K-ring of the orbit spaces of spheres by finite free actions

Dedicated to professor Hirosi Toda on his 60th birthday

By

Tsunekazu KAMBE

1. Introduction

If a finite group G operates freely on a sphere S^n and the operation is piecewise linear, then its quotient space S^n/G is a *PL*-manifold and *K*-ring $K(S^n/G)$ is defined. The purpose of this paper is to give a complete description of $K(S^n/G)$ by terms of the representation ring of G, R(G). This is obtained by showing that Atiyah's conjecture in [1] is true for the Artin-Tate groups (with periodic cohomology). We may consider the Atiyah's conjecture in two steps.

(A) For *p*-group G, universal cycles in the Atiyah's spectral sequence $H^*(G) \Rightarrow \widehat{R(G)}$ are generated by Chern classes of representations of G.

(B) If p-group G_p satisfies (A), then for every group G which contains G_p as a p-Sylow subgroup, p-primary component in universal cycles in the spectral sequence $H^*(G) \Rightarrow \widehat{R}(G)$ is generated by Chern classes of representations of G. I believe that (A) is still an unsolved problem. We prove that (B) is true for G_p which is isomorphic to a cyclic group or a generalized quaternion group but (B) is not true in general.

2. Filtrations in K-theory

For any finite *CW*-complex X, there are two impotant filtrations in K(X). One is called the ordinary filtration; the subgroup $K_q(X)$ is defined as the kernel of the restriction homomorphism $K(X) \rightarrow K(X_{q-1})$ where X_{q-1} is the (q-1)-skeleton of X. Another is called the γ -filtration; $K_{2q}^{\vee}(X)$ is defined as the subgroup generated by the monomials,

$$\gamma^{n_1}(\tau_1) \cdot \gamma^{n_2}(\tau_2) \cdots \gamma^{n_k}(\tau_k), \ \tau_i \in \widetilde{K}(X)$$

and $\sum n_i \ge q$ where γ^{n_i} is the γ -operation on K(X). It is well known that the both filtrations make K(X) filtered rings and satisfy the relation; $K_{2q}^{\gamma}(X) \subseteq K_{2q}(X)$. We want to get a sufficient condition being $K_{2q}^{\gamma}(X) = K_{2q}(X)$. For this, we shall proceed to describe the geometric meaning of γ^i -operation. Let $B_{U(n)}$ be the classifying space of *n*-dimensional complex vector bundles and Γ^n be the universal

Communicated by Prof. H. Toda March 15, 1989

bundle over $B_{U(n)}$. Let T^n be the maximal torus in U(n). Let $\pi_i: B_{T^n} = B_{S^1} \times \cdots$ $\times B_{S^1} = CP^{\infty} \times \cdots \times CP^{\infty} \to CP^{\infty}$ be the projection on *i*-th factor and $\xi_i = \pi_i^i(\xi)$ where ξ is the canonical line bundle over CP^{∞} . Let $i: B_{T^n} \to B_{U(n)}$ be the map induced by the natural inclusion map $T^n \rightarrow U(n)$. Then $i^{!}(\Gamma^{n})$ $= \xi_1 \bigoplus \xi_2 \bigoplus \cdots \bigoplus \xi_n$, and for the *i*-th Chern class $c_i(\Gamma^n)$ of Γ^n , $i^*c_i(\Gamma^n)$ is the *i*-th elementary symmetric function of $c_1(\xi_i)$. Put $\sigma_i = \xi_i - 1$, then $\gamma^0(\sigma_i) = 1$, $\gamma^1(\sigma_i)$ $= \sigma_i$ and $\gamma^j(\sigma_i) = 0$ for j > 1. Hence the sum formula of γ -operation implies $\gamma^{i}(\xi_{1} \oplus \xi_{2} \oplus \cdots \oplus \xi_{n} - n) = \gamma^{i}(\sigma_{1} + \sigma_{2} + \cdots + \sigma_{n}) = i$ -th elementary symmetric function of σ_i , $j = 1, 2, \dots, n$. Since $H^{2i+1}(B_{T^n}) = 0$, the Atiyah-Hirzebruch spectral sequence $H^*(B_{T^n}) \Rightarrow K(B_{T^n})$ is trivial, (Note that $K(B_{T^n})$ is considerd as a K-ring of a sufficient large skeleton of B_{T^n} , and so we have an isomorphism; $\varphi: H^{2i}(B_{T^n}) \to K_{2i}(B_{T^n})/K_{2i+2}(B_{T^n})$. Clearly $\varphi(c_1(\xi_i)) = \sigma_i$ and $i^*: H^*(B_{U(n)}) \to H^*(B_{T^n})$ is injective, we obtain $\varphi(c_i(\Gamma^n)) = \lceil \gamma^i(\Gamma^n) \rceil$ (-n)] $\in K_{2i}(B_{U(n)})/K_{2i+2}(B_{U(n)})$ by the naturality of the spectral sequence, Chern classes and γ^i -operations. It follows that for a vector bundle η over X, $c_i(\eta)$ is an universal cycle in the Atiyah-Hirzebruch spactral sequence and $\varphi(c_i(\eta)) = \gamma_i(\eta)$ $-\dim \eta$). This shows the following proposition.

Proposition 1. If $H^{\text{even}}(X) = \sum_{i} H^{2i}(X)$ is generated by Chern classes of vector bundle over X, then $K_{2a}^{\gamma}(X) = K_{2a}(X)$.

Let G be a finite group. Let $\rho: G \to U(n)$ be a representation of G and M_{ρ} be its representation module. Let B_G be a classifying space of G and $E_G \to B_G$ be the universal G-bundle. Then the associated vector bundle $E_G \times_G M_{\rho} \to B_G$ is written by $\alpha(\rho)$. Recall that the *i*-th Chern class of ρ , $c_i(\rho) \in H^{2i}(G)$ is defined to be the *i*th Chern class of $\alpha(\rho)$ by identifying $H^*(B_G) = H^*(G)$ where $H^*(G)$ is the cohomology ring of G with the coefficient group Z on which G operates trivially. In view of the Whitney's sum formula, Chern class may be extended naturally for elements of the representation ring R(G).

Let $f: G \times S^{2n-1} \to S^{2n-1}$ be a free *PL*-action and S^{2n-1}/G , f be the quotient space defined by f. Let $\alpha_f: R(G) \to K(S^{2n-1}/G, f)$ be a homomorphism obtained by assigning to each representation module M, its associated vector bundle S^{2n-1}/G , f.

To state the following lemma, we recall the γ -filtration in R(G) defined as in the case of K(X). Let I(G) be the kernel of the augmentation homomorphism $R(G) \rightarrow \mathbb{Z}$. Then $R_{2n}^{\gamma}(G)$ is the ideal generated by monomials; $\gamma^{n_1}(\sigma_1) \cdots \gamma^{n_k}(\sigma_k)$ with $\sigma_i \in I(G)$ and $\sum_{n_i} \geq n$.

Lemma 2. Let notations be as above and assume that $H^{\text{even}}(G)$ is generated by Chern classes of representations of G. Then a ring homomorphism α_f induces an isomorphism; $R(G)/R_{2n}^{\nu}(G) \cong K(S^{2n-1}/G, f)$.

Proof. G is necessary a Artin-Tate group and so $H^*(G) = H^{\text{even}}(G)$. S^{2n-1}/G , f may be seen as a (2n-1)-skeleton of B_G and so $H^{2i}(S^{2n-1}/G, f) \cong H^{2i}(G)$ for i

 $\leq n-1$. If $c_i(\rho_j)$ generate $H^*(G)$, then $c_i(\alpha_f(\rho_j))$ generate $H^{\text{even}}(S^{2n-1}/G, f)$. It follows that using Atiyah-Hirzebruch spectral sequence, $\alpha_f(\gamma^i(\rho_j - \dim, \rho_j))$ generate $K(S^{2n-1}/G, f)$. Thus we have showed that α_f is surjective. Since α_f induces an isomorphism $R_{2q}^{\gamma}(G)/R_{2q+2}^{\gamma}(G) \simeq K_{2q}(S^{2n-1}/G, f)/K_{2q+2}(S^{2n-1}/G, f)$ $(=H^{2q}(G))$ for $q \leq n-1$, we have Ker. $\alpha_f = R_{2n}^{\gamma}(G)$.

In the view of the lemma 2, we review the cohomology of finite groups. $H^n(G)$ is annihilated by the order of G, |G|, for all n > 0. For each prime p, we denote by $H^n(G, p)$ the p-primary component of $H^n(G)$. Then $H^n(G)$ admits a primary decomposition; $H^n(G) = \sum_p H^n(G, p)$ where p ranges over the prime deviding |G|. Let G_p be a p-Sylow subgroup of G and $\operatorname{res}_{G_p}^G : H^n(G) \to H^n(G_p)$ the homomorphism induced by the restriction. It is well-known that $\operatorname{res}_{G_p}^G$ maps $H^n(G, p)$ isomorphically onto the set of G-invariant elements in $H^n(G_p)$ and the image is a direct summand of $H^n(G_p)$. Recall that an element $x \in H^n(G_p)$ is called G-invariant if for each $g \in G$ it satisfies the relation;

$$\operatorname{res}_{G_p \cap gG_p g^{-1}}^{G_p}(x) = \operatorname{res}_{G_p \cap gG_p g^{-1}}^{gG_p g^{-1}}(f_g^*(x)),$$

where $f_q: gG_pg^{-1} \to G_p$ is defined by $f_q(h) = g^{-1}hg$ for $h \in gG_pg^{-1}$.

In the following two sections, we shall show that $H^n(G, p)$ is generated by Chern classes of representations of G if G_p is isomorphic to either a cyclic group or a generalized quaternion group.

3. Case for cyclic *p*-Sylow subgroups

Let C_q the cyclic group of order q and a be a generator, i.e. $\langle a \rangle = C_q$. Let $\rho_q: C_q \to U(1)$ be the representation defined by $\rho_q(a) = \exp(2\pi i/q)$. Then the irreducible unitary representation of C_q is one of the *i*-time tensor product of ρ_q , ρ_q^i , $i = 0, 1, \ldots, q - 1$ where ρ_q^0 is the trivial representation written ordinarily by 1. If r divides q, C_q has unique subgroup of order r. i.e. $C_r = \langle a^{q/r} \rangle$. We denote by $\operatorname{res}_{C_r}^{C_q}: R(C_q) \to R(C_r)$ the restriction homomorphism. Clearly we have $\operatorname{res}_{C_r}^{C_q}(\rho_q) = \rho_r$. Put $x = c_1(\rho_q) \in H^2(C_q) \cong Z/q$, then x generates multiplicatively $\tilde{H}^*(C_q) = Z/q(x)$. Note that for a finite group $G, c_1: \operatorname{Hom}(G, U(1)) \to H^2(G)$ is an isomorphism being $\operatorname{Hom}(G, U(1))$ the group defined by the tensor product. By the naturality of the Chern class, $c_1(\operatorname{res}_{C_r}^{C_q}(\rho_q)) = c_1(\rho_r) = \operatorname{res}_{C_r}^{C_q}(c_1(\rho_q))$, and therefore $\operatorname{res}_{C_r}^{C_q}: H^*(C_q) \to H^*(C_r)$ is the natural projection.

Lemma 3. For every group G which contains C_{p^n} as a normal p-Sylow subgroup, $H^*(G, p)$ is generated by the Chern class of the representation of G.

Proof. $H^*(G, p)$ is isomrophic to the subring $H^*(C_{p^n})^{G/C_{p^n}}$ in $H^*(C_{p^n})$ generated by G-invariant elements. Let C be the centralizer of C_{p^n} in G, then obviously $H^*(C_{p^n})^{G/C_{p^n}} = H^*(C_{p^n})^{G/C}$. Since the automorphism group of C_{p^n} is isomorphic to the cyclic group of order $(p-1)p^n$ for odd prime and has an order of 2-power for p = 2, G/C is a cyclic group of the order s dividing (p-1). Let \bar{g} be a generator of G/C and $g^{-1}ag = a^r$. Then we have (r, p) = 1, $r^i \neq 1 \mod (p)$ for i < s and $r^s \equiv 1 \mod (p)$. Put $x = c_1(\rho_{p^n})$, then $f_g^*(x) = f_g^*(c_1(\rho_{p^n})) = c_1(f_g^!(\rho_{p^n}))$ $= c_1(\rho_{p^n}^r) = r \cdot c_1(\rho_{p^n}) = r \cdot x$. It follows that x^m is stable if and only if $r^m \equiv 1 \mod (p)$ and so $m = k \cdot s$ for some k. At all, $H^*(C_{p^n})^{G/C}$ is the subring generated by x^s . We see from the theorem of Burnside that there exists a normal subgroup H of C such that C is isomorphc to $C_{p^n} \times H$. Let μ be the representation of C defined by $\mu(a, h) = \exp(2\pi i/p^n)$ and consider the induced representation κ of μ i.e. $\kappa = \operatorname{ind}_C^G(\mu)$. Then $\operatorname{res}_{C_{p^n}}^G(\kappa) = \rho_{p^n} \oplus \rho_p^{r_n} \oplus \cdots \oplus \rho_{p^n}^{r^{s-1}}$ and its Chern class is given by

$$c(\operatorname{res}_{C_{pn}}^{G}(\kappa) = c(\rho_{pn}) c(\rho_{p}^{r}n) \cdots c(\rho_{pn}^{r^{s-1}})$$

= $(1 + x)(1 + rx) \cdots (1 + r^{s-1}x)$
= $1 + r^{s(s-1)/2} x^{s} = 1 + x^{s}.$

Thus, $c_s(\operatorname{res}^G_{C_{p^n}}(\kappa))$ generates $H^*(C_{p^n})^{G/C}$ and therefore $c_s(\kappa)$ generates $H^*(G, p)$.

We proceed to the general case. Let C_{p^n} be a *p*-Sylow subgroup of *G* and *N*, *C* denote the normalizer and centralizer of C_{p^n} , respectively. By the lemma 3, we have a representation κ of *N* which satisfies $c(\operatorname{res}_{C_{p^n}}^N(\kappa)) = 1 + x^s$, s = [N; C]. Consider the induced representation of κ , $\operatorname{ind}_N^G(\kappa)$. Then Mackey's decomposition theorem implies;

$$\operatorname{res}_{C_{pn}}^{G}\operatorname{ind}_{N}^{G}(\kappa) = \bigoplus_{g \in E} \operatorname{ind}_{C_{pn}}^{C_{pn}} \operatorname{gs}_{g^{-1}}^{I}. \operatorname{res}_{C_{pn}}^{gNg^{-1}} (f_{g}^{!}(\kappa)).$$

where E is a set of representatives for the double cosets $C_p n \cdot g \cdot N$. Let E_i be the subset of E which satisfies $C_{p^n} \cap gNg^{-1} = C_{p^i}$.

Lemma 4. res $_{C_{pn}\cap gNg^{-1}}^{gNg^{-1}}(f_g^!(\kappa))$ doesn't depend to $g \in E_i$ for a fixed *i*. That is, res $_{pn\cap gNg^{-1}}^{gNg^{-1}}(f_g^!(\kappa)) = \operatorname{res}_{C_{pi}}^{N}(\kappa) = \rho_{p^i} \oplus \cdots \oplus \rho_{p^i}^{r^{s-1}}$.

Proof. Let D be the centralizer of $C_{p^n} \cap gC_{p^n}g^{-1}$ in G. Since $C_{p^n}, gC_{p^n}g^{-1} \subset D$ and C_{p^n} is a p-Sylow subgroup of G, these are also p-Sylow subgroups of D. Therefore there is a $h \in D$ such that $h(gC_{p^n}g^{-1})h^{-1} = C_{p^n}$ and so $hg \in N$. Now, for $y \in C_{p^n} \cap gNg^{-1}$, we have $\operatorname{res}_{C_{p^n}gNg^{-1}}^{gNg^{-1}}(f_g^!(\kappa))(y) = \kappa(g^{-1}yg) = \kappa(g^{-1}h^{-1}ygh) = \kappa((hg)^{-1}y(hg)) = \kappa(y) = \operatorname{res}_{C_{p^n}}^N(\kappa)(y).$

Theorem 1. For every G which contains C_{p^n} as a p-Sylow subgroup, $H^*(G, p)$ is generated by Chern classes of representations of G.

Proof. Since $\operatorname{res}_{C_{pn}}^{G}(H^{*}(G)) \subset \operatorname{res}_{C_{pn}}^{N}(H^{*}(N))$, in order to prove our theorem, it is enough to show that $\operatorname{res}_{C_{pn}}^{N}(H^{*}(N))$ is generated by Chern classes of representations of N which are the restriction of representations of G. We put σ $= \operatorname{ind}_{N}^{G}(\kappa), \ \sigma' = \operatorname{ind}_{N}^{G}(s)$, and we shall show that $\operatorname{res}_{C_{pn}}^{G}(c_{s}(\sigma - \sigma'))$ generates $\operatorname{res}_{C_{pn}}^{N}(H^{*}(N))$. For this, we must to see that $\operatorname{res}_{C_{pn}}^{G}(c_{s}(\sigma - \sigma'))$ is a generator of $H^{2s}(C_{p^{n}})$. Cleraly for above, it is sufficient to see that $\operatorname{res}_{C_{p}}^{G}(c_{s}(\sigma - \sigma'))$ is a generator of $H^{2s}(C_{p})$. We make a computation by using the Mackey's decomposition theorem.

$$\operatorname{res}_{C_p}^G(\sigma - \sigma') = \operatorname{res}_{C_p}^G \operatorname{ind}_N^G(\kappa - s)$$
$$= \bigoplus_{g \in E} \operatorname{ind}_{C_p \cap gNg^{-1}}^{C_p} \operatorname{res}_{C_p \cap gNg^{-1}}^{gNg^{-1}} (f_g^!(\kappa - s))$$

where E is a set of representatives for the double cosets C_pgN . Putting $E_0 = \{g \in E | C_p \cap gNg^{-1} = \{e\}\}, E_1 = \{g \leftarrow E | C_p \cap gNg^{-1} = C_p\}$, we have $\operatorname{res}_{C_p}^G(\sigma - \sigma') = \bigoplus_{g \in E_1} \operatorname{ind}_{C_p}^{C_p} \operatorname{res}_{C_p}^{SNg^{-1}}(\kappa - s) = \bigoplus_{g \in E_1} \operatorname{res}_{C_p}^N(\kappa - s)$, where the last equation follows from the lemma 4. Let α_i be the number of elements in E_i for i = 0, 1. Since the number of left cosets of C_p in C_pgN is $[N: N \cap g^{-1}C_pg]$, we have $|G| = |N| \cdot p \cdot \alpha_0 + [N: C_p] \cdot p \cdot \alpha_1$ and so $[G: N] = p \cdot \alpha_0 + \alpha_1$. It follows α_1 is prime to p. We are now ready to compute the Chern class.

$$c(\operatorname{res}_{C_p}^G(\sigma - \sigma')) = c(\alpha_1(\kappa - s)) = c(\kappa - s)^{\alpha_1}$$
$$= c(\rho_p + \rho_p^r + \dots + \rho_p^{r^{s-1}} - s)^{\alpha_1}$$
$$= (1 + x^s)^{\alpha_1} = 1 + \alpha_1 \cdot x^s + \text{higher terms}$$

where $x = c_1(\rho_p)$. It follows that $c_s(\sigma - \sigma')$ generates $H^*(G, p)$.

4. Case for generalized quaternion groups.

The generalized quaternion group of order 2^m , $m \ge 3$, has a presentation;

$$Q_{2^m} = \langle a, b; a^{2^{m-2}} = b^2, \text{ bad}^{-1} = a^{-1} \rangle.$$

 Q_{2^m} has four one-dimensional irreducible representations, $\xi_0 = 1$, ξ_1 , ξ_2 , ξ_3 , defined by $\xi_1(a) = 1$, $\xi_1(b) = -1$; $\xi_2(a) = -1$, $\xi_2(b) = 1$; $\xi_3(a) = -1$, $\xi_3(b) = -1$. Other irreducible representations have the dimension 2 and given by

$$\zeta_{r}(a) = \begin{bmatrix} \exp(2\pi ri/2^{m-1}) & 0\\ 0 & \exp(-2\pi ri/2^{m-1}) \end{bmatrix}, \quad \zeta_{r}(b) = \begin{bmatrix} 0 & (-1)^{r}\\ 1 & 0 \end{bmatrix}$$

 $r = 1, 2, \dots, 2^{m-2} - 1. \quad \text{Put } c_1(\xi_1) = x, \ c_1(\xi_2) = y, \ c_2(\zeta_1) = z. \quad \text{Then } c(\zeta_1) = 1 + z$ because $c_1(\zeta_1) = c_1(\det, \zeta_1) = c_1(\xi_0) = 0.$ For simplicity we use the notation Qinstead of Q_{2^m} . The cohomology of Q is as follows; $H^2(Q) = \mathbb{Z}/2 + \mathbb{Z}/2, \ H^4(Q)$ $= \mathbb{Z}/2^m, \ H^{2i+1}(Q) = 0, \ \text{and a generator of } H^4(Q)$ gives the periodicity, i.e. $H^{i+4}(Q).$ Since $\operatorname{res}_{\langle a \rangle}(\xi_1) = \rho_{2^{m-1}}^0, \ \operatorname{res}_{\langle b \rangle}(\xi_1) = \rho_4^2, \ \operatorname{res}_{\langle a \rangle}(\xi_2) = \rho_{2^{m-2}}^{2^{m-2}}, \ \operatorname{res}_{\langle b \rangle}(\xi_2)$ $= \rho_4^0, \ H^2(Q) = \mathbb{Z}/2 + \mathbb{Z}/2 \text{ is generated by } x, \ y. \ \operatorname{res}_{\langle b \rangle}^2(z) = \operatorname{res}_{\langle b \rangle}^x(c_2(\zeta_1))$ $= c_2(\operatorname{res}_{\langle b \rangle}(\zeta_1)) = c_2(\rho_2 + \rho_2) = c_1(\rho_2)^2 \text{ is a generator of } H^4(C_2) \text{ and hence } z \text{ is a generator of } H^4(Q).$ Making a similar cmputation, we obtain the relations x^2 $= y^2 = 0, \ xy = 2^{m-1}z.$

Theorem 2. If a 2-Sylow subgroup of G is isomorphic to the generalized quaternion group, then $H^*(G, 2)$ is generated by Chern classes of representations of G.

Proof. $H^2(G)$ is always generate by Chern classes of 1-dimensional representations of G. We consider $H^4(G)$ and prove that $H^4(G, 2) = \mathbb{Z}/_{2^m}$, and it is generated by Chern classes. Now $H^*(G, 2)$ has the periodicity with the cup product by the generator of $H^4(G, 2)$, and our theorem will be proved. In order to prove above assertion, it is sufficient to costruct a representation η of G such that $\operatorname{res}_{Q}^G c_2(\eta)$ is a generator of $H^4(Q)$. Furthermore, for this, it is enough to show that $\operatorname{res}_{Qa^{2m-1}}^G c_2(\eta)$ is a non-zero element in $H^4(C_2)$ because $H^4(G, 2)$ is a direct summand of $H^4(Q)$. Let N be the normalizer of $\langle a \rangle$ in G. Then N contains Q and there is a normal subgroup T of N such that Q = N/T, [2]. We define a representation η' of N by the composition $\zeta_1 \circ \pi \colon N \to N/T = Q \to U(2)$ where π is the natural projection. We put $\eta = \operatorname{ind}_N^G(\eta' - 2)$. By the Mackey's decomposition theorem, we have

$$\operatorname{res}_{C_{2}}^{G}(\eta) = \operatorname{res}_{C_{2}}^{G}(\operatorname{ind}_{N}^{G}(\eta'-2))$$
$$= \bigoplus_{g \in E} \operatorname{ind}_{C_{2} \cap gNg^{-1}}^{C_{2}} \operatorname{res}_{C_{2} \cap gNg^{-1}}^{gNg^{-1}}(f_{g}^{!}(\eta'-2))$$
$$= \bigoplus_{g \in E_{1}} \operatorname{res}_{C_{2}}^{gNg^{-1}}(f_{g}^{!}(\eta'-2))$$

where E is a set of representatives for the double cosets C_2gN and $E_1 = \{g \in E | C_2 \cap gNg^{-1} = C_2\}$. As in the proof of the theorem 1, the number α_1 of elements in E_1 is prime to 2. Since an automorphism or C_2 is trivial, we have

$$c(\operatorname{res}_{C_2}^G(\eta)) = c(\gamma_1(\operatorname{res}_{C_2}^Q(\zeta_1 - 2))) = c(\rho_2 + \rho_2 - 2)^{\alpha_1}$$

= 1 + \alpha_i c_1(\rho_2)^2 + higher terms.

From this $c_2(\operatorname{res}_{C_2}^G(\eta))$ is a generator of $H^4(C_2)$ and the theorem is proved.

5. Main theorem and examples

It is well-known that if a group G operates freely on a sphere, each p-Sylow subgroup of G is either cyclic or is a generalized quoternion group. Then from lemma 2, theorem 1 and theorem 2, we have

Theorem 3. Let $f: G \times S^{2n-1} \to S^{2n-1}$ be a free PL-action of a finite group G on a S^{n-1} . Then $\alpha_f: R(G) \to K(S^{2n-1}/G, f)$ induces an isomorphism; $R(G)/R_{2n}^{\gamma}(G) \cong K(S^{2n-1}/G, f)$.

If a sphere has an even dimension, then because of well-known fixed point theorem, every element $g \in G$, $g \neq e$, must reverse the orientation of the sphere. Therefore non-trivial such group G is only C_2 . For this case, the methods proving theorem 3 is applicable, and we have $K(S^{2n}/C_2) \cong R(C_2)/R_{2(n+1)}^{\gamma}$ $(C_2) \cong R(C_2)/I(C_2)^{n+1} \cong K(RP^{2n}).$

Proposition 5. For an Artin-Tate group G, we have an isomorphism; $H^{2i}(G) \cong R_{2i}^{\gamma}(G)/R_{2(i+1)}^{\gamma}(G)$.

Proof. This is also a corollary of proposition 1, theorem 1 and 2.

As an application of the theorem 3, we compute some K-groups of orbit space of sphere. Let $Z_{p,q}$ be the metacyclic group defined by

$$Z_{p,q} = \langle a, b | a^p = b^q = e, bab^{-1} = a^s \rangle$$

where p, q are odd primes and (s - 1, p) = 1 and s is a primitive q-th root of 1 mod p. $Z_{p,q}$ cannot operate lineally on a sphere without fixed point. But T. Petrie proved in [4] that $Z_{p,q}$ can operate on S^{2q-1} freely and differentiably. Let $f: Z_{p,q} \times S^{2q-1} \to S^{2q-1}$ be its operation. Then considering S^{2nq-1} as n-times join of S^{2q-1} , an operation $f_n: Z_{p,q} \times S^{2nq-1} \to S^{2nq-1}$ is defined by

 $f_n(g, t_1x_1 \oplus t_2x_2 \oplus \cdots \oplus t_nx_n) = t_1f(g, x_1) \oplus t_2f(g, x_2) \oplus \cdots \oplus t_nf(g, x_n)$ where $\sum t_i = 1, \ g \in \mathbb{Z}_{p,q}, \ x_i \in S^{2q-1}$.

This operatin f_n is free and piecewise linear. We want to determine the group extension of $\tilde{K}(S^{2nq-1}/\mathbb{Z}_{p,q}, f_n)$. Clearly it is the direct sum of p and q-primary component. The q-primary component is isomorphic to $\tilde{K}(S^{2nq-1}/C_q)$ from the fact that $\operatorname{res}_{C_q}^{\mathbb{Z}_{p,q}}: H^*(\mathbb{Z}_{p,q}) \to H^*(C_q)$ is an isomorphism for q-primary component and its group extension was determined in [3]. Lets consider the p-primary component. Put

$$\tau = \operatorname{res}_{C_p}^{Z_{p,q}} \operatorname{ind}_{C_p}^{Z_{p,q}}(\rho_p) - q.$$

Proposition 6. *p*-primary component of $\tilde{K}(S^{2nq-1}/\mathbb{Z}_{p,q})$ is generated by $\gamma^{q}(\tau)^{i}$, i = 1, 2, ..., t = (p-1)/q and isomorphic to

$$(Z/p^{s+1})^r + (Z/p^s)^{t-r}$$

where n - 1 = st + r, $0 \leq r < t$.

Proof. $H^*(Z_{p,q}, p)$ is generated by $c_q(\tau + q)$, and so p-primary component of $R_{2q}^{\nu}(Z_{p,q})/R_{(q+1)}^{\nu}(Z_{p,q}) = Z/p$ is generated by $\gamma^q(\tau)$ and hence $\gamma^q(\tau)^i$, i = 1, 2, ... generate p-primary component of $\tilde{K}(S^{2nq-1}/Z_{p,q})$ and $\gamma^q(\tau)^n = 0$. Now in the Atiyah-Hirzebruch spactral sequence, $\varphi(c_{p-1}(\sum_{i=0}^{p-1} \rho_p^i - p)) = (-1)^{p-2}(p-2)!$ $[\sum_{i=0}^{p-1} \rho_p^i - p] \in R_{2(p-1)}(C_p)/R_{2p}(C_p)$ and $c_{p-1}(\sum_{i=0}^{p-1} \rho_p^i - p) = -c_1(\rho_p)^{p-1}$. It follows $\gamma^q(\tau)^i = -(p-2)!(\sum_{i=0}^{p-1} \rho_p^i - p) \mod \gamma^q(\tau)^{i+1}$. Multiplying $\gamma^q(\tau)$ on this equation, we have $\gamma^q(\tau)^{i+1} = (p-2)! p \gamma^q(\tau) \mod \gamma^q(\tau)^{i+2}$. It follows from the induction augument that $\gamma^q(\tau)^i$, i = 1, 2, ..., t generate additively p-primary component of $\tilde{K}(S^{2nq-1}/Z_{p,q})$ which has the order p^{n-1} . It is clear that the order of $\gamma^q(\tau)^i \leq$ the order of $\sigma^{qi} = (\rho_p - 1)^{qi}$. The order of σ^{qi} is from [3] p^{s+1} for $i \leq r$ and p^s for i > r. Now it is easy to see that the order of $\gamma^q(\tau)^i$ must be just one of σ^{qi} and the extension is determined.

6. A counterexample of odd primary component for Atiyah's conjecture

The Atiysh's filtration conjecture in [1] is equivarent to the fact that in the Atiyah's spectral sequence $H^*(G) \Rightarrow \widehat{R(G)}$, universal cycles are generated by Chern classes of representations of G. Theorem 1 and 2 imply specially that his conjecture consists for the Artin-Tate groups. In [6], E. weiss gave a counterexample examining 2-Sylow subgroup of the alternating group A_4 . C. B. Thomas extended his augument for 2-Sylow subgroup of projective special linear groups. In this section, we show that 2 is not special prime for the Atiyah's conjecture.

As seen in [1], for an odd prime p, $H^*(C_p \times C_p) = p(x, y) \otimes E(z)$, deg. x = deg. y = 2, deg. z = 3. We see easily x, y being first Chern classes of representations of $C_p \times C_p$ and therefore $H^{even}(C_p \times C_p)$ is generated by Chern classes of representations.

Proposition 7. There exists a group G which contains $C_3 \times C_3$ as 3-Sylow subgroup and $H^*(G)$ has an element which is not expressible by Chern classes but an universal cycle in the Atiyah's spectral sequence.

Proof. We define a group G by the following presentation,

$$G = \langle a, b, c | a^3 = b^3 = c^4 = e, ab = ba, cac^{-1} = ab, cac^{-1} = ab^{-1} \rangle$$

3-Sylow subgroup of G is normal and isomrophic to $C_3 \times C_3$. Let σ_1 , σ_2 be irreducible representations of $C_3 \times C_3$ defined by $\sigma_1(a) = \omega$, $\sigma_1(b) = 1$, $\sigma_2(a) = 1$, $\sigma_2(b) = \omega$ where $\omega = \exp(2\pi i/3)$. Then an irreducible representation of $C_3 \times C_3$ is one of $\sigma_1^i \otimes \sigma_2^j$, i, j = 1, 2, 3. G has four 1-dimensional representation defined by the composite of the natural projection $G \to G/C_3 \times C_3 = C_4$ and one of C_4 . G has two 4-dimensional irreducible representations $\operatorname{ind}_{C_3 \times C_3}^G(\sigma_1) = \kappa_1$, $\operatorname{ind}_{C_3 \times C_3}^G(\sigma_2) = \kappa_2$. On the other hand, we have

$$H^{*}(G) = H^{*}(C_{3} \times C_{3})^{C_{4}} \oplus H^{*}(C_{4})$$

where the first component implies the subring of $H^*(C_3 \times C_3)$ generated by invariant elements for the action of C_4 . Put $x = c_1(\sigma_1)$ and $y = c_1(\sigma_2)$. Since $f_c^!(\sigma_1)(a) = \sigma_1(\csc^{-1}) = \sigma_1(ab) = \omega$, $f_c^!(\sigma_1)(b) = \sigma_1(ab^{-1}) = \omega$, we have $f_c^!(\sigma_1)$ $= \sigma_1 \otimes \sigma_2$. Similarly we have $f_c^!(\sigma_2) = \sigma_1 \otimes \sigma_2^{-1}$. It follows $f_c^*(x) = f_c^*(c_1(\sigma_1))$ $= c_1(f_c^!(\sigma_1)) = c_1(\sigma_1 \otimes \sigma_2) = c_1(\sigma_1) + c_1(\sigma_2) + x + y$ and similarly $f_c^*(y) = x$ - y. Therefore, $H^*(C_3 \times C_3)^{C_4}$ consists of polynomials p(x, y) satisfing the relation p(x, y) = p(x + y, x - y). As easily seen,

$$\kappa_{1}(a) = \begin{bmatrix} \omega & 0 & 0 & 0 \\ 0 & \omega & 0 & 0 \\ 0 & 0 & \omega^{-1} & 0 \\ 0 & 0 & 0 & \omega^{-1} \end{bmatrix} \quad \kappa_{2}(b) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \omega & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \omega^{-1} \end{bmatrix}$$

Then we have $\operatorname{res}_{C_3 \times C_3}^G(\kappa_1) = \sigma_1 + \sigma_1 \otimes \sigma_2 + \sigma_1^{-1} + \sigma_1^{-1} \otimes \sigma_2^{-1}$. Similarly, $\operatorname{res}_{C_3 \times C_3}^G(\kappa_2) = \sigma_2 + \sigma_1 \otimes \sigma_2^{-1} + \sigma_1^{-1} + \sigma_2^{-1} + \sigma_1^{-1} \otimes \sigma_2$. Therefore 3-primary component of the total Chern class of κ_1 , κ_2 are as follows;

$$c(\kappa_1) = (1 + x)(1 + x + y)(1 - x)(1 - x - y)$$

= 1 + (x² + xy - y²) + (x⁴ - x³y + x²y²)
$$c(\kappa_2) = (1 + y)(1 + x - y)(1 - y)(1 - x + y)$$

= 1 - (x² + xy - y²) + (y⁴ + xy³ + x²y²)

Consider a polynomial $x^3y - xy^3 = xy(x + y)(x - y)$ in $H^8(C_3 \times C_3)^{C_4}$. We can see immediately that $x^3y - xy^3$ is not gotten by the linear combination of $(x^2 + xy - y^2)^2 = x^4 - x^3y - x^2y^2 + xy^3 + y^4$, $x^4 - x^3y + x^2y^2$ and $y^4 + xy^3 + x^2y^2$. $x^3y - xy^3$ is an universal cycle in the Atiyah's spectral sequence $H^*(C_3 \times C_3) \Rightarrow \widehat{R(C_3 \times C_3)}$ because x, y are Chern classes. By the naturality of the spectral sequence, $x^3y - xy^3$ in $H^*(G)$ is also an universal cycle.

DEPARTMENT OF MATHEMATICS NARA WOMEN'S UNIVERSITY

References

- [1] M. F. Atiyah, Chracters and cohomology of finite groups, Publ. Math. de l'IHES, 9 (1961), 23-64.
- [2] L. Dornhoff, Group representation theory Part A, Pure and applied mathematics (1971).
- [3] T. Kambe, The structure of K_A -rings of the lens space and their applications, J. M. S. of Japan, 18 (1966), 135-146.
- [4] T. Petrie, Free matacyclic group actions on homotopy spheres, Ann. of Math. 94 (1971), 108-124.
- [5] C. B. Thomas, Filtrations on the representation ring of a finite group, A. M. S. Volume 19 (1983), 397-404.
- [6] E. A. Weiss, Bonner Mathematische Schriften, (1969)