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Introduction

Let Lbe a linear hyperbolic partial differential operator of second order with
coefficients depending on t€[0, o0) and x = (xy,..., x,)éR". Let Q be a bounded
or unbounded domain in R" with a smooth boundary 022, or the whole R". We
assume 3 <n <6. Let I be an interval in [0, o0) and let the time variable ¢t run
over I. We shall treat the following problem for a semilinear wave equation:

Llul]+ Fu=0 in IxQ,
[SLP] u(0, x) = f(x), du(x, 0)=g(x) in Q,
Bu(t,x)=0 on I x 0Q,

where F is a nonlinear term satisfying |F (u)| < const. (Ju| + IuI#) as |u| — oo, and
B is a suitable linear boundary operator. If Q =R" of course we omit the
boundary condition and consider the initial value problems. For mixed problems
suitable boundary conditions are assigned. The explicit form of the linear
hyperbolic operator L and the boundary operator B will not be given, because it is
inessential to our argument.

Our aim is to show the existence of a global strong solution u = u(t, x) of
[SLP] for I = [0, o0). For that purpose we also need to solve [SLP] for some
sufficiently short time intervals I. In order to solve [SLP] for some I we shall use
some established results of the corresponding linear problem [LP],

Liv]l]=6G in I x 0Q,
[LP] v(0, x) = f(x), 0,v(0, x) =g(x) in Q,
Bo(t,x)=0 on I x 09,

where G is a given inhomogeneous term, and L, B and the data are the same as in
[SLP].
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The literature concerning [SLP] or [LP] is now enormous (see
e.g.[2], [3], [4], [5], [7], (8], [9], (107, [11] and [12]). Many authors (excepting
Mizohata of [7]) convert [SLP] into the solution of integral equations by using
the semigroup (or the evolution operators) generated by the linear operators
L. Here we would like to adopt a different method with recourse to some
established theories of linear hyperbolic differential equations, i.e. existence or
uniqueness theorems, and energy estimates for L. This approach seems to be
somewhat simpler than the integral equation method stated above. The author
remarks that Mizohata also solves globally the initial value problem for (8/0t)*u
— Au + F(u), not converting it into the problem of a nonlinear integral equation
(see Chapter 7 in [7]).

We introduce some notations. Let S be a Banach space, I an interval in
[0, 0) and m a nonnegative integer. By C™ (I; S) we denote the set of all S-
valued functions having all derivatives of order < m continuous on I. By H™(R2)
= H™ we denote the usual Sobolev space defined on Q, i.e. the set of all functions
over Q2 whose strong derivatives of order < m belong to L?(2) = L2. HP° equals
L% By |lul,, we denote the H™ norm of u, and we use | u| as the L? norm of u,
too. We set

X(I)={ue (1\ C™I;H*™™) /Bu=0on I x 0Q}
m=0
and
Y(I) = X()nC*(I; L?).

We define the norm of u of X (I) by

llulll, = sup {lu@lly + 10u@)],}
te
If a solution of [SLP] belongs to Y(I), we call it a strong solution. We define two

kinds of energy for ue X(I) by
E, () = E,(1) = [u@®)lln + 10u®)|n-, for m=1,2.

We remark that ||ull|; = sup E,(u(1)).
tel

Here let us state the assumptions we shall make on L, B and [LP], which do
not involve the explicit form of L or B, however.

[A1] The boundary operator B is given so that X(I) is complete with its
norm || - [l;.

We remark that it is uncertain whether X (I) is complete or not, as the explicit
form of B is not given, and that [A 1] actually holds if B is the Dirchlet or the
Neumann boundary operator.

[A2] Let I =[r,t] be any finite interval in [0, o0). If ue Y(I), then
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t
E,(u(t)) < exp(k(t — 1)) E;(u(1)) + j exp(k(t — )| Lu(s) |, ds,
where k is a positive constant depending only on L and B.
[A3] Let I =[r, t] be any finite interval in [0, c0). If GeC°(I; H'), fe H?
and ge H!, then [LP] has a unique solution v in Y(I).

[A2] and [A3] have been studied extensively and are actually proved if L is
regularly hyperbolic (see [4], [7], [8] and [11]).

§1. Existence of solutions
The nonlinear term F is assumed to satisfy

[A4]

i) F:C—C is continuous and has a continuous Fréchet derivative as a
map on R? into itself, where C is the set of complex numbers.

ii) F(0)=0.

iii) There exists a nondecreasing continuous function M: [0, co) — [0, c0)
such that for every u, ve H?

(L.1) IF () — F @)l =Mullz + [oll)llu —vll,.

We shall make several remarks on the Fréchet derivative of F (see [6] and [11] for
detailed explanation). The Fréchet derivative F'(z) is identified with the pair
(0F/dz, 0F/0z). We define F'(z)-w for we C by

F'(z)-w = (0F/0z)w + (0F /0z)w
and the norm of F'(z) by
[F'(2)] = |(0F /0z)(2)| + |(0F /02)(2)I.

Then |F'(z)- w| £ |F'(z)| |w| holds. Under i) of [A4], |F'(z)| is continuous in
z. Let 0; = 3/0x;. We have the following relations.

(1.2) 0;F(u(t, x)) = F'(u(t, x))-0u(t,x) for i=1,2,...,n,
and
(1.3) Fu)— F(v)= jl (d/ds){F (su + (1 — s)v)}ds

0

1
= f F'(su + (1 — s)v)-(u — v)ds.
0
2

[A 4] is verified for some explicit function, e.g. F(u) = |u[n=2u (n = 3 or 4) in the
next section.

Weseta=|f|,+ llgll, + 1 for fe H?> and ge H', and for some finite interval
I = [0, o0)
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Z,(I)={ueX); lull; < a}

Now we prove a local existence theorem for [SLP] by the contracting
mapping principle. Here [A 3] plays an important role.

Theorem 1 (Local Existence). Let t, be any nonnegative number, and fe H?

and ge H'. Let
k
-1
, k7'log <1+2M(2a)>]'

Then [SLP] for I = [t,, to + h] has a unique solution u in Y(I) satisfying |ull,
<a.

(k+ M(a)a
a—1) k+ aM(a)

h = Min. [k“log(

Proof. Let

hy =k~ 'log |: {k+ M(a)}a :l

(a—1)k+aM(a)

Let I, = [to, to + h;] and ueZ,(I,). We see from [A4] that F(u) is in
C°(I,; H'). Hence by [A3], [LP] with the inhomogeneous term — F(u) has a
unique solution v in Y(I,). We define the mapping S by u+—v =Su. Then by
[A2] Su fulfils

(1.4) E5(Su(t)) < exp(k(t — to))(I1/ 12 + g 1l1)

+ j exp(k(t — 9)IIF (u(s))l, ds.

o

Since u is in Z,(I;), we have, by ii) and iii) of [A4]
I F@®)l, =Mul)lul, <aM(a) (tely).

Then, from (1.4) we have for tel,

E,(Su(t)) = exp(k(t — to))(a— 1) + Ji exp(k(t — s))aM(a) ds

to

< {a— 1+ @M@/k)} exp(kh,) — (@M (@)/k)

lIA

a,

whence [|Sull;, <a. Thus S maps Z,(I,) into itself.

Let us set
k
— -1
h, =k™'log [1 + <—2M(2a)>]'

Let I, =[to, to + h,], and u, and u, be in Z,(I,). Then v =Su, — Su, is the
unique solution in Y(I,) of the linear problem
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L[v] = — (F(uy) — F(uy) in I, x 2,
v(toy) = 0,v(te) =0 in Q,
Bu(t, x) =0 on I, x0Q.
Hence by [A2], Su, — Su, satisfies for tel,

t

E,(Suy(t) — Su,(1)) = J exp (k(t — )1 F (uy(s) — F(ua(s) 1 ds

to
Then for tel, we have

t

E»(Suy(t) — Su,(1)) = M(2 G)J exp (k(t — 5))[luy(s) — uz(s) [l 1 ds

to

IA

(M(2a)(exp(k(t — ) — 1)

K > Ty (s) — uz(s) 1,

= (1/2) [ uy(s) — u2(9) 1,

Thus we have [|Su; — Su, I, < (1/2)[ uy(s) — uy(s) i1,

We define h by h = Min. (hy, h,). Let I =[t,, to + h]. Thus we have shown
that S is a contracting mapping from Z,(I) into itself, and S maps Z,(I) into
Y(I). Noting that X(I) is complete by [A1], S has a unique fixed point u in
Z,)nY(I). Clearly this u is the unique solution of [SLP] for I. Thus we have
completed the proof.

Next we shall show the existence of global solutions. To this end we need an
apriori estimate which guarantees solutions to remain bounded in time for any
finite time. We assume:

[AS5] Let Tbe any positive number, and I = [0, T]. Let u be a solution in
Y(I) of [SLP] with fe H? and ge H'. Then there exists a nonnegative continuous
function K,(t) such that for 0<t<T

E,(u(1)) = K, (1)

[A5] will be actually proved for some concrete nonlinear terms in the next
section. For its proof we will use some estimate of E,(u(t)), which is left not
verified because it is well-known for general L and B (see [A6] in §2).

Theorem 2 (Global Existence). Assume [AS]. Let T be any positive number,
I=1[0,T), and fe H* and ge H'. Then [SLP] for I has a unique global solution
belonging to Y(I).

Proof. Let Ay =sup K,(t), A=A, + 1 and

tel

T, (k + M(4)) A i} _ Kk
H = Min. [k Hog e AMa) ¢ o8 <1 +2M(2A)>]'
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Noting [ fll, + [lg]l; £ Ay, by Theorem 1 we can construct a unique solution u, of
[SLP] for [0, H] in Y([0, H]) satisfying |lu, |o4; < Ao. For t = H we consider
the mixed problem of L[u] + F(u) = 0, with u(H) = u,(H), d,u(H) = d,u,(H) as the
initial data and with the same boundary condition as in [SLP]. Noting ||u,(H)]|,
+ || 0,u (H)|l; £ Ay, again we can construct by Theorem 1 a unique solution u, of
this problem for [H, 2H]. We define u by u=u, in [0, H] and by u =u, in
[H,2H]. In the same way we can show that for any interval I, =[t, t + H]
contained in [0, 2H], a unique solution of [SLP] with the initial data u(t) and
Ou(t) exists, and that its solution equals u in I,. Then by the uniqueness of
solutions, u is the unique solution of [SLP] for [0, 2H] belonging to
Y[0, 2H]). Repeating the same procedure a finite numbers of times, we can
construct the unique solution of [SLP] for I, which completes the proof.

§2. Some estimates

We shall apply the results of §1 to [SLP] with some explicit nonlinear
terms. For that purpose we shall prove [A4] and [AS5].

By |-], we denote the norm of LP(2) with 1 < p < co, but use ||-|| for the
L*(2) norm as before. We often denote various positive constants by the same
symbol C.

We assume:

[A6] Let Tbe any positive number, and I = [0, T]. Let u be a solution in
X(I) of [SLP] with fe H? and ge H'. Then there exists a nonnegative continuous
function K,(t) such that for 0t < T

E,(u() = K,(1).

[A 6] is known to be satisfied for [SLP] with sufficiently general L. The proof of
[A 6] is comparatively easy (see our references [2], [3], [7], [8], [9], [10], [11]
and [12]). [A6] is applied only to the proof of [AS5] (see Lemma 3 in this
section).

The nonlinear term F is assumed to satisfy the following conditions.

[C] i) F:C—C is continuous and has a continuous Fréchet derivative as a
map on R? into itself.
ii) F(0)=0.
iii) There exists a real valued nonnegative function G: C —» R, satisfying
F(z) = 0G(2)/0z and G(0) = 0.
iv) |F(2) <C(zl +1zf72)  for zeC.
2

v) |F'(z)| £CA + |z|r—2) for zeC.
vi) |F'(zy) — F'(z)| £ C|zy — z,] for 2z, and z,€eC.

We remark that iii) will not be applied ostensibly to coming proofs, but if we
actually try to prove [A 6] for concrete L and B, we shall use iii).
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To prove [A4] and [A5] from [C] we prepare the following well-known
Sobolev imbedding theorem:

Lemma 1. Let 2<p< o and (1/p) = (1/2) — (m/n). Then for ue H™
lul, £ C llullp
For the proof of this lemma see Lemma 5 of [1].
Lemma 2. Let 3<n<6 and F fulfil [C]. Then F satisfies [A4].
Proof. Let u and v belong to H2. By (1.3) we have

F(u) — F(v) = Jl F'(su + (1 — s)v)-(u — v)ds.

0

Then noting an inequality (a + b)? < 27~ !(a” + bP) for a, b, p > 0, we have from v)
of [C]

I F @)= F@) =

1
J |F'(su + (1 — s)v)||(u — v)|ds
0

2 2
S CIA + [ul=2 + [v[»=2) (u — V)|

< C(llu — vl + I = )T + [ — o[,

Applying the Holder inequality and Lemma 1,

2 2 2
I —v)ul»=2] = |u—vl,(Jul)=2 = Clu—vl(Jul)-2,

where p~! =2"' —n~!. Thus we have

2 2
=2 + (] )n=2}].

Next we shall estimate | 0;F (u) — 0;F (v)||. By (1.2) we have
(22 10:F(u) — 0; F(v)| < [F'(w)-(0;0 — du) |l + [[(F'(u) — F'(v))- o;0].

@1  IF@—FOI=Clu—vl+lu—ol{(lul,)

By an estimation similar to the above, we have for i=1,2,...,n

2

@3)  IF@)-@u— )l < C{I0u— ol + (G — d0)uf~2)

2
S C{llu—vly + llu—vlo(lul)==2}.

From vi) of [C] we have
[(F'(w) — F'(v))- 00 = Cll(u — v)dv].

Noting 3<n <6, we can choose p and ¢ =2 such that p™* +q ! =271 p~!
>22"'—(2/n) and ¢g ' 227" —n~!. Hence from the Hélder inequality and
Lemma 1 we have for i=1,...,n
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(2.4) [(F'(u) — F'(v))-0vll £ Clu —vl],|00], < Cllu—v|,lvl,
Thus by (2.1), (2.2), (2.3) and (2.4) we have

IF W)= F@l, £ C{|F ) —F@I + .i I () (0;u — 00)|

+ 3P @~ Fw)-dol)

2
SCllu—vol + Ju—vl {(lul)=2+ (Hvlll)”fz}

2
+ llu—=vly + llu—oll(ull)=2 + lu —vl,llv].]

2
SC{2+2(lully + Ioll)=2 + (lullz + llvll)} lu — vl

2
We set M(s) = C(2+ 2sn-2 +5). Then M(s) is nonnegative, nondecreasing and
continuous in s = 0, and

[F)—F@ I, £M(ul,+ lvli)dlu—vl,
holds, which was to be shown.

It remains to show that the energy E, for a solution of [SLP] is apriori
bounded on any finite interval I = [0, T].

Lemma 3. Let F fulfil [C]. Assume [A6]. Then [A5] actually holds.

Proof. By iv) of [C] and Lemma | we have

n

IF @)l < Cluf=2 ] + [ul) = C{(Jul 22 )==2 + ul}

n

S C{(lull =2 + flull}.

Applying the Holder inequality, we have

2 2
[Hulr=2 ol < |lu[*=2],|0:ul

2n
n—2

2
= (Jul 2077 |Q,ul 2.
Then by (1.2), v) of [C] and Lemma 1 we have for i=1,..., n

2

10; F @) = IIF (u)-0;ull £ C(I1d;ull + Il luln=2 d;ul)

2
< C{l10u ) + (Iul 20 =2 10ul 2}

2

< C{loull + (lull)==2 [l 6;ull,}
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2

S C{llully + (ull)m=2 ull,}.

Thus, noting |u|, < E,(t) £ K,(¢) and |u|, < E,(t), we have

IFE@)l = IIF@) + Z: [F* (u)- Osul

n 2
< C{2K, (02 + K, (07 E; (1)}
So we have by [A2]

Ey(®) < expk)(If 12 + lIglly)

t n 2

+ Cj exp (k(t — s5)) {2 K (s) + K (s)"=2 + K (s)"=2 E,(t)} ds.
0

Hence by the Grownwall inequality we can find a nonnegative continuous function

K,(t) such that E,(¢) < K,(t). Thus the proof is complete.

Combining with the last two lemmas and Theorem 1 and 2, we obtain:

Theorem 3. Let fe H?> and ge H'. Let F satisfy [C]. Assume [A 1], [A2],
[A3] and [A6]. Then [SLP] has the unique solution in Y([0, c0)).

Apped in proof. [A2] is well-known for the initial value problems, but it
seems doubtful for the initial-boundary value problems. Instead of [A2] we
assume the energy inequality (2.21) in Proposition 2.6 of [4] and we assume
GeC'(I; I?) in [A3] instead of GeCP°(I; H'). Then we can show the same
results for the initial-boundary value problems by the slight modification of our
argument. The detailed exposition will be published.
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