Stability of foliations of 4-manifolds by Klein bottles

Dedicated to Professor Masahisa Adachi on his 60th birthday

By

Kazuhiko Fukui

§0. Introduction

This paper is a complement to my paper [8]. Let $\operatorname{Fol}_q(M)$ denote the set of condimension $q \ C^{\infty}$ -foliations of a closed manifold M. $\operatorname{Fol}_q(M)$ carries a natural weak C'-topology $(0 \le r \le \infty)$, which is described in [6], [9]. We denote this space by $\operatorname{Fol}'_q(M)$. We say a foliation F is C'-stable if there exists a neighborhood V of F in $\operatorname{Fol}'_q(M)$ such that every foliation in V has a compact leaf. We say F is C'-unstable if not. We say a foliation in a small neighborhood of F in $\operatorname{Fol}'_q(M)$ is a small C'-perturbation of F. It seems to be of interest to determine if F is C'-stable or not.

In this paper we shall give a sufficient condition for a foliation of a closed 4manifold by Klein bottles to be C^1 -stable. More precisely we have the following.

Theorem. Let F be a foliation of a closed 4-manifold M by Klein bottles. If $\chi_V(M/F)^2 + \chi(M/F)^2 \neq 0$, then F is C¹-stable.

1. Foliations of 4-manifolds by Klein bottles

Let M be a closed manifold and F a compact foliation of M of codimension two. By the results of Epstein [4] and Edwards-Millett-Sullivan [3], we have a nice picture of the local behavior of F as follows.

Proposition 1 (Epstein [5]). There is a generic leaf L_0 with property that there is an open dense saturated subset of M, where all leaves have trivial holonomy and are diffeomorphic to L_0 . Given a leaf L, we can describe a neighborhood U(L) of L, together with the foliation on the neighborhood as follows. There is a finite subgroup G(L) of O(2) such that G(L) acts freely on L_0 on the right and $L_0/G(L) \cong L$. Let D^2 be the unit disk. We foliate $L_0 \times D^2$ with leaves of form L_0 $\times \{pt\}$. This foliation is preserved by the diagonal action of G(L), defined by g(x, y) $= (x \cdot g^{-1}, g \cdot y)$ for $g \in G(L), x \in L_0$ and $y \in D^2$, where G(L) acts linearly on D^2 . So we have a foliation induced on $U = L_0 \times D^2/G(L)$. The leaf corresponding to y = 0is $L_0/G(L)$. Then there is a C^{∞} -imbedding $\varphi: U \to M$ with $\varphi(U) = U(L)$, which

Communicated by Prof. H. Toda May 22, 1989

preserves leaves and $\varphi(L_0/G(L)) = L$.

A finite subgroup of O(2) is either a group of *m* rotations which is isomorphic to \mathbb{Z}_m or a group of *m* rotations and *m* reflections which is isomorphic to \mathbb{D}_m $= \{u, v; u^m = v^2 = (uv)^2 = 1\}$. We give D^2 an orientation. Then \mathbb{Z}_m has a natural generator *u*, the rotation by an angle of arc length $2\pi/m$. In the same way, \mathbb{D}_m is regarded as a fixed group of rotations and reflections with fixed generators *u*, *v*, where *u* is the rotation by $2\pi/m$ and *v* is a reflection.

Definition 2. A leaf is *singular* if G(L) is not trivial. We say such an L is a rotation leaf, a reflection leaf or a dihedral leaf if G(L) is Z_m , D_1 or $D_m(m > 1)$ respectively.

We consider foliations of closed 4-manifolds by Klein bottles. Then we have the following.

Proposition 3 (Proposition 4 of [8]). If F is a foliation of a closed 4-manifold by Klein bottles, then F has no dihedral leaves.

2. Stability of foliations of 4-manifolds by Klein bottles

Let F be a foliation of a closed 4-manifold M by Klein bottles. In the case F has no singular leaves, Bonatti ([1], [2]) has determined a sufficient and necessary condition for such an F to be C^1 -stable. So we consider the stability of such a foliation F with singular leaf. By proposition 3, we know that any dihedral leaves do not appear in F. Furthermore in case that F has a rotation leaf, we have the following.

Proposition 4 (Theorem 13 of [8]). Let F be a foliation of a closed 4-manifold by Klein bottles. If F has a rotation leaf, then F is C^1 -stable.

So we consider here the case that F has no rotation leaves. We denote by B the leaf space M/F, which is a compact 2-manifold with boundary and $\pi: M \to B$ its quotient map. Note that each point of ∂B corresponds to a reflection leaf of type (1, v) (see Case B in §1 of [8]).

Theorem 5. Let F be a foliation of a closed 4-manifold M by Klein bottles and B its leaf space. Suppose that 1) F has only reflection leaves as singular leaves and 2) $\chi(B) \neq 0$, where $\chi(B)$ denotes the euler characteristic. Then F is C¹-stable, that is, any C¹-perturbation of F has a compact leaf.

Proof. We denote by R(F) the union of all reflection leaves of F. Since $\pi: M - R(F) \rightarrow B - \partial B$ is a fibration with generic leaf L_0 as a fibre, $\pi_1(B - \partial B)$ ($\cong \pi_1(B)$) acts on $H_1(L_0; \mathbf{R}) \cong \mathbf{R}$. It is sufficient to prove the case that $\pi_1(B)$ acts on $H_1(L_0; \mathbf{R})$ trivially. For, if necessary, take an appropriate double cover \tilde{M} of M. Let \tilde{B} be the leaf space of the foliation \tilde{F} induced on \tilde{M} . Then we may consider that $\pi_1(\tilde{B} - \partial \tilde{B})$ acts on $H_1(\tilde{L}_0; \mathbf{R})$ trivially, where \tilde{L}_0 is a generic leaf of

 \tilde{F} . Furthermore we have $\chi(\tilde{B}) = 2\chi(B) \neq 0$. Hence the stability of \tilde{F} implies the stability of F.

We fix a Riemannian metric on M. Let $p: N \to M$ be the normal bundle associated with F, $\sigma: M \to N$ the zero section, \mathcal{N} a neighborhood of $\sigma(M)$ in N. Let $q: \mathcal{N} \to M$ be the submersion induced from the exponential map. Let \mathcal{N}_0 be a relative compact neighborhood of $\sigma(M)$ in \mathcal{N} such that $p^{-1}(x) \cap \mathcal{N}_0$ is a disk \hat{D}_x centered at $\sigma(x)$ for $x \in M$. Let $D_x = q(\hat{D}_x)$. Let F' be a sufficiently small C^1 -perturbation of F. Then we construct a local first return map for F' following Bonatti [1]. See [1] for more details. Let U_0 be a small open set of M and x, y any points in U_0 . Then we have a canonical isomorphism $j_*: \pi_1(L_x, x)$ $\rightarrow \pi_1(L_y, y)$ if L_x and L_y are generic leaves, where L_x is the leaf of F through x. In the case L_{v} is a reflection leaf, we have that j_{*} is injective. Let U'_{0} be a relative compact open set in U_0 . We take and fix $x_0 \in U'_0$ such that L_{x_0} is a generic leaf and $a \in \pi_1(L_{x_0}, x_0) = \{a, b; aba^{-1}b = 1\}$. Then we can construct the return map $H(F', a): U'_0 \to M$ (see [1], [7]) which is a local diffeormophism and C¹-close to 1_{U_0} . We denote by \hat{F} and \hat{F}' the foliations on defined by $\hat{F} = q^*F$ and \hat{F}' $= q^* F'$. Let $\hat{U}_0 = q^{-1}(U_0) \cap \mathcal{N}_0$ and \hat{U}'_0 be a relative compact open neighborhood of $\sigma(U'_0)$ in U_0 . We have a canonical injective $\pi_1(L_{x_0}, x_0) \to \pi_1(\hat{L}_z, z)$, where \hat{L}_z is the leaf of \hat{F} through $z \in \hat{U}_0$. In the same way as above (see also [1]), we can construct a local first return map for \hat{F}' , $H(\hat{F}', a): \hat{U}'_0 \to \mathcal{N}_0$ which is a local diffeomorphism. Note that $H(F', a)(x) = q(H(\hat{F}', a))(\sigma(x))$ for any $x \in U'_0$.

Take families of open sets $\{U_i\}$, $\{U'_i\}$ and $\{U''_i\}$ of M such that 1) $U_i \supset U'_i$ $\supset U''_i$ and 2) $\{U''_i\}$ is a finite open covering of M. We denote by $\{\hat{U}_i\}$, $\{\hat{U}'_i\}$ and $\{\hat{U}''_i\}$ the families of open sets of \mathcal{N}_0 associated with $\{U_i\}$, $\{U'_i\}$ and $\{U''_i\}$. We take $x_i \in U_i$ with L_{x_i} generic leaf and $a_i \in \pi_1(L_{x_i}, x_i)$ for each i, where $\pi_1(L_{x_i}, x_i)$ $= \{a_i, b_i; a_i b_i a_i^{-1} b_i = 1\}$. Let $\{\phi_i\}$ be a partition of unity associated with $\{U''_i\}$. For a sufficiently small C^1 -perturbation F' of F and each i, $H(F', a_i)$ and $H(\hat{F}', a_i)$ are defined on U'_i and \hat{U}'_i respectively. We define the map H(F'): M $\rightarrow M$ by

$$H(F')(x) = q(\sum_{\{i \mid x \in U''_i\}} \phi_i(x) \ H(\hat{F'}, \ a_i)(\sigma(x))) (\in D_x).$$

H(F') is a diffeomrophism and C^1 -close to 1_M . We have x and H(F')(x) in the geodesic disk D_x for $x \in M$. So we define X(x) to be the vector tangent to the geodesic in D_x from x to H(F')(x). By Corollary 3(ii) of [1], we see that $X(x_0) = 0$ and $x_0 \in M - R(F)$ implies that the leaf of F' through x_0 is compact.

Let D be a disk in B such that $D \cap \partial B = \phi$ and π is trivial over D. Note that $\pi^{-1}(D) = T \cong D \times K$, where K is the Klein bottle. Then we have the following.

Proposition 6 (Fukui [7]). There exists a compact connected 2-manifold B^* transverse to F over B – int D such that

- 1) $\pi: B^* \to B \text{int } D$ is a double covering expected for ∂B and
- 2) B^* meets ∂T in at most two simple closed curves ∂B^* , that is, we denote by r the number of the connected components of ∂B^* , then $1 \leq r \leq 2$.

Let $h: S^1 \to T$ be a continuous map and $h(S^1) = C$. Then we define I(F', C) to be the total number of times the vector $\pi_* X(h(\theta))$ rotates about the center of D as θ goes once around S^1 .

We now assume that F' has no compact leaves. Then we have the following.

Proposition 7. Let α be a simple closed curve in $L_0 = \pi^{-1}(0)$ with the homology class $[\alpha] \neq 0$ in $H_1(L_0; \mathbf{R}) = \mathbf{R}$. Then $I(F', \alpha) = 0$.

Proof. From Corollary 2 of [1], it follows that if F' has no compact leaves, then the local first return map $H(F', \alpha)$ has no fixed points on T. We denote by G and G' the restrictions of F and F' to $D \times \alpha$, respectively, which are again foliations. We consider the restricted map $H(F', \alpha): D \to D$. Then we have $H(F', \alpha) = H(G', \alpha)$. Thus $H(G', \alpha)$ has no fixed points. Hence we have $I(F', \alpha) = I(G', \alpha) = 0$ from Seifert [10]. This completes the proof.

The proof of Theorem 5 continued. We denote by C a connected component of ∂B^* . Then $\{C\} = a^i b^j$ for some integers *i* and *j*, where $\{ \}$ denotes homotopy class in $\pi_1(T)$ and $\pi_1(L_0, *) = \{a, b; aba^{-1}b = 1\}$. Since the homology classes $[a] \neq 0$ and $[ab^j] \neq 0$ in $H_1(L_0; \mathbf{R})$ by Proposition 7, we have $I(F', a) = I(F', ab^j)$ $= I(F', a^{-1}) = 0$, hence I(F', C) = 0.

The vector field X projects naturally to a vector field X* tangent to B* since X and B* are transverse to F. Now we construct a closed 2-manifold \overline{B}^* pasting one or two disks $D_l (1 \le l \le r)$ to B* along ∂B^* . The vector field $\pi_*(X|_C)$ on ∂D is homotopic to a constant vector field because I(F', C) = 0. Hence deforming X* along ∂B^* in the homotopy class, we may assume that $\pi_*(X^*|_{\partial B^*})$ is a constant vector field on ∂D . Since $\pi: C \to \partial D$ is one or two fold covering, we easily see that the vector field X* is extended to a vector field \overline{X}^* on \overline{B}^* with exactly one or two singular points of index -2/r + 1 in $D_l (1 \le l \le r)$. Here a singular point of index 0 means a nonsingular point. \overline{X}^* may have singular points on $\pi^{-1}(\partial B)(\subset B^*)$. However we may assume that \overline{X}^* has no singular points on B* by slightly deforming \overline{X}^* on a neighborhood of $\pi^{-1}(\partial B)$ in B* because $\chi(\pi^{-1}(\partial B)) = 0$. Then the euler characteristic of \overline{B}^* is equal to $\chi(B^*) = -2 + r$. On the other hand, we have $\chi(\overline{B}^*) = \chi(B^* \cup \{\bigcup_{l=1}^r D_l\}) = 2(\chi(B) - 1) + r$. Hence $\chi(B) = 0$. This contradicts the assumption 2). Therefore F' has a compact leaf. This completes the proof.

Combining Proposition 4, Theorem 5 and the result of Bonatti([1], [2]), we have the following. See Theorem 6 and Remark 7 of [7] for the notation χ_{ν} .

Theorem 8. Let F be a foliation of a closed 4-manifold M by Klein bottles. If $\chi_{V}(M/F)^{2} + \chi(M/F)^{2} \neq 0$, then F is C¹-stable.

DEPARTMENT OF MATHEMATICS KYOTO SANGYO UNIVERSITY

References

- [1] C. Bonatti, Existence de feuilles compactes les feuilletages proches d'une fibration, C. R. Acad. Sci., 305, serié I, (1987), 199-202.
- [2] C. Banatti, Stabilité de feuilles compactes pour les feuilletages définis par des fibrations, Topology, 29-2 (1990), 231-245.
- [3] R. Edwards, K. Millett and D. Sullivan, Foliations with all leaves compact, Topology, 16 (1977), 13-32.
- [4] D. Epstein, Periodic flows on three manifolds, Ann. of Math., 95 (1976), 68-82.
- [5] D. Epstein, Foliations with all leaves cmpact, Ann. Inst. Fourier, Grenoble, 26 (1976), 265-282.
- [6] D, Epstein, A topology for the space of foliations, Lecture notes in Math., 597 (1977), 132-150.
- [7] K. Fukui, Perturbations of compact foliations, Adv. Studies in Pure Math., Foliations, 5 (1985), 417-425.
- [8] K. Fukui, Stability of a compact leaf homeomorphic to the Klein bottle and its applications, J. Math. Kyoto Univ., 29-2 (1989), 257-265.
- [9] M. Hirsch, Stability of compact leaves of foliations, Dynamical Systems, Acad. press, (1971), 135-155.
- [10] H. Seifert, Closed integral curves in 3-spaces and isotopic two dimensional deformations, Proc. Amer. Math. Soc., 1 (1950), 287-302.