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Spectra and monads of stable bundles
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§1. Introduction

Let g  be  a stable vector bundle of rank tw o on P 3 w ith  c, = 0  and given
c2 . A ssociated  to  g  are its spectrum (§2) and its minimal monad (§3, Proposition
3.2). In this article, we investigate the possible spectra and minimal monads for
low values of c2 .

The spectrum x satisfies three necessary conditions ((S1)—(S3) of § 2 ) .  We
show tha t for c2 <  19 , these conditions are also sufficient for the existence of a
stable bundle w ith that spectrum . The question of existence for larger values of
c2 is left unresolved but it seems reasonable to conjecture, based on the evidence
so far, that (S1)—(S3) form necessary and sufficient conditions on a sequence of
integers for i t  t o  b e  the spectrum o f a  ra n k  tw o  stable bundle on P 3 w ith
c, = O. W h e n  c 2  <  19 , w e  in  fact do m ore. For each  possible spectrum, we
produce a  bundle g  for which H

°
(g(1)) O .  This is  a lso  the reason that we

stop a t c 2 =  1 9 . W h e n  c 2 <  1 8 , the bundle g  is constructed from  a double
structure on a reduced curve. For c2  =  19, there is one spectrum for which g
is constructed via a double structure on a non-reduced curve (in fact, a quadruple
structure on a reduced curve). We take this as an indication that the construction
gets harder beyond c 2 = 19.

We also determine all possible minimal monads when c 2 < 8, thus completing
work begun by Barth [ B - 1 ] .  W e find that some monads listed in his tables do
not occur, while others, which had been excluded by his simplifying assumption
[B-1], top of p.211, do in fact exist (see §6). The results are tabulated in §5.

W e w ould like to thank L . Ein for various discussions.

§2.

Let g  be  a stable rank tw o bundle w ith c l  = 0  and given c 2 o n  P 3 (over
an  algebraically closed field of arbitrary characteristic). Barth and Elencwajg
[B-E] have defined (in characteristic zero) the spectrum of e, which is a certain
sequence of e 2 in te g e r s . In  [H - 1 ] , § 7 , a  characteristic-free definition of the
spec trum  is  g iven  an d  th e  following properties a re  p roved  in  [H -1 ]  and
[H -2]. L et x = {k 1 , k 2 . . . . .  k 2 }, k i e  Z  be  the spectrum of I .  T h e n  x and g
satisfy:
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(Si) Symmetry : 1 — =  {k} . [H -1], 7 .2
(S2) Connectedness : for any two integers in z , every integer lying between

them  is also in x. [H -l], 7.6
(S3) If an integer eo w ith  1  t o  m a x appears only once in x, then

every integer e such that eo e max 11(11 appears only once in x. [H-2], 5.1 2

(S4) h 1 ( (— i)) — h'(g( — i — 1))=#{ k i ex/ic i > i — 1}, for i 1.

The main result of this section is  the following

2 . 1 .  Theorem. F o r 0 < c 21 9 ,  any  sequence x  = {k 1 , k 2 . .... k 2} o f  c2

integers, satisfy ing the conditions (S1)- (S3), occurs as  th e  spectrum  of  a stable
rank  2  vector bundle with c, = 0  on P3 .

Definition. If x i  an d  x2 a re  arranged in  increasing order, with repetitions
indicated as powers, as xi =  { e n ) } < ,  ,  i = 1, 2, then let x i  U X2

t r iSI(n)+ S2(n)} < n  <

2 .2 .  W e reca ll the Ferrand  construction. Let X  b e  a  locally complete
intersection curve in  P3 o f  degree d  such that each connected com ponent X '
satisfies H

°
(X ', k .  We will denote by .J1/3, the rank two bundle on X  given

by

Arx = Dw'eop(fx, ex).

Suppose that there  is a  nowhere vanishing section of ,Afx  w ( 2 )  and let Y be
the multiplicity 2 structure on X  defined by the associated sequence

(2.3) 0 5y COx (2) —> 0.

Then by Ferrand's theorem [F] or [H-3], 1.5, co y  (41—  2). S o  b y  [H -3 ], § 1 ,
Y is  the zero scheme of a section of e(1) where e is  a  rank two bundle with
c, = 0  and c2 =  2d —  1. We get

(2.4) 0 41— 1) —> fy(1) O.

If X  0  0 , then e is  stable, for otherwise Y is a plane curve of even degree with
wy  ( 4 ( — 2), w hich is not possible.

Notation. If X  is a curve as above and Afx  C) cox (2) has a nowhere vanishing
section, and 6' is any bundle constructed as above, we will loosely say that "g
is obtained from X ".

2 .5 .  L em m a. Suppose that e is obtained f rom  X  as  in  (2.2). T hen the

2 Proposition 5.1 in  [H -2 ] is stated and proved in  characteristic O. However the proof can be
modified to show that the statement of (S3) is valid in any characteristic. First of all, if we assume
that the restriction of I  to  a  general hyperplane is not stable, then by [E -1] we know that I is
either the nullcorrelation bundle o r its pullback by a power of Frobenius and we know the
spectrum explicitly (see the proof of Proposition 3.1 below); hence (S3) is true in this case. The
second use of the characteristic zero hypothesis is in  asserting the existence of an unstable
plane. But the proof can be reorganised by doing this after verifying the condition (S3).
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spectrum  o f  g  is determ ined by  the  num ber n o f  connected components o f  X
and by h ° (cox (m)), m 2, via

h1(e(— i)) =  
h° (cox (— i + 3)), i > 1
v(co x (2))+ n —1, i =1.

P ro o f .  Use (2.3), (2.4) and the properties (S1) and (S4).

2 .6  Corollary. L e t  X  b e  a s  i n  L em m a 2 .5  with connected components
X ,, X 2 ,..., X „.  I f  w e can obtain (as in (2.2)) an e, from  each X . w ith spectrum

an d  if  g  is obtained from  X , then its spectrum  is given by

X = X 10X 20•••UxnUf0" -1 1.

Proof . co x  c o , i ()••• ()co x  a n d  h1(. x ) = n —  1, while h i  (J O  = O.

2.7. Lem m a. Suppose X ,  and  X 2  are  tw o reduced and  connected curves
intersecting quasi-transversally in a set of  r collinear points S  = X , n X 2 .  If  r > 3,
assume f urther that the surfaces of  degrees 1, 2,...,r — 2  cut out complete linear
series on b o th  X , and X 2 .  I f  g ,  w ith spectrum  x , is obtained f rom  X . and e
w ith spectrum  x  is obtained from  X , then

XU {0}  = x i U x2 0{— r, r} .

P ro o f . We have

0 —> cox , 0 cox 2  —> coxc o s 0

where the connecting homomorphism

6: H ° (cox (m)) 111 (co x  ,(m)) 0 11 1 (co x 2 (m))

is dual to  the natural map

H ° ((9x ,( — m)) H
°
((9 2 (— m)) H°(&s(— m)).

By the condition on the completeness of the linear series, the image of the natural
map equals the image of H

°
(.91,.1(— m)) for 0 < — m < r — 2. Hence

{
0 if m > 0

rank (6)— 1 — m if 2 — r<m <0
r if m < 1 — r

Using Lemma 2.5, it follows that

hi(g i(— 0) + hi(s,(—  0), i > r + 2
h i  (g(— i)) = { h i  (g ,(—  0) + W O 4 2(— 0) + r + 2 — i, r + 1 > i > 3

hi  (6 v,(— 0) + h1(6.2 (— 0) + r, i = 1 ,2

Now use (S4).

The following proposition allows us to realize the situation of (2.2).
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2 .8 .  Proposition. L et X  be the union in 13 3  o f  irreducible nonsingular curves
meeting quasi-transversally in  any  num ber o f  p o in ts . Then the general section of
.Arx  0  w x (m) is nowhere vanishing f o r  m  1 .  T h e  same result holds f or m  = 0  if
X  has the follow ing property : Let A  be a connected component of  X . T hen either
1) A  is sm ooth and A  is not a  line or
2) w e can f ind a  sequence o f  connected curves A ,, A 2 ,..., A „ A  w here A , is
sm ooth and nonrational, A . = A 1_,UB i w here B . is sm ooth and further A 1_ 1 n B i

has at least 2 points if  B . is  rational.

P ro o f . T he m a p  Tp3ix •Afx  h a s  cokernel supported o n  th e  nodes o f  X,
with a one dimensional stalk at each node [H - H ] .  T p ,  is generated by its global
sections, hence so is its image in Therefore the general section of the image
gives a  sec tion  of ./1(x  which is nowhere vanishing. (Geometrically, suppose a
PGL-action moves X  to  a  curve X ' disjoint from X .  A t the infinitesimal level,
this gives a section which is a  nowhere vanishing im age of a section of T3.)

W e m ay w ork w ith a  connected component o f  X  a n d  hence will assume
that X  is connected. If X  is a line, the claim of the proposition (for m > 1) is
c le a r . If  X  is a  smooth rational curve of degree > 2, the description of .Afx  in
[E-V] shows that ./Vx  ()co x  splits into two line bundles of degrees > 0 and hence
th e  c la im  (fo r m > 0) o f th e  p ro p o sitio n  is  p r o v e d . I f  X  is  sm o o th  and
non-rational, then co x (m) is generated by its sections for m > O. H e n c e  the general
section of ./1/3  c o x (m) is nowhere vanishing for m > O.

Suppose though , tha t X  is  n o t sm o o th , b u t  is  o b ta in e d  b y  a  cha in  of
connected curves A ,, A 2 , . . . ,A  = X  where A , is smooth and  A i = A ,_ ,uB , with
B. sm o o th . W e  have

0 n  B i)(m) O.

F or m > 0, this sequence is also exact on the level of global sections. Hence if
global sections generate th e  sheaves on  the  ends, coA .(m ) is also generated by
global sections. If w e show th is for A „, it fo llow s that the  general section of
.i1/-x  c o x (m) is nowhere vanishing.

N o w  assum e inductively that coA ,(m ) is  g e n e ra te d  b y  global sections.
(0 ,3,(Ai_ n B i)(m) is clearly generated by global sections if m > 1 and, under the
hypothesis (2), in  degree m = 0 a s  w e ll. To get the induction started, (DA  i (m) is
generated by its sections for degrees m > 0 (respectively m > 1) under hypothesis
(2) (respectively if A ,  is  n o t a  l in e ) . I f  every choice o f  A , in  making a  chain
gives a line, then A2 = A1 uB2 is a  degenerate conic and  so  co, 2(m) is generated
by its global sections for m > 1.

2 .9 .  Corollary. I f  X  is  the union of irreducible nonsingular curves meeting
quasi-transversally, we can obtain a  rank  tw o bunde g f rom  X  (as in 2.2).

P ro o f . Choose m = 2 in Proposition 2.8. The conditions of (2.2) are  then
satisfied.
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W e now  turn to  the construction of a ll possible spectra up to  c2 =  19 and
the proof of Theorem 2.1. First of all, a lemma which focuses attention on odd
values of c2 a n d  spectra with only one zero appearing.

2 .1 0 . Lem m a. I f  I has spectrum  x  and 1(1) has a section with zero scheme
a curve Y, then the disjoint union of  Y  and a line L is the zero scheme of a section
o f  C (l ) w here g ' is a  bundle with spectrum

= x U {0} .

P ro o f . Immediate from (2.4) and (S4) as

{ 111 V r(i)), i < 0
h i  ( i f  Y u L (0) = h l  (f y )  + 1,i  =

The following two lemmas give the  starting point of ou r construction.

2 .1 1 . Lem m a. L et X  be a plane curve o f  degree d> 1. Then (2.2) applies
and the bundle g  obtained from  X  has spectrum

(...,0, 1, 2,...,d — 1).

P ro o f . a), x (d — 3), hence h° (a),(— d + 3)) 0 .  By (2.5), h' (e(- d)) 0
and so d — 1 occurs in the spectrum . As c2  = 2d — 1, (Si) and (S2) now determine
the spectrum.

2 .1 2 . Lem m a. L et X  (as in 2.9) be a  curve of  ty pe (a, b) on  a nonsingular
quadric surface Q, with a > b  > 0 . The bundle g  obtained from X  has spectrum

(...,0, 1 2 ,...,(b — 1)2, b a - b + 1 ) .

P ro o f . Using the  bidegrees fo r  a  line bundle o n  Q, we have

0 — >  Q (— 2, — 2) Q(a— 2, b — 2) co, 0

hence

0 if i > b + 1
h° (co,(— i + 3)) = { a — b + 1 if i  = b +1

2(a — b + 2) if i = b  and b > 1.

Using (2.5) and (S4), w e get that b  occurs a — b + 1 times in  th e  spectrum and
if b > 1, b — 1 occurs 2 tim es. Since c2  = 2a + 2b — 1, (Si), (S2) and (S3) uniquely
determine the spectrum.

2 .1 3 . Corollary. A ny  spectrum  of  the form

(..., 0, la, n), a > 1, n> 1
(...,0, la, 2b, n), a, b > 2, n > 2
(..., 0, la, 2b 32 ,...,(n — 1) 2 , re), a, b >  2 , c > 1, n > 2
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is realizable through a  connected curve X  as in  (2.9).

P ro o f . For the first, start with a plane curve of degree n + 1, attach a  -  1
lines successively to it a n d  u se  Lem m a 2 .7  w ith  X 2  =  lin e  (so  x2 = {0} and
r = 1). For the second, add  b  -  1 chords to the curve of the last sentence and
use Lemma 2.7. F o r  th e  third, start w ith a  curve of type  (c  + n  -  1, n) on a
quadric Q, attach a  -  1  lines and  b  -  1  chords in  any order, and  use  Lemma
2.7. El

2 .1 4 . Proposition. For c 21 9 ,  every spectrum satisfying (S1)-(S3) in  which
0 occurs just once, except for c 2 =  19 and spectrum (••• , 0, 12,  22 ,  3 4,  4), is obtained
f rom  a  connected union of  nonsingular curves which meet quasi-transversally.

P ro o f . By listing all possibilities, one checks easily that every such spectrum
is obtained in  Corollary 2.13 except for the  one cited above and  the  following
five, for w hich w e now  give constructions. H ere P ,  m eans a  p la n e  curve of
degree d  and  "P d  u P d , meeting in r  points" m eans two plane curves of degrees
d, d' in  two different planes, meeting quasi-transversally at r  points (which must
lie  o n  a  lin e ) . Therefore Lemma 2.7 app lie s . The five spectra are

e2  = 17. (••• , 0, 1 2 , 2 2 , 3 3 , 4)
(• • • , 0, 1', 22 , 3 2 , 4, 5)

c2 = 19. (. • • , O, 1 2 , 2 2 , 3 3 , 4 2 )
(••• , O, 1 2 , 2 2 , 3 3 , 4, 5)
(••• , 0, 12 , 2 2 , 3 2 , 4, 5, 6)

: X  = P5 U P 4  meeting in 3  points
: X  = P6 U P3 meeting in 3  points
: X  = P5 U P5 meeting in 3  points
: X  = P6 U P 4  meeting in 3  points
: X  = P7 U  P3 meeting in 3 points

2 .1 5 . Proposition. For e 2 =  19, the spectrum (..., 0, 12, Z  3 4 , 4) is obtained
as in  (2.2) f rom  a double structure X  on a plane quintic. T he 6 so obtained has
a section in g(1) whose z ero schem e is a subcanonical quadruple structure on a
plane quintic.

P ro o f .  L et P  b e  a  sm ooth plane quintic, D  a  divisor o f  3  non-collinear
points on P .  As h° ((9p(D)) = 1,

X ,  & (D  - 1) = (9,(D )() 0, ( 4 + D)

has nowhere vanishing global sections. If X  is defined by one such section, we
get

(2.16) 0 - - ) . . f x ( 9 p ( D  - 1) 0.

W e claim that 1-11 (./r, cox (m)) = 0 for m > O. By Castelnuovo's theorem, this
im plies that X x  c o  x (2) has a  nowhere vanishing section, and since we notice
that 111(5 x ) = 0, Ferrand's theorem applies to give a bundle 6' as in (2.2). To see
the claim, we need H ° (X x v ( - m)) = 0 for m  O. L e t  ./1 = Since

p(D l ) x p  - 0' 0,

we get
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0 Al 0  (9p(D — 1) —> .J1(x v —> Al —> O.

Since (9,(D — 1) has negative degree and P  is reduced, it is enough to show that
H

°
(A l) = O. W hen (2.16) is restricted to P, we get the exact sequence

—)• CAD — 1) 0.

Since cow  = co,(1 — D), A l has determinant equal to co ; (D — 5). W e  th u s  g e t

0 (9;(2D — 2) co; ( — D — 3) 0.

So H
°
(,11) = 0.

To find the  spectrum of the bundle, X  has degree 10, hence c 2 = 19.

h° (0)x( —  2 )) = ( 9 s( 1 )) = 1 as h ° ((9,(1 — D)) = 0,

ho (cox ( —  1)) = h 1 (0 x (1)) = 6 as 171 ((9p(D))= 3.

E ven though X  is  n o t re d u c e d , th e  fo rm u la s  in  L em m a 2 .5  still app ly  as
H '(.5(—  j + 1) = 0  fo r  i 1. U sing  (51 ) to  (S 4 ), w e  see  tha t w e  have the
required spectrum. El

§ 3 .
In  this section we discuss the monads associated to bundles of rank tw o on

P 3 a n d  give some non-existence results. R e c a l l  the following notation of Barth
[B-1].

Let & be a  rank two bundle on P 3 w ith  c , = 0. T hen  w e  can  find  a  m onad
for e, which is a  complex of direct sums of line bundles,

0 L0' L , L , — > 0

whose homology at the middle is & and where b and a are respectively injective
and surjective as maps of vector bundles. The monad is called a  minimal monad
for e if  a  and  b  are both minimal; ie. as matrices of homogeneous forms, they
contain no non-zero scalar entries.

Let e be a stable bundle of rank two on P 3 w ith  c , = 0  and given c2 . Let
its spectrum be

x = ( ks( k ) , (k 1s(1), O s", 1s( 1 )l e (k ) ).

Let M  =  C)1-1 1 (g(0) =  C ) M i b e  the f irs t cohom ology module of e . I t  i s  a

module over S  = k [X 0 , X 1 , X 2 , X 3 ] .  Let

mi =  dim M i ,

p ( i)= #  of minimal generators for M  in  degree i.

Then (§2, S4),



796 R . Hartshorne and A . P. Rao

m-i-i = E s o ( i  -  +  1 ) for i > 0,

m-, -  m - i-  =  E for i > 1,

p(— 1 — k)— s(k).

W e also have tw o form ulas in [B-1] fo r which we give a  proof following the
characteristic-free arguments of [H-1].

3 . 1 .  Proposition (Barth).

p(— 1 — k)= s(k),

s(i) — 2  E  s o  p(— 1— s(i) — 1 for 0 < i < k.

P ro o f . F irst assume th a t  the restriction of e  t o  th e  general plane (with
equation x = 0) is  s ta b le . So

x: M_,_, e

is  injective for e > O. L et N _ , be  the quotient, of dimension n _ • A nalyzing
the proof in  [H-1], Theorem 5.3, we see that N _ , _ ,  H

°
(0,2(1)) has image of

dimension >  n  _  1 i n  N _ ,, for e 1 (conclusion (2) in  o p  cit is  valid). Since
p( — e) is  a lso  the  num ber o f generators fo r N  in  degree — e (N  is  the direct
sum of the N i's), we get

p(— e) for t>  1.

B ut n_ , — n _ ,_ , = — 1) for e 1.
F o r  th e  o the r s ide  o f  th e  inequality, N _ ® H

°((92(1)) h a s  image of
dimension < 3n_ e _ 1 , hence N  _, must contain at least n_ — 3n _ _ 1 minimal
generators for N , which works ou t to  the  lefthand inequality when e > 1.

If the restriction of g to  a general plane is not stable, g is well understood. It
is the null correlation bundle or a  pu ll back by Frobenius, and M  si(xg, xy,

)0 ) fo r  som e choice o f  basis fo r  linear form s, w ith g = a  pow er o f the
characteristic and w ith a n  appropriate grading shift. T h e  spectrum is

1q - 1  2 2 , . . . , q  — 1)

and the inequalities are certainly valid. El

Next we recall a description of minimal monads in  [R - 1].

3 .2 .  Proposition. L et 6' be a  vector bundle of  rank  tw o on P3 w ith  c1 = 0,
and let M , its cohomology m odule, have a m inim al free resolution

L2 L1 Lo M

Then L 1 L  and there is a  summand 1 4  o f  L 2  which induces
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a m inim al monad f o r 6'.

P ro o f . The only statement not proved in [R-1] is that the mapping L,
is obtained from a  splitting o f L 2 . I f  G = ker a, w e need only show that any
sequence

must pick o u t p a r t o f  a  system of minimal generators fo r G .  Suppose c  picks
o u t elements s 1 , s 2 ,..., s t o f  G .  I f  these a re  n o t pa rt o f a  m in im a l system of
genera to rs, w e  m ay  assum e th a t  i n  F = Gl(s i , . . . ,s ,_ ,) ,  g , i s  n o t  minimal
genera tor. N ow  P i s  a  vector bundle o f  r a n k  3  and if :§ t e H°(F(n)), then
c3 (P (n)) = 0  a s  S  has rank two.

Expressing §, a s  E f p ,  where the J 's  a r e  homogeneous forms of positive
i=1

degrees, we must have in  > 2, as k is a  nowhere vanishing sec tion . T hen  Ef p
i=2

is also a section of P(n), hence it is either nowhere vanishing o r  it vanishes on
a set S  of dim ension >  1 (since c3 (P(n)) = 0). The latter case is  impossible as

would vanish at S n (f, = 0). H ence E fa) ; is nowhere vanishing, and proceed
r =2

inductively until we reach the contradiction that f m p
m
 is nowhere vanishing. n

3 .3 .  L em m a. U sing the  above notation, suppose L o  h a s  r  summands with
degrees < t . T h e n  L , must contain at least r + 3 summands with degrees > 1 — e.

P ro o f . L,?; has r summands with degrees > — e. These must embed (as a
vector bundle) into the summand of L , consisting of terms with degrees > 1 — e
(as the m onad is m inim al). The quotient of this embedding m ust clearly have
rank  3  o r  m o re . El

Barth's formulas give u s  a  method to calculate the summands o f L , and  L ,
with degrees > 0, in the m onad. The last lemma allows us to limit the summands
of L , in  degrees O .

3 .4 .  E xam ple . C onsider th e  c a s e  c, = 8, x = (— 1 3 , 0 2 , 1 3 ). W e  have
m- 2 = m- i =  8 , p(—  2) = 3, 0 p(—  1) 1 .

i) p(—  1) =  O.

T he 3  generators in  M _2  have 4 relations in degree —  1, i.e., L, contains
4S(1) a s  a  sum m and. B y (3.3), L , can contain at m ost 1  sum m and in  degree
< 0, in fact in degree O . H e n c e  th e r e  are just 2 possibilities for monads, with
the m a p p in g  L , L , g iv e n  as
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4S( - 1) 0 4S(1) 3S(2)

4S( - 1) 0 2S 0 4S(1) 3S(2) S.

ii) p( -  1) = 1.

There a re  now 5  minimal relations in degree -  1  a n d  so L ,  can have at
most 2  summands in  degree O. The possibilities for L 1 - 4  L , are

5S( - 1) 0 5S(1) 3S(2) S(1)

5S( - 1)0 2S 0 5S(1) 3S(2) 0 S(1) S

5S( - 1) 0 4S 0 5S(1) - - > 3S(2) S(1)10 2S.

T h e  problem facing u s  is whether all these five possibilities exist. T h e
following technique is  a  generalization o f Lemma 3.3 a n d  it can be applied to
show that some monads d o  not exist.

3 .5 .  L em m a. L e t  0 - > d  -) ,4  --)W  -40  be  an  e x ac t  sequence o f  vector

bundles o n  P 3  w h e re  d  = 4 ( 4 , = (:)(9,(b 1), w ith  b , > b 2 > ---> b s . A

general projection gives
1 1

r +  1
0 - > 0  ep(b c (b  -  a) — )

r +  1
w h ere  C  is  a  curve (sm ooth in  characteristic z ero), a = c l (d )  a n d  b  =  E bi .

There is an  induced map (D b1)) -) co c (4 + a -  b ) - )  0. If  .ltr is the kernel of
r+ 2

this m ap and if  n  < b  -  a and h
°
(.firc (n - b s )) = 0 , then h

°
(Wv (n))= h

°
(1

-
(n)).

P ro o f . A Bertini theorem gives us the  curve C . A n a lternative  resolution
for ,f c (b  - a) is

0 C )  e  i) — )  - - )  ( b  -  a) — ) O.
r+ 2

We get the diagram

j rc ( -
r + 2

0 - b) ep(- bi) wc(11 + a -  b )  - - )  0
r+ 2

0 — + C) C c (- bi) 0.0 4  + a -  b ) 0
r + 2
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from which the  result can be obtained. El

As an application, we have

3 .6 .  Corollary. The monad with L 1 -4 4  given as

5S( — 1) 0 4S 0 5S(1) 3S(2) 0 S(1) C) 2S

does not exist.

P ro o f . From  the mapping 1 4  L , ,  we obtain an exact sequence of vector
bundles

0  --)• 20 , 50,(1) 0.

Using Lemma 3.5, we get C a  smooth twisted cubic curve (in any characteristic),
and

20,(— 1) —).o.),(1) 0.

So .Y(' = (.0 1 (— 3), and H ° (1 (2)) =  0 . H ence  H ° (Wv (2 ))  =  0 . This says that the
5S(1) in L 1 m a p s  to  zero, contradicting the m inim ality  of the m onad. El

The following lemma is also useful.

3 .7 .  Lem m a. L et Q  be a  rank  r  subsheaf  o f  ep(a1)@  e (a2) 10•••C)(9,, (as )
where a 1 > a 2 > ••• > a,. T h e n  h° (Q) h° (e p (ai)e • ''C ' e g ar) ) •

P ro o f . T h is  is im m ediate  since  under a  generic projection C) 0„(a i ) —>

C)(9 p (a1) , Q  injects into C) (9,(a1).
i=1 i=1

3 .8 .  Corollary. T here  is  no  stab le  bundle 6 ' w hose m onad has the part
L o  o f  th e  form

5S(— 1)C) 5S(1) 3S(2)C) S(1).

P ro o f . Since the monad is minimal, the summand 55(1) maps to 3S(2). Call
the m ap p in g  0 . 0  h a s  ran k  1 , 2  or 3.

I f  0  h a s  ra n k  1  ( re sp e c tiv e ly  2 ) , th e  s u b s h e a f  Im (0 )  o f  3 0 ,(2 )  has
e(Im (0)(1)) 20 (respectively 40) and hence the sheaf Ker(0) has IP(Ker(0)(1))
> 30 (respectively 10). But then v(e(t))> 29 (respectively 9) and  g  cannot be
stable. In  fact, if e ( g ( I ) )  > 9, then a  general section of g(1) gives a  curve Y of
degree 9 and  at least 8 linearly independent quadrics containing Y. Since two
of the 8 quadrics must intersect properly, this implies that Y has degree at most
4, a contradiction.

In  the  third case w here 0 has rank 3, let = coker (0( — 1) 5 0 (1 ) )  in  th e
m onad. The determ inantal sequence
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gives a  nonzero section of 6'.

3 .9 .  Rem ark. We do not know if there is a  semistable bundle with the
monad of (3.8).

§4.

In the last section we gave some techniques for eliminating the existence of
some monad types. This section gives some techniques for constructing bundles
with various monad types.

4 . 1 .  Notation. A monad

0 LL 0 0

will be denoted by integer sequences e, and ( 0 where e o enumerates the degrees
of the summands of L o  and e, enumerates the degrees of the summands of L,
which are nonnegative.

4 .2 .  Exam ple. For stable bundles with c2 =  4  and x = (— 1, 0 2, 1), there
are two possible monad types which may exist, viz

eo
o4 2
04, 1 2, 1

It is easy to see that the second is obtained when we use Lemma 2.8 and add
a  line to the curve for the bundle with x = (—  1, 0, 1). It is also easy to see
that the constructions of § 2  will never produce the first monad type, since for
such a  bundle H ° ( (1)) = 0.

Hence we need some new construction techniques for bundles and monads.

4 .3 .  Lem m a. L et X  be a  connected nonplanar curve of degree d  satisfying
the conditions (1) or (2) of  Proposition 2.8. Then the general section of  Arx  ®
gives a double structure Y  on X  which is the z ero scheme of a section of  ‘(2),
where e is a stable rank two bundle with c, = 0, c 2 = 2d — 4.

P ro o f  We showed in Proposition 2.8 and its proof that X x Ow x  is generated
by its global sections at the smooth points of X  and that the general section of
X x  ()co x  is nowhere vanishing. This yields a  sequence

(4.4) 0  - *  y f x Wx 0

and since 111(f  x ) =  0  (as X  is connected), Ferrand's theorem applies to give
y . We thus get 6 ' with c, = 0, c 2 =  2d —  4. Since

(4.5) 0 (Op( 2) y(2) 0

and since X  and hence Y is nonplanar, H ° (6'(— 1 ))  =  0 . If 6 ' is not stable, we



Stable Bundles 801

must have h° (g) = 1, or Y  is contained in  a  quadric surface Q .  But then X  lies
on  the  quadric surface which therefore m ust be  reduced . I f  Q  is  a  cone, then
Y being 2X  o n  Q  is  a  complete intersection, or g  is decom posable. B ut this
cannot happen as 111(‘(—  1)) = 1/ 1 (.5",(1)) contains H ° (cox (1)) which is nonzero.
If  Q  is  a  smooth quadric, X  has som e type (a, b) o n  Q  a n d  th e n  Y has type
(2a, 2b), hence coy  (9 ,(2 a —  2, 2b —  2). But since coy  ( P r ,  we get a = b  = 1, or
X  is p lanar. F inally , suppose Q = H U H', the  un ion  o f 2  p lanes. If  X  lies on
m ore th an  one quadric, let us assum e th a t  H  i s  a  fixed component o f  these
quadrics. Q induces a  m apping S'y 0  coy  c o ,(2 ) . W e  m a y  c h o o se  a section of
S i, 0  coy  which does not lie in the kernel of this m ap at least one smooth point
of X  o n  H .  T he corresponding Y will not be locally contained in  H  at that
p o in t .  Hence this Y will not lie on any q u a d ric . Lastly if the quadrics containing
X  have no  fixed plane, X  is  the  un ion  o f 2  p lane  curves a n d  X  has degree
<  4 . I t is  e a sy  to  see  th a t condition (2) of (2.8) is violated.

4 .6 .  C orollary. I f  X  is a nonplanar smooth curve of  type (a, b) on a smooth
quadric w ith a> b> 0 , then the bundle 6 obtained in  Lemma 4.3 has spectrum

(... ,0 2, 1 2 , 2 2 ( b...,(b — 2)2,1 r - b + 1 )

P ro o f . Similar to the proof of Lemma 2.12. El

4.7. Example. When c 2 =  8  and x = (— 1 3 ,
which were not ruled out, viz.

(+ t O

02 , 1 3 ), we had 3 m onad types

14

0 2 , 14 23, 0
02 , 15 23 , 1, 0.

The first is obtained if we apply Lemma 4.3 to a  curve X  of degree 6 and
genus 3 which is linked to a  twisted cubic curve by 2 cubic surfaces. The second
is ob ta ined  i f  X  is  chosen  instead  a s  a  curve o f  ty p e  (4 , 2 )  o n  a  quadric
surface. The differences in  the  monads arise from the  sequence

H ° (cox (2)) H 1 ( 6 )  ( f  x (2)) — *0

obtained from (4.4) and (4.5). For the second curve, h 1
 ( . f ( 2 ) ) =  1  and this gives

a  new generator fo r  M  in  d e g re e  0 . T he  third m onad is obtained w hen w e
construct th e  spectrum (— 1 3 , 0 2 , 1 3 )  a s  described in  § 2 .  T h e  reason fo r  its
monad type follows from the following lemma.

4 .8 .  L em m a. L et e be a  rank  tw o bundle on  P 3 w ith  c , = 0, c 2 =  n  and
let its cohomology m odule M  have minimal f ree presentation

L , L0 M

I f  Y  = (s)0 is a curv e f o r se H ° (&(r)), r > 0  and  X  is the complete intersection of
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2 surfaces of  degrees a and  b, where a + b  =2r and  Yn X  =0 , then YU X  =(s%
where s'eH 6(t ( r) )  f o r som e S ' w ith c, = 0, c 2 =  n + deg (X ) .  T he cohomology
module M ' o f  e' has minimal presentation

S(r — a) C, S(r — b) L  --> S  (r) C ) L M ' --> 0.

g ' is stable if  g  is semistable and X  is sufficiently general.

P ro o f . Let Y' =  Yu x. e  and s ' exist as coy , —  4). If g'(e) with
e < 0 has a section, Y' lies on a surface of degree r + e, hence so does Y  Hence
g(e) has a section. If g  is semistable, we have e = 0  and the surface containing
Y is  the unique one of that degree. Choose X  not lying on this surface. We
get a stable t .

The monad for is

0 0.

The section (9,4— r)—> g which gives Y induces an exact sequence

0 7.4,/ cp(— 1 o 0 ep(r) y(r) 0

which gives a minimal resolution for 14° ((9,,(r)). [ R - 1 ] .  Consider the sequence

where a  is the natural map

5 X CP (91'

It follows that the induced map 1(X)—>14° ((cy ) does not map onto any minimal
generator of 11((9 y ). Hence the minimal presentation of 1 1 ( 5 )  can be obtained
from the mapping cone on the Koszul resolution of I(X ) and the above resolution
of H;;; ( 0 ) .  The result follows as 114,1(5,,,) = M'(— r).

4 .9 .  Example. The lemma allows us to build up monads for higher Chern
classes. When c2 =  5  and x = (— 1, 0 3 , 1), the 2  possible monad types are

062 ,  1
06 , 1 2, 1 2 .

The lemma tells us that the second is obtained by the process of §2 , viz
construct x = (— 1, 0, 1) and add 2 lines, one after the other. To obtain the first
monad, observe that we can pick out 26 p —> Op(2) in  L,—> L 0 ,  which indicates
an elliptic q u a r tic . Lemma 4.8 asks for a bundle with c2 =  1 , and monad e'+ = o4,
( 0  =  1. Such a bundle certainly exists, being the null-correlation bundle, and for
such a  bundle g , S(2) has sections s  giving a  curve Y . The lemma gives our
monad type from this Y and a general elliptic quartic curve.
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§ 5 .
In  this section, we will tabulate all the  existing minimal monads for stable

rank two bundles with c, =0, c 2  < 8.

5 .1 .  Notation. The columns of the table are interpreted as follows :
c2 : the second Chern class of a stable bundle g  w ith c, = 0
x  : the  spectrum of e
e  : the  nonnegative degrees of the m iddle term L 1 o f  a  m in im a l monad

for e . Superscripts indicate repetitions o f a  summand.
: the degrees of the right-hand term L , of the minimal monad for g

r  :  degrees in  which a global section exists for our constructed g , giving a
curve Y as zero scheme. W hen we indicate < 2, we may have to construct two
distinct bundles -6', one with a section for e (1) and the  other with a section for
g (2) in  order to  a llow  later constructions. The constructions are indicated in
the last column.

Construction : There are  4  categories of constructions.
Instanton—a bundle with spectrum  { 0 c 2 } .  O n e  such bundle is constructed

most easily by picking c2 +  I skew lines on  a  quadric surface. Y  is subcanonical
a n d  hence equals (s)„,, sell

°
(g(1)) f o r  a  bundle 6'. A s Y  lies on a  quadric ,

e (1 (1 )) >  2 . Observe therefore that g (2) also has a section whose zero scheme
is a  curve.

a) This is the use of Corollary 2.7. We describe the curve X  from which
6' is obtained (via a double structure given by .5"x  w x (2) —> 0).

b) This is the use of Lemma 4.4. We describe the curve X  from which e
is obtained (via a double structure given by „i x  -4 co, —> 0).

c) This is  the  use  of Lemma 4.8. W e indicate the  m onad of the  bundle
with smaller Chern class (by referring to its table entry) a n d  also describe the
complete intersection curve X .  The twist r  is  in  the  previous column.

5 .2 .  I) , denotes a  smooth plane curve of degree d.
denotes a  smooth curve of type (a, b) o n  a  nonsingular quadric.

N ote tha t if X  = P d  and we apply construction (a) the curve Y lies on the
doubled p la n e . Hence g  has a t least 2  sections in degree 1 giving curves and
therefore has a section in degree 2  giving a  curve.

5 .3 .  Table

C2 X e, e. r construction

1 (1) 0 04 1 < 2 instanton

2 (1) 02 06 12 <  2 instanton

3 ( I ) 03 08 1 3 G  2 instanton
(2) • • • 0, 1 02, 1 2 ..- 2 (a): P2
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C2 X a', e0 r construction

4 (1) 0 4 010 14 G2 instanton
(2) • - • 02 , 1 i) 04 2 2 (b): C2,2

ii) 04 ,  1 2, 1 <  2 (c): 3(2), P, or 1(1), P3

5 (1) 0 5 012 15 <  2 instanton
(2) -  •  03 , 1 i) 06 2,1 2 (c): 1(1), C2,2

ii) 06 , 1 2, 1 2 <  2 (c): 4(2, ii) , P, o r  2(1), P ,

(3) • • • 0, 12 13 22 1 (a): C2,1
(4) • • • 0, 1 ,2 02,2 3 2 (a): P3

6 (1) 06 0 1 4 16 G 2 instanton
(2) • • • 04 , 1 i) 08 2, 1 2 2 (c) :  2 (1), C2,2

ii) 0 8 , 1 2, 1 3 1 (C) : 5(2, ii), P,

(3) - - •  02, 12 i) 0 2 , 1 2 22 2 (13): C3,2
ii) 02 , 1 3 22, 1 1 (c) :  5(3), P1

(4) • • • 02 , 1 ,2 0 4 ,  2 3, 1 1 (c) : 5(4),P 1

7 (1) 07 0 1 6 17 <  2 instanton
(2) • • • 05 , 1 i) 0 " 2, 1 3 2 (c) : 3(1),C2,2

11) 0 1 0 , 1 2, 1 4 1 (c) :  6(2, ii), P 1

(3) • • • 03 , 12 1) 04 ,  1 22 2 (c): 4(2, i) , P ,

ii) 04 , 12 22, 1 2 (c): 4(2, ii), P3
iii) 0 4 ,  13 22, 1 2 1 (C) : 6(3, ii), P 1

(4) • - • 0, 13 13 23, 0 1 (a): C 3 , 1

(5) • - • 03 ,1 ,2 06,2 3, 1 2 1 (C) : 6(4), P ,

(6) • • • 0, 1 2 , 2 i) 12 3 1 (a): C2,2
ii) 12 , 2 3,2 1 (a): P3 UP I jo in e d  a t a point

(7) • -•  0, 1, 2, 3 02,3 4 -, 2 (a): P4

8 (1) 0 8 0 18 18 G2 instanton
(2) • -•  06 ,  1 i) 0 1 2 2, 1 4 2 (c) :  4(1), C2,2

ii) 0 1 2 , 1 2, 1 5 1 (c): 7(2, ii) , P,

(3) • • • 04 ,  12 1) 06 22 2 (c): 4(2, i), C2,2
ii) 0 6 , 1 22, 1 2 (c) :  5(2, i), P3
111) 06 ,  12 22, 1 2 2 (c): 5(2, ii), P 3

iv) 06 ,  13 22, 1 3 1 (C) : 7(3, iii); P1
(4) • - •  02 , 13 i) 1 23 2 (b): X  of d -  6, g -  3, çt quadric

ii) 02 , 1 4 23, 0 2 (b): C4 , 2
iii) 02 , 1 5 23, 1, 0 1 (C) : 7(4), P 1

(5) • • - 04 , 1 ,2 08,2 3, 1 3 1 (e): 7( 5 ), P1
(6) • • • 02 , 1 2 , 2 i) 02 , 1 3 2 (b): C3 . 3

ii) 02 ,  12 3, 1 1 (c) :  7(6, i), P I

i i i )  02 , 1 ,2 3, 2 2 (b): P4 U P2, joined at 2  points
iv) 02 , 1 2 , 2 3, 2, 1 1 (c): 7(6, ii), P,

(7) ••• 02 ,  1, 2, 3 0 4 ,  3 4, 1 1 (c): 7(7), PI
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§6.

We would like to make some observations. It is known that the family of
instanton bundles for c 2 = 1, 2, 3, 4 is irreducible. [H -3 , E -S , B -2 ]. It is known
that any family of generalized null-correlation bundles is an open, irreducible and
smooth se t in  a  component of the  moduli space [ E - 2 ] .  Examples in the table
are 3(2), 4(2, i), 5(4) etc. Mei-Chu Chang has shown ([C]) that the family 4(2, ii)
is in the closure of 4(2, i). In  [R - 2 ] ,  it is shown that the family 5(3) is irreducible
and lies in the closure o f 5 (1 ) . A  natural question is to ask if the result in [C]
generalizes :

(Q 1 ) :  If a spectrum is fixed, is there a  "smallest" monad type and are the larger
monad types specializations of the  smallest? (Consider for example 8(6) in  th e
table.)

Our table of the last section updates Barth's tab les in  [B -1 ]. H e  had made
the assumption that the cohomology module M has minimal generators only in
negative degrees (or e 0  has on ly positive entries). W e see that this is a  valid
assumption for c 2 <  6 , b u t fo r  c 2 =  7  a n d  8 , we obtain generators in  degree
0. (See 7(4) a n d  8  (4 ) .)  In  fa c t, a s  c 2 g ro w s, M  can obtain generators in
arbitrarily large degrees, as we see from

6.1. Proposition. L e t X  be a  sm ooth curve of  ty pe (a, a + t), a >  1, t > 2
o n  a nonsingular quadric surface Q .  The bundle e  obtained f rom  X  as  in  (2.2)
has cohomology m odule M  with t —  1 minimal generators in degree a — 1.

P ro o f . Since

0 —> (9Q (— a , — a — t) (9Q — * (9x  — * 0,

it is clear that the first value of n  for which 111 (f  x (n)) 0 0 is  n = a, and

h i (y -x ( c ) )  _ n (e Q(0, —  t)) = t —  1.

Using (2.3) and (2.4), we get

H °  (cox  (2 + a)) H 1  (6. (a — 1)) — * (5 x (a)) — > 0,

hence the  result. E l

The case when a = 1 and  t = 2 of the proposition, i.e ., X  of type (1, 3) on
Q, gives the first such example of the table, where c2 =  7 , x  = (— 1 3, 0, 1 3). Let
S '  be the  family o f all such bundles obtained from smooth curves X  of type
(1, 3) on nonsingular quadrics, via  construction (a). W e will quickly sketch a
proof that .Ar lies in the closure of the family of bundles with spectrum (— 1, 05, 1)
(for proofs, [R-2] contains similar arguments).

Analyze th e  monad 7(4) o f  th e  ta b le  to find that if  S ' has such a  monad
then h° ( (l)) = 1 and the corresponding curve Y is a double structure obtained
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as  in  (2 .2 )  from  a  curve X  o f  ty p e  (1 , 3 )  o n  a  quadric  o r  a  degeneration
thereo f. H ence  X  is  open in the family of all bundles with this spectrum, and
the dimension of ,i1 ( is computed to be 50. Since this is too small to constitute
a  component o f the  moduli space o f bundles with c 2 =  7  (as 8c 2 — 3 = 53), .'17.

is in the closure of a larger family. Considering the invariance of the a-invariant
and  the  upper semi-continuity of cohomology, the only candidate for the larger
family is the family of bundles with spectrum ( — 1, 0 5 , 1).

We conclude with some questions about the spectrum :

(Q2): Are the 3 conditions (S1)—(S3) sufficient for a  stable bundle to exist with
the spectrum X?
(Q3): F o r  every  spectrum  o f  a n  existing s ta b le  b u n d le , c a n  w e  f in d  a
representative bundle with that spectrum for which H°(&(1)) 0 0?
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