K-ring of the orbit spaces of spheres by finite free actions

Dedicated to professor Hirosi Toda on his 60 th birthday

By

Tsunekazu Kambe

1. Introduction

If a finite group G operates freely on a sphere S^{n} and the operation is piecewise linear, then its quotient space S^{n} / G is a $P L$-manifold and K-ring $K\left(S^{n} / G\right)$ is defined. The purpose of this paper is to give a complete description of $K\left(S^{n} / G\right)$ by terms of the representation ring of $G, R(G)$. This is obtained by showing that Atiyah's conjecture in [1] is true for the Artin-Tate groups (with periodic cohomology). We may consider the Atiyah's conjecture in two steps.
(A) For p-group G, universal cycles in the Atiyah's spectral sequence $H^{*}(G) \Rightarrow \widehat{R(G)}$ are generated by Chern classes of representations of G.
(B) If p-group G_{p} satisfies (A), then for every group G which contains G_{p} as a p-Sylow subgroup, p-primary component in universal cycles in the spectral sequence $H^{*}(G) \Rightarrow \widehat{R(G)}$ is generated by Chern classes of representations of G. I believe that (A) is still an unsolved problem. We prove that (B) is true for G_{p} which is isomorphic to a cyclic group or a generalized quaternion group but (B) is not true in general.

2. Filtrations in K-theory

For any finite $C W$-complex X, there are two impotant filtrations in $K(X)$. One is called the ordinary filtration; the subgroup $K_{q}(X)$ is defined as the kernel of the restriction homomorphism $K(X) \rightarrow K\left(X_{q-1}\right)$ where X_{q-1} is the $(q-1)$-skeleton of X. Another is called the γ-filtration; $K_{2 q}^{\gamma}(X)$ is defined as the subgroup generated by the monomials,

$$
\gamma^{n_{1}}\left(\tau_{1}\right) \cdot \gamma^{n_{2}}\left(\tau_{2}\right) \cdots \cdots \gamma^{n_{k}}\left(\tau_{k}\right), \tau_{i} \in \tilde{K}(X)
$$

and $\sum n_{i} \geqq q$ where $\gamma^{n_{i}}$ is the γ-operation on $K(X)$. It is well known that the both filtrations make $K(X)$ filtered rings and satisfy the relation; $K_{2 q}^{y}(X) \subseteq K_{2 q}(X)$. We want to get a sufficient condition being $K_{2 q}^{\gamma}(X)=K_{2 q}(X)$. For this, we shall proceed to describe the geometric meaning of γ^{i}-operation. Let $B_{U(n)}$ be the classifying space of n-dimensional complex vector bundles and Γ^{n} be the universal

[^0]bundle over $B_{U(n)}$. Let T^{n} be the maximal torus in $U(n)$. Let $\pi_{i}: B_{T^{n}}=B_{S^{1}} \times \cdots$ $\times B_{S^{1}}=\boldsymbol{C} \boldsymbol{P}^{\infty} \times \cdots \times \boldsymbol{C} \boldsymbol{P}^{\infty} \rightarrow \boldsymbol{C} \boldsymbol{P}^{\infty}$ be the projection on i-th factor and $\xi_{i}=\pi_{i}^{\prime}(\xi)$ where ξ is the canonical line bundle over $C P^{\infty}$. Let $i: B_{T^{n}} \rightarrow B_{U(n)}$ be the map induced by the natural inclusion map $T^{n} \rightarrow U(n)$. Then $i^{!}\left(\Gamma^{n}\right)$ $=\xi_{1} \oplus \xi_{2} \oplus \cdots \oplus \xi_{n}$, and for the i-th Chern class $c_{i}\left(\Gamma^{n}\right)$ of $\Gamma^{n}, i^{*} c_{i}\left(\Gamma^{n}\right)$ is the i-th elementary symmetric function of $c_{1}\left(\xi_{i}\right)$. Put $\sigma_{i}=\xi_{i}-1$, then $\gamma^{0}\left(\sigma_{i}\right)=1, \gamma^{1}\left(\sigma_{i}\right)$ $=\sigma_{i}$ and $\gamma^{j}\left(\sigma_{i}\right)=0$ for $j>1$. Hence the sum formula of γ-operation implies $\gamma^{i}\left(\xi_{1} \oplus \xi_{2} \oplus \cdots \oplus \xi_{n}-n\right)=\gamma^{i}\left(\sigma_{1}+\sigma_{2}+\cdots+\sigma_{n}\right)=i$-th elementary symmetric function of $\sigma_{j}, j=1,2, \cdots, n$. Since $H^{2 i+1}\left(B_{T^{n}}\right)=0$, the Atiyah-Hirzebruch spectral sequence $H^{*}\left(B_{T^{n}}\right) \Rightarrow K\left(B_{T^{n}}\right)$ is trivial, (Note that $K\left(B_{T^{n}}\right)$ is considerd as a K-ring of a sufficient large skeleton of $B_{T^{n}}$), and so we have an isomorphism; $\varphi: H^{2 i}\left(B_{T^{n}}\right) \rightarrow K_{2 i}\left(B_{T^{n}}\right) / K_{2 i+2}\left(B_{T^{n}}\right)$. Clearly $\quad \varphi\left(c_{1}\left(\xi_{i}\right)\right)=\sigma_{i} \quad$ and $i^{*}: H^{*}\left(B_{U(n)}\right) \rightarrow H^{*}\left(B_{T^{n}}\right) \quad$ is injective, we obtain $\varphi\left(c_{i}\left(\Gamma^{n}\right)\right)=\left[\gamma^{i}\left(\Gamma^{n}\right.\right.$ $-n)] \in K_{2 i}\left(B_{U(n)}\right) / K_{2 i+2}\left(B_{U(n)}\right)$ by the naturality of the spectral sequence, Chern classes and γ^{i}-operations. It follows that for a vector bundle η over $X, c_{i}(\eta)$ is an universal cycle in the Atiyah-Hirzebruch spactral sequence and $\varphi\left(c_{i}(\eta)\right)=\gamma_{i}(\eta$ $-\operatorname{dim} \eta$). This shows the following proposition.

Proposition 1. If $H^{\text {even }}(X)=\sum_{i} H^{2 i}(X)$ is generated by Chern classes of vector bundle over X, then $K_{2 q}^{\gamma}(X)=K_{2 q}(X)$.

Let G be a finite group. Let $\rho: G \rightarrow U(n)$ be a representation of G and M_{ρ} be its representation module. Let B_{G} be a classifying space of G and $E_{G} \rightarrow B_{G}$ be the universal G-bundle. Then the associated vector bundle $E_{G} \times{ }_{G} M_{\rho} \rightarrow B_{G}$ is written by $\alpha(\rho)$. Recall that the i-th Chern class of $\rho, c_{i}(\rho) \in H^{2 i}(G)$ is defined to be the i th Chern class of $\alpha(\rho)$ by identifying $H^{*}\left(B_{G}\right)=H^{*}(G)$ where $H^{*}(G)$ is the cohomology ring of G with the coefficient group \boldsymbol{Z} on which G operates trivially. In view of the Whitney's sum formula, Chern class may be extended naturally for elements of the representation ring $R(G)$.

Let $f: G \times S^{2 n-1} \rightarrow S^{2 n-1}$ be a free $P L$-action and $S^{2 n-1} / G, f$ be the quotient space defined by f. Let $\alpha_{f}: R(G) \rightarrow K\left(S^{2 n-1} / G, f\right)$ be a homomorphism obtained by assigning to each representation module M, its associated vector bundle $S^{2 n-1}$ $\times_{G} M \rightarrow S^{2 n-1} / G, f$.

To state the following lemma, we recall the γ-filtration in $R(G)$ defined as in the case of $K(X)$. Let $I(G)$ be the kernel of the augmentation homomorphism $R(G) \rightarrow \boldsymbol{Z}$. Then $R_{2 n}^{\gamma}(G)$ is the ideal generated by monomials; $\gamma^{n_{1}}\left(\sigma_{1}\right) \cdots \gamma^{n_{k}}\left(\sigma_{k}\right)$ with $\sigma_{i} \in I(G)$ and $\sum_{n_{i}} \geqq n$.

Lemma 2. Let notations be as above and assumme that $H^{\text {even }}(G)$ is generated by Chern classes of representations of G. Then a ring homomorphism α_{f} induces an isomorphism; $R(G) / R_{2 n}^{\gamma}(G) \cong K\left(S^{2 n-1} / G, f\right)$.

Proof. G is necessary a Artin-Tate group and so $H^{*}(G)=H^{\text {even }}(G) . S^{2 n-1} / G$, f may be seen as a $(2 n-1)$-skeleton of B_{G} and so $H^{2 i}\left(S^{2 n-1} / G, f\right) \cong H^{2 i}(G)$ for i
$\leqq n-1$. If $c_{i}\left(\rho_{j}\right)$ generate $H^{*}(G)$, then $c_{i}\left(\alpha_{f}\left(\rho_{j}\right)\right)$ generate $H^{\text {even }}\left(S^{2 n-1} / G, f\right)$. It follows that using Atiyah-Hirzebruch spectral sequence, $\alpha_{f}\left(\gamma^{i}\left(\rho_{j}-\operatorname{dim} . \rho_{j}\right)\right)$ generate $K\left(S^{2 n-1} / G, f\right)$. Thus we have showed that α_{f} is surjective. Since α_{f} induces an isomorphism $R_{2 q}^{\gamma}(G) / R_{2 q+2}^{v}(G) \cong K_{2 q}\left(S^{2 n-1} / G, f\right) / K_{2 q+2}\left(S^{2 n-1} / G, f\right)$ $\left(=H^{2 q}(G)\right)$ for $q \leqq n-1$, we have Ker. $\alpha_{f}=R_{2 n}^{v}(G)$.

In the view of the lemma 2 , we review the cohomology of finite groups. $\quad H^{n}(G)$ is annihilated by the order of $G,|G|$, for all $n>0$. For each prime p, we denote by $H^{n}(G, p)$ the p-primary component of $H^{n}(G)$. Then $H^{n}(G)$ admits a primary decomposition; $H^{n}(G)=\sum_{p} H^{n}(G, p)$ where p ranges over the prime deviding $|G|$. Let G_{p} be a p-Sylow subgroup of G and $\operatorname{res}_{G_{p}}^{G}: H^{n}(G) \rightarrow H^{n}\left(G_{p}\right)$ the homomorphism induced by the restriction. It is well-known that $\operatorname{res}_{G_{p}}^{G}$ maps $H^{n}(G, p)$ isomorphically onto the set of G-invariant elements in $H^{n}\left(G_{p}\right)$ and the image is a direct summand of $H^{n}\left(G_{p}\right)$. Recall that an element $x \in H^{n}\left(G_{p}\right)$ is called G-invariant if for each $g \in G$ it satisfies the relation;

$$
\operatorname{res}_{\boldsymbol{G}_{p \cap g} G_{p} g^{-1}}^{G_{p}}(x)=\operatorname{res}_{G_{p} \cap G_{G_{p} g^{-1}}}^{G_{G_{p}}}\left(f_{g}^{*}(x)\right),
$$

where $f_{g}: g G_{p} g^{-1} \rightarrow G_{p}$ is defined by $f_{g}(h)=g^{-1} h g$ for $h \in g G_{p} g^{-1}$.
In the following two sections, we shall show that $H^{n}(G, p)$ is generated by Chern classes of representations of G if G_{p} is isomorphic to either a cyclic group or a generalized quaternion group.

3. Case for cyclic p-Sylow subgroups

Let C_{q} the cyclic group of order q and a be a generator, i.e. $\langle a\rangle=C_{q}$. Let $\rho_{q}: C_{q} \rightarrow U(1)$ be the representation defined by $\rho_{q}(a)=\exp (2 \pi i / q)$. Then the irreducible unitary representation of C_{q} is one of the i-time tensor product of ρ_{q}, $\rho_{q}^{i}, i=0,1, \ldots, q-1$ where ρ_{q}^{0} is the trivial representation written ordinarily by 1. If r divides q, C_{q} has unique subgroup of order r. i.e. $C_{r}=\left\langle a^{q / r}\right\rangle$. We denote by $\operatorname{res}_{C_{r}}^{\mathcal{C}_{q}}: R\left(C_{q}\right) \rightarrow R\left(C_{r}\right)$ the restriction homomorphism. Clearly we have $\operatorname{res}_{C_{r}}^{\mathcal{C}_{q}}\left(\rho_{q}\right)$ $=\rho_{r}$. Put $x=c_{1}\left(\rho_{q}\right) \in H^{2}\left(C_{q}\right) \cong Z / q$, then x generates multiplicatively $\tilde{H}^{*}\left(C_{q}\right)$ $=\boldsymbol{Z} / q(x)$. Note that for a finite group $G, c_{1}: \operatorname{Hom}(G, U(1)) \rightarrow H^{2}(G)$ is an isomorphism being $\operatorname{Hom}(G, U(1))$ the group defined by the tensor product. By the naturality of the Chern class, $c_{1}\left(\operatorname{res}_{C_{r}}^{\mathcal{C}_{q}}\left(\rho_{q}\right)\right)=c_{1}\left(\rho_{r}\right)=\operatorname{res}_{C_{r}}^{\mathcal{C}_{q}}\left(c_{1}\left(\rho_{q}\right)\right)$, and therefore $\operatorname{res}_{C_{r}}^{C_{q}}: H^{*}\left(C_{q}\right) \rightarrow H^{*}\left(C_{r}\right)$ is the natural projection.

Lemma 3. For every group G which contains $C_{p^{n}}$ as a normal p-Sylow subgroup, $H^{*}(G, p)$ is generated by the Chern class of the representation of G.

Proof. $H^{*}(G, p)$ is isomrophic to the subring $H^{*}\left(C_{p^{n}}\right)^{G / C_{p^{n}}}$ in $H^{*}\left(C_{p^{n}}\right)$ generated by G-invariant elements. Let C be the centralizer of $C_{p^{n}}$ in G, then obviously $H^{*}\left(C_{p^{n}}\right)^{G / C_{p n}}=H^{*}\left(C_{p^{n}}\right)^{G / C}$. Since the automorphism group of $C_{p^{n}}$ is isomorphic to the cyclic group of order $(p-1) p^{n}$ for odd prime and has an order of 2-power for $p=2, G / C$ is a cyclic group of the order s dividing $(p-1)$. Let \bar{g}
be a generator of G / C and $g^{-1} a g=a^{r}$. Then we have $(r, p)=1, r^{i} \not \equiv 1 \bmod (p)$ for $i<s$ and $r^{s} \equiv 1 \bmod (p)$. Put $x=c_{1}\left(\rho_{p^{n}}\right)$, then $f_{g}^{*}(x)=f_{g}^{*}\left(c_{1}\left(\rho_{p^{n}}\right)\right)=c_{1}\left(f_{g}^{!}\left(\rho_{p^{n}}\right)\right)$ $=c_{1}\left(\rho_{p^{n}}^{r}\right)=r \cdot c_{1}\left(\rho_{p^{n}}\right)=r \cdot x$. It follows that x^{m} is stable if and only if $r^{m} \equiv 1$ $\bmod (p)$ and so $m=k \cdot s$ for some k. At all, $H^{*}\left(C_{p^{n}}\right)^{G / C}$ is the subring generated by x^{s}. We see from the theorem of Burnside that there exists a normal subgroup H of C such that C is isomorphc to $C_{p^{n}} \times H$. Let μ be the representation of C defined by $\mu(a, h)=\exp \left(2 \pi i / p_{p^{n}}\right)$ and consider the induced representation κ of μ i.e. $\kappa=\operatorname{ind}_{C}^{G}(\mu)$. Then $\operatorname{res}_{C_{p n}}^{G}(\kappa)=\rho_{p^{n}} \oplus \rho_{p}^{r_{n}} \oplus \cdots \oplus \rho_{p^{n}}^{r s-1}$ and its Chern class is given by

$$
\begin{aligned}
c\left(\operatorname{res}_{C_{p n}}^{G}(\kappa)\right. & =c\left(\rho_{p^{n}}\right) c\left(\rho_{p}^{r} n\right) \cdots \cdots c\left(\rho_{p^{n}}^{r-1}\right) \\
& =(1+x)(1+r x) \cdots \cdots\left(1+r^{s-1} x\right) \\
& =1+r^{s(s-1) / 2} x^{s}=1+x^{s} .
\end{aligned}
$$

Thus, $c_{s}\left(\operatorname{res}_{C_{p n}}^{G}(\kappa)\right)$ generates $H^{*}\left(C_{p^{n}}\right)^{G / C}$ and therefore $c_{s}(\kappa)$ generates $H^{*}(G, p)$.
We proceed to the general case. Let $C_{p^{n}}$ be a p-Sylow subgroup of G and N, C denote the normalizer and centralizer of $C_{p^{n}}$, respectively. By the lemma 3, we have a representation κ of N which satisfies $c\left(\operatorname{res}_{C_{p n}}^{N}(\kappa)\right)=1+x^{s}, s=[N ; C]$. Consider the induced representation of κ, ind ${ }_{N}^{G}(\kappa)$. Then Mackey's decomposition theorem implies;
where E is a set of representatives for the double cosets $C_{p} n \cdot g \cdot N$. Let E_{i} be the subset of E which satisfies $C_{p^{n}} \cap g N g^{-1}=C_{p^{i}}$.

Lemma 4. $\operatorname{res}_{C_{p n n N g^{-1}}^{g N^{-1}}}\left(f_{g}^{!}(\kappa)\right)$ doesn't depend to $g \in E_{i}$ for a fixed i. That is, $\operatorname{res}_{p^{n} \cap g N g^{--1}}^{g N g^{-1}}\left(f_{g}^{!}(\kappa)\right)=\operatorname{res}_{C_{p i}}^{N}(\kappa)=\rho_{p^{i}} \oplus \cdots \oplus \rho_{p^{i}}^{r s-1}$.

Proof. Let D be the centralizer of $C_{p^{n}} \cap g C_{p^{n}} g^{-1}$ in G. Since $C_{p^{n}} g C_{p^{n}} g^{-1}$ $\subset D$ and $C_{p^{n}}$ is a p-Sylow subgroup of G, these are also p-Sylow subgroups of D. Therefore there is a $h \in D$ such that $h\left(g C_{p^{n}} g^{-1}\right) h^{-1}=C_{p^{n}}$ and so $h g \in N$. Now, for $y \in C_{p^{n}} \cap g N g^{-1}$, we have $\operatorname{res}_{C_{p n g N g^{-1}}^{g N g^{-1}}\left(f_{g}^{!}(\kappa)\right)(y)=\kappa\left(g^{-1} y g\right), ~(f)}$ $=\kappa\left(g^{-1} h^{-1} y g h\right)=\kappa\left((h g)^{-1} y(h g)\right)=\kappa(y)=\operatorname{res}_{C_{p i}}^{N}(\kappa)(y)$.

Theorem 1. For every G which contains $C_{p^{n}}$ as a p-Sylow subgroup, $H^{*}(G, p)$ is generated by Chern classes of representations of G.

Proof. Since $\operatorname{res}_{C_{p n}}^{G}\left(H^{*}(G)\right) \subset \operatorname{res}_{C_{p n}}^{N}\left(H^{*}(N)\right)$, in order to prove our theorem, it is enough to show that $\operatorname{res}_{C_{p^{n}}}^{N}\left(H^{*}(N)\right)$ is generated by Chern classes of representations of N which are the restriction of representations of G. We put σ $=\operatorname{ind}_{N}^{G}(\kappa), \quad \sigma^{\prime}=\operatorname{ind}_{N}^{G}(s)$, and we shall show that $\operatorname{res}_{c_{p n}}^{G}\left(c_{s}\left(\sigma-\sigma^{\prime}\right)\right)$ generates $\operatorname{res}_{C_{p n}}^{N}\left(H^{*}(N)\right)$. For this, we must to see that $\operatorname{res}_{C_{p n}}^{G}\left(c_{s}\left(\sigma-\sigma^{\prime}\right)\right)$ is a generator of $H^{2 s}\left(C_{p^{n}}\right)$. Cleraly for above, it is sufficient to see that $\operatorname{res}_{c_{p}}^{G}\left(c_{s}\left(\sigma-\sigma^{\prime}\right)\right)$ is a generator of $H^{2 s}\left(C_{p}\right)$. We make a computation by using the Mackey's
decomposition theorem.

$$
\begin{aligned}
\operatorname{res}_{C_{p}}^{G}\left(\sigma-\sigma^{\prime}\right) & =\operatorname{res}_{C_{p}}^{G} \operatorname{ind}_{N}^{G}(\kappa-s) \\
& =\underset{g \in E}{ } \oplus_{\operatorname{ind}}^{C_{p n g g^{-1}}} \operatorname{res}_{C_{p} \cap g^{\prime} g^{-1}}^{\mathcal{C}_{p}}\left(f_{g}^{!}(\kappa-s)\right)
\end{aligned}
$$

where E is a set of representatives for the double cosets $C_{p} g N$. Putting E_{0} $=\left\{g \in E \mid C_{p} \cap g N g^{-1}=\{e\}\right\}, E_{1}=\left\{g \leftarrow E \mid C_{p} \cap g N g^{-1}=C_{p}\right\}$, we have $\operatorname{res}_{C_{p}}^{G}\left(\sigma-\sigma^{\prime}\right)$
$=\underset{g \in E_{1}}{\oplus} \operatorname{ind}_{C_{p}}^{C_{p}} \operatorname{res}_{C_{p}}^{g g^{-1}}(\kappa-s)=\underset{g \in E_{1}}{\bigoplus} \operatorname{res}_{C_{p}}^{N}(\kappa-s)$, where the last equation follows from the lemma 4. Let α_{i} be the number of elements in E_{i} for $i=0,1$. Since the number of left cosets of C_{p} in $C_{p} g N$ is $\left[N: N \cap g^{-1} C_{p} g\right.$], we have $|G|=|N| \cdot p \cdot \alpha_{0}$ $+\left[N: C_{p}\right] \cdot p \cdot \alpha_{1}$ and so $[G: N]=p \cdot \alpha_{0}+\alpha_{1}$. It follows α_{1} is prime to p. We are now ready to compute the Chern class.

$$
\begin{aligned}
c\left(\operatorname{res}_{C_{p}}^{G}\left(\sigma-\sigma^{\prime}\right)\right) & =c\left(\alpha_{1}(\kappa-s)\right)=c(\kappa-s)^{\alpha_{1}} \\
& =c\left(\rho_{p}+\rho_{p}^{r}+\cdots+\rho_{p}^{s-1}-s\right)^{\alpha_{1}} \\
& =\left(1+x^{s}\right)^{\alpha_{1}}=1+\alpha_{1} \cdot x^{s}+\text { higher terms }
\end{aligned}
$$

where $x=c_{1}\left(\rho_{p}\right)$. It follows that $c_{s}\left(\sigma-\sigma^{\prime}\right)$ generates $H^{*}(G, p)$.

4. Case for generalized quaternion groups.

The generalized quaternion group of order $2^{m}, m \geqq 3$, has a presentation;

$$
Q_{2^{m}}=\left\langle a, b ; a^{2 m-2}=b^{2}, \operatorname{bad}^{-1}=a^{-1}\right\rangle
$$

$Q_{2^{m}}$ has four one-dimensional irreducible representations, $\xi_{0}=1, \xi_{1}, \xi_{2}, \xi_{3}$, defined by $\xi_{1}(a)=1, \xi_{1}(b)=-1 ; \xi_{2}(a)=-1, \quad \xi_{2}(b)=1 ; \xi_{3}(a)=-1, \quad \xi_{3}(b)=$ -1 . Other irreducible representations have the dimension 2 and given by

$$
\zeta_{r}(a)=\left[\begin{array}{cc}
\exp \left(2 \pi r i / 2^{m-1}\right) & 0 \\
0 & \exp \left(-2 \pi r i / 2^{m-1}\right)
\end{array}\right], \quad \zeta_{r}(b)=\left[\begin{array}{cc}
0 & (-1)^{r} \\
1 & 0
\end{array}\right]
$$

$r=1,2, \ldots, 2^{m-2}-1$. Put $c_{1}\left(\xi_{1}\right)=x, c_{1}\left(\xi_{2}\right)=y, c_{2}\left(\zeta_{1}\right)=z$. Then $c\left(\zeta_{1}\right)=1+z$ because $c_{1}\left(\zeta_{1}\right)=c_{1}\left(\operatorname{det} . \zeta_{1}\right)=c_{1}\left(\zeta_{0}\right)=0$. For simplicity we use the notation Q instead of $Q_{2 m}$. The cohomology of Q is as follows; $H^{2}(Q)=\boldsymbol{Z} / 2+\boldsymbol{Z} / 2, H^{4}(Q)$ $=\boldsymbol{Z} / 2^{m}, H^{2 i+1}(Q)=0$, and a generator of $H^{4}(Q)$ gives the periodicity, i.e. $H^{i+4}(Q)$. Since $\operatorname{res}_{\langle a\rangle}^{Q}\left(\xi_{1}\right)=\rho_{2^{m-1}}^{0}, \operatorname{res}_{\langle b\rangle}^{Q}\left(\xi_{1}\right)=\rho_{4}^{2}, \operatorname{res}_{\langle a\rangle}^{Q}\left(\xi_{2}\right)=\rho_{2 m-1}^{2 m-2}, \operatorname{res}_{\langle b\rangle}^{Q}\left(\xi_{2}\right)$ $=\rho_{4}^{0}, \quad H^{2}(Q)=\boldsymbol{Z} / 2+\boldsymbol{Z} / 2 \quad$ is generated by $x, \quad y . \quad \operatorname{res}_{\left\langle b^{2}\right\rangle}^{Q}(z)=\operatorname{res}_{\left\langle b^{2}\right\rangle}^{\alpha}\left(c_{2}\left(\zeta_{1}\right)\right)$ $=c_{2}\left(\operatorname{res}_{\left\langle b^{2}\right\rangle}^{\varrho}\left(\zeta_{1}\right)\right)=c_{2}\left(\rho_{2}+\rho_{2}\right)=c_{1}\left(\rho_{2}\right)^{2}$ is a generator of $H^{4}\left(C_{2}\right)$ and hence z is a generator of $H^{4}(Q)$. Making a similar cmputation, we obtain the relations x^{2} $=y^{2}=0, x y=2^{m-1} z$.

Theorem 2. If a 2-Sylow subgroup of G is isomorphic to the generalized quaternion group, then $H^{*}(G, 2)$ is generated by Chern classes of representations of G.

Proof. $H^{2}(G)$ is always generate by Chern classes of 1-dimensional representations of G. We consider $H^{4}(G)$ and prove that $H^{4}(G, 2)=\boldsymbol{Z} /{ }_{2}$, and it is generated by Chern classes. Now $H^{*}(G, 2)$ has the periodicity with the cup product by the generator of $H^{4}(G, 2)$, and our theorem will be proved. In order to prove above assertion, it is sufficient to costruct a representation η of G such that $\operatorname{res}_{Q}^{G} c_{2}(\eta)$ is a generator of $H^{4}(Q)$. Furthermore, for this, it is enough to show that $\operatorname{res}_{\left\langle a^{2 m-1}\right\rangle}^{G} c_{2}(\eta)$ is a non-zero element in $H^{4}\left(C_{2}\right)$ because $H^{4}(G, 2)$ is a direct summand of $H^{4}(Q)$. Let N be the normalizer of $\langle a\rangle$ in G. Then N contains Q and there is a normal subgroup T of N such that $Q=N / T$, [2]. We define a representation η^{\prime} of N by the composition $\zeta_{1} \circ \pi: N \rightarrow N / T=Q \rightarrow U(2)$ where π is the natural projection. We put $\eta=\operatorname{ind}_{N}^{G}\left(\eta^{\prime}-2\right)$. By the Mackey's decomposition theorem, we have

$$
\begin{aligned}
\operatorname{res}_{C_{2}}^{G}(\eta) & =\operatorname{res}_{C_{2}}^{G}\left(\operatorname{ind}_{N}^{G}\left(\eta^{\prime}-2\right)\right) \\
& =\underset{g \in E}{\oplus} \operatorname{ind}_{C_{2} \cap g N^{-1}}^{C_{2}} \operatorname{res}_{C_{2} \cap g N g^{-1}}^{g N g^{-1}}\left(f_{g}^{!}\left(\eta^{\prime}-2\right)\right) \\
& =\bigoplus_{g \in E_{1}} \operatorname{res}_{C_{2}}^{g N g^{-1}}\left(f_{g}^{!}\left(\eta^{\prime}-2\right)\right)
\end{aligned}
$$

where E is a set of representatives for the double cosets $C_{2} g N$ and E_{1} $=\left\{g \in E \mid C_{2} \cap g N g^{-1}=C_{2}\right\}$. As in the proof of the theorem 1, the number α_{1} of elements in E_{1} is prime to 2 . Since an automorphism or C_{2} is trivial, we have

$$
\begin{aligned}
c\left(\operatorname{res}_{C_{2}}^{G}(\eta)\right) & =c\left(\gamma_{1}\left(\operatorname{res}_{C_{2}}^{Q}\left(\zeta_{1}-2\right)\right)\right)=c\left(\rho_{2}+\rho_{2}-2\right)^{\alpha_{1}} \\
& =1+\alpha_{i} c_{1}\left(\rho_{2}\right)^{2}+\text { higher terms } .
\end{aligned}
$$

From this $c_{2}\left(\operatorname{res}_{C_{2}}^{G}(\eta)\right)$ is a generator of $H^{4}\left(C_{2}\right)$ and the theorem is proved.

5. Main theorem and examples

It is well-known that if a group G operates freely on a sphere, each p-Sylow subgroup of G is either cyclic or is a generalized quoternion group. Then from lemma 2, theorem 1 and theorem 2 , we have

Theorem 3. Let $f: G \times S^{2 n-1} \rightarrow S^{2 n-1}$ be a free PL-action of a finite group G on a S^{n-1}. Then $\alpha_{f}: R(G) \rightarrow K\left(S^{2 n-1} / G, f\right)$ induces an isomorphism; $R(G) / R_{2 n}^{\nu}(G)$ $\cong K\left(S^{2 n-1} / G, f\right)$.
If a sphere has an even dimension, then because of well-known fixed point theorem, every element $g \in G, g \neq e$, must reverse the orientation of the sphere. Therefore non-trivial such group G is only C_{2}. For this case, the methods proving theorem 3 is applicable, and we have $K\left(S^{2 n} / C_{2}\right) \cong R\left(C_{2}\right) / R_{2(n+1)}^{\gamma}$ $\left(C_{2}\right) \cong R\left(C_{2}\right) / I\left(C_{2}\right)^{n+1} \cong K\left(R P^{2 n}\right)$.

Proposition 5. For an Artin-Tate group G, we have an isomorphism; $H^{2 i}(G) \cong$ $R_{2 i}^{\gamma}(G) / R_{2(i+1)}^{\gamma}(G)$.

Proof. This is also a corollary of proposition 1, theorem 1 and 2.
As an application of the theorem 3, we compute some K-groups of orbit space of sphere. Let $\boldsymbol{Z}_{p, q}$ be the metacyclic group defined by

$$
\boldsymbol{Z}_{p, q}=\left\langle a, b \mid a^{p}=b^{q}=e, b a b^{-1}=a^{s}\right\rangle
$$

where p, q are odd primes and $(s-1, p)=1$ and s is a primitive q-th root of 1 $\bmod p . \quad Z_{p, q}$ cannot operate linealy on a sphere without fixed point. But T. Petrie proved in [4] that $Z_{p, q}$ can operate on $S^{2 q-1}$ freely and differentiably. Let $f: Z_{p, q} \times S^{2 q-1} \rightarrow S^{2 q-1}$ be its operation. Then considering $S^{2 n q-1}$ as n-times join of $S^{2 q-1}$, an operation $f_{n}: Z_{p, q} \times S^{2 n q-1} \rightarrow S^{2 n q-1}$ is defined by

$$
f_{n}\left(g, t_{1} x_{1} \oplus t_{2} x_{2} \oplus \cdots \cdots \oplus t_{n} x_{n}\right)=t_{1} f\left(g, x_{1}\right) \oplus t_{2} f\left(g, x_{2}\right) \oplus \cdots \cdots \oplus t_{n} f\left(g, x_{n}\right)
$$ where $\sum t_{i}=1, g \in \boldsymbol{Z}_{p, q}, x_{i} \in S^{2 q-1}$.

This operatin f_{n} is free and piecewise linear. We want to determine the group extension of $\widetilde{K}\left(S^{2 n q-1} / \boldsymbol{Z}_{p, q}, f_{n}\right)$. Clearly it is the direct sum of p and q-primary component. The q-primary component is isomorphic to $\tilde{K}\left(S^{2 n q-1} / C_{q}\right)$ from the fact that $\operatorname{res}_{C_{q}}^{Z_{p, q}}: H^{*}\left(\boldsymbol{Z}_{p, q}\right) \rightarrow H^{*}\left(C_{q}\right)$ is an isomorphism for q-primary component and its group extension was determined in [3]. Lets consider the p-primary component. Put

$$
\tau=\operatorname{res}_{C_{p}}^{Z_{p, q}} \operatorname{ind}_{C_{p}^{p}}^{Z_{p, q}}\left(\rho_{p}\right)-q .
$$

Proposition 6. p-primary component of $\tilde{K}\left(S^{2 n q-1} / Z_{p, q}\right)$ is generated by $\gamma^{q}(\tau)^{i}, i$ $=1,2, \ldots, t=(p-1) / q$ and isomorphic to

$$
\left(Z / p^{s+1}\right)^{r}+\left(Z / p^{s}\right)^{t-r}
$$

where $n-1=s t+r, 0 \leqq r<t$.
Proof. $H^{*}\left(\boldsymbol{Z}_{p, q}, p\right)$ is generated by $c_{q}(\tau+q)$, and so p-primary component of $R_{2 q}^{\gamma}\left(Z_{p, q}\right) / R_{(q+1)}^{\gamma}\left(Z_{p, q}\right)=Z / p$ is generated by $\gamma^{q}(\tau)$ and hence $\gamma^{q}(\tau)^{i}, i=1,2, \ldots$ generate p-primary component of $\tilde{K}\left(S^{2 n q-1} / Z_{p, q}\right)$ and $\gamma^{q}(\tau)^{n}=0$. Now in the Atiyah-Hirzebruch spactral sequence, $\varphi\left(c_{p-1}\left(\sum_{1=0}^{p-1} \rho_{p}^{i}-p\right)\right)=(-1)^{p-2}(p-2)$! $\left[\sum_{i=0}^{p-1} \rho_{p}^{i}-p\right] \in R_{2(p-1)}\left(C_{p}\right) / R_{2 p}\left(C_{p}\right)$ and $c_{p-1}\left(\sum_{i=0}^{p-1} \rho_{p}^{i}-p\right)=-c_{1}\left(\rho_{p}\right)^{p-1}$. It follows $\gamma^{q}(\tau)^{t}=-(p-2)!\left(\sum_{i=0}^{p-1} \rho_{p}^{i}-p\right) \bmod \gamma^{q}(\tau)^{t+1}$. Multiplying $\gamma^{q}(\tau)$ on this equation, we have $\gamma^{q}(\tau)^{t+1}=(p-2)!p \gamma^{q}(\tau) \bmod \gamma^{q}(\tau)^{t+2}$. It follows from the induction augument that $\gamma^{q}(\tau)^{i}, i=1,2, \ldots, t$ generate additively p-primary component of $\tilde{K}\left(S^{2 n q-1} / Z_{p, q}\right)$ which has the order p^{n-1}. It is clear that the order of $\gamma^{q}(\tau)^{i} \leqq$ the order of $\sigma^{q i}=\left(\rho_{p}-1\right)^{q i}$. The order of $\sigma^{q i}$ is from [3] p^{s+1} for $i \leqq r$ and p^{s} for i $>r$. Now it is easy to see that the order of $\gamma^{q}(\tau)^{i}$ must be just one of $\sigma^{q i}$ and the extension is determined.

6. A counterexample of odd primary component for Atiyah's conjecture

The Atiysh's filtration conjecture in [1] is equivarent to the fact that in the Atiyah's spectral sequence $H^{*}(G) \Rightarrow \widehat{R(G)}$, universal cycles are generated by Chern classes of representations of G. Theorem 1 and 2 imply specially that his conjecture consists for the Artin-Tate groups. In [6], E. weiss gave a counterexample examining 2 -Sylow subgroup of the alternating group A_{4} C. B. Thomas extended his augument for 2 -Sylow subgroup of projective special linear groups. In this section, we show that 2 is not special prime for the Atiyah's conjecture.

As seen in [1], for an odd prime $p, H^{*}\left(C_{p} \times C_{p}\right)=p(x, y) \otimes E(z)$, deg. x $=\operatorname{deg} . y=2$, deg. $z=3$. We see easily x, y being first Chern classes of representations of $C_{p} \times C_{p}$ and therefore $H^{\text {even }}\left(C_{p} \times C_{p}\right)$ is generated by Chern classes of representations.

Proposition 7. There exists a group G which contains $C_{3} \times C_{3}$ as 3 -Sylow subgroup and $H^{*}(G)$ has an element which is not expressible by Chern classes but an universal cycle in the Atiyah's spectral sequence.

Proof. We define a group G by the following presentation,

$$
G=\left\langle a, b, c \mid a^{3}=b^{3}=c^{4}=e, a b=b a, c a c^{-1}=a b, c a c^{-1}=a b^{-1}\right\rangle
$$

3-Sylow subgroup of G is normal and isomrophic to $C_{3} \times C_{3}$. Let σ_{1}, σ_{2} be irreducible representations of $C_{3} \times C_{3}$ defined by $\sigma_{1}(a)=\omega, \sigma_{1}(b)=1, \sigma_{2}(a)=1$, $\sigma_{2}(b)=\omega$ where $\omega=\exp (2 \pi i / 3)$. Then an irreducible representation of $C_{3} \times C_{3}$ is one of $\sigma_{1}^{i} \otimes \sigma_{2}^{j}, i, j=1,2,3$. G has four 1 -dimensional representation defined by the composite of the natural projection $G \rightarrow G / C_{3} \times C_{3}=C_{4}$ and one of C_{4}. G has two 4-dimensional irreducible representations $\operatorname{ind}_{C_{3} \times C_{3}}^{G}\left(\sigma_{1}\right)=\kappa_{1}$, ind $C_{C_{3} \times C_{3}}^{G}\left(\sigma_{2}\right)$ $=\kappa_{2}$. On the other hand, we have

$$
H^{*}(G)=H^{*}\left(C_{3} \times C_{3}\right)^{C_{4}} \oplus H^{*}\left(C_{4}\right)
$$

where the first component implies the subring of $H^{*}\left(C_{3} \times C_{3}\right)$ generated by invariant elements for the action of C_{4}. Put $x=c_{1}\left(\sigma_{1}\right)$ and $y=c_{1}\left(\sigma_{2}\right)$. Since $f_{c}^{!}\left(\sigma_{1}\right)(a)=\sigma_{1}\left(\mathrm{cac}^{-1}\right)=\sigma_{1}(a b)=\omega, \quad f_{c}^{!}\left(\sigma_{1}\right)(b)=\sigma_{1}\left(a b^{-1}\right)=\omega, \quad$ we have $f_{c}^{!}\left(\sigma_{1}\right)$ $=\sigma_{1} \otimes \sigma_{2}$. Similarly we have $f_{c}^{!}\left(\sigma_{2}\right)=\sigma_{1} \otimes \sigma_{2}^{-1}$. It follows $f_{c}^{*}(x)=f_{c}^{*}\left(c_{1}\left(\sigma_{1}\right)\right)$ $=c_{1}\left(f_{c}^{!}\left(\sigma_{1}\right)\right)=c_{1}\left(\sigma_{1} \otimes \sigma_{2}\right)=c_{1}\left(\sigma_{1}\right)+c_{1}\left(\sigma_{2}\right)+x+y \quad$ and \quad similarly $\quad f_{c}^{*}(y)=x$ $-y$. Therefore, $H^{*}\left(C_{3} \times C_{3}\right)^{C_{4}}$ consists of polynomials $p(x, y)$ satisfing the relation $p(x, y)=p(x+y, x-y)$. As easily seen,

$$
\kappa_{1}(a)=\left[\begin{array}{cccc}
\omega & 0 & 0 & 0 \\
0 & \omega & 0 & 0 \\
0 & 0 & \omega^{-1} & 0 \\
0 & 0 & 0 & \omega^{-1}
\end{array}\right] \kappa_{2}(b)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \omega & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & \omega^{-1}
\end{array}\right]
$$

Then we have $\operatorname{res}_{C_{3} \times C_{3}}^{G}\left(\kappa_{1}\right)=\sigma_{1}+\sigma_{1} \otimes \sigma_{2}+\sigma_{1}^{-1}+\sigma_{1}^{-1} \otimes \sigma_{2}^{-1}$. Similarly, $\operatorname{res}_{C_{3} \times C_{3}}^{G}\left(\kappa_{2}\right)=\sigma_{2}+\sigma_{1} \otimes \sigma_{2}^{-1}+\sigma_{1}^{-1}+\sigma_{2}^{-1}+\sigma_{1}^{-1} \otimes \sigma_{2}$. Therefore 3-primary component of the total Chern class of κ_{1}, κ_{2} are as follows;

$$
\begin{aligned}
c\left(\kappa_{1}\right) & =(1+x)(1+x+y)(1-x)(1-x-y) \\
& =1+\left(x^{2}+x y-y^{2}\right)+\left(x^{4}-x^{3} y+x^{2} y^{2}\right) \\
c\left(\kappa_{2}\right) & =(1+y)(1+x-y)(1-y)(1-x+y) \\
& =1-\left(x^{2}+x y-y^{2}\right)+\left(y^{4}+x y^{3}+x^{2} y^{2}\right)
\end{aligned}
$$

Consider a polynomial $x^{3} y-x y^{3}=x y(x+y)(x-y)$ in $H^{8}\left(C_{3} \times C_{3}\right)^{C_{4}}$. We can see immediately that $x^{3} y-x y^{3}$ is not gotten by the linear combination of $\left(x^{2}+\right.$ $\left.x y-y^{2}\right)^{2}=x^{4}-x^{3} y-x^{2} y^{2}+x y^{3}+y^{4}, x^{4}-x^{3} y+x^{2} y^{2}$ and $y^{4}+x y^{3}+x^{2} y^{2}$. $x^{3} y-x y^{3}$ is an universal cycle in the Atiyah's spectral sequence $H^{*}\left(C_{3} \times C_{3}\right) \Rightarrow$ $R\left(\overline{C_{3} \times C_{3}}\right)$ because x, y are Chern classes. By the naturality of the spectral sequence, $x^{3} y-x y^{3}$ in $H^{*}(G)$ is also an universal cycle.

Department of Mathematics Nara Women's University

References

[1] M. F. Atiyah, Chracters and cohomology of finite groups, Publ. Math. de l'IHES, 9 (1961), 23-64
[2] L. Dornhoff, Group representation theory Part A, Pure and applied mathematics (1971).
[3] T. Kambe, The structure of K_{Λ}-rings of the lens space and their applications, J. M. S. of Japan, 18 (1966), 135-146.
[4] T. Petrie, Free matacyclic group actions on homotopy spheres, Ann. of Math. 94 (1971), 108124.
[5] C. B. Thomas, Filtrations on the representation ring of a finite group, A. M. S. Volume 19 (1983), 397-404
[6] E. A. Weiss, Bonner Mathematische Schriften, (1969)

[^0]: Communicated by Prof. H. Toda March 15, 1989

