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Introduction

Let M(A) be the set of all Beltrami coefficients on the unit disk A, that is, it is
t h e  s e t  o f  all bounded m easurable functions p  defined o n  A  with 1112 11.
=  esssup  kt(z)1 <  1 . W e  d e n o te  b y  w o the  unique quasiconform al (qc) self-
mapping o f  A  satisfying the B eltram i equation w , =  pw , a n d  leav ing  +  1 , i
fixed. Two elements y  and y in M(A) are called equivalent if w, = w, on A .  The
universal Teichmiiller space T is defined as the quotient space of M(A) with respect
to this equivalence re la tion . T h is  space T  carries a  natural metric, called the
Teichmiiller metric (cf. Lehto [3]), with respect to which the canonical projection
0 : T  is  open as well as continuous.

L e t V be a  measurable subset of A , and set

M (  = e M(A); 12 1(e - v) = 0 1.

We denote the Banach space of all integrable holomorphic functions on  A  by A,
and the characteristic function of a set Y by  x (Y ). O ur first result is a  necessary
c o n d itio n  fo r  V  t o  in s u r e  t h a t  th e  p o in ts  w h ich  can  be  rep resen ted  by
quasiconformal mappings whose Beltrami coefficients are in M (V ) contain a  non-
empty open set in  T.

Theorem 1. L et V  be a measurable subset of  A  with positive m easure. If  the
interior of  0(M (V )) is not empty , then

(1) inf{11X(V)0111; (PEA, 110111 = 1} >0.

We denote the hyperbolic disk with center at e A  and hyperbolic radius p by
D (; p ), and the hyperbolic area of Yc  A  by a(Y).

Definition 1. A  measurable subset Y of A  is uniformly distributed in mean if

in f ja(YrID (; P)) ; 4- E A }  >
u(D(C; P))

for some p > 0.
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Definition 2. A  denumerable subset S  o f d  i s  p-scattered (p> 0 ) if the
collection of hyperbo lic  d isks {D(C; p); 4e S} covers  d  and the function
Ecs X(D(; 2p)) is bounded on d.

Our second result asserts that the subsets V satisfying an analytic condition (1)
can be characterized in terms of the hyperbolic geometry ;

Theorem 2. For a measurable subset V of  d the following three conditions are
mutually equivalent.
(a): V satisfies the condition (1).
(b): V is uniformly distributed in mean.
(c): There is a  p-scattered subset S of  4  f o r some positive p for which

inf fo- (Vn D(C; p ) ) ;  ES} >0.

Our third result shows that the properties in Theorem 2 are quasiconformally
invariant ;

Theorem 3. Let V be a measurable subset of d  and f  be a quasiconformal
self-mapping of d .  Then V satisfies one of three conditions in Theorem 2 if and
only if so does f(V ).

The above are improvement of results given in [5] for the case of the universal
Teichmiiller space.

§ 1 .  Proof of Theorem 2

We begin by providing fundamental facts which play important roles in the
proof of Theorem  2. Though the first is geometrically almost clear, we include it
for the sake of completeness.

Proposition 1. A  p-scattered set always exists f o r each positive p.

P ro o f . Take a Fuchsian group G acting on d  with dIG compact, and let Q
be a relatively compact fundamental domain for G .  Cover f2 with finitely many
hyperbolic  d isks D(C1 ; p), D ( C k ; p), where C  ,  a re  in  Q . T h e n  S
= Ig(C1); g e G , 1 j 1(1 is p-scattered. In fact, firstly

U Dg; P1D U g(n ) = 4 .
g eG

Secondly, fix zo  e Q and p' > 0 for which 52 c D(z 0 ; p'), and take finite subset G' of
G such that D(zo ; 2p + p') c Ug E G , g (Q ). Let z e d and z' e  n { g (z ) ;  g  G }. Then

s x(D(C; 2p))(z) = #(S n D(z; 2p)) = #(S n D(z'; 2p))

#(s n D(zo ; 2p + p')) # ( s  n U g (Q )) = k # (c) .
g eG '
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L em m a 1 . L et lan 1 , and {A„},T=1 be sequences of positive numbers such that
1 < Ec°, an and A n  m .  Then there exists a (non-empty, not necessarily infinite)
subset N  of  N  such that A„ < 2ma„ f o r all n e N  and En e , an > 1/2.

P ro o f . Set N  = In e N; A 2m an l. Since

we have

1E  <  —  E  A„ < —
'nON 2M. nON 2

Ea
n

 > 1 — E a  >—.
neN nO N  n  —  2

For 0 <  r  <  1 , 0  < a < 1  and 0 < b < 0(A ,.), where A  = e  C ; I z  < r}, we
define

A(r, a) = E A ; 11 4) 1  a n d  1 1  X1,6414 11 a} ,

and when A(r, a) 0  0 , we set

a(r, a, b)= in f  X(Y)0

w here infim um  being taken over all e A (r, a) and  all m easurable Y  A , w ith
Y) b.

L em m a 2 . I f  A (r, a) 0  0 , then a(r, a, b)> 0.

P ro o f . Take sequences {0}°= 1 in  A(r, a) and { IT, },T= 1  o f  measurable subsets
o f  A r w ith  a (1 7„) > b  f o r  w h ich  lim  X( 1 7n) (1) n ll 1  =  a(r, a ,  b). Since A (r, a )  is
sequentially compact with respect to  the topology induced by the locally uniform
convergence, w e  m a y  assum e th a t 4 ,„  converges to  s o m e  4) e A(r, a )  locally
uniformly, in particular, w e have 4, 0 .  Set X  = Iz e  r ; 10(z)1 < 25}, where a
positive 6 is chosen so small that the Euclidean area m(X) of X  is less than c =
(1 — r2 )2 b I2 . Then

m()Ç — X )  m(Y„) m(X)

>(1 r 2 )2 a(Y„) c c.

Since I 4),, > 6  o n  A,. — X for sufficiently large n, we have

X(K)On II 1 > Sm( Y„ — X ) > c6 for large n,

hence we conclude that

afr, a, b) = lim  X (Y .)0 e6 > O.

Proof  of  Theorem  2. ( a )  ( b ) :  Suppose that (b) does not h o ld .  Then we
can  find  a  sequence {;„} 0

= 1  i n  A  su ch  th a t o- (V n D( n ; n)) < 1/n. Set yn (z) =
(z — (n )I(1 — Cn z ) a n d  On = fY;32 , th e n  w e  have 4,„  e A  a n d  0„ =  n. On the
other hand, we have
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X(V)4) pill 1 = m(7,, V) m(A — A tanh.) + m((7 V) n Atanh„)

1
< rcsech 2 n +

because

m((y,. V) n A tanhn) = in((Y n v)n D(0; n))

< 0-((y „V) n D(0 ; n)) = o-(V n D(Cn ; n)) < .

Hence (a) does not hold.
(b) (c): This is obvious by Proposition 1.
(c) (a): L e t  IC„}„°°_ be an  enumeration o f  a  p-scattered se t S . F o r in

A  with norm one, we put

a„ =  Z (D (n  P)) 11 11 1, A =  d x(Dgn; 2 04) 111,

and m = sup { x(D( n ; 2p))(z); z e ,
n = 1

then we have

a An f o r  a ll n,

an 1  and A„ m.
n= n =1

Let N  be a  subset of N  with the property in  Lemma 1. F or n e N , we set

1
n = (0 ° t 1 n ° R)((t 1 n R r  ) 2

A „

where nn(z) = (z C.)/( 1 + C„ z) and R(z) = ztanh(2p). Then O n e A  saitsfies

(15nM =  —A n M  ;C(11,,° R(A))4)

1
=  —

A  n  
X (D (n ; 2 P)) 4)11 =

and similarly

an1
X(A r)(1)nll =  

A n 2 m

where r = (tanh p)/tanh(2p), in  other words 4)„ e A(r, 1/(2m)). Next, we put

b = inf {a (Vn D( ;  p)); n e NI ,

then subsets V„ = (V n D( n ; p)) of A, satisfy

V,,) > a(?1,;- 1 ( vn D(c,, ; p))) > b.
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W e thus have by Lemma 2

II ( Vfl D(C„; p ) )4  11 = A.11 AV.) 0.1

> ŒA,  > aa„,

where a = a (r, 1/(2m), b), and consequently

11;07)011i
1

x(vn D(C.; p))0m neN

175

> a
nm neN Gm

by the definition of m and Lemma 1. Since the constants a and m are independent
of 0 , the condition (a) holds.

§ 2 .  Proof of Theorem 3

W e prove that, fo r  a  quasiconformal self-mapping f  of 4  an d  a  measurable
subset V of 4, if f (V) is uniformly distributed in mean then so is V  By performing
preliminary Möbius transformations, it suffices to show that, for p > 0 and a  K -
quasiconformal self-mapping f  of 4 w ith  f(0 ) = 0, we haye

o- ( f (V) n D(0; p)) bia(V n D(0 ; p') ) ,

w here a ,  b  a n d  p ' are  positive  constan ts w hich  depends only  o n  K  and
p. Henceforth we denote by ci (j = 1, 2, ...) positive constants depending only on
K  and p.

By a  distortion theorem of hyperbolic distances in LI (for example, see Lehto-
Virtanen [4, p.65]), we can find c, such that f (D (0  ; p ))  c D(0; c 1 ), and moreover
if  w e  take  c2 sufficiently sm all then fo r  every z  in D (0 ; p ), fo r  th e  smallest
hyperbolic disk D'(z) with center at f - 1 (z) containing f  '(D (z )), D (z ) =  D (z c2 ),
and for the smallest square Q that contains D'(z) and whose sides are parallel to
the axes, we have D'(z) c D(0; c 1 ) and the Euclidean diameter of f(Q ) is less than
the Euclidean distance between f(Q ) and 0 4 . Then, by the same argument with
the proof of Theorem 2  in  Gehring-Kelly [2], we see that

m(f (V) n D(z))(  m ( V  n  D'(z))y 4

m(D(z)) m (D '(z)) )

for every z in D (0 ; p ). W e also have

o- (f (V) n D(z)) :5_ c 5 m( f (V) n D(z)),

m(D(z)) o- (D(z)) = c 6 ,

m(V n D'(z)) < o- (V n D'(z)),

m(D'(z)) ,

(c4 <  1)
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hence we get

( f  (V) n D(z)) < c 8 (o- (V n D' (z)))"

Choose a finite number of disks D (z,),..., D (z o ) so that they cover D(0; p), thereby
we have

0-(i(v)nmo; p)) E 0-(f(v)nD(zo)
k= 1

G C 8 E (CO/ n rY (ZO ) c 4

k = 1

< C917(Vn ; C M " .

This completes the proof.

§ 3. Proof of Theorem 1

W e use the following inequality due to  Reich and Strebel [6].

Theorem A .  For y, y  in M(A) such that w v o wo  =  id on OA, and for J i  in A  with
norm one, we have

1i f 1
—ptli/10112  1+  1 Y olv 8 1 
1 _1 14. 12 _ w d x d y .

LI

1011

A Beltrami coefficient y  on  A  is said to be  extrema! if

Mil II. = inf { v 11,0 ; v E M (4), w,. =  w o  on 0,4 }.

The extremality is characterized by Hamilton, Reich and Strebel as follows (for a
proof, see [6] for example):

Theorem B .  A  necessary and sufficient condition for y  in M(A) to be extrema!
is

=  sup { ffA yO dxdy 4)EA, 114)111 = 1}.

 

Proof o f  Theorem 1. Let T  be an  arbitrary element in M( V).
mapping t * :  M(A)—> M(A) as 1- * (y) is  the unique element o f M(A)
w t . ( o ) =  w o ( w ) '  f o r  e a c h  ye M (A ). It i s  o b v i o u s  t h a t  T*

homeomorphism o f  M (A ) with t ( t )  =  0 , a n d  th a t  0 (y ) =  O M  if
O er,(y)) =  O (r * (v)) for y  and  v  in  M (A ). Hence there
w: T  T  such that

(2) co 0 = ° 2 * ,

in particular,

(3) (.0(0(T)) = 0(0).

We define a
that satisfies

is a  self-
an d  o n ly  if

is  a self-homeomorphism
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We note that

(4) T.(M(V)) = M(wr (V)).

Suppose th a t V does not satisfy (1). Theorems 2 and  3 imply that neither
does V ' = wt (V). Then there exists a  sequence 10„1 , in  A  such that

110.11i = 1 for a ll n  b u t  lim 11Z( 114),,111 = O.
n  co

By taking a  subsequence, if necessary, we may assume t h a t  n converges locally
uniformly to some 0E/1. Since II X(110 lim 11  n  1  =  0 a n d  V ' is not
null, we have 0 = 0, that is, j locally uniformly to z e r o .  We can now
choose {0 1 r , i , a subsequence of 10,,I,T=1 , and tr 1 , an increasing sequence of
numbers, so that

lim ri =  1  a n d  11Z(A.Ono I >  1 — for a l l  j,

where A  = < ri + 1 1. F o r  exam ple, p u t  r, = 0, n(1) = 1  a n d  r2

= 1/2. After choosing a n d  10 }11- 1 , take n(k) (> n(k — 1)) so  large that
II AU": 1 A ) & ( k )  1  G  1/k, next take rk + 1 ( > rk ) so close to  one th a t 11 x( 4k )4),,( 0 11

1

>1 — 1/k.
Set

E AA; v 1 1  n(j)1/ n(j)•

Then

j= 1

— P o  n ( i ) dX dY

 

f ( 1) n(j)I 0 (1) dxdy

   

2
J  d- (Ai  - V ')1

h ld x d y

< 2 ( X(A A. )On0111 + M Z(V)0 111)

= o ( l )  a s  j—> co

yields

sup {
A

C P O  dxdy ; çbe A , II(1)111= 1} =

for e a c h  in A. S in c e  the opposite inequality is trivial, we see by Theorem B that
Cm° i s  extremal. Let i t  be  the Beltrami coefficient of (w,20) 1 • O b v io u sly , p is
extremal, hence Theorem B implies that there is a  sequence {00,7°_, in A  such that

II C A  = 1 for a ll n  a n d  lim 1-10,,dxdY =- 11 II. ,
co



thus

Ir
1
1 1C12 d— V"

Itkn1 ti1P 1 n 1 + 111'11. dxdy + IIX(V")1P.111,1 - 111'11.10„1

2
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Notice that

= IC1too(N, 0 ) - 1 1 = — V")

where V" = N o(V ), and so

= 1 — i f 10„1dxdy
A— V"

1 r
J 
CA it 

O n d x d yJ
= 0 ( 1)  a s co.

Suppose that C1,10( E {O}) were equivalent to some y  in  M (V '). Then,
applying Reich-Strebel's inequality to p., y and t/J„, where y and t/i„ are obtained
from Cpo a s  above, we have

1 — 1C12if  I  Onl I 1 — 10 11 „110n1I2 dxdy + o(1)

<1 — 2 Re I f dxdy + 1C12 + o(1)

= (1 — ICI)2 +  0 (1 ) a s  n -4 co.

This is a contradiction to 4 0 O. Therefore

0 ( { [ t o ;  (E A  — {0}})no(m(r))= 0,

which implies that 0 ( C i t o )  approaches 0(0) through the complement of (M ( r ) )  as
tends to  zero, that is, 0(0)0 int 0(M(11). But (2), (3) and (4), we have

0(T) int 0(M( V)),

a n d  consequently we conclude that 0 (M (V )) h a s  n o  interior points. This
completes the  proof.

§ 4. Remark
In this section we remark that a part of Theorem I can be extended to general

cases as we argumented in  [5].
F or a  Fuchsian group F acting on A, which may o r may not be elementary,

and  fo r a  r-invariant measurable subset V of 4 with positive measure, we set

M(4, F)= M(4); (po '/y' = p for all y ,
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M(V, F)= M(4, n nM(V).

Let C be a F-invariant closed subset of 04 such that 1 + 1, il OE C .  We say that 1.1
and v E F )  are equivalent if wo = w, o n  C .  With this equivalence relation we
define the Teichmiiller space T(F, C) as the quotient space of M(4, F), and denote
the natural projection: M(4, F) —> T(F, C) by  0.

We denote by A(F, C) the Banach space of all holomorphic functions on
such that

(4, y)(y) 2  =  4 f o r  all y E F,

II4)111 = 11d x d Y  <  c o ,
A ir

and furthermore can be continuously extended to  04 — C so that z 2 0(z) is real
there, proveded that 0 4  C .  Almost the same argument in the proof of Theorem
1 leads

Theorem 1'. I f  0(0) is an  interior point of  0(M(V, F)), then

inf { x(V)/M 1 ; E C), M J = > 0.

Sketch of  P ro o f .  Suppose that there exists a  sequence 10„1 in  A(F, C) such
that 110. MI = 1 and lim II X( V)0„ 1,1 = 0. We may assume that O n converges to zero
locally uniformly on the borderded Riemann surface R  = (A — F .  Let {R„,} be
an exhaustion of R .  Then we can choose subsequences {R„,( i ) } and {On o } so that

X(Rm(j + 1) Rm(j))4) n(j)11 1  =  1 + o(1)

as we chose and  10,0 1 in  the  proof of Theorem 1 . Set
Dz)

iLo 1 / Onth •— X(Rmu+ i) R m o n(j)
j=  I

Then by using Theorem s A  a n d  B  fo r  arbitrary F  a n d  C  (see, fo r example,
Gardiner [1, Ch. 6]), we can obtain as in  the  proof of Theorem 1

0 ({tm0 ; 0 <  t  < 1})n 0(M(V F)) = 0,

from which it follows that

0(0)Ont 0(M(V, F)).
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