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Introduction

Let L be a  linear hyperbolic partial differential operator of second order with
coefficients depending on t e [0, co) and x =  (x 1 , . . . ,  x n )e Itn. Let Q be a bounded
or unbounded domain in  R" with a  smooth boundary 052, or the whole W .  We
a s s u m e  3  n  6 .  L e t  I  be an  interval in [0, cc) and le t the time variable t  run
over I. W e shall treat the following problem for a semilinear wave equation:

L[u] + F (u) = 0 i n  I  x Q,

[SLP] u(0, x) = f (x ), 0,u(x , 0) = g (x )  in Q,

_ B u(t, x) = 0 o n  I  x

where F is a nonlinear term satisfying IF (u)I const. + 1 0 - 2 )  as /41 —* co, and
B  is  a  suitable linear boundary operator. If  Q  =  R", of course w e  omit the
boundary condition and consider the initial value p rob lem s. For mixed problems
suitable boundary cond itions a re  assigned. T h e  explic it form  o f  th e  linear
hyperbolic operator L and the boundary operator B will not be given, because it is
inessential to our argument.

O ur a im  is  to  show the existence of a global strong solution u = u(t, x) of
[SLP] for I  = [0, co). F o r  that purpose we also need to solve [SLP] for some
sufficiently short time intervals I. In order to solve [SLP] for some I  we shall use
some established results of the corresponding linear problem [LP],

[L P]

L [v] = G
v(0, x) = f(x),

B v(t, x) = 0

0,40, x) =  g(x)

in  /  x  as2,
in Q,

on  I  x

where G is a  given inhomogeneous term, and L, B and the data are the same as in
[SLP].
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T h e  literature c o n c e r n in g  [ S L P ]  o r  [L P ]  is  n o w  e n o rm o u s  ( s e e
e.g. [2], [3], [4], [5], [7], [8], [9], [10], [11] a n d  [1 2 ]) . Many authors (excepting
Mizohata of [7]) convert [SLP] into the solution of integral equations by using
the sem igroup (or the evolution operators) generated by th e  linear operators
L .  H ere  w e  w ou ld  like  to  adop t a  different method with recourse to some
established theories o f  linear hyperbolic differential equations, i.e. existence or
uniqueness theorems, a n d  energy estimates for L .  This approach seems to be
somewhat simpler than the integral equation method stated above. The author
remarks that Mizohata also solves globally the initial value problem for (0/00 2 u
— Au + F(u), not converting it into the problem of a  nonlinear integral equation
(see Chapter 7 in [7]).

W e introduce some no ta tions. L e t S  b e  a B anach space, I  an  interval in
[0, oo) and m a nonnegative integer. By Cm  ( I ;  S) we denote the set of a ll S-
valued functions having all derivatives of order in  continuous on I. By Hm(Q)
= I I '  we denote the usual Sobolev space defined on Q, i.e. the set of all functions
over Q whose strong derivatives of order m  b e lo n g  to  L 2 (0) =  L2 . H °  equals
L2 . By du M. we denote the I I '  norm of u, and we use M u M as the L2 norm  of u,
to o . W e  set

X (/) = 1u e n cm (I  ; H 2 ' )  / B u  = 0  o n  I  x OS21
m = 0

and

Y(/) = x(1) n c 2 (i ; L2 ).

We define the norm  of u of X  (I )  by

u1111 = sup { u(t)M 2a1u(t)1111.
te l

If a solution of [SLP] belongs to Y(/), we call it a  strong so lu tio n . We define two
kinds of energy for ueX (I) by

E„,(u(t))= E m (t) = Ilu(t)L. + Il 3tu(t)Ln-1 for m = 1, 2.

We remark that MI u MI/ = sup E2 (u(0).
te l

Here let us state the assumptions we shall make on L, B and [LP], which do
not involve the explicit form of L  or B, however.

[A 1] The boundary operator B is given so that X (/) is complete with its
norm IM

We remark that it is uncertain whether X (/) is complete or not, as the explicit
form of B is not given, and tha t [A 1] actually holds if B is the Dirchlet or the
Neumann boundary operator.

[A 2] Let I = [ T ,  t ]  be any finite interval in [0, cc). I f  u n  Y (/) , then
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E 2 (u(t)) exp(k(t — r))E 2 (u(r)) + exp(k(t — s)) L u ( s )
11 d s ,

where k  is  a positive constant depending only on L  and B .

[A 3] L et / =  [r, t] be any finite interval in [0, cc). I f  G E C° (I ; 11 1), fc H 2

and geFl i ,  then  [L P ] has a unique solution y in Y(/).

[A 2] a n d  [A  3] have been studied extensively a n d  a re  actually proved if L  is
regularly hyperbolic (see [4], [7], [8] and [11]).

§1 . Existence of solutions

The nonlinear term F  is assumed to satisfy

[A 4]
i) F: C - 4 C is continuous and  has a  continuous Fréchet derivative as a

map on R 2  into itself, w here C  is the set of complex numbers.
ii) F (0) = O.
iii) There exists a nondecreasing continuous function M: [0, co) —> [0, co)

such that for every u, v  I-12

(1.1) F 0,0 — F (OM 4 ( u  2 + 1114 2)Mu — v .

We shall make several remarks on the Fréchet derivative of F (see [6] and [11] for
detailed explanation). The Fréchet derivative F'(z ) is identified w ith the pair
(OF/Oz, OF/Of). We define F'(z)•w for w e C by

F'(z)•w =(0F/Oz)w + ( F / a ±

and the norm  of F'(z) by

F(z)1 =  1(0F/0z) (z)I + (aF/Of)(z)1.

Then F(z)1 114;1 h o ld s . U n d e r  i)  o f  [A 4], IF(z)1 is continuous in
z. Let 0, = 0/0x 1. W e have the following relations.

(1.2) 0,F(u(t, x)) = F'(u(t, x)) • j u(t, x )  for i = 1, 2, ..., n,

and

(1.3) F (u) — F (v) = f  (d / ds) IF (su + (1 — s)v)} ds

= F'(su + (1 — s)v)•(u — v)ds.
0

2  

[A 4] is verified for some explicit function, e.g. F (u) = U n -2 u (n = 3 or 4) in the
next section.

We set a  = I f I 2  +  g ±  1 for f  E H 2  and gE1-1 1, and for some finite interval
/ [0, co)
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Z a (1) = tu E X  (i); 111U =< a}

N ow  w e p rove  a local existence theorem  fo r  [SLP] b y  th e  contracting
mapping principle. Here [A 3] plays an important role.

Theorem 1 (L ocal Ex istence). L et to be  any  nonnegative number, and f e H 2

and g e H 1 . Let

(k + M(a)) a
h = M in .  [ k  log 

( a  — 1 )  k  +  a M ( a ) '

log (1 + k
2 M ( 2 a )

 )1.

Then [SLP] for I  = [t 0 , to +  h ] has a unique solution u in  Y(/) satisfying III u 1111
< a.

P ro o f . Let

hl = k  log
r +  M ( a ) }  a
ka — 1) k + aM (a) i •

L et / 1 =  [to , to + h l ]  a n d  ueZ a (11). W e see from  [A  4 ]  th a t  F(u) i s  in
C

°
 (/, ; I V ) .  Hence by [A 3], [L P ] w ith  the inhomogeneous term — F (u) has a

unique solution y in Y(11). We define the mapping S by = S u .  Then by
[A 2] Su fulfils

(1.4) E2(Su(0) exP (k(t to))(II f II 2  + 11 g 11 1)

+ exp(k(t — F (u(s))Il 1 ds.
to

Since u is  in  Z a (/,), we have, by  ii) and iii) of [A 4]

IIF (u(t))II 4 (1114 112)1Iu112 aM(a) (t e II).

Then, from (1.4) we have for t e

E2 (Su(t)) exp(k(t — t 0 )) (a — 1) + exp (k(t — s)) a M (a) ds
to

la — 1 + (a M (a)I k)} exp (k h i ) — (a M (a)I k)

< a,

w h e n c e  S u a .  Thus S maps Za (I i ) into itself.
Let us set

h2 = log [1 +  (
2 M

k
( 2 a )

)1 .

Let / 2 =  [t o , t o + h 2 ] ,  and  u , and  u2 b e  in  Z„ (12 ). Then y = Su, — Su2 i s  the
unique solution in Y(12 ) of the linear problem
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L[v] = — (F(u,)—  F(u 2 )) in  1 2  X  52,[

v(to ) — 3v(t 0 ) = 0 in  0 ,

B v(t, x )= 0 o n  /2 x Q .

Hence by [A 2], S u , — S u2 satisfies for te 12

E 2 (S U I(t)  —  S U 2 (0 ) I
t o  

exp(k(t — s)) 11F (14 i(s)) — F (u2(s)) II 1 d s

Then for t e l 2  w e  have

E2 (Su i (t) —  Su2 (t)) 5 M(2 a) f t exP (k(t — u i(s) — u 2(s) d s
J

(M(2a)(exp(k(t —  to)) —  1))
ui (s) — u2(s)111/2

5  (1/2) Ill l4 (S) — U2(S)i 2 .

Thus we have 111Su1 — Su2 III, 5 (1
/2 )111 ui (s) — u2(s)111/

2.
We define h by h = Min. (111, h 2 ). Let I = [t o , t o + h]. Thus we have shown

tha t S is  a  contracting mapping from  Z ( I )  into itself, a n d  S maps Z ( I )  into
Y(/). N oting that X(/) is com plete by [A 1], S has a  unique fixed point u  in
Za (/) n Y(/). Clearly this u is the unique solution of [SLP] for I. Thus we have
completed the proof.

Next we shall show the existence of global solutions. To this end we need an
apriori estimate which guarantees solutions to rem ain bounded in  time for any
finite tim e .  W e assume:

[AS] L e t  T be any positive number, and I = [0, T ] .  Let u be a solution in
Y(/) of [SLP] with f e H 2  and  g E H '.  Then there exists a nonnegative continuous
function K 2 (t) such that for 0 t T

E2 (u(t)) K 2 (t).

[A 5] w ill be actually  proved fo r  som e concrete nonlinear term s in  th e  next
sec tion . F o r its proof w e w ill use some estimate o f E i (u(t)), which is left not
verified because it is well-known for general L and B  (see [A 6] in  §2).

Theorem 2 (Global Existence). A ssume [A 5 ].  L et T be any positive number,
I = [0, T ], an d  f e ll' and g e H i . Then [SLP] f o r I has a unique global solution
belonging to Y (I).

P ro o f  L et Ao  = sup K 2 (t), A  = A o  + 1 and
t e l

(k  + M(A )) A
H = M in . [ lc ' log k '  log (1 + k   ) 1 .

(A  — 1) k + AM(A)' 2M(2A)
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Noting 11 f 11 2 + g Ao, by Theorem 1 we can construct a unique solution u, of
[SLP] for [0, H ] in  Y([0, H ]) satisfying 11 u1 11[ 0 ,, i A o . F or t H we consider
the mixed problem of L[u] + F (u) = 0, with u(H) = u,(H), 0 1u(H) = a t u,(H) as the
initial data and with the same boundary condition as in [S L P ] . Noting 11 u1 (H)112

+  da1u1(H)111 Ao, again we can construct by Theorem 1 a unique solution u2 of
this problem for [H , 2 H ] .  We define u by  u = u1 i n  [0, H ] and  by  u = u 2 in
[H, 2 H ].  In  th e  sam e w ay w e can show tha t fo r any interval 10  = [t, t + H]
contained in  [0, 2H], a unique solution of [SLP] with the initial data u(t) and

u(t) exists, a n d  th a t its  solution equals u in I .  T h e n  b y  th e  uniqueness of
solutions, u  is th e  u n iq u e  s o lu t io n  o f  [S L P ]  f o r  [0 , 2 H ] belonging to
Y [0, 2H ]). Repeating th e  same procedure a  finite numbers o f  times, we can
construct the unique solution of [SLP] for I , which completes the proof.

§ 2 .  Some estimates

W e shall apply  th e  results o f  § 1  t o  [SL P ] with some explicit nonlinear
te rm s . F o r that purpose we shall prove [A 4 ] and  [A 5].

By 1.1, we denote the  norm  of LP(Q) w ith 1 p oo, bu t u se  11•11 for the
L2 (Q) norm as before. W e often denote various positive constants by the same
symbol C.

W e assume:

[A 6 ]  Let T be any positive number, and I =  [0, T ] .  Let u be a solution in
X(/) of [SLP] with f e H 2  and g E H ' .  Then there exists a  nonnegative continuous
function K 1 (t) such that for 0 t T

E i (u(t)) 5 I( JO.

[A 6] is known to be satisfied for [SLP] with sufficiently general L. The proof of
[A 6 ]  is comparatively easy (see our references [2], [3], [7], [8], [9], [10], [11]
a n d  [1 2 ]) . EA 6 ] is applied  only  to  the  proof o f  [A 5 ] (see Lemma 3  in  this
section).

The nonlinear term F  is assumed to satisfy the following conditions.

[C ]  i)  F :  C  C  is continuous and has a  continuous Fréchet derivative as a
m ap on  R2 into itself.

ii) F (0) = 0.
iii) There exists a  real valued nonnegative function G: C  R ,  satisfying

F (z) = OG(z)/Of and  G(0) = 0.

iv) IF(z)1 C(1z1+1z1. - 2 ) f o r  zeC.
2  

V) 1F(Z)1 C(1 ±  1Z in — 2) f o r  zeC.
vi) 1 F '(z 1) — F'(z2 )1 z, — z2 1 f o r  z , and z, E C.

We remark that iii) will not be applied ostensibly to coming proofs, but if we
actually try to prove [A 6] for concrete L and B, we shall use iii).
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To prove [A 4] a n d  [A 5] from  [C ] we prepare the  following well-known
Sobolev imbedding theorem:

L em m a 1. L et 2 < co and (1/p) (1/2) — (min). T h e n  f o r ue lim

lulp 5 c

For the proof of this lemma see Lemma 5 of [1].

Lemma 2. L et 3 n 6 and F fulf il [ C ] .  Then F satisfies [A  4].

P ro o f  Let u and  y  belong to H2 . By (1.3) we have

F (u) — F(v) = f  F' (su + (1 — s)v)• (u — v)ds
0

Then noting an inequality (a + b)P 2" 1 (aP + bP) for a, b, p > 0, we have from v)
of [C]

(u) — F (011 5 Ç
.

(su + (1 — s)v)11(u — Olds
.  

   

2 2

cI1(1 +1u1.- 2  +10. - 2 )(u - 011
2 2

colu — v11 + 11(u — 010 - 2 11 + — v)1v1" - 2 11).

Applying the Holder inequality and Lemma 1,
2 2 2

11(u - v)Iu1- 2 11 51u - vlp(lulp)-2 c u  - ylli(11u111)- 2 ,

where p 1 =  2- 1  — n-  1 . Thus we have
2 2

(2.1) 11F (n) — F (v)11 5 c[Ilu - vl + 1(14111)n-2 (M 1 -1 1 )"-2 1 ].

Next we shall estimate 11 ,F (u ) —  F (v ). By (1.2) we have

(2.2) II 81F (u) — ai F (011 11 (u) • (0 i v — iu)11 + 11(F (u) — F (v)) • a iv 11

By an estimation sim ilar to the above, we have for i = 1, 2, ..., n
2

(2.3) Fr(u)•(a,u — v)11 c flaiu — aiv + 11(aiu — 3iv)luln-2
2

- v ,  + Ilu - Y112(11u ll1)n- 2 1.

From  vi) of [C ] we have

II (n u )  — F(y)) • a iv 11 C 11(u — iv . 11

Noting 3 n 6, we can choose p and q 2 such that p -  1  +  q ' p
2- 1  — (2/n) a n d  q 2-1 n -1 . H ence from  th e  W ilder inequality and

Lemma 1 we have for i = 1, n
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(2.4)I I  (F'(u) — F'(v))•a i vIl C u — vi I V l <C . lu — v112 11012

Thus by (2.1), (2.2), (2.3) and (2.4) we have

F (u) — F (OM C {11F (u) — F (v)11 + (u) • (a iu — iv) II

+ 11(F' (u) — F r (v)) • a iv Ill=
2 2

C U U + 1114 —  01{(11 141) n - 2  +(011}1 - 2 1

2
+ u — v111 + l u v112 (II u110- 2 + II u — v 11211 v 112]

2
C{2 + 2 (11u112 + 11v112)n- 2  + ( 1114 112 + 042)1 MU — 012.

2  
We set M (s) = C(2 + 2s.- 2 s ) .  Then M (s) is nonnegative, nondecreasing and
continuous in  s 0, and

IIF(u) — F (v) II I 5 MG u112 + 11v112)1Iu — vI12

holds, which was to be shown.

It remains to show that the  energy E 2  for a  so lu tion  of [SLP] is apriori
bounded on  any finite interval I = [0, T].

Lemma 3. Let F fulf il [C ].  Assume [A 6]. Then [A 5] actually holds.

Pro o f . By iv) of [C ] and Lemma 1 we have

IIF (u) II 5  CO 114 1n - 2 11 = C{(114 1n 2_n
2 )n - 2

+ 11u11}•

Applying the  Holder inequality, we have

2 2
1110 - 2  a Jul 5110-21,1.0j/I  2n

2  

=  14 I 2n—  2  a i u l2 n  n - 2
n - 2

Then by (1.2), v) of [C ] and  Lemma 1 we have for i = 1,..., n

2  
O F (on = J f " (u). i u I 5 C  O u  J + J 0 - 2  aiti

2
c ai u II + ul n

2
- n2 - 2 laiu120.-21

2
(M14 111)"- 2  Ma1l41}
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2  
_. C11114 111+(1 12 111)"- 2 1114 12}.

Thus, noting 11 11 E 1 (t) K i  (t) a n d  11 u 112E 2 (t), we have

11F (OM 11F (On + F (u) • a iu
2

C  K  1 (t) , - 2 + K i (t)n- 2 E 2 (t)}

So we have b y  [A2]

E2 (t) exP (  f 112 + 11g111)
2  

± C e x p (k ( t  —  s)) {2 K i (s) + K i (s)n -  2  + K (s)n - 2 E 2 (t)} ds.
0

Hence by the Grownwall inequality we can find a nonnegative continuous function
K 2 (t) such that E 2 (t) K 2 (t). Thus the proof is complete.

Combining with the last two lemmas and Theorem 1 and  2, we obtain:

Theorem 3. Let f  e H 2 and  g e H i . Let F satisfy [ C ] .  Assume [A l], [A 2],
[A 3] and  [A 6 ] .  Then [S L P] has the unique solution in Y([0, co)).

Apped in proof. [A 2 ] is well-known for the  initial value problems, b u t it
seems doubtful fo r  th e  initial-boundary value problem s. Instead o f  [A 2 ]  we
assum e the energy inequality (2.21) in  P roposition 2.6 o f  [4 ]  a n d  w e assume
Ge C Y ;  L2 )  i n  [A 3 ]  instead o f  G e C ° (I ; 11 1). T hen  w e  can  show  the  same
results for the initial-boundary value problems by the slight modification of our
argum ent. The detailed exposition will be published.
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