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On integral manifolds of an integrable nonlinear
connection from the standpoint of the theory of
Finsler connections

By

Makoto MATSUMOTO

There are recently several papers concerning Finsler spaces having the
vanishing (v)h-torsion tensor R' ([1], [2]). It has been shown in a previous paper
[4] that the tensor R! is regarded as the curvature tensor of the nonlinear
connection N and the vanishing of R! is an integrability condition of N which is a
distribution in the tangent bundle.

The purpose of the present paper is to consider an integral manifold of the
integrable nonlinear connection N from the standpoint of the theory of Finsler
connections. We are mainly concerned with the Cartan connection CI
=(F, N, C) of a Finsler space (M, L). The tangent bundle T(M) becomes a
Riemannian space with the metric which is obtained by lifting the Finslerian
fundamental tensor. Thus we shall develope a Riemannian geometrical subspace
theory of integral manifolds.

The terminology and notation are referred to the author’s book [3]; the
quotation from it is indicated only by putting asterisk.

§1. Integral manifolds of a nonlinear connection

Let FI'=(F, N, C) be a Finsler connection (*§9) of an n-dimensional
differentiable manifold M. The N is a nonlinear connection (*Definition 8.2), that
is, an n-dimensional distribution ye T(M)— N, < T(M), in the tangent bundle
T(M) such that T(M), = N,® T;. By lifting to the point y a tangent vector V
= (V%), of M gives rise to a tangent vector (*(9.1))

(1.1) (V) = Vi(8/ox' — Ni(x, y) 8/dy),,

contained in the subspace N,.
This distribution N is integrable (*Remark 10.2, [4]), when the differential
equations

(1.2) 0y'/ox) = — Ni(x, y)

are completely integrable and we get an integral manifold N": y' = ¢(x) which is
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tangent to N, at every point y of N".
In general, for a function Q(x, y) on a domain of T(M), we have along N"

(1.3) 00(x, p(x))/0x" = 0Q(x, y)/ox' — {0Q(x, y)/dy’} N,

which is usually indicated by the symbol 6Q/6x’ (*(9.19)). Then, from (1.2) we get
d(dy'/ox’)/ox* = — 6N}/6x¥, so that the integrability condition of the equation (1.2)
is written as

(1.4) Riy = ON/5x* — §Ni/dx/ = 0.

This tensor field R}, is called the (v)-torsion tensor of the Finsler connection FI”
(*§10, [4]).

In the following we shall denote by V = (Vi, V¥) (we put (i) = n + i) a tangent
vector Vid/dx' + V@ 3/dy'e T(M),. Since (x') may be regarded as a coordinate
system of an integral manifold N", the n vectors

(1.5) B; = (0x'/ox’, dy'/ox’) = (8}, — Ni), j=1,---,n,

are independent vector fields tangent to the n-dimensional N”. By (1.1) it is seen
that these are horizontal lifts (9/0x%)* of tangent vectors 8/0x’ of the base manifold
M.

§2. Metric and normal of N"

We are concerned with a Finsler space F" = (M, L) with a fundamental metric
function L(x, y), from which the fundamental tensor field g = (g;;(x, y)) is induced
such that g;; = 3i3jL2/2. It is well-known that the tangent bundle T(M) is
regarded as a 2n-dimensional Riemannian space with a lifted Riemannian metric
tensor g (*§21). Throughout the paper we shall restrict our consideration to the
0-lift alone, called the Sasakian lift as is well-known. Thus *(21.2') gives § as

(2.1) 9i; = 9ij + 9sNiNj  Gi5y = Nidrp» 9y = 9ij-
The reciprocal §* of g,; (@, f=1,--+, 2n) is given by
22 gi=g"% §9"=—g"N}, g =g"+g"NiNi
Every integral manifold N" is an n-dimensional subspace of the Riemannian
space T(M) and the Riemannian metric a = (a;(x)) is induced in N". It follows

from (1.5) and (2.1) that we get an interesting fact; the induced metric a;; = g,,B7 B/
is nothing less than

(2.3) aij(x) = gij(xa d(x)),
that is, the metric of N" is essentially the same with that of the base space F”".

Remark. If we put 6y’ = dy' + Nidx/ (*§21), then the lifted metric is written
as ds? = g,;dx'dx’ + g;;0y'6y’. On account of (1.2) 6y* vanishes along N" and we
get (2.3) immediately.
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A normal vector N of N" is given by the equations g,,,B“N” 0, which is
written as g;N’ =0 from (1.5) and (2.1). Thus we have Ni=0. Therefore n
independent normal vectors are given as

(24 B = (0, Bf}), det (B{) #

These are written as B{) 0/0y’, that is, the vertical lift of n tangent vectors B{}} 9/0x'
at the base point. For the later use we shall indicate the scalar products of
normals B and B; as

(25) Jup Bl sz,') = Gh 8')) Bm = Rgjy

and call the characteristic numbers of the normal frame B;,.

§3. Christoffel symbols

The strain tensor S has been defined (*Definition 21.2) as the difference of the
Riemannian connection I'(g) given by the lifted metric g from the linear connection
of Finsler type I' derived from the Cartan connection CI. That is, we have

3.1) {5 =T5 — Shy

where {l,ay} are the Christoffel symbols of I'(g), I” 7, the connection coefficients of r
and S, the components of the strain tensor S. Coefficients I'§, are given by
*(20.5).

The strain tensor S is given in *Remark 21.3 for the case of the 0-lift and
CI'. We shall find the components Sj, of S in the similar way to the case of the
torsion tensor T as shown in *p.133. For instance we have

S50 = 20 85, E N

From *(19.10) and *(19.10") we have

S5l = (— 2aN1 S + 2aSky) (27 D51

+ (= ZeN Sy + 2aSE)e) 2 N3z
Then *Remark 21.3 gives
Sty = (= ZeNJ Ry /2 + 2Pz~ (2™ i + 2uNLPh(z 7 N3z V)i

— NiR,//2 + P} + Ni N3P,

where the first term vanishes from (1.4). Thus we get
= —'Ci, N7, SQ = Ciy + NICi N5 + 'PiNy,

i — i i) irr
S(j)k - Jk> SU)" - N" Jk>
(3.2) o
Jjk>

S;(,‘) = — P, N, Sﬂ"(’k) =
i _ i
Sty = — Pjs Smuo =N, Pﬂv
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where we put
'Ch = Ciy + PLNY, 'Pl = Pl + NINSPY,.
Then (3.1) and *(20.5) lead us to the Christoffel symbols {l,ay}; for instance,
{0} = TGy =SBy = (BN + Ci N — NiCl) — (Pi, + NiNSPT).
Here we shall pay attention to the equation P =9Ni—F 1i(*(10.14)).

Thus we finally obtain

(&} = Fiy + Ci,N, + Ci, N’ + Pi,N"

= « + N F5) + (Ch — NiPL) NGNG
(3.3) + S(Jk){((SNj/éx“)/Z + Fi Nj, — NiC},Ni},

{ii} = Cix + P, N7,
{0} = Fi + Ci,N5 — Ni(C + P},NY),
{u‘)fk)} = Pj'ln {(j()l()k)} = — N + Pl
where the symbol S ;,{-} stands for the interchange of indices j, k and summation.

On the other hand, the Christoffel symbols {;} of the induced metric in N" are
easily found: (2.3) and (1.3) show da;;/dx* = dg,;/6x*, so that *(17.3) leads us to

(34) (i} = Fl

which is nothing less than the connection coefficients of CI.

§4. Gauss derivation formula
We now consider the Gauss derivation formula
@.1) 0Bi/ox + BY{j,} B — Bi{li} = HY B},

The left-hand side of (4.1) is usually written as Bf; and called the curvature tensor
of N" for T(M) or the Euler-Schouten curvature tensor of N”. The HY of the
right-hand side is called the second fundamental tensor for the normal B,. We are
concerned with (4.1) in detail.

(1°) In case of a = 1,--, n in (4.1), we put a = h; on account of (1.5), (2.4)
and (3.4) it is written as

{5} - {i(h;)} Nj— N:({uﬂu} - {(r)h;S)} Nj) = FhJ
It is easy to see from (3.3) that this equation becomes only trivial.

(2% Incase of x =n+1,---,2n in (4.1), we put a = (h); on account of (1.5)
and (2.4) it is written as

— ON¥/6x) + {B} — (BINT — N1({®} — { P N%) + NiFS = HYBW.

r)j
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Then, owing to (3.3), the left-hand side reduces to — C}; — R};/2 alone, so that from
(1.4) we get

42) H®BY = — C,.

This equation yields some geometrical results as follows: The normal
curvautre vector N(d) for a given tangent direction d' is defined as N(d)*
= B%;d'd’. Then (4.1) and (4.2) give

4.3) N@d) = (0, — Cl;d'd’).
It follows from (2.1) that its length |N(d)| is given by
(4.4) IN@* = CyC,d"d'd’ d*.

In particular we shall deal with two-dimensional space where we have the
Berwald frame (1, m) (*§28). The horizontal lifts (/)* and (m)" are tangent to the
integral manifold N? and the vertical lifts (/) and (m)® are normal to N2. From
the equation LC}; = Im"m;m; where I is the main scalar, we get

(4.3,) N(d) = (0, — I(md’)*m"/L).
Thus the direction of the normal vector is orthogonal to the vertical lift (/)” of the

vector [. Therefore *Definition 3.11 shows

Proposition 1. For a two-dimensional Finsler space with R' =0 the normal
curvature vector of an integral manifold N? is orthogonal to the intrinsic vertical
vector (I)°.

Next the second fundamental form @(dx) of the N" is defined by @(dx)
= |N(dx)|2. Thus we have

4.5) D (dx) = C};C,jdx"dx dx’dx*,
and two directions d,x and d,x are called conjugate to each other if
(4.6) CriCjdy x"d,x'd, x'd,x* = 0.

If dx is self-conjugate, then dx is called asymptotic. We are concerned with the
intrinsic horizontal vector field (/)*(*p.126). Then the well-known equation I"C,;;
= 0 shows

Proposition 2. In an integral manifold N" the direction of the intrinsic
horizontal vector (I)' is conjugate to arbitrary direction and asymptotic.

Next the mean curvature normal M is defined by M* = g"/B; and its length is
called the mean curvature. From (4.2) we get

4.7) M = (0, — CY,

where C' = g/*Ci, is Cartan’s torsion vector.
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Proposition 3. The mean curvature vector of an integral manifold N" is the
vertical lift of the vector — C' where C' is the torsion vector.

A subspace is minimal if and only if the mean curvature normal
vanishes. Thar is, C' = 0, so that Deicke’s Theorem (*Theorem 24.2) leads us to

Theorem 1. All the integral manifolds are minimal if and only if the Finsler
space is Riemannian.

Further a subspace is totally geodesic if and only if Bf; = 0. Therefore (4.2)
shows

Theorem 2. All the integral manifolds are totally geodesic if and only if the
Finsler space is Riemannian.

§5. Weingarten derivation formula
We shall consider the Weingarten derivation formula

(5.1) dB,/0x) + By {5} B} = H{y; By + H{E); By,

i)j

The left-hand side is usually written as Bf,,;. We are concerned with (5.1) in
detail.

(1°) Incase of a =1,---, nin (5.1), we put @ = h; on account of (1.5) and (2.4)
it is written in the form

Bg))({vﬁn} - {(r)ﬁm} Nj = Hy;.

It follows from (3.3) that the left-hand side of the above reduces only to B{)C};, so
we get
(5.2) B{)Cr, = Hpy;.

(2°) Incaseofa=n+1,---,2nin (5.1), we put o = (h); in the similar way to

the case (19), (5.1) is written in the form

(53) OB{R/0x" + BRFY; (= B{i,;) = H@;B.

J

Next we have to pay attention to the equations which will be derived from
differentiating the equations

(1) gupBiBY = gij(x, ¢(x)),
(5.4) (2) Gus B?Bf’j) =0,
3) gaﬂBﬁ')Bﬂ) = Njy-

First the equation from (1) is only dg,;/6x* = g,;{4} + gu{ji}- It is seen from
(3.4) that this is nothing less than the metrical property of CI'.

Secondly (2) gives rise to g,; Bl Bf;) + J.sBIBf;.. = 0, and owing to (4.1) and
(5.1) it is written as



Integrable nonlinear connection 841
(5.5) n(jh)ng) + gihH:'j)k =0.
Similarly (3) yields

We are now concerned with a special normal frame B, = (0, &}), called the
associated normal frame with the coordinate system. Owing to (2.1) its
characteristic number n; is equal to g;;. For the associated normal frame the
equations (4.2), (5.2) and (5.3) become

(5.7) Hij P=- Cf'p (un Cf',, H E?)’,- =F ?j

respectively. Therefore (5.5) reduces trivial and (5.6) to only the metrical
condition.

§6. Gauss, Codazzi and Ricci equations

We consider the integrability conditions of the Gauss and Weingarten
formulae.

The integrability condition of the Gauss formula is written as
(6.1) %k — Jlk = H3 B + H (H {4, Bf + HG\BY) — j/k,

where the symbol — j/k stands for interchange of indices j, k and subtraction. It
follows from the Ricci identity that the left-hand side of (6.1) is written as

B#RS,;B!B} — B“ L Where R, is the Riemannian curvature tensor of the metric
Jap given by (2.1) and R ij 18 that of the induced metric a;;(x) given by (2.3), that is,

(3.4) shows R i = 0F};/0x* + F};F}, — j/k, which is nothing less than the h-

curvature tensor K}; of the Rund connection RI” and the h-curvature tensor R}, of
the Cartan connection CI" owing to (1.4) and *(18.2). Therefore (6.1) becomes
(6.2) B”RM,SRJV-B‘j B“Ruk = (H""H(,,,k — j/k)B§
+ (Hﬁ’k + HZ”HE?):‘ — j/k)Bj.
We first transvect (6.2) by g,Bj. Then the Ileft-hand side yields
— R,4,sBiBf BB} + Ry, and from (5.2) and (4.2) the right-hand side becomes

— C;Coy + CiC,y;, which is nothing less than the v-curvature tensor S ; of
CI. Therefore we get

6.3) R,4,sBiBE BB = Ryjx + Shijs

which is usually called the Gauss equation.
Secondly we transvect (6.2) by g,.Bj, and get

(6.4) B?Eﬁeyanh)B}Bz = "(M)(H”) + HS';!)H&))I( —j/k).

ijsk
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To rewrite the right-hand side of (6.4) we now differentiate (4.2):
(0HQ[0xY)BY) + HY (0B} /0x*) = — 6Cl/ox*.
From (5.3) and (4.2) the left-hand side is rewritten in the form
(Hx + HYFy + HYFR) B + HY(HG B — BEF},
= (H4B{) — C};Fy — CLF5) + (HQHQ, B + CFy),
and the right-hand side is rewritten as
Ulk + Cr F Ch F:k C:lr Jk>
where C};, is the h-covariant derivative of C!. Thus we get
(6.5) (HW + HYHR) B = — Cliye.
Consequently (6.4) becomes
(6.6) aﬂyJB(h) B?B}Bi = Bﬁ:))(clijlk - Cliklj),

which is usually called the Codazzi equation. 1t is noted that C;;;, — Cpy; in the
right-hand side is a part of the hv-curvature tensor Py, of the Cartan connection
CrI (*(17.23)).

Next we deal with the integrability condition of the Weingarten formula.
Owing to the Ricci identity we have Bj.;, — j/k = BfR%,;B}B} and so we get

(6.7) Bf)R},sBI B} = (H{; + H{;H{sy — j/k)B;
+ (H@j + Hiy HY + HEHE, — j/k)Bg,).

First, transvecting (6.7) by g,. B;, we get an equation, but it is easy to show that it
is equivalent to (6.4). Secondly, transvecting (6.7) by g, Bj,, we get

(6.8) Ry,ys B BiyBIBE = ng, (H;u + Hy HE + HEHE, — j/k).
To rewrite the right-hand side of (6.8), from (2.5), (4.2) and (5.2) we have
Moy Hio ) HS = g B B Hiy; HG) = — BB €15 C o
Thus we get
(6.9) Ny (Hp; HR — j/K) = BEBGY S -
Next (5.3) leads us to
B{f)ju — J/k = BYKZ = (H@ + HG;HG — j/K)B(R.
Transvecting this by g,,, B}’ and paying attention to K}; = R}, we have
(6.10) R,,s BB = nwy(HE + HEHE, — j/k).

Therefore (6.9) and (6.10) lead us to the following form of the right-hand side
of (6.8):
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6.11) R,p,5B3Bf)BI By = B3 BE) (Rygji + Sesji)-
This is usually called the Ricci equation.

Proposition 4. We have the Gauss, Codazzi and Ricci equations of the forms
(6.3), (6.6) and (6.11) respectively.
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