small
enough. Then we have

P{D(T;, ar,) < /1 — &} < exp(— ckP/®) + ck= =0,

Thus the series

Y PD(T, az,) < /T ¢}

is convergent and

liminf,, , D(T;, ar,) = /1 —¢, a.s.
Let Tbe in ,<T<T,,,. By (3.18)

1 SaTk»l S<]0g 7;(+1>d= {1 +1}d/t.
aTk logn k

Since, by (3.17)

log ar
——*1 50 k ,
log T vy - wET®
we have
1< log(Tiy/ar,.,) <k + 1 )”t{l — (log ar, . ,/log TI;+1)}
< = — 1
log (%/ar,) k [ — (log ar,/log Ty

as k> oo. We note that

1 dft
ar,,, —ar, < {(1 + E) - l}aTk <car/k
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<c(log T)*/k = ck™ ' 7" — 0 as k — .
Proceeding to the same lines as in the proof of Lemma 4.8, we can easily deduce
liminf;_ , D(T, a;) = liminf,_ ,D(T;, ar,), a.s.

This completes the proof of Theorem 3.5.
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