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On integral manifolds of an integrable nonlinear
connection from the standpoint of the theory of

Finsler connections

By

Makoto MATSUMOTO

T here  a r e  recently several papers concerning Fins le r  spaces having the
vanishing (v)h-torsion tensor R 1 ( [1 ] , [2 ]) . It has been shown in a previous paper
[4 ]  th a t  th e  tensor R 1 is  re g a rd e d  a s  th e  curvature tensor o f  th e  nonlinear
connection N  and the vanishing of 10 is an integrability condition of N  which is a
distribution in the tangent bundle.

The purpose of the present paper is to consider an  integral manifold of the
integrable nonlinear connection N  from the  standpoint o f the  theory o f Fins ler
connections. W e  a r e  m a in ly  conce rned  w ith  th e  C a r t a n  connection CF
= (F, N , C) o f  a  Fins le r  space (M , L ). T he tangent bundle  T (M ) becomes a
Riemannian space with th e  m etric  w hich is obtained by lifting the Finslerian
fundamental te n so r . Thus we shall develope a  Riemannian geometrical subspace
theory of integral manifolds.

T he  terminology and  no ta tion  a re  referred to th e  author's book  [3 ] ; the
quotation from it is indicated only by putting asterisk.

§1. Integral manifolds of a nonlinear connection

L e t  FF = (F, N , C ) b e  a  Finsler connection (* §9 ) o f  a n  n-dimensional
differentiable m anifold M . The N  is a  nonlinear connection (*Definition 8.2), that
is , a n  n-dimensional distribution ye T(M)i—, - N y  T ( M ) y  in  th e  ta n g e n t bundle
T(M ) such that T (M ) y  = N  C ) T .  B y  lifting to  the point y a tangent vector V
= (V i)„ of M  gives rise to a tangent vector (*(9.1))

(1.1) (V)h = I/V /0x ' — N (x, y) 0/ayi )y ,

contained in  the  subspace N .
This distribution N  is integrable (*Remark 10.2, [4]), when the  differential

equations

(1.2) Oyi/Oxi = — N i
i (x, y)

are completely integrable and we get an integral manifold N": y =  4, i (x) which is
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tangent to  N y a t every  point y of N .
In general, for a function Q(x, y) on a domain of T(M), we have along N"

(1.3) 0,2(x, 0(x))18x 1 = aQ(x, y)lax i — {0Q(x, y)10yi}

which is usually indicated by the symbol (TAW  (*(9.19)). Then, from (1.2) we get
(ey t/Oxi)/axk  = — 6N ii164  so that the integrability condition of the equation (1.2)

is written as

(1.4) Rk = 61V bx k — 61\1116xi = O.

This tensor field R k is called the (v)-torsion tensor of the Finsler connection FT
(* § 10, [4]).

In the following we shall denote by V = (171, V ( i ) ) (we put (i) = n + i) a tangent
vector Vi a/axi + V 1 a/4 'e T(M)y . Since (x i) m ay be regarded as a  coordinate
system of an integral manifold N", the n  vectors

(1.5) B i = (x 1/8x , ay i laxi) = — j = 1, — , n,

are independent vector fields tangent to  the n-dimensional N .  By (1.1) it is seen
that these are horizontal lifts (a/Oxi)h  of tangent vectors 0/ax1 of the base manifold
M.

§ 2. Metric and normal of N"

We are concerned with a Finsler space Fn = (M, L) with a fundamental metric
function L(x, y), from which the fundamental tensor field g = (g u (x, y)) is induced
such that g1  =  M i L2 /2. It is  w e ll-k n o w n  th a t the tangent bundle  T (M ) is
regarded as a 2n-dimensional Riemannian space with a lifted Riemannian metric
tensor 0 (*§21). Throughout the paper we shall restrict our consideration to the
0-lift alone, called the Sasakian lift as is well-known. Thus * (21. 2') gives 0 as

(2.1) — au + g rs Nri Nsi , 0", ( ) — N g r j , o i )  =

The reciprocal 0 4 3  of 00  (a , fl = 1,..., 2n) is given by

(2.2)g 1  _  g iJ, o i ( j )
g i r 4(o(j) _  g i i grsI..Jl Ni

Every integral manifold N" is an n-dimensional subspace of the Riemannian
space T(M) and the Riemannian metric a = (ai i (x)) is induced in N .  I t  fo llo w s
from (1.5) and (2.1) that we get an interesting fact; the induced metric au = g a,07.13,1
is nothing less than

(2.3) ai(x )= g u (x, 0(x)),

tha t is, the metric of N" is essentially the sam e with that of the base space F .

Remark. If we put Sy i = dy i + N dx 1  (* § 21), then the lifted metric is written
as c/§2 =  gu dx i dxi + g u by i byi. On account of (1.2) 6y 1 vanishes along N n and we
get (2.3) immediately.
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A  norm al vector N  of N " is given by the  equations 0 B7Nfl = 0, which is
written a s  gi i N i = 0  from (1.5) a n d  (2.1). Thus we have N i = O. Therefore n
independent normal vectors are  given as

(2.4) = (0, B (
(
i))), det (B (

(
i
i
)
)) O.

These are written as M iI) I ay i, that is, the vertical lift of n tangent vectors B(U)
) a/Ox i

a t  th e  b a se  p o in t. F o r  th e  later use  we shall indicate th e  scalar products of
normals B(1) a n d  Bo  a s

(2.5) Ni) Bfim - gh k  B  B  —  n ( i i )

and call the characteristic numbers of the normal frame B( J ) .

§3. Christoffel symbols

The strain tensor S has been defined (*Definition 21.2) as the difference of the
Riemannian connection r(g) given by the lifted metric g from the linear connection
of Finsler type F  derived from the Cartan connection C F .  That is, we have

(3.1) { Ic y }  = — s73,,

where {A,} are the Christoffel symbols of F(#), /7/  the  connection coefficients of F
and  S73  t h e  components o f the  strain tensor S. C oeffic ien ts F L  are  given by
*(20.5).

The strain tensor S  is given in  *Remark 21.3 for the case of the 0-lift and
C F . We shall find the components SI of S in the similar way to the case of the
torsion tensor T a s  shown in  *p.133. For instance we have

S(
.1(1) = 1)1 (i - 1 4 ) .

From *(19. 10) and  *(19.10') we have

SY(1) = ( — z ra N ri Scbt(c ) + z  S )) (z 1 ) ,(z  1 );,

+ ( St(ib)(,) + Z i
a  S (.(1,1(0)(Z

Then *Remark 21.3 gives

SVk) = —  zar N RcW:72  + za1131,c)(z- tyk + N  i x;  c ( z - i ) sb A  T., ( z  - i)k

= — N;.R k ir.12 + P iik N s  P r
s k ,

where the first term vanishes from (1.4). Thus we get

IV A  = — = N CLN; + ' P i
i ,N,r„

S icbk — C jib S((i.1)k = N  C .
rik ,

(3.2)
S(k) = — SA) =
ci

(i)(k) = S ( ( i j j (k )  =  •AT ri
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where we put

= C iik P i
; ,.N;„ = 1 +  N .N ;

Then (3.1) and *(20.5) lead us to  the Christoffel symbols {4}; for instance,

{A} = — S(
i

i
(10  = ( k N i

;  + CL.Nr;  — C r i k ) — (Pik + N:.N;Prs k ).
Here we shall pay attention to  the equation P i

i k  =  kN i
;  — Fl i (*(10.14)).

Thus we finally obtain

= F jk + C i
i r AP,; + COP .;  + P i

r s Nr;Nsk ,

{;
(
(2) } = — (C i

i k  + N!.Fri k ) + (C 1\1 13 ,̀. ) Nri NZ

(3.3) + Suk){(6NYbxk)/2 + MiCris N Z}
{fiik)}  = C iik

11(70} = Pik  + C r N — N;.(Cri k  + Prk s N;),

= { (j2)}  = C ijk

where the symbol S ( k ) { • } stands for the interchange of indices j, k and summation.
On the other hand, the Christoffel symbols 

{ ] k }
 the induced metric in N" are

easily found : (2.3) and (1.3) show acti i /exk =  bgi ; 154 so  th a t *(17.3) leads us to

(3.4) =  F ijk ,

which is nothing less than the connection coefficients of CF.

§ 4. Gauss derivation formula

We now consider the Gauss derivation formula

(4.1) 3B/3xi + {4} — = 11111)

The left-hand side of (4.1) is usually written as N i  and  called the curvature tensor
of N" for T(M) o r the  Euler-Schouten curvature tensor of N .  T h e  H11) of the
right-hand side is called the second fundamental tensor for the normal Bo o . We are
concerned with (4.1) in  detail.

(1°) In case of a = 1, ••• , n in  (4.1), we put a  = h; o n  account of (1.5), (2.4)
and (3.4) it is w ritten as

— 14} N; (14t1 {fricol N;) =l i j J

It is easy to see from  (3.3) that this equation becomes only trivial.
(2°) In case of a = n + 1 ,..., 2n in  (4.1), we put a  = (h); on account of (1.5)

and (2.4) it is w ritten as
r— SNI 1.5xi + It }  — N — N ri (  (fir) (E) .s1 h pick) pe(h),t m(r ) i} tw o ) }  p k =; i j
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Then, owing to (3.3), the left-hand side reduces to — — IV/2 alone, so that from
(1.4) we get

(4.2) = —
ii

This equation yields some geometrical results a s  follows: The normal
curvautre vector N (d) for a  given tangent direction d t  is defined a s  N(d)Œ
= N i d i di. Then (4.1) and (4.2) give

(4.3) N (d)= (0, —

It follows from (2.1) that its length 1N(d) i is given by

(4.4) (d)I2 = C i C r j k d h d&dJd l .

In particular we shall deal with two-dimensional space where we have the
Berwald frame (1, m) (*§28). The horizontal lifts (Oh and (m)h are tangent to the
integral manifold N 2 and the vertical lifts (l)° and (m)y are normal to N 2 . From
the equation L q =  I m h mi mi  where I  is the main scalar, we get

(4.3 2 ) N (d)= (0, — /(m i d i ) 2 m h /L).

Thus the direction of the normal vector is orthogonal to the vertical lift O r of the
vector 1. Therefore *Definition 3.11 shows

Proposition 1. Fo r a two-dimensional Finsler space with R i  = 0  the normal
curvature vector o f  an  integral manifold N 2  i s  orthogonal to  the intrinsic vertical
vector (1)v.

Next the second fundamental form 0(dx ) of the N " is defined by 0(dx)
=IN(dx)1 2 . Thus we have

(4.5) 0 (d x )  =  C C r j k dXh dX I dXJdX k ,

and two directions d i x  and d2 x  are called conjugate to each other if

(4.6) C i CrjkdlX hd2X dlX d2X k =  O.

If dx is self-conjugate, then dx is called asymptotic. We are concerned with the
intrinsic horizontal vector field (/)"(*p. 126). Then the well-known equation r'C r i ;

=  0  shows

Proposition 2. I n  a n  integral m anif old N " the  d irec tion  o f  the  intrinsic
horizontal vector (1) h  is conjugate to arbitrary  direction and asymptotic.

Next the mean curvature normal M  is defined by MI = g i i13  and its length is
called the mean curvature. From (4.2) we get

(4.7) M = (0, —

where C =  g i k C i
i ,  is Cartan's torsion vector.
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Proposition 3. The mean curvature vector o f  an  integral manifold N " is  the
vertical lif t o f  the v ector — C i w here C i i s  the torsion vector.

A  su b sp a c e  is  m in im a l i f  a n d  o n ly  i f  t h e  m e a n  c u rv a tu re  normal
vanishes. Thar is, Ci = 0, so that Deicke's Theorem (*Theorem 24.2) leads us to

Theorem 1. A ll the integral m anifolds are m inim al if  and only  if  the Finsler
space is Riemannian.

Further a  subspace is totally geodesic if and only if BT,.; =  0 .  Therefore (4.2)
shows

Theorem 2. A ll the integral manifolds are  totally  geodesic if  and only  if  the
Finsler space is Riemannian.

§ 5 .  Weingarten derivation formula

We shall consider the  Weingarten derivation formula

(5.1) 8/370/Oxi + 14o  141 ./P1 = H o i Nk̀ + HM.134 ) .

T he left-hand side is usually written a s  Bc(ii ) j . W e are  concerned with (5.1) in
detail.

(1 ° )  In case of a = 1 ,...,  n in (5.1), we put a = h; on account of (1.5) and (2.4)
it is w ritten in  the  form

ffricol N =

It follows from (3.3) that the left-hand side of the above reduces only to B C J , so
we get

(5.2)

(2°) In case of a = n + 1, .•., 2n in (5.1), we put a = (h); in the similar way to
the case (10), (5.1) is written in  the  form

(5.3) 04)/0x -i +  B F J  ( = /3 ) =

Next we have to  pay  attention to  the equations which will be derived from
differentiating the equations

(1) 40 /37B1 = gi i (x, 4)(x)),

(5.4) (2) actfi B7B 1
( )  = 0,

(3) ga p  B7 0B1(3. ,0 -

First the equation from (1) is only (5gi i /Sx' = + g { j} . is seen from
(3.4) that this is nothing less than the metrical property o f C r.

Secondly (2) gives rise to do N k .B ) +  #„07/3r."  = 0, and owing to (4.1) and
(5.1) it is written as
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(5.5) n(Jh)11111,) + g i h H i
(li ) k  =O.

Similarly (3) yields

(5.6) (5n(u)/(5xk — n( J h ) I IZ — nook, =  O.

W e are now concerned with a  special normal frame B (J) = (0, Si
i ), called the

associated norm al f ram e  w ith  t h e  c o o rd in a te  sy s te m . O w in g  to  (2.1) its
characteristic number n( i i )  is  e q u a l to  gu . F or the  associated normal frame the
equations (4.2), (5.2) and (5.3) become

(5.7) = — C ,  H C , M I )
)
. ;  =

respectively. Therefore (5.5) reduces tr iv ia l a n d  (5.6) t o  o n ly  t h e  metrical
condition.

§ 6 .  Gauss, Codazzi and Ricci equations

W e consider th e  integrability c o n d itio n s  o f  th e  G a u ss  a n d  Weingarten
formulae.

The integrability condition of the Gauss formula is written as

(6.1) .B;;„ j lk  = H T ,B 0 + (M,)„BI + M,)
)k B70 )

where the symbol — jlk  stands for interchange of indices j, k  and subtraction. It
follows from th e  R icci identity  that th e  left-hand side o f  (6.1) is  w ritten  as

a
13f  k h6B 1113j! —  BTMik, where k71 ) is the Riemannian curvature tensor of the metric

go  given by (2.1) and Ra !;,, is that of the induced metric au (x) given by (2.3), that is,
a

(3.4) show s M il, =  SFIJ I(5xk + Fru F r
i

k — j1k , w h ic h  is  n o th in g  le ss  th a n  th e  h-
curvature tensor K i k  of the Rund connection R E and the h-curvature tensor R !ik  of
the Cartan connection C F owing to (1.4) and  *(18.2). Therefore (6.1) becomes

(6.2) — BTRIJ , =  (HIM, * — j/k)B7

+ W .4 + Mih))k — j1k)1370 .

W e  f i r s t  transvect (6 .2) b y  4- .14 .  T h e n  t h e  left-hand side y ields
— Ro y ABfB5B: + R hiik , a n d  from (5.2) and  (4.2) th e  right-hand side becomes

Crij Crhk q k C r h i ,  w hich is nothing less than th e  v-curvature tensor S i h i k  of
C F .  Therefore we get

(6.3) kapoBBf BIM = Rhiik S h i i k ,

which is usually called the  Gauss equation.
Secondly we transvect (6.2) b y  "g„,B h) a n d  get

(6.4) Bilk13,7,5803)113,3, =  n( l h ) (1M +111 , ) 1-q h
)
), — jlk).
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T o rewrite the right-hand side of (6.4) we now differentiate (4.2):

(01-1VOxk )BM + (a.E31̀)
) /ax k ) =  — (501; 16xk .

From  (5.3) and (4.2) the  left-hand side is rewritten in  the  form

(1-11y.k + H (
r7Ftik + M,.1) Fri k ).4 ) + 111Y (HAB,."? — BrdF r

h
k)

= (II ly.k /V) —C J F k — (HI? Hri4M 1,1? C F ! . k ) ,

and the right-hand side is rewritten as

+ Ci,!; Fri k  — Fri o

where OA  i s  the h-covariant derivative of C . T h u s  w e  g e t

(6.5) (1-11y.k + ri)= Cm,.
Consequently (6.4) becomes

(6.6) R0,6.13710 13111P114, —

which is usually called the Codazzi equation. It is noted that C — C in the
right-hand side is a part of the hv-curvature tensor k i i i  of the Cartan connection
Cr' (*(17.23)).

N ext w e deal w ith  th e  integrability condition  of the  Weingarten formula.
Owing to the  Ricci identity we have 1370 ,; ,„ — jlk = 13 1

(
3
0 k731,,B)114 and so we get

(6.7) ./40i4y 6B 5B : = (Hrm io , + — jlic)B r'

+ + + IM M rs 4 — j1k)13;.) .

First, transvecting (6.7) by #B ;„ we get an equation, but it is easy to show that it
is equivalent to (6.4). Secondly, transvecting (6.7) by ga ,13„) , we get

(6.8) Rficy61314)130013)1 13̀1, = no o (Mrit, k  + H ) J H (
s rk) + HZ M il k  — jlk).

T o  rewrite the right-hand side of (6.8), from (2.5), (4.2) and  (5.2) we have

nchoHsm ill (srk) = g m /B V 4IiH scoili (srk) = C srjC smk •

Thus we get

(6.9) n(r)(Hs„);H(srk) j1k)= .13r,?B̀,")) 
S  r m jk  •

Next (5.3) leads us to

BM; i ; k  —  jlk  = IM K r
h

i k  = ± H —  j1k).14."?.

Transvecting this by gh ,n 13V  and paying attention to  K  ik  = R r
hik  , we have

(6.10) Rrmjk,13 1 4 )  = n
( h r )

(1-n:?; ,k  + H J H  —  jlk ).

Therefore (6.9) and (6.10) lead us to the following form of the right-hand side
of (6.8):
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(6.11) Ro y ,B7hA B Y A  =  Brh))13 ( R r s ik  S r , i k ) .

T h is  is  u s u a l ly  c a l le d  t h e  Ricci equation.

Proposition 4. W e have the Gauss, Codazzi and Ricci equations of the forms
(6.3), (6.6) and (6.11) respectively.
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