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1. Introduction

I f  a  finite  group G  operates freely o n  a  sphere S " a n d  the operation is
piecewise linear, then its quotient space S"/G is a PL-manifold and K-ring K(S"/G)
is defined. The purpose of this paper is to give a complete description of K(S"/G)
by terms of the representation ring of G, R (G ). This is obtained by showing that
Atiyah's c o n je c tu re  in  [1 ] is  t r u e  fo r the  A rtin -T a te  groups (with periodic
cohomology). W e may consider the Atiyah's conjecture in two steps.

(A) F o r  n -g ro u p  G , universal cyc les in  the  A tiyah 's spec tra l sequence
H*(G) c  R (G )  are generated by Chern classes of representations o f G.

(B) If p-group GI, satisfies (A), then for every group G which contains Gp  as a
p-Sylow subgroup, p-prim ary com ponent i n  universal cycles in the spectral
sequence H*(G)r*R (G) is generated by Chern classes of representations of G .  I
believe that (A) is still a n  unsolved problem . W e prove that (B) is true for Gp

which is isomorphic to a  cyclic group or a generalized quaternion group but (B) is
not true in  general.

2. Filtrations in K-theory

F o r  any fin ite  C W -com plex X ,  th e re  a r e  tw o  im p o ta n t filtrations in
K (X ) . One is called the ordinary filtration; the subgroup K g (X ) is defined as the
kernel of the restriction hom om orphism  K(X ) -+ K(X q _ ,)  where X q _ 1 i s  the
(q — 1)-skeleton of X .  Another is called the y-filtration; K Y2 q (X ) is defined as the
subgroup generated by the monomials,

Y n i (r 1 ) . Y n 2 (t  2 ) •  •  •  "  •  Y n k (tk ), t i E (x)
and E n ,  q where y" is the y-operation on K (X ) . It is well known that the both
filtrations m ake K (X ) filtered rings and  satisfy th e  relation ; K 1

2'0,(X )  K 2 ,(X).
W e want to get a  sufficient condition being K 7

2 q (X) = K 2 q (X ) .  For this, we shall
proceed to describe th e  geometric meaning of y i -operation. L et B U ( f l ) b e  the
classifying space of n-dimensional complex vector bundles and Fn be the universal
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bundle over B u (f l ) . Let T" be the maximal torus in U (n ) . Let 13,„ = B s i x •••
x  Bs,  =  C P  x  • • •  x  CP" — > CP' be the projection on i-th  factor and =  n g )
where i s  the canonical line bundle over C P .  L e t —> Bu(n )  be the map
induced by the natural inclusion map Tn U (n ). Then i'(Fn)
= 0  2  0  •  •  •  0 and for the i-th Chern class c ( F )  of F", i*c i (F") is the i-th
elementary symmetric function of c i (,). Put cri =  —  1 ,  then y ° (ai) = 1 , y (a i)
= a i and y ( a i) = 0  for j >  1 . H e n c e  the sum  formula of y-operation implies
"M I  2  0  •  •  •  0  n) = Y i (a1 + az + •• • + an) = i-th e lem entary  sym m etric
function of a ,  j  = 1, 2 ,..., n. Since  H 2 1 (B T „ )  =  0 ,  the Atiyah-Hirzebruch
spectral sequence H *(B ,„).*K (B T „ )  is trivial, (Note that K (B ,„) is considerd as a
K - r in g  o f  a  sufficient la rge sk e le to n  o f  B T „ ) ,  a n d  s o  w e  have an
isomorphism; yo: H 21 (B,„)—■ K2 I (BT .)/K 2 i + 2 (B,„). C le a rly cp(c1 ( )) = a, and
i*: H*(B u i n d H *(.13 7 , „ ) is injective, we obtain Oci(r")) = [T V "
— n)] eK 2 i (B u ( „) )/K 2 i + 2 (B u ( n ) )  b y  the naturality of the spectral sequence, Chern
classes and yi -opera tions. It follows that for a vector bundle n over X , c i (n) is an
universal cycle in the Atiyah-Hirzebruch spactral sequence and go(ci(n)) = y i(n
—dim n). This shows the following proposition.

Proposition 1. If H " " ( X ) = I H 2 i (X ) is generated by Chern classes of vector

bundle over X , then Kv2 q (X ) =  K , q (X).

Let G be a finite group. Let p: G -+ U(n) be a representation of G and M,, be
its representation module. Let BG be a classifying space of G and EG —> BG be the
universal G-bundle. Then the associated vector bundle EG X G 1‘1,9 —> BG is written
by Œ(p). R e c a ll th a t the i-th Chern class of p, c i (p)eH 21(G) is defined to be the i-
t h  C hern  c lass o f a(p )  by identifying H*(B G ) =  H *(G ) w here H*(G) i s  the
cohomology ring o f G  w ith  the coefficient g ro u p  Z  on  w hich  G  operates
trivially. In view of the Whitney's sum formula, Chern class may be extended
naturally for elements of the representation ring R(G).

Let f :  G x  S 2 " - 1 ,  s2n-1 be a free PL-action and S 2 ' I G , f  be the quotient
n-space defined by f . Let a f : R ( G )  K(sz ) be a homomorphism obtained

by assigning to each representation module M , its associated vector bundle S 2 " - 1

) ( G . A 4 _, s2n- 11G , f .

To state the following lemma, we recall the y-filtration in R(G) defined as in
the case of K (X ) . Let l(G ) be  the kernel of the augmentation homomorphism
R(G)--+ Z .  T hen RY2 „(G) i s  the ideal generated by monomials; y"(o -

1 ) • - •  y k (o - k )

with a i e/(G ) and y,, .

L em m a 2 . Let notations be as above and assumme that H""(G) is generated
by Chern classes of representations of G. Then a ring homomorphism af  induces an
isomorphism; R(G)IRY2,,(G),..., K ( s 2n- 1 G , f ) .

P ro o f  G is necessary a Artin-Tate group and so H *(G )= H ""(G ). sz n-
f  may be seen as a (2n — 1)-skeleton of BG and so H 2 i (S 2" I G ,  f )  H t(G) for i
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n —  1. If c i (p i )  generate H*(G), then ci (ocf (pi )) generate H ""(S 2 " - i  IG, f). It
fo llow s that using  A tiyah-H irzebruch  spec tra l sequence, ocf (y i (p ;  — dim. pi ))
generate K(S 2 "- 1 1 G , f ) . Thus w e have showed that a f  i s  surjective. Since I f

induces a n  isomorphism RY2 q (G)/R 4 , 2 (G) K 2 q (S 2 "- 1 1G, f)1K 2 , „(S 2 1 1G, f)
( = H (G ) )  for g n  — 1, we have Ker. a f  =  RY2 „(G).

I n  t h e  v iew  o f  t h e  le m m a  2 , w e  re v ie w  th e  c o h o m o lo g y  o f  finite
g ro u p s . H"(G) is annihilated by the order of G, 1G1, for all n > O. For each prime
p, we denote by H"(G, p) the p-primary component of H "(G ). Then H (G ) admits

a  primary decomposition; H "(G )=EH "(G , p) where p  ranges over the prime

deviding G . L e t  G , be a p-Sylow subgroup of G and resg p  : H (G ) H "(G  p ) the
homomorphism induced by the  restric tion . It is w ell-know n that resg p  m aps
H"(G, p) isomorphically onto the set of G-invariant elements in  H"(G p ) and the
image is a direct summand of 11(G ,,). Recall that an element x e H"(G p ) is called
G-invariant if for each g e G  it satisfies the relation;

resg; n 0 G p q - .(x) = res 9
G

G,Pngq G
l
p q -  (f  :(x)),

where f g : gG p g - + G, is defined by f g (h) = g 1 hg for h e gG p g  .
In  th e  following two sections, we shall show tha t H"(G, p) is generated by

Chern classes of representations of G if Gp  is isomorphic to either a cyclic group or
a  generalized quaternion group.

3. Case for cyclic p - Sylow subgroups

Let C , the cyclic group of order g and a  be a  generator, i.e. <a> = C q . Let
p q : Cq -4 U(1) b e  th e  representation defined by p q (a) = exp (2n i g ). T h en  the
irreducible unitary representation of C q  is  one of the i-time tensor product of pq ,
p q

i , i  = 0, 1 , . . . ,  g  — 1 where p:̀ ; is the trivial representation written ordinarily by
1. If r divides g, C q  h as  unique subgroup of order r. i.e. C r  =  <ag ir>. We denote
b y  r e Q  R(C q ) — R(C r ) the restriction homomorphism. Clearly we have reO p q )
= p r . P u t x  =  c 1 (p q )e11 2 (C q )-.- Z Ig , th en  x  generates multiplicatively Fi*(C q )
= Z Ig (x ) . N o te  th a t  f o r  a  fin ite  group G, c 1 : Hom (G, U(1)) —> H2 (G ) i s  an
isomorphism being Hom (G, U(1)) the group defined by the  tensor p ro d u c t. By
the naturality of the Chern class, c i (re‹,g(p q )) = ci(Pr) = re‹,q(c i (pq )), and therefore
reQ  H*(C q ) —> H*(C,.) is  the natural projection.

L em m a 3 . Fo r ev ery  group G  which contains C p „ as a norm al p-S y low
subgroup, H*(G, p) is generated by the Chern class of  the representation of  G.

Proo f . H *(G , p ) is is o m ro p h ic  to  th e  su b r in g  H*(C p „)G ic , " in H 9 ( C )
generated by G-invariant elem ents. L et C  be  the centralizer o f Cp .  in  G, then
obviously H*(C p „)icPn =  H*(C p .,)Gic. Since the autom orphism  group o f  C p ., is
isomorphic to the cyclic group of order (p — 1)pn for odd prime and has an  order
of 2-power for p = 2, GIC is a  cyclic group of the order s dividing (p — 1). Let 0
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be a generator of GIC and g 'a g  =  a'. Then we have (r, p) = 1, r l 0  1 mod (p) for
i <s  a n d  r s  1  mod (p). P u t x  =  c,(p p „), t h e n  f ( x )  f '( c 1 (p 4 )  = ( p  p „))
= c i (prp „) = r • c i (p p „) = r • x. It fo llow s that xm  is s tab le  if  and  only if  rm  0 1
mod (p) and so m = k • s for some k. At all, H *(C p n)G ic  is the subring generated by
Xs. W e see  from  the theorem of Burnside that there exists a normal subgroup H
of C  such that C  is isom orphc to Cp „ x  H .  Let i t  be  the  representation o f C
defined by g(a, h) = exp (2ni/ p 4 and consider the induced representation K of g  i.e.
K = indg(p). Then resg p „(K) = p p . (j) p"; (D • • • (D p 1 and  its Chern class is given
by

C(reScGp „ (K ) =  c(p p „) c(prp n) - • • • • • c(p p „

= (1 +x)(1 + rx) • • • •  (1  + x)

—  1 + r s ( s  " 2  X s =  1  +  X s .

Thus, c s (resgp „(K)) generates H *(C p „)Gic  a n d  therefore c (K )  generates H*(G, p).

We proceed to the general case. Let C p „ be a p-Sylow subgroup of G and N,
C  denote the normalizer and centralizer of C p „, respectively. By the lemma 3, we
h a v e  a  representation K  o f  N  which satisfies c(re< r

p „(K)) = 1 + X
S, s  =  [N ; C ].

Consider the induced representation of K, in 4 (K ) . Then Mackey's decomposition
theorem implies;

reS c NG  indG (K) = C) c p „ngNg -. d c P" gNg n.reScp„„Ng -  ( f (K
geE

where E  is a set of representatives for the double cosets C o • g • N .  Let E, be the
subset of E  which satisfies Ç „ n gNg - 1 =

Lemma 4 .  r e s rp „gn- ; N g - , (f (K)) doesn't depend to g E E. f or a f ix ed i. T hat is,
resr„g  g - i(f (K )) = res 1

p ,(K) = p p . (D • • • p 1 .

P ro o f  Let D be the centralizer of Cp . n gC p „ g in  G . S ince  C p . ,  gC p ng - 1

c  D  and  C p  i s  a p-Sylow subgroup of G, these are also p-Sylow subgroups of
D .  T h e re fo re  th e re  is  a  h e D  s u c h  t h a t  h(gC r g 1 )h - 1 =  Cp ., a n d  so
hg e N .  N o w , f o r  y n g N g ' ,  w e  have  resn ,9,9- N

1
9 -  ( f  (K)) (y) = K (g  y g )

= K(g -  1 h -  ygh) = K((hg) -  y (hg)) = K (y ) = res" p ,(K)(y).

Theorem 1 .  For every G which contains C y , as a p-S y low  subgroup, H*(G, p)
is generated by  Chern classes of representations of G.

P ro o f  Since resgp „(H*(G)) r e s „ ( H * ( N ) ) ,  in order to prove our theorem, it
is e n o u g h  t o  sh o w  th a t  r e <  

"
(H * (N ))  is g e n e ra te d  b y  C h e rn  classes of

P
representations of N  which are the restriction of representations of G .  We put
=  in g (K ), a ' =  in g (s ) , a n d  w e  s h a ll  sh o w  that resg p „(cs (o- — u ') )  generates
re< p „(H*(N)). F o r this, we m ust to see that resg p „(cs (o- — o-')) is a  generator of
H 2s( c p „ ).

genera tor o f  H 2s(Cp ). W e  m a k e  a  c o m p u ta tio n  b y  u s in g  t h e  Mackey's
Cleraly fo r  above, it is suffic ien t to  see  that resg p (cs (o- — a') )  i s  a
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decomposition theorem.

res p (o- — a') = res p ina(K — s)

=  (D  in4 ; fl o g _, resrp %,„' g -, (f 'g (K — s))
g eE

where E  i s  a  s e t  o f  representatives for the double cosets Cp g N .  Putting E 0

= 1g E EICp  n gNg - i  = f e n , E, = {g C„ n gNg - 1 = Cp }, we have req p (o- — a')

= inc*.p re s rp g- 1 (K — s) = res i
c'  (K — s), where the last equation follows from

g e E j g eE P

the  le m m a  4 . L et a , b e  the  number of elements in E . f o r  i  =0 , 1. Since the
number of left cosets of Cp  in  C  N  is E N  N n g ' C  p g], we have IG = I NI• 13  • °to
+ [N : C p ] • p • a ,  and  so  [G: N] = p • a o  + a,. It fo llow s a , is prime to  p. We
are now ready to compute the Chern class.

c(resgp (o- — o-')) = c(a,(K — s)) =  c(K — s)"1

=  c(p p  +  p r,, +  •  •  • + — s)Œ'

= (1 +  X
)Œ1 = 1 + a, • xs + higher terms

where x = c l (pp ). It follows that cs (o- — a ') generates H*(G, p).

4. Case for generalized quaternion groups.

The generalized quaternion group of order r ,  m  3, has a  presentation;

Q2 „, = <a, b; a 2 - 2 = b2 , bad  =

Q2 ,,, has four one - dimensional irreducible representations, = 1,
defined by ,(a) = 1,1 (b) = — 1; 2 (a) = — 1, 2 (b) = 1; 3 (a) = — 1, 3 (b)=
— 1. Other irreducible representations have the dimension 2 and given by

r(a) =
[exp (27Eri/2' ) 0

0 exp( — 27tril2' ) ] " (b) = ( - 11[1 0

r = 1, 2,..., 2m - 2  — 1. P u t c, ( 1 ) = x, c l ( 2 ) = y, c2( 1) = z. Then c( ,) = 1 + z
because cl(C1) = ci(det. =  c l ( o )  =  O .  F o r  simplicity we use  the  no ta tion  Q
instead of Q2 ,,,. The cohomology of Q is as follows; H 2 (Q )= Z/2 +  Z /2, 114 (Q)
= Z 12 ', H 2 i + 1 (Q)= 0 ,  a n d  a  generator o f  H 4 (Q) gives t h e  periodicity, i.e.
H '( Q ) .  Since  res?o(i) =  r e s $ , ) ( 0  =  p i ,  r e s ' e o ( z )  =  r e s $ , ›  ( 2 )
= p , H 2 (Q) = Z I2 + Z I2 is g e n e r a t e d  b y  x ,  y. res$ ,2 > (z) = resav ,2) (c2 ((,))
= c2(res$,2>Gifl = c2(P2 + P 2 ) = c1(P2) 2  is  a  generator of 11 4 (C2 ) and hence z  is a
generator of 114 (Q). Making a  similar cmputation, we obtain the relations x 2

= y 2 =  0 , xy  = 2' z .

Theorem 2. I f  a 2-S y low  subgroup o f  G  is isom orphic to the generalized
quaternion group, then H*(G, 2) is generated by Chern classes of representations of
G.
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P r o o f  H 2 (G )  is a lw a y s  g e n e ra te  b y  C h e rn  classes of 1-dimensional
representations of G .  We consider 114 (G) and prove that 114 (G, 2) = and it
is generated by Chern c lasses. Now H*(G, 2) has the  periodicity with the  cup
product by the generator of 114 (G, 2), and our theorem will be proved. In  order
to prove above assertion, it is sufficient to costruct a  representation ri of G  such
that res 2 c2 (ri) is a generator of I-14 (Q). Furthermore, for this, it is enough to show
that res2..-1 > c2 (n) is a non-zero element in 11 4 (C 2 )  because HM G , 2) is a direct
summand of 114 (Q). Let N  be the normalizer of <a> in  G .  Then N  contains Q
and there is a  norm al subgroup T  of N  such that Q = NIT, [2]. W e define  a
representation q ' of N  by the composition N —> NIT= Q —> U(2) where it is
the natural projection. We put ti = —  2). By the Mackey's decomposition
theorem, we have

G Gres c

G

 2(17) = res c .2 (ind N ( j ' — 2))

= indC 2 9Ng-
i \ ‘

Czng Ng reSCzng Ng - gl —
gEE

= C )  re s r2 g-  ( f f  —  2))
gEE ,

w here  E  i s  a  s e t  o f  representatives fo r  th e  d o u b le  c o se ts  C A N  a n d  E,
= WEE! C 2 n g N g  =  C2 1. As in the proof of the theorem 1, the num ber a, of
elements in  E , is prime to  2 . S in c e  an automorphism or  C 2  i s  trivial, we have

c(resg2 (7)) = c(71(resF2(1 — 2))) = c(P2 + p 2 — 2)" 1

= 1 +  oci c 1 (p2 )2 + higher terms.

From this c 2 (res 2 ( )) is a  generator of 11 4 (C 2 ) and  the  theorem is proved.

5. Main theorem and examples

It is well-known that if a group G operates freely on  a  sphere, each p-Sylow
subgroup of G  is either cyclic o r is a  generalized quoternion g ro u p . Then from
lemma 2, theorem 1 and theorem 2, we have

Theorem 3 . Let f :  G x S 2 "- S 2 " ' a  fr e e  PL-action of  a fin ite group G
on a Sn - 1 . Then af : R(G)—> K(S 2 "- 1 1G, f ) in du ces an isom orphism ; R (G )/R (G )

K(S2t1 -  1/G, f) .

I f  a  sphere has a n  even dimension, then because o f  well-known fixed point
theorem , every  elem ent g e G, g e ,  m u st rev e rse  th e  o rien ta tio n  o f  th e
sphere. Therefore non-trivial such  g roup  G  is  o n ly  C 2. F o r  th is  case, the
methods proving theorem 3 is applicable, and we have K(S 2 7C 2 ) R(C2 )/R , )
(C2 ) R(C 2 )//(C 2 ) 1K ( R P 2 ").

Proposition 5 . For an A rtin- Tate group G, w e have an isom orphism ; H 21 (G)'-'
Rv21(G)1RY2(i+,)(G).
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P ro o f . This is also a  corollary of proposition 1, theorem 1 and 2.

As an application of the theorem 3, we compute some K-groups of orbit space
of sp h e re . Let Z p, be the metacyclic group defined by

Z p ,q  =  <a, blaP = bq = e, bab - i  =  as>

where p, g  are odd primes and (s — 1, p )=  1  and  s is a primitive q-th root of 1
mod p. Z  p , cannot operate linealy o n  a  sphere without fixed po in t. B u t T .
Petrie proved in  [4] that Z p ,q  can operate on S 2 q- 1  freely and differentiably. Let
f :  Z  X S2q _41 s 2 q -  1 be its operation. Then considering S 2 "q- 1  as n-times join
of S 2 q- 1 ,  a n  operation f n : Z  X S 2 " 1

2 n q  - 1 is defined by

f„(g, t i x, C) t 2 x 2 C) ........ C ) t„x„)= t,f(g, x 1 )(D  t 2 f(g , x 2 ) C)  ......tnf(g, xn)
where Et, = 1, g e Z p ,q , x 1 eS 2 q- 1 .

This operatin f „  is free and piecewise linear. W e w an t to  de te rm ine  the group
extension of k (S 2 " - 1 1Zp ,q , f„). Clearly it is the direct sum of p and q-primary
com ponent. The q-primary component is isomorphic to k(S 2 " - 1 /C,7)  from the
fac t th a t req :.:  H *(Z p ,q ) H * ( C q )  is a n  isomorphism for q-primary component
a n d  its  g roup  extension was determined in  [ 3 ] .  L e t s  consider the p-primary
com ponent. Put

= resPp '7 indP, ,g (pp ) — g .

Proposition 6. p-primary component of 1Z(S2 qq- 1 1Zp ,q )  is generated by yq(t) i , i
=  1, 2, ..., t = (p — 1)Ig a n d  isomorphic to

(z/p '1 )r + (z / p ) ` '

where n — 1 = st + r, 0 < t.

P ro o f . H *(Z p ,q , p) is generated by cg (T + g ) , and so p-primary component of
RY2 q (Z p ,q )//:qq .,. , ) (Z p ,q ) =  Z ip  is  genera ted  by  M T) a n d  hence yq(t) i ,  i = 1, 2, ...
generate p-primary component o f  k(S 2 1 q 1/Zp ,q ) and yq(T)" = O. N o w  in the

A tiyah-H irzebruch  spac tra l sequence , ( P (C p -  1( E  Pip — 13 )) =  — 2(P — 2 )!=o
- 1 . It follows

this equation,

w e have y g e r r  = (p — 2)! p  
y ( r )

 m o d
 y ( t ) 2 .  I t  fo llo w s  f ro m  the induction

augument that y ( t ) t ,  i  =  1, 2, ..., t  generate additively p-primary component of
k- (s 2 n, 1

/zp ,,) which has the order p" -  .  It is clear that the order of 'A t l it h e
order of o-qi =  (pp  — 1)q1. The order of o-qi is from  [3] ps + 1  fo r  i r  and ps for i
>  r .  Now it is easy to see that the order of yq(c) i m ust be just one of o-qj and the
extension is determined.
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6. A  counterexample of odd primary component for Atiyah's conjecture

The Atiysh's filtration conjecture in I] is equivarent to the fact that in the
Atiyah's spectral sequence H*(G).* R(G), universal cycles are generated by Chern
classes of representations o f  G .  T heorem  1  a n d  2  im ply specially that his
conjecture consists fo r  th e  A r t in -T a te  g ro u p s . I n  [ 6 ] ,  E . w e is s  gave  a
counterexample examining 2-Sylow subgroup of the alternating group A ,. C . B.
Thomas extended his augument for 2-Sylow subgroup of projective special linear
g ro u p s . In  th is section, w e show tha t 2  is  no t spec ia l prime for the Atiyah's
conjecture.

A s seen in  [1 ] , fo r  a n  o d d  prime p, H*(C, x  C ) = p(x , y )0 E(z ), deg. x
= deg. y = 2, deg. z  = 3. W e  s e e  e a s i l y  x ,  y  b e in g  f ir s t  C h e rn  classes of
representations o f Cp x C p  a n d  therefore H ( C p x C p )  is generated by Chern
classes of representations.

Proposition 7. There ex ists a  group G  which contains C , x  C , as  3-Sylow
subgroup and H*(G) has an element which is not expressible by Chern classes but an
universal cycle in the A tiyah's spectral sequence.

P ro o f . We define a  group G  by the following presentation,

G = <a, b, cia 3 = b 3 = c 4  = e, ab = ha, cac - 1  = ab, cac - 1  = ab - 1 >

3-Sylow subgroup o f G  is  normal and isomrophic to  C 3  X  C 3 .  L et a , ,  a , b e
irreducible representations of C3 X C , defined by o- ,(a) = co, a 1 (b) = 1, o-

 2 (a) = 1,
o-

 2 (b) = co where co = exp(27ri/3). Then an irreducible representation of C3 X C3 is
one of cr 0  a , j, j  = 1, 2, 3. G has four 1-dimensional representation defined by
the composite of the natural projection G-+GIC 3  X  C 3  =  C 4  and one of C4 . G
has two 4-dimensional irreducible representations indg 3 . c 3 (o-

1) = i , in g ,„ c 3 (a 2 )
=  K2 . O n the  other hand, we have

H*(G)= H*(C 3  x  C 3 )c 4  C) H*(C 4 )

where th e  first component implies the subring of H *(C 3 x  C 3 )  generated by
invariant elements for the  action of C 4 .  P ut x  =  c1 (a 1 )  and  y = c i (o-

 2 ). Since
f (a,)(a) = o -

 i (cac -  1 ) = a 1 (ab) = w, f (a,) (b )  = o - ,(ab 1) = co, w e  have f ( a 1 )
= a 1 ® a 2 . S im ila r ly  w e  have f (a2) = 0-1 It follows f c* (x) = f c*(c
= c i ( f !

c (cy ,)) = c ,(c 0 o - 2 ) = c i (o- ,) + c ,(o-
 2 ) + x  + y  and sim ila rly  f  c* (y) = x

—  y . Therefore, H*(C 3  x  C 3 )' 4 c o n s is ts  o f  polynomials p(x , y )  satisfing the
relation p(x, y) = p(x + y , x — y). As easily seen,

co 0 0 0 1 0 0 0

0 w 0 0 0 w 0 0
Ki (a)= K 2 (b ) =

0 0 co- 1 0 0 0 1 0

0 0 0 w 1 0 0 0 co-
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T h e n  w e have re q .,,(K i ) = a ,  + a  0  o- ,  + a +  a j  0 (12
-  1 . Similarly,

resg3xc3 ( K2) = 172 +  0.1a . 1  + a2-1 + a2 . Therefore 3-primary com-
ponent o f  th e  to ta l Chern class o f ic i ,  K 2  a r e  a s  follows

c(Ki ) = (1 + x)(1 + x + y)(1 — x)(1 — x — y)

_  ±  ( x 2 ± x y  y 2) +  ( x 4 _ x 3y

▪  x

2y 2)

C (K 2 ) =  (1 + y)(1 + x — y)(1 — y)(1 — x + y)

=  I ( x 2 + x y  _  y 2) +  ( y 4 + x y 3 

▪  x

2y 2)

Consider a polynom ial x 3 y — xy 3 = xy(x + y)(x — y ) in  I-18 (C3 x  C 3)c4. We can
see immediately that x 3 y — xy 3 is not gotten by the  linear combination of (x2 +
x y  y 2)2 x 4  x 3 y  x 2 y 2  x y 3  +  y 4,  x 4 x 3 y  x 2 y 2  a n d  y4  + xy 3 + x 2 y2

x 3 y — xy3 i s  a n  universal cycle in  the Atiyah's spectral sequence H *(C , x C 3) i=>
R- (C 3  x  C -

3)  because x , y  a r e  Chern classes. B y th e  naturality of the spectral
sequence, x3 y — xy3 i n  H*(G) is also a n  universal cycle.
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