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Erdeis-Rényi-type laws applied to Gaussian processes

By

Yong K. CHol

1. Introduction

The Ercleis-Rényi law of large numbers applied to standard normal random
variables is  a s  follows :

Theorem A .  L e t  { .;; j  =1 ,2 ,...}  be independent standard norm al random
variables with partial sums S o  = 0  and S n =  +  • • •  + Then f o r each c > 0

max c5„  
j . ,1 — [ c  l o g  n ] ■ -•

Sj+ [c lo g  n1S j \ / 2 /
Lc log n]

a. s.

where [y] denotes the greatest integer not exceeding y.

Many extensions and developments, in various directions, of Erd6s-Rényi-type
laws for i.i.d.r.v.'s have been obtained in [2], [9], [14], [25-27] and others.

Recently, Choi [5] has extended the Erd6s-Rényi law to stationary Gaussian
sequences in dependent situations, under milder conditions than those of Deo [10].

The Erdi5s-Rényi law for Wiener processes has the following form:

Theorem B .  L et W (t)(0 < t < co) be  a standard W iener process. Then for
each c > 0

limT,osuPo<1.ç.T — c log  T( 2 c ) 2  l o g  T
W(t +  c log T)—  W (t) = 1 , a.s.

Cs6rg6 and Révész [7] obtained the  following result fo r the  increments of
W(t):

Theorem C .  L et a T (0  < T < cc) be a nondecreasing function of T for which

(1.1) 0 <  a T  < T

(1.2) aTIT  is nonincreasing

log (Tla T )(1.3) limT—. =  co.
log log T

Communicated by Professor S . Watanabe, June 21, 1989



192 Y ong K . Choi

Then

+ a r ) -  WW1 
-(1.4) lim SUD a.s.

i z  (log (T la,)+ log log T)} 1 /2  =

and

1W(t + s) - W(t)1 = 1, a.s.(1.5) lim T „
"T {2a T (log (Tla T ) + log log T)} 1 / 2

Remark. By virtue of (1.3), 2a T  {log (T la,)+ log log T } in  the  denominators
of (1.4) and (1.5) can be replaced by 2a T  log ( T la , ) .  But we stated them in  this
form because it is a  right form when we do  not assume (1.3), cf. Csbrg6-Révész

[7 ]

Many authors have investigated the asymptotic behavior on the increments of
Wiener processes and related processes. See, for example, [3], [4], [6] and [8].

In section 2, we extend the  above Theorem C  to Gaussian processes with
stationary increments which contain fractional Brownian m otions. O ur result is
as follows: let { (t); 0 < t  < oo} be a  continuous, centered Gaussian process with

(0) = 0 and  stationary increments: El( (t)  -  ( s ) ) 2 }  =  -  sl). Assume that
ait), t > 0, is  a nondecreasing continuous, regularly varying function with index
y(0  < ' <  1 ) at oo (for details, see K6no [15-16], Qualls and Watanabe [22-23]),
and  that a( t )  satisfies

o-(e-Y 2)dy < + oo.
fo°

Further assume that either

(1.6) o -2 (t) is concave

or

(1.7) o- 2 (t) is tw ice continuously differentiable which satisfies the condition
1(a2 (t))"1 <  co- 2 (t)/t 2  fo r a  constan t c.

Let a ,  be as in  Theorem C .  Then we have

( t  ±  a , ) -  ( t )
(1.8) lim,-,osupo<,<T-aT  = 1,

{2(log(Tla T ) + log log T)} 1 1 2 a(a,)

and

a. s.

( t  + s ) -  ( t )  = 1, a.s.(1.9) limT„ suPo. -aT  (2 (1  g (T la )+ log log T)1 112 a(a T )o<s<aT C ) . P . T

In  section 3  we investigate the  analogous o f the  above (1.8) and (1.9) for



Erd6s-Rényi-type laws 193

stationary G aussian processes. M ore precisely, le t  { (t) ;  -  co  <  t < co}  b e  a
centered stationary Gaussian process with  E ( t ) 2 =  1 a n d  continuous sample
functions. Set c l -2 (t) = E { ( ( t)  -  (0 ) ) 2 } and l e t  r(t) = E (0 ) ( t )  be
continuous. Assume tha t r( t ) -  0  as cc, a(t) is nondecreasing and satisfies

fo° 
cr(e-Y z)dy < + (Do.

Suppose that a T (0 < T < co) is  a n  increasing function o f  T for which

(1.10) 0 < a  <  T ° f o r  all large T > 0  an d  some 0 < 0 <1

(1.11) aT /T  is nonincreasing.

If r(t) is convex for t > 0, then we obtain

(1.12) urn sup T „  s u p  <  \ /1  +  O ,, <,

and

+ a T )  -  ( t )
(1.13) lim in >  \ / 1  -  0, a. s.

"T (2 log T) 112 a(a T ) -

O n  the  other hand, instead of the  convexity o f r(t), we shall consider the
convergence rate of r(t) to  z e ro . L e t r(t) be such that

(1.14) lim .  r'(t)t i+ v = 0 for some y > 0

where r'(t) = dr(t)/dt and the range of aT  be such that

(1.15) 0 < ar  < T ° fo r  a ll large T > 0  and  some 0 < 0  < 1/2.

Then we also have (1.12) and (1.13).

In particular, suppose that either

(1.16) r(t) is convex for t > 0

or

(1.17) lim .  r(t)tv  = 0 for some y > 0

and tha t the range of aT  is such that

(1.18) for every 0 < 0 < 1, 0 < a  <  T ° for all large T > 0.

Then we have

(t + a T ) -  (t)  = I a. s.(1.19) limT- suPo5./ —aT (2 log T) 1 12 0- (aT)

+ W)1 , a. s.(1.20) l i m — o  S U P 0 < t T a T
( 2  l o g  T )

112
0

-
( a T )0<s<0,

0 < s < a T  
" 7  ( 2  l o g  T ) 1 1 2 a ( a T )

(t + s) -

a. s.
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Moreover, if r (t) and a T  a r e  such that

(1.21) lim , co r(t)(log t) 1 + v = 0 for some v > 0

and

(1.22) 0 < a T  < (log T r  for all large T> 0  and  s o m e  0  <  <

then we also have (1.19) and (1.20).
Thus we see that the convergence rate of r(t) to  zero and the range of a T  are

correspondingly related in  obtaining the results (1.19) and (1.20).

However, the  above arguments leave open the following problems: (i) Are
there any other conditions on r(t) or a T  so that (1.19) and (1.20) may hold in the
wider range of a T  than  (1 .18)? (ii) A re there  any  o ther conditions on a T  o r
r(t)(except the case of the convexity of r(t)) so that (1.13) may hold in the wider
range on a T  than (1.15)?

In  the  last section 4 we shall prove the theorems in sections 2 and 3.

2. Gaussian Processes with stationary increments

Let { (t); 0 t < cc} b e  a  continuous, centered Gaussian process with (0)
=  0  and  stationary increments: E((t) —  (s)) 2 } = a 2 (lt — s ) .  Throughout sec-
tion 2, we shall assume that a ( t ) ,  t>  0, is a nondecreasing continuous, regularly
varying function -with index 7  a t co  for some 0 <7 < 1 and  tha t a (t) satisfies

(2.1) a(e-Y2)dy < + co.
o

For 0 <  a T  <  T, denote

B(T, aT ) = suPo ii. - ,,,,
W  + aT) — W) 

12(log(ra T ) + log log T)1 1 1 2 0 - tar/'

B*(T, aT) = suPo < , T.--..,-
W + s)— W) 

{2(log (T/a T ) +  log log T)} 1 1 2 a(aT) •o.s..ci7.

O ur theorems are  as follows:

Theorem 2.1. Let a T (T> 0) be a nondecrea sin g function of T for which

(2.2) 0 < a T  < T

(2.3) aT/T is nonincreasing.

Then

lim sup,- B*(T, a T ) < 1, a.s.

Theorem 2.2. Let a T  satisfy the conditions (2.2), (2.3) and



(2 .9 ) suPost T -a7-
( l o g  T 1

1/
2 ( a r r

If aT = 1, then it also implies

(t + aT ) —  ( t )   _  _ (9, a.s.
2  
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log(Tlar) (2.4) lim T ,  
l o g  l o g  T

— co.

A ssume that f o r t > 0 , either

(2.5) 0-2(t) is concave

Or

(2.6) o-2(t) is twice continuously differentiable which satisfies

1(a2 (t))"1 co- 2 (t)1t 2 f o r  som e c > O.

Then

lim B(T, aT ) > 1, a.s.

Combining Theorems 2.1 and 2.2, we immediately obtain

Theorem 2.3. Under the assumptions o f  Theorem 2.2,

(2.7) limr-eosuPo -aT
(t  aT ) —

{2(log(Tla T) + log log T)} 1/2 o-(aT) 
= 1, a.s.

and

(t + s) —  (t)
= 1, a.s.(2 .8 ) l i m r , „  s u p o

T-aT {2(log(Tla T) + log log T)} 1 /2 o- (aT )

Exam ple 1. L e t  g (t ) ;  O < t <  c o l b e  a  continuous, centered Gaussian
p ro c e ss  w ith  (0) = 0 and E { ((t) —  (s)) 2 }  = a 2 (lt — s ),  where o- (t) =  (0  <  a
<  1 ) . T his process is a  fractional Brownian m otion  o f index  a. N ow  if  0
< a < 1/2, then a 2 (t) is concave and if 0 < oc < 1, then o- 2 (t) satisfies the condition
(2.6). Therefore, Theorem 2 .3  can be applied to  every fractional B row nian
m o tio n . In  p a rticu la r , in  ca se  o f  a  = 1/2, Theorem  2 .3  immediately implies
Theorem C for the Wiener process. Furthermore, for 0 < a  < 1 if aT  =  r( lo g
for all large T> 0, for some 0 < 0 < 1 and T  >  0, then Theorem 2.3 (2.7) implies

(t + 1) —
=  1(2.10) limT-cosuPo<,<T-1- (2 log T) 1 1 2

a. s.

(2.10) contains as a  special case the well-known result of Chan [4 ] for the Wiener
process.
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3. Stationary Gaussian processes

Let { (t) ;  -  co < t < co}  b e  a  centered stationary Gaussian process with
E (t) 2 =  1 and continuous sample functions. Set cr2 ( t ) - =  E g ( t ) -  (0)1' and let
the correlation function r(t) =  W 0 g ( t )  be continuous. In this section we shall
assume that r (t) - >O as t c x ) ,  c ( t )  is nondecreasing and satisfies

(3.1) o- (e - Y2)dy <  +  co.
o

For 0 < a T  <  T, denote

+ a T ) -  ( t )  
D(T, a T ) = suPo < t< T -a, {2 log (TI a T )} 112 o- (a T )'

(t + s) -  ( t )  
D*(T, a T ) = suPo T-a r  f2 log (Ta T )1' 12 0- (a T ) •

Our main results of this section are as follows :

Theorem 3.1. L et a T ( T .  0) be a  nondecrea sin g function o f  T for which

(3.2) 0 < a T  < T

(3.3) aTIT is nonincreasing.

Then

lim sup T ,  D*(T, a T ) < 1, a. s.

Theorem 3. 1 clearly implies

Corollary 1. Instead of  the condition (3.2) in  Theorem 3.1, if  w e impose

(3.2)' 0 < a < T °  f o r all large T> 0  and some 0 < O <1

then we have

 < .\ /1  +  0, a. s.lim sup T ,  sup,
<̀ ts .V'a T- aT (2 log T) 112 cr(a T ) -

Theorem 3.2. L et a T ( T  0) be an  increasing function o f  T for which

(3.4) 0 < < T 0 f o r all large T> 0  and some 0 < 0 < 1

(3.5) aTIT is nonincreasing.

A ssume that r (t) is convex  for t > O. Then

(3.6) lim infT _  D (T , 1, a.s.

Theorem 3.3. L et a T (T__,O) be an increasing 'Unction of T for which

(t + s) -  (t)
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(3.7) 0 < (IT < T ° f o r all large T > 0  and some 0 <  0  < 1/2

(3.8) aT IT  is nonincreasing.

A ssume that

(3.9) 1im . co ri(t)t 1 + ' = 0 f or some y  > 0

w here r'(t)= dr(t)Idt. T hen w e hav e (3.6).

Corollary 2. Under the assumptions o f  Theorems 3.2 o r 3.3, we have

(t + a T ) —  (t)
lim infT _. co sup o , , ,  >  N/1  —  0,

T - a  T(2 log T) 112 o-(aT ) —

If instead of (3.7) we impose the stronger conditions (3.10) and (3.17) below,
th en  the  condition  (3 .9) on  r( t)  can be correspondingly weakened a s  in  th e
following (3.13) and (3.16).

Theorem 3 .4 .  L et a T (T > 0 ) b e  an  increasing function o f  T  for w hich w e
assume that

(3.10) f o r every 0 <  0  <1 , 0 < aT  < 1 " f o r all large T > 0

(3.11) aT IT  is nonincreasing.

A ssume also that either

(3.12) r(t) is convex f o r t  > 0
Or

(3.13) lim ,  r(t)t` = 0 f o r som e y  > 0.

Then

+ aT ) —  (t)  _  1 a. s.(3.14) lim .  s u P o T - aT (2 lo g  T )" 2 (a )

(t +  s) —  ( t )  = a. s.(3.15) 1im . s u P o < t <  T -aT  (, log T)1120-(ar)

Theorem 3 .5 .  A ssume that

(3.16) lim ,o,r(t)(log 0 1  = 0 for som e y  > 0.

L et a T (T > 0) be an  increasing function of  T  for w hich w e assum e that

(3.17) 0 < < (log T r  f o r all large T > 0  and some 0 < w  <y

(3.18) aT/(log T r is nonincreasing for som e d > 0.

Then we have (3.14) and (3.15).

A simple illustration is  the following :

a. s.
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Exam ple 2. L e t  t h e  corre la tion  function  r(t) = e H( 0  <  a < 2) be
g iv en . Set a ,  = c log T (c > 0) in Theorems 3.4 an d  3 .5 . Then all assumptions of
Theorems 3.4 and 3.5 are satisfied and hence we obtain (3.14) and (3.15).

Remark. O ur above results hold on  the  shorter interval a ,  than those of
Pickands [21] and Nisio [20] : Let {X (t); — oo < t  < co}  be a  separable, centered
stationary Gaussian process with EX(t) 2  =  1 a n d  o- 2 (t) =  EIX (t)—  X(0)} 2 . L e t
a(t) be nondecreasing and  satisfy

o- (e - Y2 )dy  < + co.

r(t) < 0.

X(t)
sup ,< ,,,,

( 2  l o g  T ) 2  

= 1, a.s.

4. Proofs

Hereafter we shall le t  c  denote a n  absolute constant changing in  lines if
necessary. For our proofs, we shall first give the Fernique lemma [13] in a form
similar to those appearing in  K ôno [15], Marcus and Shepp [18], Marcus [19]
and  Berman [1 ] .  L e t ED = (it; t = (t 1 ,..., IN ), a, t i h i , i = 1 ,...,N 1  b e  a  real
N-dimensional parameter space. W e assume th a t  th e  space 113 has th e  usual
Euclidean metric

t s112 =  E i
N=1 (t1 si)2 .

Let 1X(11); fte DI be a  real valued, separable G aussian process w ith EX (t)
= 0. Suppose that

0 < sup, e , EX  (11)2  =  F 2 < co

and

E {X (t) — X(s)} 2p 2  ( fl — s

where (p(.) is a nondecreasing continuous function that satisfies

(4.1) f ( (e
- 2

 )dy  < + oo.

This condition (4.1) guarantees that th e  process X(t) has continuous sample
functions.

o

Let

Then

Lemma 4 .1 .  L et IX (t); fi e DI be given as the  abov e statem ents. T hen for 2
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>0, x >  1 and A > (2 N  log 2 V (1/  2 )), we have

P fsup,„ X (fi) x f  F + (2.12 + 2)A f  c p ( .1 -1 1 .1.2- Y2)dy} }

,
(4 N  + 1,11)117,i(

bi a v  i ) e - x 2 I 2

where m y  n = max {m, n}  and

= —  ( TA 2  — 2N log 2)} < + oo .

The proofs of our theorems are mainly based on the  following lemmas :

Lemma 4 .2 .  (Slepian, [24]) Let i = 1, 2, ..., n} and {ti t ; i = 1, 2...., n} be
jointly  standardized norm al random  variables with covariance covariance

qi), j  j. Then f o r any  real u1 ,...,u„,

<13 {iii <u i ; j =1, 2,...,n}.

Lemma 4 .3 .  (Leadbetter e t  al. [1 7 ])  Let j = 1, 2, ..., n }  be jointly
standardized norm al random variables with covariance .;) = A t i  such that

6 = max i ,»A u l <1.

Then f o r any  real num bers u and integers 1 < e 1 < t 2 < • •• < ek < n  with k < n,

U

2

P {max i  < i < k 0  --1-U} 0(
+ 

)

where ri ;  = A c = c(6) is a constant independent of  n, u and k  and OH denotes
the standard normal distribution function.

Lemma 4 .4 .  L e t  .i (j = 1, 2, ... , n), 6, k  and ri i  be  as in  Lemma 4.3. Assume
that <1 (i j).

If pm  < pm- 1 -  ' and u = ((2 — n) log k) 112

where p  and y  are positive constants such that 0 < < y  an d  0  <  +  p  <1 , then

1 + Irol)
u2

< ck °

where 60 = ( 17 + 4)/(1 + p) and the constant c  is independent of  n  and k.

(ii) If pm < m '  and u = ((2 — n) log k) 2

where y  and n are positive constants such that 0 < j  <(1 — ó)v/(1 + y + 6), then

E < ck - `5°

where 6o = ly(1 —  6)—  n(1 + 6 + v)} /{(l + v)(1 + 6)}  > 0 and  the  constan t c  is

E: = E i < i < i < k l r i i
e.l...xp (
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independent of  n and  k.

(iii) If p . <  c(log m = 2, 3,...,k — 1,

< S, m = 1,

and u = {2 log k —  (1 + p)log log k} 1 1 2  where v and p are constants such that 0 < p
< v, then

E< c(log k) '°

where 6 0 = v  —  p > 0 and c is independent of  n and  k.

P ro o f .  For 0  <  <  1 ,  we split E into tw o parts:

u
2

+ <i< j < k r1 exp
11-ri>u,a] 1 + 11.11 1

= E (1) + E (2), s a y .

W e first prove (i). Let tr =  I v  < 1. Then

y E i< i< j < k  1

2
< ck i i +(, E m 1/1

- 1 — v

2
< Ck l  1 +P c k  1 + `) °

where 60 = (ri + 2y)/(1 + y). Next,

exp
( 2  —  r i ) l o g  k l

1 + 5

E ( 2 ) C E 1 < i < j < k  1i exp(— u 2)e x p  
1 + )

ckE°9 m  1  - v e - (2  - 1 ) '° g k  exp —z )(log k)k—
( 1 +  v ) }

ck - 1 " d X  c k - 1 " - - ` = ck - 1 .
uo-]

(ii) Let 0 < a  = (1 + riS — ô)/{ (1 + v ) (1 + 6)1 < 1. Then

E " ) ck l ' e x p (  2  1 7 1 )
1 +  6  og  k

=  c k01(1 + S  + - v (1 -  43))/((1 + v)(1 + 6))

and

pc.] +E E IriilexP

u
2

E( 2 )  E l  <i< j < k i / 1  v exP { — u2 +  (2— )(log — jrvl
il > [k']
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ck2 'e x p  { — u2 +  k- " (2 — ri)log k}

< ck2e x p  (  —  u2 ) = ck - - " + 1

= ck("( + 6 + v ) - v ( 1 6))1((1 + v)(1 + (3))

(iii) Let 0 < < (1 — .5)/ (1 +  6). Then

E (1 ) <  6k1 + -  exp(— {2 log k —(1 + p)log log k}/(1 + 6))

< ck - ( 1 ' 4 1  +  6 ) ) /  ( 1  + 6 ) (log k)P1 (1 +  6 )

and

E(2) <  Ck 2 (log k) - 1 - v exp(— u 2)

•exp{c(2 log k —(1 + p)log log k)(log k) - 1 - v}

ck2 (log exp {— 2 log k + (1 + p)log log k}

= c(log

4.1. Proofs of  Theorems 2.1 and 2.2. From Lemma 4.1, we get a useful lemma
for proving our Theorem 2.1:

Lemma 4 .5 .  L et g = {(t, s); O < t T — s < a T }  be a  2-dimensional
space. S et

( t + s) — (t)
X(t, s)= (t, s)Egcr(aT )

and

cp(z)= 
2 0 - ( 2 z ) ,

 z >  0
a(aT )

where cp(z) is a nondecreasing continuous, regularly varying function with index y at
co f o r some 0 < y <  1 and yo(z) satisfies (4.1). Then f o r any  e' > 0  there ex ists a
constant Ce  depending only  on e' such that f o r all u>  0

P {sup o , ), g  X (t, s) > u} < CE, 
 T  

e-u2/(2+
aT

P ro o f . Clearly it follows that EX(t, s)= 0,

F = sup ( s)E ,EX (t, S)2 =

and

E { X ( t i ,  s 1 ) —  X ( t 2 ,  5 2 ) 1 2 2

0 -2 (It1 — t2 I + s2I)+ — t21) 

4 2

o-

2
( a r )

a (2 { (t, — t2 )2 +  (s, — s2 )2 1112 )

= yo2 (1(t — t 2 )2  + (s, — 
s 2 ) 2 } 1 1 2 ) .

0.2( a T )
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Since o- (.) is a  regularly varying function, we can show that for every E' > 0 we can
find a  small c > 0 such that

(4.2) (2,/2 + 2)A 9( ca,2 - Y2 )dy < c'/2

for all large T, where A is a constant such that A

> N  log 2 V  (1/,./2)} . Indeed, if aT  is bounded, then (4.2) is obvious from
(2.1) by taking c > 0 sm all enough. W hen aT  is not bounded (i.e. aT  c o  a s  T

co), let M  < 2.\ 12ca T . Now

(2. i + 2)A (  2 car  2 - Y2) dy = (2 2 + 2) 0_2(aAT) o- ( 2  2  2 - Y2 aT )dy

2 A c ottog2(2./1, . Tim)} ii2

= (2 h  +  2 ) 0 . ( a T )o - ( 2  2c2 -  Y2 aT )dy

+ (2 2 +  2) 
 2A

, o-(2.,/2c2-Y2aT)dy
o- kaT t 00g2(2,./2caTim)}10

= 11+ I2, say.

As for I

flog2(2 ../  2  caT /M )} 1 /2  o- (2.\/2c2 -  ) 2  aT) 
d y11 <  const.

fo o-(aT)

and we can choose M sufficiently large so that

const. {2\/2c2-Y2}fidy

fo r som e /3  >  0 . T he  last inequality can be easily obtained if  w e express the
regularly varying function in its canonical form (cf. Feller [12], p. 282). As for 12,

using the condition (2.1), we can easily obtain

12 < const.
o - ( M 2 - ' 2 )  

dt < 672
° (ai')

for all large T. Let u = x (1  + 672), x 1 .  From (4.2) and Lemma 4.1 we have

PIsuP(i, )EgX(t, s) u}

P Isup o m c g  X (t, s) x  { 1  + (2 + 2)A cp( caT 2 -  Y2 ) dy}}

< K

(T —  aT
v  1 v  1 ) e - x 2 1 2

ca T
) (

aT
caT

<
T

2

/(2  +  e ')

a T

CO
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where K  is a constant.

Proof o f  Theorem 2.1. A s in  Lemma 4.5, set

X ( t ,  s )  =  
(t + s) —  W )

,  ( t ,  s )  e

and 9(z) p 3=02o-
* ((2;)/a )o-

T (a> ±  e }

= P

).\/, : +Ocr. (sa) TA_) : (1ty) ing Lemma 4.5, we have for any 0 < e <1

sup(t, )(4.3)   > {2(1 + e)(log (71 aT ) + log log T)1 1/2 }

T

exp 
{  2 ( 1  +  e l 

(log (TI aT ) + log log T)} .
aT 2  +  r.'

Taking e' < 2e for given E and setting 6 1 =  (2e — e')/(2 + e'), the last term of (4.3) is
less than or equal to C,(log . For given k e  (set of positive integers), let
Tk = exp(kŒ) where a = 1 — (6,/2). Then we have

B*(Tk , aTk) S U P (  )E2"  {2 (lo g (T k la r )

log(7k/a rk ) + log log Tk

5- log (7;,_ 1 1 aT )  + log log }1/2 0- (aT k _ i)  B * ( 7 -; a T ) .

+ log alo(ga : : : } 1./2 0- (aTO

By using the condition (2.3) again, we have

log (7 i) + log log Tk _ (Tk_11 aT k _ ,) log Tk _ 1> >
— log (7/a,,) + log log T (T/aTjlog Tk

(4.5) >17;,-1/ark_
`

) Tk - 1
 >  

( T k _  y 
=  e x p { 2( (k  — —

 kŒ )}

(TkiciTOTk Tk

> exp — 2a(k — 1)a - 1 1 1 as k co .

By (2.3), fo r 7k_ < T< 7;,

aT T k  _
> k >  exp { — cx (k — 1) - 1 }.

aT k T k

P {B*(T,„ aT O >  \  +  el < CE,k-
( 1 + 0 1 ( 1

- S O / 2 0 .

Applying the  Borel-Cantelli lemma, we have

lim sup,„„ B*(T,„ aT ,) + e, a.s.

The remainder of the proof is to  show that

(4.4) lim sup,—, 03 B*(T, aT ) lim supk ,  B*(Tk , a T k ).

L et T  be in  'Tk _1 <  T < T . By (2.3), ik — T— a T . Thus we have

(t + s) —  (t)
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Thus it follows from the  regularity of a( .)  a t  oo that

>  ( ar k  - i) >  o- (exp { — Œ(k — 1} ar k )
(4.6) 1 a s  k cc.

o(a r k ) cr (ar k )

This proves the inequality (4.4).

Before proving Theorem 2.2 we begin with the  lemma:

Lemma 4 .6 .  L et a r  b e  a s  i n  Theorem 2.2. T ak e 0 < a < 1  a n d  s e t  Tk
= exp(k"), k e N .  Then

lim infT  _ co B(T, a T ) > lim infk _00 B( Tk, a r k ), a.s.

P ro o f . L et 7,', < T<  Tk+ 1. Denote

g  k  =  { (t, s ) ; 0 t T + 1  -  ar k , a r k s ar k , ,}.

Since 7,', — a r k  < T—  a r ,  we have

+
12(log(TklaTk) + log log Tk)} 112 cr(aT k )

{ log (Tk l aT ,) + log log Tko - ( a r k )
log ( Tk+ 1 cvr k + i ) +  log log Tk + , ( )

1 1 2  a  'a T "' '  B T  a

+ aTO — + s)I

A s in (4.5) and (4.6), we have

f log (Tk +  1 1 ar , i ) + log log Tk + 1 1 "  o- (ar k +  i )
log(Til a Tk ) + log log Tkf o- (ark )

L et us prove that

as k oo .

sup,  )Egk {2(loggiark)
(4.7) 1(t +  aTk) +  s)i = 0, a.s.

+ log log Tk)} 1 1 2 °(a r k )

If a r  i s  a constant in  T , then the  proof of (4.7) is not necessary. Set

X (t, = 
(t + s) —  (t + ar

k

) 
,  ( t ,  s ) e  g ko- (ar k )

and (p(z) = 2a(2z)/o- (ar k ), z  > 0. Now, for 0 < a < 1

a T k   < Tk + 1 exp(ale - 1 )
a r k T k

( t  +  a T ) —  (t)  B(Tk , aT ,) suPo Tk- aT, 
{ 2 ( l o g ( T k l a T k )  +  l o g  l o g  7 0 } 1 1 2

( )
-
( a r k )

+ aTk) —  (t + s)1

+ suP(t, ).Qk {2(log(Tk la Tk ) + log log Tk)} 1/ 2 o- (aTk ) .

and
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(4.8) aT "1a T ' exp(aka - 1 ) — 1.
a T  k

Since o- (•)  is regularly varying at oo, it follows from (4.8) tha t for any e" > 0

o- 2 (a r k * i  —  a r k ) = 
r 2 < 0 2 ,

0.2 ( a  T d

provided k  is sufficiently large. It is easy  to  show that

E IX (t l , s 1 ) — X(t 2 , S2)}
2  <  9 2 ( { ( t 1 t 2 ) 2

( s 1 s 2 ) 2 } 1 1 2 ) .

To make use of Lemma 4.1, set /1 = co r k  where c is sm all enough. As in the proof
of (4.2), w e obtain that for any e' > 0  we can choose a  small c  > 0  so that

(2.\ / + 2)A J '  ç o ( , / ic a r k 2 - Y2 )dy  < e'

for all large k. F or given e>  0  and large k , we set

x = c{2(log(Tk /aT k ) + log log 101 1/2 /(F +

Choosing E" = e' = e 2 , w e  have

x > 12(log(Tk /aT ) + log log 7 )1" 2 /(2e).

Now applying Lemma 4.1, we have for any e > 0

(4.9)

P  {suP
+ ar k ) — + s1 

>
1 

(t 's" k  12(log(Tk la T k ) + log log 1 ;,11"2 6 r (a rd  

< p tsup(t + aTk ) — (t +,  ), g ,, > xIF + (2.\/2 + 2)A f y9 ( 2 - Y 2 )dY}}o- (aT „)

< C• exp —  -(log (7/a,,) +  log log 7 )}
482a T k

= C,(T  ) -  ( 4E2  - 1 )

k( l o g  7;,) 4e2

a T k

For e  < 1/2, the last term  of (4.9) is less than o r equal to Cdc - ŒR'2 ) . Taking E
< min (1/2, a/2), the series

{ 
1 ( t + ar k ) —  (t +Ek P  supom, e}

g k  12(log(7,',Ia T k ) + log log 701 1/2 o- (aT ,)

is convergent and using the  Borel-Cantelli lemma, we obtain (4.7).

Proof  o f  Theorem 2.2. The proof will be shown in  two steps.

S tep 1. First consider the case in which the condition (2.5) be satisfied. For

sup
(v
, ) e g k  EX (t, s) 2
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given T large, define a positive integer hT  b y  hT  = [T la T ]  where [y ] denotes the
greatest integer not exceeding y. I t  is obvious from (2.3) and (2.4) th a t hT  is
nondecreasing a n d  hT  o o  a s  T  c o .  F o r  i = 1, 2,...,h T ,  le t  u s  define the
incremental random variable

YT (i) = — 1)aT ).

Then, YT (i)I o- (aT ) is a standard normal random variab le . From  the concavity of
a 2 (t) it follows that for m:= j — :71> 1

covariance (YT (i), YT (j))

= EIW arg(lar) — Dar) — —  narg(lar)

+ —  O arg(G 1 Oar)}
=1({o -

2 ((m + 1)aT ) — o-2 (maT )} — la-2 (maT ) — o- 2 ((m — 1)aT )l)

< 0.

Applying Lemma 4.2 for =  YT ( c r(a T ), j = 1, 2, ... , hT ,  we have for any 0 < e
<1

P {B(T, aT ) < — el

= P {suPo 0-a(Ta)7,)— ( t )  <  {2(1 —  c)(log(T1 a T )  +  l o g  l o g  T)1 1/2 1

< P fsuP i<ihr0.17T(aUT)) < {2(1 — e)(log(Tla T ) + log log T)1 112 }

0 IuTr T

where UT  = {2(1 — e)(log(Tla T ) + log log T)1 2 . Since, for large T,

0(u T ) exp(— c  ±  log T}
aT

we have

1
(4.10) P {B(T, aT ) < 1 — el exp —  c ( —  (

a T l o g  T )

S te p  2. N e x t  w e  c o n s id e r  t h e  c a s e  in  w h ich  the  cond ition  (2 .6 ) is
satisfied. C h o o s e  large integer N  and real number T satisfying N  < (log T )B '  for
some B 1 > 0. D e f in e  a positive integer kT  by k T  =  [TI(Na T )]. Then by (2.3) and
(2.4), kT  is nondecreasing a n d  kT  -÷ co a s  T—> c o .  F o r  i = 1 ,...,[T ], we also
define

X T (i) = (N ia T ) — ((Ni — 1)aT).

Then X T (i)I a(aT ) is a standard normal random variab le . It follows from (2.4) that
for a n y  0  <  G  e, < 1 and large T



f
<  c (o-2(x)Ydx —( a 2  ( x ) ) '  dx

NmaT (Nm — 1)ar 
NmaT x + aT

< c
( C

1(a2 (y))" Idy)dx I o-2 (aT )
(Nm — 1)aT j x

(N m +1 )aT NmaT

< C 2 dy )dx 1a 2 (a l-)
NmaT x + aT 0.2 (y )

1 ) a T (  x Y

co-2 ((Nm + 1)aT )aT
2

o- (aT )

Taking = (1 —  7)/2 for 7 fixed, we get

a((N m  + Oa r )
< C c (Nm + 1) .
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(4.11)

P {B(T, aT ) < —

= .13{suPo<t<T-a.)-(t + 
r ia(Ta)( t )

 < { 2 (1  —  e )  ( lo g  ( T I +  l o g  l o g  T)1 1 1 2 }

< P  {S U N  < t <  T - a g -  
(t - Fr ia(Ta )T < {2(1 — e')log kr}1/2}

< P{sulD <k  
X T ( i)

T a(aT) < {2(1 — 8') log k W / 2  •

Define

rT(i, j) =  correlation (X  T(0, X  Ttin, i

and let m =  j —  j1; then by the assumption (2.6) we have

(4.12)
rr(i, cl{a2 ((Nm + 1)a T )— o-2  (N mar)} — (NmaT )— a2 (1N —  1 1aT)}11 6 2  (ar)

/
2  (aT

)

a2 (ar )(Nm — 1) 2 aT
2

Since a(t) is regularly varying with index 7(0 <  <  1) at co, it follows that for any
> 0 there exists C‘  >  0 such that

o- 2 ((Nm + 1)a 7 )
a2(aT)

 C y 2(N m  + 1) 1
.

Thus from (4.12) we have

IrAi,111 Cy2 (
N m  +  1  ) 2  (mi l  ± 1) - (1 -y)
Nm — 1

< 4C y
2 (Nm) - ( 1 - Y) .

Choosing N  so large that N (8C ),2 )1 1 (1  - Y) for given y, the last term of (4.13) is less
than m '(v = 1 —  y). Now le t us apply Lemma 4.3 and  Lemma 4.4 (ii) for

(4.13)



208 Y ong K . Choi

= j = 1, [T ];
o- (aT )

= max 1 * J 1covariance( i , < 1;

= X T (j) , j  = 1, 2,...,k To- (aT )
and

UT = 1(2 — ri)log kW 1 2 , = e' < v (1 —  602(1 + + v)}.

Then the last term  of (4.11) is less than o r  equal to

0(u T )"' + ck T
- 6 °.

Thus we have

(4.14) P IB(T, a T ) < — el :5_ exp(— k T '') +

Comparing (4.10) with (4.14) under the condition (2.4), we see that it is sufficient to
estimate the inequality (4.14). The condition (2.4) also implies that there exists B2

big enough such that for large T

(4.15) log (TI cir ) B 2 log log T

and

(4.16) B 2  > 1/(Œ(50)

where 1 > a > 0 is that given in Lemma 4.6 and (5, is that in (4.14). Hence from
(4.15) w e have kT  c ( lo g  T ) B 2  f o r  some c > 0. L et Tk = exp(kŒ) a s  in  Lemma
4.6. Then the inequality (4.14) yields

P aTk) < — el exp(— cleB 2 ') + cic - aB 2 0

and hence from (4.16)

k P {B(Tk , aT k ) < — el < co .

Using the Borel-Cantelli lemma, we obtain

lim infk „ ,  B(Tk, • \ — g, a.s.

Letting T be in  'Tk T for given Tk, the proof of Theorem 2.2 immediately
follows from Lemma 4.6.

4.2. Proofs of  theorems in section 3. The method of the proofs is similar to those
in section 4.1. In  Lemma 4.1, if we set

e' = (2.\ / -2  +  2)A  f (p(N / 2A2 -  ' 2 ) dy

and u = x(1 + e'), x > 1, then by choosing sufficiently small A, we can easily obtain
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the following

Lemma 4 .7 .  Let = { (t, s); t T —  a r , 0 < s a T }  b e  a s  in  Lemma
4.2. Set

( t  + s) —  (t)
X (t, s)= , (t, s)Eg0-(aT )

and

yo(z)=
2 o - ( 2 z )

, z  > 0
o- (a T )

where cp(z) is the function def ined in  (4.1). Then f o r any  e'  >  0  there ex ists a
constant K e  depending only  on e ' such that f o r all u > 0

P Isupo m e g  X (t, u} K e TaT  exp
( u 2

2 + e' )

Proof  of  Theorem  3.1. Applying Lemma 4.7, we have for any e > 0

P ID*(T, aT )> N/1  8:a r )

(t + s) —  (t)
= Pf sup o m e , > 12(1 + e)log (TaT )} 112 }

(4.17) < KeTaTexp 
{ 1

2 +  e , (2(1 + e) log (TaT))}

2+2e 
K e (TaT )' -  2+e

Taking e' < 28 for given e and setting 62 = (28 — e')/(2 + e'), the last term of (4.17)
is  le s s  th a n  o r  e q u a l to  K e  T - `32 . F o r  given k e IN, l e t  T,', = exp (e) ( 0 <  a
<  1 ) . Then we have

P ID*(T,'„ aT k ) > N /1  + el K g , exp ( — k2).

Since e  is arbitrary, we obtain

lim supk - . D * (Tk, aTk) a. s.

Now let us prove

(4.18)J i m  sup T ,  D * (T , aT ) .  lim sup, , 00 D*(1;„ aT k ).

Since Tk — aT k > T—  a T  f o r  T,',_ i  <  T .. 7;‘ ,  we have

(t + s)—  (t)D*(7;„ a T ,) > supumeg 
{ 2  lo g  ( T k a 4 ) }

1
/
2

0
-

( a 4 )

'
. (log(Tk _ i aT k _ i ) ) 1 1 2

 u (a T k -  i ) D*(T, a i .).log (Tk ar k ) o - ( a T , )
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By (3.5), we have

aT
k T k  exp loc(k - 1 ) . - 1 1

a T ,_ ▪  T k -1

and

1  >  

log (Tk a „ _ , ) Tk_iaTk_ 1 >   1 as k oo.
log(Tk a r k ) TkaTk exp {2Œ(k -  1 ) . - 1 1

Since a(t)  -> .\ /2 as t -> co ,

a(a T, k -  I1
(7(aTO

as k co .

This proves (4.18) and thus the proof of Theorem 3.1 is complete.

For proving Theorems 3.2-3.4, we shall need the following

Lemma 4 .8 .  L e t a T  b e  a s  in  Theorem 3.2. T ak e 0 < 9 <  1  an d  se t "T,
k "/log k , ice IN. Then we have

lim D(T, a T ) l im  in f k , oe D(Tio aT ), a. s.

P ro o f . Let Tk T  T k + 1 .  Denote

g k
= { (t,  ) ,O r aTk, ark+

Since Tk aT k  T -  a T ,  we have

D(Tk , a T k ) supo<t<T-aT {2 log (Tk l aT )} 112 o(aT)

W  + av) - W )
... supo<t<T-a., {2 log(T

k /a VT, 2 u(aTk)

1 (1- + aTO - (t + s)I 
+ s u P " " k  { 2  log (Tk /aT k )} 112 a(civ k )

(log (Tk +  1 1 aT„,„) ) 1 / 2  Cr (a T )  D i c r ,  a T )

log (Tk /a T k ) a(aTk)

l (t. + aTk) - 4 + .0I 
+ s u P ( " " "  {2 log(Tk/aTk)} 112 a(aTO .

By (3.5),

(4.19)

and thus

aT ,
<  

 k + 1 ) 1 1 °
<  (1  —

kaT k T k

(t + a T k )  -  ( t )

1 < log(Tk+i/aTk+,) < Tk + 1  T k +  I <la (
log (Tk/aTk) Tkl aT k  

as k co.
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Since a(t) 2  as  t oo ,

a(a T< k  +  )11

a(a T k )

Now le t us prove

as k o o

1(t + aT,) + .511  = 0 ,(4.20) limk- suP(t,  )e2k {2 log(Tk /a T k )} 1/2 0-(aT k )
a. s.

Set

X ( t ,  s )  =  
 (t + - + ark) 

 , ( t ,  s ) e  9 k0. (ar
k)

and cp(z) = 2o- (2z)/ o- (aT k ), z  > 0. F o r  some c>  0 , w e have from (3.4) and (4.19)

aT a T k  <  { ( I1 1°1  +  ),  11 a„k

aT< C <  c(log k) ° —p0
k  -

Thus for large k  and any e" > 0

as k oo

a2 (ar k ,  -  a T ,)
sup o m e 2 k  EX (t, s) 2 = -  F 2 < (e") 2 .

0 .2 (a r k )

Take /1, > 0 so small that for large k  and any E ' >

(2.\ /2 + 2)A  f ( ,12 Y2) dy = (2V2 + 2)A 
f 2 o - ( 2 . \ / 1 . 2 - Y 2 )

 d y  <  e '  .

Jo

For given e > 0  and large k  we set

x =  e{2 log(7 k /a T ,)} 112 /(F  +  e').

Choosing e" = e' = E2 ,  it follows from (3.4) that

x > {2(1 - 0)log 7k} 112 /(2e).

Now applying Lemma 4.1, we have for any e > 0

P  t suP(  ̀S)e
1(t + ar k ) - (t +  s ) I  >

' k {2 log(Tk /aT,)} 1 1 2 a(aTk )

< P tsup ( , ",s ,
a(T k > x {F + (2'2 + 2)A 2)2- Y2 ) dY}}

1(t + a T k )a - ( t  +  .511 

(  (1 - 0)log
482 )

1 - ( 1 - e
< K c 7;, -{ 4 E2  2 )  <  K e IC

( 4 e2 —  2 } / 0

•

< 2K, 7k a T k  exp
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Taking e < ((1 — 0)/12)" 2 ,  the  series

+ aT k ) — + s)1Ek P fsup o>  e
' s "" {2 log (Tk l ark)} 1  / 2  ( 7 ( a T k )

is convergent and hence we obtain (4.20). This proves Lemma 4.8.

Proof  o f  Theorem 3.2. Define

Yr ( i)  =  (iar ) — — 1)aT ), i = 1,

where h r . =  [Tla T ], as in Step 1 of the proof of Theorem 2.2. Then it follows from
the convexity of r(t) tha t for m  =  i — 1

covariance (YT (i), YT (j))

= fi(maT) —  r(On — Dar)}  — Irgai + Oar) — 1'( =7)1
<0.

From Lemma 4.2, we have for any 0  <  < 1

P < .\ /1 —

ITT (i) P a(aT)< {2(1 — a) log (TI aT )} 112 }

(4.21) < 0({2(1 — e)1og(T/aT )} 112 )"T

exp(— c ( ra T )E) exp(— cr i

A s in Lemma 4.8, le t  7k = k i 1 8 /log k. Then (4.21) yields

P {D(T„ a T ,) < \ 11 — < exp(— ck" - °)
0 ).

Thus

kP {D( 7 ;„ aT ) < —  <  co

and

lim infk,  D(Tk , aT k ) > — E, a.s.

The proof of Theorem 3.2 immediately follows from Lemma 4.8.

Proof  o f  Theorem 3.3. For given T large, define a positive integer k r  b y  k r

= [TI(2a T )]. F or i = 1, [T ], we also define

X (i) =  (2iar ) — ((2i — 1)a T ).

Then X T (01 o- (aT ) is  a standard norm al variable. Define

rT (i, j) = correlation (X T (i), X T (j)), i j

and let ni = 1  — j1; then by (3.9) we have for large T
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clEIXTWX7.011

< cl1r(2ma T ) — r((2m — 1)a T )1 + r((2m + Da T ) — r(2 maT)11

< C
 

f
2m aT (2m +1)aT

(2m — 1)aT 12maT
1 r' WI dt + Ir'4)1dt}

< C
(2m— 1)aT

1
2maT C(2m + l)ar

t — vdt + J2maT — 1 —  vti t }

1— v — vC {((2 M  —  1)aT)- aT + (2maT ) 1 aTI-

m= 1, 2, ..., kT  — 1

where /../ is sm all enough. N ow  let us apply Lemmas 4.3 and 4.4 (i) for

=  
X T ( i )

, j  =  1 , 2 ,...,[T ];
o- (aT )

:= max 14covariance 1, 01 < 1;

X (J )
=  , j  =  1, 2,...,k Tcr(aT )

and

UT  = {2(1 — e)log (TI a T )} 112 , = 2e < y, e < (1 —

Then we have

PID(T, a T ) < .N./1 —

XT(/)(4.22) <  P {sup  5_, < k T  0 . ( a T ) < {2(1 — e)log(raT)} 112 }

0(u T f 2  + c(k T )- ' + '"

< exp { — cT" -O) g} + -1 +6°)

w h ere  6 o = + 2 01( 1 +  1.1). F o r  g iv e n  k e NI, set 7;', = k" ° /log k. Since
(1 — 0)( — 1 + 60 )10 < — 1, it follows from (4.22) that

IkP {D g„ a T ,) < —  < co

and

lim infkD ( 7 ; „  aT d > — e, a. s.

Thus the proof of Theorem 3.3 immediately follows from Lemma 4.8.

Proof of Theorem 3.4. In the case when r(t) is convex, the proof immediately
follows from Corollaries 1 a n d  2 .  Under the condition (3.13), it is sufficient to
prove
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(4.23) aTT))11-2 (a(t ) > a.s.
log

Let us define X T (i), .5 and rT (i, j) as in the proof of Theorem 3.3. Then by (3.13)
we have for large T

cIEIX  T (i) X T(i)}1

c121-(2maT ) — r((2m — 1)ciT ) —  r((2m + 1 )c17-)1

clr((2m — 1)a i -)1

c{(2m — 1 )(11.}
< m  = 1, 2,...,k T  — L

Apply Lemmas 4.3 and 4.4 (ii) with UT  = 12(1 — e) log (T/a T )1 1 /2 , 0 < e < 1, j = 2e
<(1 — (5)1, 1(1 + y  + (5) .  Then we have

p { D (T , aT )<•»

X T (j)
} T )i )

< P {sup <

(a

k , < {2(1 — Olog(T/aT)1 1 1 2 1

• (b (u )  +  e k T
- 6 0

< exp { — cT " - 0 1 +  c7 - - ( " 6 °.

Defining Tl in  Lemma 4.8, we have

P ID(T,„ a T ,) < \ /1 —  el < exp { — ck" - O n  + ck-
( 1 - 0 ) 6 0 1 0

Since 0  is arbitrary, choosing 0  so  that 0/(1 — 0) < b e ,  the  series

Ek P {D(ri, aT ,) < — el

is convergent and hence

lim infk _ D(Tk , aT ,) .\ /1 — e, a.s.

Using Lemma 4.8 and (3.10), we obtain (4.23).

Proof  of  T heorem  3.5. Again let X T (i), and  rT (i, j) be defined as in the
proof of Theorem 3.3. Then it follows from (3.16) tha t for large T

IrT (i, j)1 < {X T (i)X T (j)}1

< clr((2m — 1)ciT )1

c {log (2m — 1) + log aT } - 1 -  v

• c(log m) -  1-v ,  m 2 ,  3 ,„ .,k r

< m = 1.

Applying Lemmas 4.3 and 4.4(iii) with
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UT  = {2 log (TI aT )  -  (1 + p)log log (T/a T )1 1/2 , 0 < p < y ,

we obtain for 0 < e  < 1 and large T

P{D(T, aT ) < .\/ 1  -  g l

< P { X T(i) 
supi5_;k T  o a T )

 <2 ( 1  -  e )  log (TI aT )} 1 1 2 }

X T O < P fsulli .i_ li ,7- 0 . (a  T) < {2 log (TI aT ) - (1  + p) log log(T/aT)11/2}

< 0( u ') 7 + c(log(Tla r ) )  »+ P •

Since

0(u 1 ) exp { - (Tla T ) - 1  (log (T/c17-))P/21,

we have

P {D (T, a r ) < -  el exp { - c(log T ) 12}  +  c(log

F o r  g iv e n  k e NI, s e t  T;, = exp(k l it), w here  0 < c o < T < v - p  for
enough. Then w e have

PID (To  a T k ) < -  e l < exp(- cle/ ( 2 t) ) + ck - ( "- " t .

Thus the series

Ek P  ID(Tk ,<  N / 1  -

is convergent and

lim infk , D ( T k , a r k ) N./1 -  e, a.s.

L et T  b e  in  T, < T < Tk + 1 . By (3.18)

1 <  a T k  I <  log Tk d ±  1  d i'
aT k l o g  Tk k

Since, by (3.17)

we have

log a r k + , 0

log 7;c +  ,
as k cc ,

1
 l o g  ( 4 + 1 / a T , )  (  k  + 1  r  f  -  (log aT k + ,1108 Tk +  1) 1  _ 4<-  log (7;,/aT ) k  )  1  1  -  (log QT /log 7;,) j

as k  -> oo. W e note that

aT k * , -  a T k  < .1(1  + -1 ) d i t  -  1 } a T k  < ca T k lk

215
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c(log Tk )w I k =  ck - ( 1 - "It ) —* 0a s  k ---■ oo

Proceeding to the same lines as in the proof of Lemma 4.8, we can easily deduce

lim infT „  D (T , (I T ) lim infk  D(T,, a T , ) , a.s.

This completes the proof of Theorem 3.5.
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