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Homology planes with quotient singularities
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M. MivanisHr AND T. SUGIE

Introduction

We are interested in a nonsingular affine surface X defined over the complex
field C whose homology groups H,(X ; Z) vanish for all i > 0. We then call X a
homology plane. Such a surface X is a contractible surface if it is furthermore
simply-connected. In trying to solve the cancellation problem in dimension 2,
C.P. Ramanujam [13] found a contractible surface which is not isomorphic to the
affine plane A%. Since then, it has become an interesting problem to find other
examples of contractible surfaces or possibly give structure theorems on
contractible surfaces or homology planes.

In a recent trend of birational classification of algebraic varieties, we have the
fundamental invariant called the Kodaira dimension, and it is also useful in
classifying contractible surfaces or homology planes. We refer to Miyanishi [7]
for the definition of Kodaira dimension and relevant results. Let X be either a
contractible surface or a homology plane and let x(X) be its Kodaira dimension
which takes values — o0, 0, 1, 2. By Gurjar-Miyanishi [3], we know that

(1) If k(X)= — oo any homology plane X is isomorphic to AZ;

(2) If k(X) =0 there are no homology planes; (the result is essentially due
to Fujita [2]);

(3) If k(X) =1 all homology planes and contractible surfaces are completely
classified and homology planes are not necessarily contractible surfaces.

By this result, any homology plane of x < 1 is rational. In this direction, Gurjar-
Shastri [4] proved in full generality that any homology plane is rational. As for
the structure theorems, the case of Kodaira dimension 2 is left open, though there
are now abundant examples; we found in [3] a contractible surface similar to but
not isomorphic to Ramanujam’s example, and in Miyanishi-Sugie [9] infinitely
many contractible surfaces which are obtained by the blowing-up method from the
configurations of two curves on the projective plane P2. Independently, Petrie
and tom Dieck [15, 16, 17] constructed infinitely many examples by the blowing-
up method from the arrangements of lines and curves of low degree on P2. See
furthermore tom Dieck [18].

Besides the classification of such surfaces, it seems interesting to consider the
automorphism groups of homology planes. Petrie [12] posed the following
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conjecture and proved it for all contractible surfaces known by then.

Homology Plane Conjecture. Let X be a homology plane admitting a non-
trivial automorphism of finite order. Then X is isomorphic to A%

The conjecture itself was negated by examples of tom Dieck [18] and the
authors [19]. We include one of examples in this article (see §4).

In the present article, we consider a Q-homology plane. A nonsingular affine
surface X is a Q-homology plane if H(X ; Q) = (0) for all i > 0. We also define a
logarithmic homology plane (resp. a logarithmic Q-homology plane) as a normal
affine surface X with at worst quotient singularities for which H;(X ; Z) = (0) (resp.
H;(X; Q)= (0)for all i > 0. Surfaces of these kinds are more abundant and have
more chances to admit non-trivial automorphisms. These surfaces are, moreover,
interrelated via finite automorphisms. Indeed, we shall show that if X is a
homology plane admitting an effective action of a finite group of prime order such
that the fixed point locus is isolated then the quotient surface X /G is a logarithmic
homology plane. On the other hand, let Y be a logarithmic Q-homology plane
and let Y°=Y— SingY. Let Z° be a finite unramified Galois covering of Y° and
let Z be the normalization of Y in the function field C(Z°). Then Z has only
quotient singularities and the Galois group G of C(Z°)/C(Y°) acts on Z so that Y
=Z/G. Such a covering as Z°/Y° does occur as the one associated with
H,(Y°;Z). In most cases, Y has positive second Betti number. So, it would be
interesting to ask when Y becomes a logarithmic Q-homology plane.

In §1, we classify Q-homology planes with Kodaira dimension less than
2. We again encounter a difficulty in the case of Kodaira dimension 2. We do
not even know whether or not a Q-homology plane of Kodaira dimension 2 is
rational.

In §2, we consider a logarithmic homology plane and give a structure theorem
in the case of Kodaira dimension — oo and the case where it has a C*-
fibration. In the first case, there appear two more types other than the affine
plane, one of which is a quotient space C?/G by a small finite subgroup G of
GL(2, C). Moreover, they are all contractible surfaces. In the second case, we
can determine which of logarithmic homology planes are contractible.

In §3, we give an example of homology plane X with Kodaira dimension 2
which admits an involution. This example is given independently by tom Dieck
[18].

In §4, we give a remark on the boundary divisor of a Q-homology plane with
Kodaira dimension 2 and a result on the automorphism group Aut(X) of such a
surface X.

§1. Q-homology planes which are not homology planes

1.1. Let X be a nonsingular affine algebraic surface defined over the complex
field C. It a Q-homology plane if H(X ; Q) =0 for i >0. More precisely, for a
positive integer n, we define an n-primary homology plane to be a nonsingular



Homology planes 757

affine surface X defined over C such that H,(X ; Z/nZ) =0 for all i >0. An n-
primary homology plane is clearly a Q-homology plane, but not vice versa. Given
such a surface X, we can find a nonsingular projective surface ¥ and an eflective
reduced divisor D with simple normal crossings on V such that V—D = X. We
always consider the following cohomology exact sequence for a pair (¥, D) with
coefficients in K, K being Z, Q, Z/nZ etc.:

0 — H°(V, D) — H°(V) — H°(D) — H'(V, D) — H'(V) — H'(D)
— H*(V, D) — H*(V) — H?*(D) —> H?*(V, D) — H*(V) — 0
— H*(V, D) — H*(V) — 0,
where
H'(V,D)~H,_(X) and H(V)~H,_,(V)  for all i

by Lefschetz and Poincaré dualities. From this exact sequence, we deduce the
next

Lemma 1.1. (1) Let X be a Q-homology plane. Then the irregularity q(V')
and the geometric genus p,(V) vanish, and D is simply connected, i.e., each irreducible
component of D is isomorphic to P! and its dual graph is a tree. Moreover, Pic(X)
is a finite group and I'(Ox)* = C*. If X is rational, H(X ;Z)=0 for i>2,
HyX;Z)=17Z and H,(X ; Z) = Coker(H*(V; Z) > H*(D; Z)).

(2) If X is rational then we have the isomorphisms

Pic(X)~ H,(X ; Z) ~ H*(X ; Z) = Coker(H,(D; Z) —> H?*(V; Z))

3). If X is an n-primary homology plane then H,(X ; Z/nZ) is an n-tosion
group.

Proof. Since H3*(V,D;C)=0, we have H3(V;C)=~ H,(V;C)= H'(V;C)
=0. Then we obtain q(V)=dimH!(V,0,)=0 by the Hodge
decomposition. Since H?*(V,D;C)=0, we have H?*(V;C)=H'(V,Q))
= H*(D; C), whence p,(V)=dimH*(V,0,)=0. We then have H'(D;C)=0,
which implies that D is simply connected. If X is rational, H*(V;Z) and
H?*(D; Z) are free abelian groups of the same rank. Hence the homomorphism
H?*(V; Z)— H*(D; Z) is injective. Thence we can verify the assertions (1) and (3)
above.

In order to prove the assertion (2), observe the following sequence of integral
homology groups;

——H,(D; Z) — Hy(V: Z) — H,(V, D; Z)
—H,D;Z)— H,(V;Z) — -,

where H,(V,D; Z) =~ H*(X ; Z) = Pic(X). Since H,(D;Z)=0 and H,(V;Z) =~
H*(V; Z), we have

H3(X ; Z) = Coker(H,(D; Z) —> H(V; Z)).
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On the other hand, by the universal coefficient theorem we have
H*(X; Z) = Hom(H,(X ; Z), Z) ® Ext' (H\(X ; Z), Z),

where H,(X; Z) =(0) by the assertion (1) above and Ext'(H,(X; Z), Z) =
H,(X ; Z) because H,(X ; Z) is a finite abelian group. Thus we have an isomor-
phism H*(X ;Z)~H,(X;Z). B

1.2. Let X be a Q-homology plane and let k(X) be the Kodaira dimension of
X, which takes value — 00, 0, 1 or 2. If k(X) = — oo, we can describe the surface
X as follows:

Theorem 1.2. Let X be a Q-homology plane of Kodaira dimension
— 0. Then X has an A'-fibration f: X — A' such that for every point P of A®,
f~YP) is irreducible and f~'(P),., is isomorphic to A'. The homology group
H (X ; Z) is a product of cyclic components Z[u;,Z, where y; is the multiplicity of a
multiple fiber F; of f and F; runs through all multiple fibers of f.

Proof. Since k(X)= — o, X has an Al-fibration f: X - C, where C is a
smooth curve and f(X)= C. Since the boundary D consists of nonsingular
rational curves, C must be rational. Since H%(X ; Q) =0, it is not difficult to
show that C is isomorphic to A! and every fiber of f is irreducible. The rest of the
assertion is easy to verify. W

Next we consider the case k(X) =0. According to Fujita [2, (8.64)] we have
the following:

Theorem 1.3. Let X be a Q-homology plane with k(X)=0. Then X is
isomorphic to one of the surfaces listed below:

(1) H[k, — k] with k> 1. Let X, be the Hirzebruch surface of degree k, let
M be the minimal section and let ¢ be a fiber of the P'-fibration f: X, — P! of
2. Let M, be a cross-section of f such that M, ~ M + (k + 1), let £, £, be two
fibers of f not passing the point P:= MnNM,, let P;;:=¢;nM, and let P;, be the
infinitely near point to P;, of the first order lying on the fiber ¢, where i
=1,2. Leto:V— X, be the blowing-up of the points P;; with i, j = 1, 2 and let E;
be the exceptional curve obtained by blowing up the point P, with i =1,2. Then
H[k, — k] is the surface X:=V—(c"'M + M, +¢, +¢,) — E, — E;). We have
H,(X;Z)~7Z/4kZ.

(2 Y{3,3,3}. Let¢; (i=1,2,3) be three non-concurrent lines on P?, let P;
:=1¢;n¢;, let Pj; be the infinitely near point to P;; of the first order lying on the
line ¢;, where (ij) = (12), (23), (31) and let ¢, be a fourth line not passing any of the
points Pj;s. Let a: V—P? be the blowing-up of six points P;; and Pj; and let E;
be the exceptional curve obtained by blowing up the point Pj;, where i= 1,2, 3.
Then Y{3, 3, 3} is the surface X ==V — (6" (¢, + £, + {3+ ¢y) — E} — E;, — Ej}).
Moreover, H,(X ; Z) =~ Z/9Z.

(3) Y{2,4,4}. Let M; and ¢; be respectively cross-sections and fibers of the
P'-fibration f on the Hirzebruch surface £, =P' x P! with i =1, 2, 3, let P;;:= M,
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N¢; and let Py3 and P}, be the infinitely near points to P, and P;, of the first
order lying on the cross-sections M, and M, respectively. Let a:V — X, be the
blowing-up of six points P,,, P,3, P,3, P3,, P33, Py, and let E,, E,;, Ej;, Ej3, be
the exceptional curves obtained from the blowing-up of the points P,,, P3, P;;,
Py,. Then Y{2, 4 4} is the surface X =V — (67 '(M; + My + My + ¢, + ¢,
+¢3)— E,, — E;3 — E}3 — E3;). Moreover, H,(X ; Z) = Z/8Z.

4) Y{2,3,6}. We do not specify the construction of this surface. See
[2, (8.59) and (8.61)]. We have H,(X ; Z) =~ Z/6Z.

1.3. Now let X be a Q-homology plane with k(X)= 1. Our argument in
this case will basically follow the one in [3]. It is known [7] that there is a C*-
fibration 7: X — C, where C is isomorphic to either P! or A! because I'(0)* = C*
(cf. Lemma 1.1). The fibration n: X — C is extended to a P'-fibration p: V> B,
where V is a nonsingular rational surface such that X is an open subset of V and
D:=V — X is an effective divisor with simple normal crossings, B is a nonsingular
complete curve containing C as an open set and the restriction of p onto X is
n. The boundary divisor D contains one or two horizontal components according
as the C*-fibration = is twisted or not. If = is twisted, we denote the unique
horizontal component by H, and if n is untwisted, we denote two horizontal
components by H, and H,. Except for the horizontal components, all the other
components of D are contained in singular fibers of the P!-fibration p. Since X is
affine, any singular fiber F of the C*-fibration n has the following form. Namely,
F=A4+T, where I',,;, = ¢, C* or A' + A', and 4, is a disjoint union of
Avs. We have the following:

Lemma 1.4. (1) If C is isomorphic to P! then  is untwisted, every fiber of n
is irreducible and there is exactly one fiber F such that F,,; =~ A'.

(2) If C is isomorphic to A' and n is untwisted, then all the fibers of n are
irreducible except for one singular fiber which consists of two irreducible
components. If C is isomorphic to A and n is twisted, all fibers are irreducible and

there is exactly one fiber which is isomorphic to A'.

Proof. We follow the proof of Lemma 3.2 in [3]. Let F,,...,F, exhaust all
the singular fibers of #. Let F; be the fiber of p containing F;. Write

Si

F;= ,Zl #;Cii+ Y. 8Dy,
i~

J=ri

where Cj;s and Djjs are irreducible components such that C;;n X # ¢ and D;;n X
= ¢.
Suppose =« is twisted and C = P!. Then

rank Pic(X) =2+ 3 (si— )= (1 + 3 (i —r) =1+ 3 (i — 1) > 1,
i=1 =1 i1

which is not the case because rank Pic(X)= 0 by Lemma 1.1.
Suppose 7 is twisted and C =~ A'. Then H has two ramification points
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P,, P, of t|y: H— B. Since D is a tree, the unique fiber of = contained in D must

pass through P, or P,, say P,. Then the fiber n~!(p(P,)) is isomorphic to A! and

other fibers are isomorphic to AL. For otherwise, D would not be a tree.
Suppose C =~ P!, whence = is untwisted. Then we have a relation

a linear combination )

H, —H,~ . C.
! 2 g‘a” 0 (of fiber components of D

Therefore Pic(X) is the abelian group defined by the following generators and
relations

i= 1,...," ZOC”[C,J] =0

Pic(X)={ [C;] " o

j=1..r '21 ﬂlj[clj] == '21 ﬂnj[cnj]
j= ji=

H

if C~P! and

i=1...n| Ya,[C=0

Pic(X) = ( [Cy] ',,J " >
j=1,...,1; j;u“.[c“.] = e = ,-Zl i [Caj] =0

if C ~A!. Hence rank(Pic(X))=Y7_ ,r;—n if C=P' and rank(Pic(X))>

Yi_,ri—(n+1)if C=A'. Since Pic(X) is a finite group, we have r; = 1 for all

iif CxP',and r;=1for all i>2 and r, =2 if C > A'.

If C =~ P! one of the fibers F,,..., F, must be isomorphic to A!, for otherwise
D would be disconnected. However there are no two such fibers, for otherwise D
would not be a tree. W

1.4. In the subsequent paragraphs, we construct examples of a Q-homology
planes with an automorphism of finite order whose fixed point locus consists of
several disconnected components, one of them being isomorphic to the complex
line C and the others being isomorphic to the complex line with one point deleted
off C*. These surfaces are not homology planes by virtue of the following

Lemma 1.5. Let X be a homology plane with an effective action of a cyclic
group G of prime order p. Then we have:

(1) The fixed point locus X ¢ is connected.
2 If dmX® =1 then X is the complex line C.

Proof. Recall the following result from the theory of transformation groups.

Let G be a cyclic group of finite order p, let X be a finite-dimensional G-space
and let X¢ be the fixed point locus. Then, for cohomology groups with Z/pZ-
coefficients, we have

Z rank H'(X¢; Z/pZ) < Z rank H(X ; Z/pZ)  for VneZ.
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We apply this result to our homology plane X with n=0. Since H(X ; Z/pZ)
=0 for all n> 0 and H°(X¢; Z/pZ) # 0, we must have H'(X¢; Z/pZ) = 0 for all
n>0 and rank H(X¢; Z/pZ) = 1. This implies that the fixed point locus X ¢ is
connected and the Euler characteristic e(X ©) equals 1. We shall show that X € is
nonsingular. If dimX® =0 we have nothing to prove. So, suppose dimX¢
= 1. Suppose that XS has two irreducible components, say C, and C,, meeting
at a point P. If C, and C, have different tangents at the point P, then the action
of G on X is trivial near the point P, hence everywhere on X. This is a
contradiction. Suppose that C, and C, have the same tangent at P. Then blow
up G-equivariantly the point P. The proper transforms C; and C; of C, and C,
either get separated over the point P or still have a common point P’. Then
repeat the above argument again with Cj, C; and P'. After repeating several G-
equivariant blowing-ups, the proper transforms of C, and C, have a common
point and different tangents there. This is a contradiction. So, we conclude that
X € is irreducible. We shall show that the curve X ¢ is nonsingular. If X€¢ has a
singular point P, the induced action of G on its Zariski cotangent space is trivial
and the Zariski cotangent space is identified with the Zariski cotangent space of X
at P. So, the action of G on X is trivial near the point P, hence everywhere on X,
which is a contradiction. Hence X ¢ is nonsingular. If dimX%=1, X% is
homeomorphic to the complex line. Therefore, X ¢ is algebracally isomorphic to
the complex line. W

Similar results hold for Q-homology planes. Namely we have

Lemma 1.6. Let X be a Q-homology plane with an effective action of a cyclic
group G of prime order p. Then X is nonsingular. Namely, if X contains an
irreducible curve, it is nonsingular and every connected component of X€ is
irreducible. Moreover, X ¢ has the Euler number e(X %) = 1. If X is an n-primary
rational homology plane and n is prime to p then either XS is a single point or
isomorphic to the complex line. If X is p-primary and rational, we have

N — 14 b5(X < b (X),

where N is the number of irreducible components of X¢ and b%(X)
= dimg,z H,(X ; Z/pZ) and b} (X ) = dimy,,, H, (X ; Z/pZ).

Proof. Similar arguments as in Lemma 1.5 apply to this case, as well. The
Euler number e(X %) = 1 is obtained from the Lefschetz fixed point theorem. The

last inequality is an easy consequence of the inequality cited in the proof of Lemma
1.6. 1A

Example 1. Let £,, ¢,, £ be concurrent lines on P? with the common point
P and let £, be a line not passing through P. Let o: Y — P2 be a composite of the
following blowing-ups: First blow up the point P and let E be the resulting (— 1)
curve. For 1 <i<3 let P; (resp. Q;) be the intersection point of E (resp. Z,) with
the proper transform of ¢;. Next blow up these six point P;’s and Q,’s to obtain
the surface Y and let A;s and B;’s be the resulting (— 1)-curves on Y as the inverse
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images of P;’s and Q;’s, respectively. Name the proper transform of £; on X as L,
for 1 <i <4 and the proper transform of E as C. Then we have (C?) = — 4,(L?)
=—2for1<i<3and (L} = -2

Let p: V—Y be the double covering with branch locus C, L,, L,, L; and
L,. Then V is a rational surface with rank 8. Let M = p~!(C), E; = p~'(4)), F;
=p~'(B), Hi=p (L) for 1 <i<3 and let N=p '(L,). Then p*(C)=2M,
p*(A)=E;, p*B)=F;, p*(L)=2H; for 1 <i<3 and p*(L,) =2N. Hence
MH=—-2, (N)=—1, (E})=(FH=—2and (H)= —1for 1<i<3. The
covering involution 1 acts on V in such a way that the fixed point locus V' consists
of M, N, H,, H, and H;. Now obtain an affine surface X as an open set of V by
removing the curves M, N, E,, E;, H;, F;, F, and F,. Then there exists a C*-
fibration on X obtained as the restriction of the P!-fibration |E; + H; + F5| onto
P'. The involution : acts along this C*-fibration and there is only one reducible
fiber (E, + H;)nX. It is now straightforward to verify that H{(X ; Q) = 0 for all i
>0. So, X is a Q-homology plane. Furthermore X' consists of (H; + H,)NX
which consists of two disjoint curves, one being isomorphic to C and the other
being isomorphic to C*.

Example 2. Let C be an irreducible rational curve of degree n > 1 in P? with
a cusp P of order n — 1| and let £; (1 <i < n) be lines passing through the cusp P
which are not tangent to the curve C at P, thus #; meeting C in a single point
different from P. Let W be a cyclic covering of P? of order n branched over
Cuf,U---U¢, and let V be the minimal resolution of singularities of W. Then V
has a P!-fibration p: ¥ — P! and the proper transform of Z, (1 <i<n)on Vis a
(— 1)-curve E; contained in a reducible fiber I'; of p with a linear chain of length
n + 1 as its dual graph which is described as follows:

Ii=AY + nE; + (n— 1)BY, + (n— 2) B, --- + BY,

where (A9)? = —n, (B{L,)* = (B{L,))? = =(BY)’ = -2, (AV-E)=(E;" B},
=(BY BV )= .- =(BY-BY)=1. The fibration p has two sections M and N,
where M is a (— 2)-curve mapped to the point P by the composite = of the
resolution morphism and the covering morphism and N is a (— 1)-curve mapped
to the curve C and where M meets A” and N meets BY. Except for fibers
r,,...,T,, p has one more singular fiber 4, which is contained in the inverse image
by n of the tangent line of C at P and can be contracted to a smooth fiber without
changing the self-intersection numbers of M and N. Let X be an affine open set
obtained from V by removing the curves M, N, 4, all components of I'; other than
E, and B{", and all components of I'; other than E; for every 2 <i <n. Then it
is straightforward to show that:

(1) X is an n-primary rational homology plane with H,(X ; Z/nZ) =~
(Z/nZ)y 1.

(2) X has an automorphism of order N inheriting the covering transforma-
tion of n: V- P2,
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(3) X€ consists of X nE,; which is isomorphic to C and XnE;for2<i<n
which is isomorphic to C*.

1.5. We shall construct further examples of Q-homology planes of Kodaira
dimension 0 admitting non-trivial automorphisms.

Example 3. Take X to be H[k, —k] in Theorem 1.3. Choose an
inhomogeneous coordinate t on the base curve P! so that t =0, 1, — 1 at the
points f(P), f(P,,), f(P;,), respectively. Let i1: P! > P! be the involution such
that 1*(t) = —t. Suppose k = 1(mod2). Then : induces an involution on 2,
which we denote by the same letter .. This involution : fixes two fibers including
the one passing the point P and exchanges the fibers passing the points Py, and
P,,. So,:induces an involution on X such that the fixed point locus is the fiber ¢
= oo plus a point on the fiber t = 0.

Example 4. Take X to be the surface Y{3, 3, 3} in Theorem 1.3. We choose
the points P,;, Py; and P,, to be (1,0,0), (0,1,0) and (0, O, 1), respectively.
Choose the line £, to be defined by the equation x, + wx; + w*x, =0. So, £,
meets the lines 7,, 7, and ¢/, respectively at the points (0, — w, 1), (— w?, 0, 1) and
(—w, 1,0). Let p be an automorphism of order 3 on P? defined by

Xo 01 0, ,x¢
p<x1)=<0 0 1><x1).
X, 1 0 0/\x,

Then the line £, and the set {P,;, Pj;|(ij) = (12), (23), (31)} are p-stable. Hence p
induces an automorphism of order 3 on X such that the fixed point locus consists
of three points (1, 1, 1), (1, o, ?) and (1, w? w).

Example 5. Take X to be the surface Y{2, 4, 4} in Theorem 1.3. Choose
inhomogeneous coordinates (¢, u) on P! x P! in such a way that the cross-sections
(resp. fibers) M,, M,, M5 (resp. £,,¢,, ¢5) are defined by u=0,1, — 1 (resp. ¢
=0, 1, —1). Define an involution 1 on P! x P! by i*(t, u) = (—t, u). Then 1
induces an involution on X such that the fixed point locus consists of a single
point (t7!, u™1) = (0, 0).

1.6. As we have observed above, Q-homology planes with Kodaira
dimension < 1 are rational and usually have non-trivial automorphisms of finite
order unless they are not homology planes. So, we can raise the following
questions:

Question 1. Is a Q-homology plane of Kodaira dimension 2 rational?

If such a Q-homology plane X exists, a smooth completion ¥ of X must
satisfy gq(V) = p,(V) =0 in view of Lemma 1.1.

Question 2. Can one evaluate the order of the automorphism group Auz(X)
when X is a Q-homology plane of Kodaira dimension 2 ?
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§2. Logarithmic Q-homology planes

2.1. Let (X,x) be a germ of normal surface singularity. It is called
logterminal if the following two conditions are satisfied:

(1) Ky is Q-Cartier,
(2) Let f: Y> X be a minimal resolution of singularity and let F,,...,F
exhaust irreducible exceptional curves of f. If we write

n

Ky =f*Ky) + ) aF; a,€Q,
=3

then we have 0 > a;, > — 1 for every i.

It is known (cf. Tsunoda [14]) that a log-terminal singularity (X, x) is a
quotient singularity. Namely, (X, x) is isomorphic to (C2/G, (0)), where G is a
small finite subgroup of GL(2, C). We call a normal algebraic surface X
logarithmic if it has only log-terminal singularities. A logarithmic affine surface X
is called a logarithmic homology plane (resp. logarithmic Q-homology plane) if
H,(X;Z)=(0) (resp. H(X ; Q) =(0)) for all i > 0. In this section, we shall look
into structures of logarithmic Q-homology planes. We shall begin with

Lemma 2.1. Let X be a Q-homology plane with a finite group G acting on
it. Let S = X/G be the algebraic quotient of X by G. Then S is a logarithmic Q-
homology plane.

Proof. Let m: X —>S be the quotient morphism. Then =z induces an
isomorphism of the cohomology rings

n*: H*(S; Q) — H*(X ; Q)°.
Since H*(X ; Q) = H°(X ; Q) = Q by the hypothesis, we conclude that H(S; Q)
= (0) for i>0. Hence S is a Q-homology plane. H

Let X be a logarithmic affine algebraic surface, let 2 = {x,,...,xy} be the
singular locus and let ¢: Y— X be the minimal resolution of singularities. Let V
be a normal projective surface such that X is an open subset of V and the
complement D:= V — X is an effective divisor with simple normal crossings and let
f: W— V be the minimal resolution of singularities of V. Then Y is an open set of
W and f|; = ¢. We identify the divisor D on V with the divisor f~'(D) on
W. Set A=f"1X)and X°=X — X.

Lemma 2.2. With these notations we have the following:
(1) We have isomorphisms and exact sequences

H'(V, D; Z)= Hy(Y: Z), H*(V,D;Z)=~H,(X°; Z)
Hi(V,D;Z)y=H, (X°;Z)~H, (Y:Z) fori#12
0—Z% — Hy(X°;Z)— H'(V,D;Z) —0
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0— 7% — H,(X°;Z)— H,(Y; Z) —0
0— H,(X°;Z)— H,y(Y;Z)— DY, Z°* — 0,

where N is the number of singular points and r; is the number of irreducible
components of f~'(x,).
(2) We have isomorphisms and an exact sequence

Hl(I/’ D; Z) = H4—i(X; Z) for i= O’ la 4’
0— H*(V,D;Z) — Hy(X; Z) — H,(0T; Z) — H*(V, D; Z)
— H,(X;Z)—0.

(3) If X is a logarithmic Q-homology plane, then D is simply connected and
p(W) = q(W)=0. Moreover, I'(X, Ox)* = C*.

Proof. (1) Write a long exact sequence of integral cohomologies attached to
the inclusion of pairs((DUZ, D) = (V, D);

0— H°(V,DUX;Z)— H°(V,D;Z) — H°(DUZX, D; Z)

— HY(V,DUX;Z)— HY(V,D;Z)— H'(DUZX, D; Z)

— H*(V,DuX;Z)— H*(V,D;Z) — H*(DUZX,D; Z)

—> H3V,DUX;Z)— H*(V,D;Z)—0

— HYV,DUZX;Z) — H*(V,D; Z) — 0,
where

H°(DuUZX,D;Z)=~7Z°® and H'DUZX,D;Z)=(0) for i#0,2
Furthermore, we have isomorphisms
H(V,DUX;Z)~H, _(X°:Z) for Vi > 0.

Hence we obtain the isomorphisms and exact sequence involving (V, D) and
X°. In a similar way, write down a long exact sequence of integral cohomologies
attached to the inclusion (DU4, D) = (W, D). Noting that W— (DU4) >~ X° and
that each connected component of 4 is a tree of nonsingular rational curves, we
obtain the isomorphisms and exact sequences,

H(X°;Z)=H(Y;Z) fori#23
0——7Z8 L H,(X°: Z) — Hy(Y; Z) — 0
0— H,(X°;Z)— H,(Y;Z)— PN, Z°" —> 0.

Combining these two results, we obtain the stated isomorphisms and exact
sequences.

(2) Write 2 = {x,,...,xy}. For all i, choose a closed neighbourhood T; of x;
so that T,n T, = @ whenever i # j. Let 0T; be the boundary of T,. Write T:= T,
U---UTy and 0T=0T,U---UdTy. Consider a long exact sequence of integral
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homologies :
0— Hy(X;Z)— Hy(X, T; Z) — Hy(T; Z) — H;3(X ; Z) —
Hy(X, T; Z) — Hy(T; Z) — Hy(X ; Z) — Hy(X, T; Z) — H(T; Z) —
H((X;Z)y—H,(X, T;Z)— Hy(T;Z) — Hy(X;Z)— Hy(X, T; Z)
— 0’

where Hi(X, T; Z)~ H,(X"°, 0T; Z) for every i by the excision theorem. Since
every x; is a quotient singular point, we may assume that 7T; is a quotient B;/G; of
the closed ball B;:={(zy, z,)||z;|* + |z,/* < ¢} in C? which is stable under the
induced linear action of a small finite subgroup G; of GL(2, C). Since B; is

contractible, T; is contractible by Conner’s theorem (cf. Kraft-Petrie-Randall
[5]). Hence we have

Ho(T;Z)=2%" and H,(T;Z)=(0) for Vi>O0.
Thence we have isomorphisms and an exact sequence
H(X;Z)~H(X, T; Z) for i > 2,
0—H,(X;Z)— H,(X,T;Z)— Hy(T; Z) — Hyo(X ; Z) — 0.

On the other hand, we have a long exact sequence of homologies attached to a pair
(X°,0T),

0 — H(X°;Z) — H, (X", 0T; Z) — H,3(0T; Z) — H;3(X"°; Z)
—> Hy(X°, 0T; Z) — H,(0T; Z) — H,(X°; Z) — H,(X°, 0T; Z)
—> H,(0T;Z) — H,(X°;Z) — H (X", 0T; Z) — H(0T; Z)
—> Hy(X°; Z) — 0.
Since the action of G; on dB; ~ S is orientation preserving, we have
Ho(0T;; Z) = H;(0T;; Z) = Z.

It is known that H,(0T;; Z) =~ n,(0T})/[7,(@T,), n,(@T;)], which is a finite
group. Then, by Poincaré duality and the universal coefficient theorem, we know
that H,(0T;; Z) = (0). Therefore we have an isomorphism and exact sequences,

H,(X°;Z)~ H,(X° 0T; Z)
00— H;(0T; Z) — H;(X°; Z) — H4(X°, 0T; Z) — 0
0— H,(X°;Z)— H,(X°,0T; Z) — H,(0T; Z) — H(X°; Z)
— H,(X° 0T; Z) — Hy(0T; Z) — Hy(X°; Z) — 0.
Now comparing the above isomorphisms and exact sequences, we obtain
HyX°;, Z)=Hy(X°, 0T, Z)~ H, (X, T; Z) ~ H,(X ; Z),
H'(V,D;Z)~ Hy(X°, 0T; Z) = Hy(X, T; Z) =~ Hy(X ; Z),
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0— H,(X°;Z)— H,(X;Z)— H,(0T; Z)
— H,(X°;Z)— H,(X;Z)—>0.
Now the stated results are easily verified in view of the assertion (1) above.
(3) Since H(0T; Z) is a torsion group, we have isomorphisms
H?(V,D; Q= Hy(X;Q) and H3(V,D; Q) = H(X; Q).

Suppose X is a logarithmic Q-homology plane. Then, by virtue of the assertions
(1) and (2) above, we have H,(Y;Q)=(@©) for i#0,2 and
H,(Y; Q) =~ @~ ,Q®. Look at a long exact sequence of rational cohomologies
attached to a pair (W, D),

0 — H°(W, D) — H°(W) — H°(D) — H'(W, D) — H'(W) — H'(D)

— H?*(W, D) — H*(W) — H*(D) — H3*(W, D) — H3*(W) — 0

— H*(W, D) — H*(W) — 0,
where

H{(W,D)~H,_,Y) for Vi.
Taking the above remark into account, we know from this exact sequence that
Hy(W)=H'(W)=(0) and H'(D)=(0),
whence we conclude the assertion (3) as in Lemma 1.1. H
Lemma 2.1 can be strengthened to the following effect:

Theorem 2.3. Let X be a homology plane with an effective action of a cyclic
group G of prime order p. Suppose that X € is isolated. Let Z = X/G. Then Z is
a logarithmic homology plane.

Proof. Let P be the unique G-fixed point of X (cf. Lemma 1.5). Let gq: X
— Z be the quotient morphism and let Q = g(P). Then Q has a cyclic quotient
singularity, and Z is a logarithmic Q-homology plane by Lemma 2.1. Hence
H,(Z; Q)= Q. Suppose H,(Z;Z)+#(0). Then H,(Z°; Z) # (0) and is a finite
group, where Z° = Z — {Q} (cf. Lemma 2.2). Since ¢: X° — Z° is an unramified
covering, H,(Z°; Z) 2 Z/pZ. On the other hand, |H,(Z°; Z)/Im(H,(X°: Z)| <p
by a general theory. Hence H,(Z°; Z) = Z/pZ. Since H,(0T; Z) = Z/pZ and
since H,(Z ; Z) = (0) (cf. the proof of Lemma 2.6), we obtain H,(Z; Z) = (0) by
Lemma 2.2 (or an exact sequence in its proof). This is a contradiction. Thus Z
is a logarithmic homology plane. W

2.2. Let X be a normal affine surface with a A!l-fibration p: X -» C. Let
@: Y- X be a minimal resolution of singularities. Then we have the following
result by Miyanishi [6]:

Lemma 2.4. Let X be as above. Then we have:
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(1) Every singular point P of X is a cyclic quotient singular point.

(2) Every fiber of p is a disjoint union of curves which are isomorphic to
A'. Each irreducible component has at most one singular point of X.

(3) Let P be a singular point lying on an irreducible component T of p~(p(P))
and let C,,...,C, exhaust all irreducible components of ¢~ '(P), where C, meets the
proper transform @'(T), (C;-Ciyy)=1 for 1<i<r and (C?)= —«a; with
a; > 2. (We say that P is of type (a,,...,0,).) Then the multiplicity of P is equal to

r

u(P) = '; a — 2(r —1).

4) Let [ay,...,0,] be the continued fraction

1
[oys.so,] =a; — ,

az_

a3 -

. 1

T

a"

and write d/e = [ay,...,a,] with e <d and e and d relatively prime. If P is a

singular point of type [a,...,a,] then (X, P) has the same singularity as (C?/G, (0)),

where G = {{) is a cyclic group of order d, { being a primitive d-th root of unity,
and G acts on C? by (x, y) - ({x, {°x).

In order to construct a normal affine surface X with an A!-fibration carrying a
singular point of type (a4,...,,), we start with a normal projective surface V with a
P!-fibration p: V— B, where B is a nonsingular complete curve. We assume
furthermore that there is a cross-section M of p. For example, the surface X with
the A'-fibration p: X — C considered in the above lemma has an open immersion
into a normal projective surface V endowed with a P!-fibration p: ¥ — C such that
plx = p and that the complement D:= ¥V — X is an effective divisor with simple
normal crossings and that D contains an irreducible component M which is a
cross-section of p; we may assume without loss of generality that there are no (— 1)-
curves contained in D possibly except for the component M. Let F be a smooth
fiber of p and let P, be a point on F. Let a,: ¥ — V be the blowing-up of P,
and let E, = a5 ' (Py). Let P, = a4 (F)nE,, o4 (F) signifying the proper transform
of F via o, let o,: ¥, = V| be the blowing-up of P, and let E, = a; ' (P;). Now
let P, be either E,N(oy0,) (F) or E,nai(Ey), let a,: ¥, — V| be the blowing-up of
P, and let E; = 05 ' (P,). Next, let P, be one of the intersection points of E; with
two adjacent components. We continue this process altogether (n + 1)-times to
obtain a normal projective surface W by the blowing-up of points P,,...,P,, say
f: W—V, where the i-th point P; is one of the intersection points of the exceptional
curve E; =o' (P;_,) with two adjacent components. We denote the proper
transform of E; on W also by the same letter E;. The surface W has a P!-fibration
given by a morphism p-f: W— B and the fiber (p-f)~ ' (p(F)) cosists of irreducible
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components f'(F), E,, ..., E,, which form a chain of rational curves. Call this fiber
F. Then we can write f,ed =2X,+E,+Z,, where X, is the one of two connected
components of F,e,, — E, which meets f'(M) and 2, is the other one. We note
that E, is the unique (— 1)-curve in the fiber F provided n > 1. Then X', can be
contracted to a cyclic quotient singular point of type («,,...,a,), which is uniquely
determined by the above blowing-up process. We denote by V the normal
algebraic surface obtained from W by contracting X, to a point. Then v will
inherit the P!-fibration from W, which we denote by jp: ¥— B. Denote the fiber
p~1(p(F)) by F. Tt is proved in [6] that a cyclic quotient singular point with
arbitrarily given r-tuple (a,,...,®,) can be produced by this process. When we
start with a normal affine surface X with an A'-fibration p: X —» C, we consider
its completion V with a P!-fibration p: V— B. Then choose a smooth fiber F,
which corresponds to a reduced and irreducible fiber of p and apply the above-
described process to F to produce a cyclic quotient singular point on the replaced
fiber F. It is straightforward to show that the open subset of ¥ with the image
of 67 1(D — M)U f'(M)U X, removed off is affine. We denote this affine surface by
X and say that X is obtained from X by attaching a cyclic singular point of type
(ay,...,a,) (or equivalently, of type d/e if d/e = [a,,...,,] as in Lemma 2.4) to the
fiber F© = FnX. Indeed, X has an A!'-fibration p: X —» C which is the same as
the Al-fibration p on X except that the fiber F° is replaced by a multiple fiber F°
=FnX. Its multiplicity is equal to d in Lemma 2.4 (cf. Miyanishi [7, pp. 76-80]).

2.3. Let X be a logarithmic Q-homology plane. With the notations of 2.1,
we can consider the Kodaira dimension k(X °) and call it the Kodaira dimension of
X. We write x(X) instead of x(X°). We shall now look into the structure of a
logarithmic homology plane X of Kodaira dimension — co. We employ here the
notations X, X°, V, Y, W, etc. introduced in 2.1. We apply the results
[7; Theorem 2.11] and [8; Lemma 3] to obtain the next result.

Lemma 2.5. Let X be a logarithmic Q-homology plane of Kodaira dimension
— 00. Then one of the following holds:

(1) X has an A'-fibration p: X — C;

(IT) There exists a Zariski open set U of X ° and a proper birational morphism
¢: U —T' onto a nonsingular algebraic surface T' defined over C such that:

(1) Either U =X° or X° — U has pure dimension one;
(2) T’ is an open set of a Platonic C*-fiber space T with dim(T — T') <0.
For the definition of Platonic C*-fiber space, see [8].

Consider the case (II). Since U is quasi-affine, it has no complete
curves. Hence ¢ is an isomorphism. This implies that I'(U, Oy)* = I'(T', O1)*
=I'(T, Op)* = C* (cf. [8]). Suppose X° — U has pure dimension one. Let
Gy,...,G; be the closures of irreducible components of X — U in V. Since
H?*(V;Q)=~ H?*(D; Q) and V has at worst quotient singularities, some positive
multiple of (G, + --- + G,) is linearly equivalent to a divisor supported by V
— X. Hence there exists a non-constant function 4 on V which is invertible on
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U. This is a contradiction. So, X° = U. Since dim(T— T') <0, X is affine and
T is isomorphic to C?/G — (0) for some small finite subgroup G of GL(2, C), we
conclude that

I'(X, 0y) = I['(T', 07) = I'(T, O7) = I'(C2/G, Ocx),

whence X =~ C%/G. Since C?/G is contractible by Conner’s theorem, X is a
logarithmic homology plane.

Next, consider the case (I) above. Since I'(X, Oy)* = C*, gq(W)=0 and
H2(V; Q) = H*(D; Q), the base curve C is isomorphic to A’ and every fiber of p is
irreducible ; indeed, it is some multiple of A'. Moreover, every singular point of X
is a cyclic quotient singular point and each fiber of p has at most one singular
point lying on it. We consider a completion p:V— B of p: X - C as in 2.1; in
particular, we assume that D:= V' — X contains no (— 1)-curves possibly except for
the cross-section M. Furthermore, consider a P'-firation q:= p-f: W— B on the
surface W obtained by the minimal resolution of singularities f: W— V.

Lemma 2.6. (1) Let H = mL be a fiber of p, where L= A' and m > 1, let F
=g~ Y(p(H)), and let E be the closure of ¢ *(L) in W. If m> 1, then Fisa
reducible fiber. Suppose that H has a cyclic quotient singular pomt P of type d/e
with (d,e)= 1. Write F,ed =2+ E+ X,, where f—l(P) 2. Then E is a
unique (— 1)-curve in the fiber F, m is divisible by d, and F,ed is a linear chain if and
only if m=d.

(2) Let H,,...,Hy. be all multiple fibers of p. Then H,(X°;Z)= ®N.,Z/
m;Z, where m; is the multiplicity of H;. Let Py,...,Py exhaust all singular points
of X; we may assume P,eH; for | <i< N. Let d;/e; be the type of P;. Then
H,0T; Z) =~ ®N.,Z/d;Z. Moreover, we have an exact sequence

0—PN,2/d 7 — DV, Z/mZ —H,(X;Z)—>0.

Proof. (1) Since E is a unique (— 1)-curve in the fiber, we can contract E.
Then, after the contraction of E, one of the adjacent components of E becomes a
(— 1)-curve if the contracted fiber is still reducible. Then contract again a (— 1)-
curve. Thus, starting with E, we can contract successively all irreducible compo-
nents but one and finally obtain a nonsingular rational curve with multiplicity 1
and self-intersection number 0. In this process, there appear no (— 1)-curves which
meet three other components. Hence, when the last component of X, is contrac-
ted, all the components contracted already in the preceding contraction process
form a linear chain, say Z. Call A the component of F which then becomes a
(— 1)-curve or a curve with self-intersection number 0 and let a be its multiplicity.
Then m is divisible by a. Think of 4 as a smooth fiber of a P!-fibration and
reverse the above contraction process to regain the chain Z back. We then readily
show that d = m/a.

If m = d then A has multiplicity 1. If 4 becomes a (— 1)-curve when the last
component of X, is contracted, then F contains another (— 1)-curve. This
contradicts the hypothesis. So, 4 becomes a curve with self-intersection number 0,
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which must be a smooth fiber of a P'-fibration. Thus F L.q 1S @ linear chain if m
=d. The converse is already verified.

(2) It is straightforward to show that H,(X°; Z)~ @Y,Z/mZ via an
isomorphism H,(X°; Z) ~ H3(W, DuZX; Z). Meanwhile, H,(0T; Z) =~ @\,
H,0T;; Z) and H,(0T; ; Z) ~ n,(0T) = Z/d;Z. Thence we obtain H,(0T; Z) =

N ,Z/d,Z. The exact sequence in the assertion is obtained from the sequence
in Lemma 2.2, (2) if we show that H,(X; Z) =(0). In order to show this, note
that H3(X; Z) = (0) because X is an affine surface. By the universal coefficient
theorem, we have

H3X;Z)~ Hom(H,(X; Z), Z) ® Ext'(H,(X ; Z), Z)

and H,(X ; Z) is a torsion group. Hence the above isomorphism entails H,(X ; Z)
=0). 1

Now we have proved a structure theorem on logarithmic homology planes of
Kodaira dimension — co.

Theorem 2.7. Let X be a logarithmic homology plane of Kodaira dimension
— 0. Then X is isomorphic to one of the following three surfaces:

(1) A%

(2) C2/G, where G is a small finite subgroup of GL(2, C);

(3) A surface X with an A'-fibration p: X — A' such that every fiber is
irreducible and that there are exactly N multiple fibers H,,...,Hy with respective
multiplicities d,,...,dy, each of them carrying a cyclic quotient singular point P; of
type d;/e;, where N is an arbitrary positive integer.

These surfaces are all contractible surfaces and dominated by A*. In
particular, a surface of type (3) is birationally dominated by A*.

Proof. The last two assertions need proofs. Note that A* and C?/G are
contractible and dominated by A%. Consider the case (3). Let {Q,,...,Qp, O}
be the points of P! such that the multiple fiber H; lies over Q; for 1 <i < N and
Q. is the point at infinity. Let U =P! —{Q,,...,Qy, Q,}. Then p~'(U) = A’
x U and 7;(p~1(U)) - n,(X°) is surjective. Set

r= <'y19---a')}N’ ymly‘}l == y‘IiVN = yl "'yN))OO = 1>

Then, as in [3; Lemma 3.2], one knows that 7, (X°) = I. Hence |7,(X°)| < o0 if
and only if N =1, and n,(X°) = Z/y,Z if N =1. By this observation, we know
that any unramified covering space of X° is obtained as the normalization of a
cartesian product of X° over A!' with a covering T—A' ramified over
{Q1,...,Qx}. In particular, any covering space of X° has an A!-fibration which
comes from the A!-fibration p: X -» A!. Now, consider an unramified covering
space 0: Y—> X. For any P;,, 1 <i< N, ¢~ }(P)) consists of singular points on Y
with the same singularity as P;. Hence the exceptional locus of the minimal
g;solution of any point of ¢~ (P)) is the same as that of P,. Therefore, the surface
Y obtained from Y by resolving minimally all points of ¢~ !(P;) is an unramified
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covering space of the surface X obtained from X by resolving minimally the
singular point P;. If the exceptional locus of the minimal resolution of P; is added
to the fiber H;, it is considered as a fiber of multiplicity 1. This implies the
following result:

Let a={P;,,...,P,} be a subset of {P,,..,Py} and let X,= X°U
{P;,....,P.}. Then n,(X,)=1T/{y;, ==y, =1). In particular, n,(X) = (1).

Therefore, all surfaces in Theorem 2.7 are contractible. It is easy to see that
X in the case (3) with N =1 is written as C?/n,(X°). If N>2, X is not
isomorphic to A% nor C?/G.

We shall show that a surface X in the case (3) is birationally dominated by
A2, We can embed X into a projective normal surface V so that p: X — A!
extends to a P!-fibration p: V- P!. Let f: W— V be the minimal resolution of
singularities. Then g = p-f: W— P! is still a P!-fibration. We can choose the
projective surface V' so that the fiber of g containing H;, for each i, has a linear
chain of rational curves X, + H; + X, as in 2.2, where X, is the exceptional locus
f~Y(P). Let K; be the terminal component of the graph contained in
2. Noting that K; has multiplicity 1 in the fiber, it is easy to show that X' = (X
— U~ H)U(UX,K;) = A% Thus we obtain a birational morphism A? =~ X'
-X. 1

Theorem 2.8. Let X be a logarithmic Q-homology plane of Kodaira dimension
—oo0. If it is not isomorphic to one of three kinds listed in Theorem 3.6, it is
isomorphic to a surface of the following kind:

(4) A surface X with an A'-fibration p: X — A" such that every fiber is
irreducible and H (X ; Z) # (0).

Let Hy,...,Hy. be all multiple fibers with respective multiplicities m,,...,my.,
where H,,...,Hy carry cyclic quotient singular points P,,...,Py of type
di/ey,....dy/ey, respectively while Hy,,,...,.Hy. have none of singular
points. Then H\(X ; Z) =~ @®XZ/m;/d)Z D DNy, Z/m;Z and H(X ; Z) = (0)
for Vi # 1.

Example 1. Let (4, ) be a coordinate system on C* x C and let ¢ be an
involution on C* x C defined by o*(u, t) = (u™', — u?t). The fixed point locus
consists of two points Q,: (u, t) =(1,0) and Q,: (u,t)=(—1,0). Let X = C*
x C/{o). Then X = Spec(A), where A =C[u+ u"', u?t?, t(1 —u?]. Let C
= SpecC[v] with v =u+u~'. Then the morphism p: X —» C induced by the
inclusion C[v] = A is an A'-fibration which has two multiple fibers H, and H, of
multiplicities 2 carrying double points P, and P, of type 2/1, ie., of type
A;. Indeed, H, and H, are defined by v =2 and v = — 2, respectively.

2.4. Next, we consider a logarithmic affine surface X with a C*-fibration
n: X - C. We employ the notations of 1.3 and 2.2 mixed up. As in 1.3, the
fibration 7 is extended to a P'-fibration p: V— B, where V is a normal projective
surface which is smooth along D:=V—X. Let f: W—»V be the minimal
resolution of singularities. Then q = p-f: W— B is a P!-fibration on a smooth
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surface W. We call a (— 1) curve E a (— 1) component if E is a fiber component,
i.e., E is contained in a fiber of p or q. We assume that D contains no (— 1)
components possibly except for a (— 1) component meeting either two cross-
sections or a 2-section contained in D.

Lemma 2.9. Let F be a fiber of n. Then we have:

(1) F=T+4, where I',,;=9, A} or C, + C, with C; =~ C, = A' meeting
transversally in one point, and A4, is a disjoint union of Al'’s.

(2) If I,a= AL, there are no singular points lying on I :

() If IN,=C,+C,, then P:=C,nC, can be a cyclic quotient singular
point.

(4) Each component of A,., has at most one cyclic quotient singular point
except in the case:

(4-1) Suppose a smooth fiber L touches a 2-section H in a point Q. Blowing
up Q and its infinitely near point of the first order lying on H, we have a degenerate
fiber E; + E, + 2E such that (E?) = (E2) = — 2, (E?) = — 1| and E meets the proper
transform H' of H. Starting with a point P, = EnNH’, apply a process of blowing-
ups to produce a chain of curves Xy + E,+ X, connecting E and H', where
EnX,#9, 2,nH # @ and (E}) = — 1, and contract the curves E, + E, + E + X,
to produce a quotient singular point P of Dynkin type D,. Then the image of E,
gives a curve in X isomorphic to A' with a singular point P.

(4-2) In the situation of (4-1), contract E, and E, to rational double points of
type A;. Then E gives a fiber isomorphic to A' with these two singular points.

(5) Let P be a cyclic quotient singular point of type d/e lying on a component
A of A. Let m be the multiplicity of A in F. Then d divides m.

Proof. Let F= q '(n(F)). All (— 1) components of F then come from the
components of F except for a (— 1) component meeting either two cross-sections or
a 2-section in D. Furthermore, since X is affine, D is connected and every
connected component of F — F which is disjoint from D is contracted to a singular
point. Hence every irreducible component of F gives rise to a (— 1) component of
F except for C, or C, of I,,;=C, + C,. On the other hand, it is well-known
that any (— 1) component of a degenerate fiber of a P'-fibration does not meet
three other fiber components and that if a (— 1) component has multiplicity 1 there
is another (— 1) component. All the stated assertions can be verified without
difficulty by virtue of these observations. W

Lemma 2.10. Let X be a logarithmic Q-homology plane with a C*-fibration
n: X > C. Then we have:

(1) C is either P* or A'. If the fibration is twisted then C = A'.

(2) If C = P! then every fiber of m is irreducible, and there is exactly one fiber
isomorphic to A'.

(3) If C= A! and = is untwisted, all fibers are irreducible except one which
consists of two irreducible components. If C = A' and n is twisted, all fibers are
irreducible and there is exactly one fiber isomorphic to A'.
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Proof. This is the restatement of Lemma 1.4 except for the assumption that
X has possibly quotient singularities. B

Lemma 2.11. Let X be as above. Suppose m is untwisted and C =~ P'. Let
Fo,....F, be all singular fibers with respective multiplicities my,...,m,, where
Fo,ea= A'. As in [3], let H, and H, be cross-sections of p contained in D such
that H.nH, =@ and (H?) = — a with a>0; so, by the blowing-downs of (— 1)
components in W and its images, H, is mapped to the minimal section H, of a
Hirzebruch surface X,, let &; be the multiplicity of (F),.a (= the closure of the
proper transform of (F),.q on W) in the total transform of H, on W. Then we have:

(1) k(X)=1,0 or — oo if and only if

n—1)— i;

1
- >0, =0 or <0, respectively.

(2) Let d/e be the type of a cyclic quotient singular point lying on F if it
exists at all. Then H,(X ; Z) is a torsion group of order equal to

—|mg - mua — Z Mg -+ ;- m,3;],
d i=0
where d divides my and 5,. Moreover, H(X ;Z)=0 if i #0, L.

(3) The surface X is contractible if and only if a =1, my =d, n =2 and m;m,
—m,0, —m,8, = £ 1. Moreover, if X is contractible, there is a birational
morphism p: X, — X, where X | is a nonsingular contractible surface with k(X ) = 1.

Proof. (1) Consider the peeling of the bark of K, + D,
Ky, + D = (K, + D*) + Bk(D)

(cf. [10]). Let E be a unique (— 1) component of the fiber g~ !(n(F,)) which is the
closure of (Fg),.s on W. Then it is not hard to show that (K, + D*-E)
< 0. Hence, by the theory of peeling (cf. [ibid]), we may include E in the
boundary divisor without changing x(X). The rest of the proof of the assertion
(1) is just a repetition of the proof of Lemma 3.8 in [3].

(2) It is straightforward to show that d divides m, and é, (cf. the proof of
Lemma 2.6). Let X° = X — Sing(X). By Lemma 2.2 (or its proof), we have an
exact sequence

0— H,(X°;Z)— H,(X;Z)— H,(0T; Z)
—H,(X°;Z)— H,(X;Z) —0,
where H,(X°;Z)=0, H,(0T; Z) ~ Z/dZ and
H,(X°; Z) =~ Coker(H,(DUf ~'(Sing X); Z) — H,(W; Z)) = Pic(X°).

Thence H,(X ; Z) is given as in the proof of Lemma 2.6. The order of Pic(X°) is
computed in the same fashion as in [3; pp. 110-111], and is equal to
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n
|m0...mna — .Zomo...rfli...mnéil.
i=

Hence we obtain the order of H,(X ; Z) as it is given above.

(3) The proof for the first assertion is almost the same as for [3; Theorem
3]. So, we do not reproduce it. To find a smooth contractible surface X,
birationally mapping to X, consider the minimal resolution of the cyclic singular
point P, lying on the fiber F,. Contain the terminal component of the
exceptional locus, not meeting the proper transform of F,, into the interior and
throw away, instead, the proper transform of F, as a component of the boundary
divisor. Thus, we obtain a nonsingular affine surface X, which is a contractible
surface with k(X,) =1 by [3; Theorem 3]. This construction shows also the
existence of a birational morphism p: X, - X. B

Remark 2.12. By Lemma 2.11, (1), «(X)=0 if and only if n=2=m,
1
=m,. Then the order of H,(X ; Z) is equal to 2|4m0a — 456y — 2my06, — 2mqy0,|,
which is an even integer. So, X is not a homology plane.

Example 2. Let a=1, (mg, d9)" =(2, 1), (my, 8.)*=(3,1) and (m,, 6,)*
= (5, 1); for the notation (m;, ;)% or (m;, §,)*, see [3; pp. 112]. Then X is a
nonsingular homology plane with k(X) = 1, but X is not contractible. One can
show that X has an involution ¢ and the quotient surface Y= X/{o) is a
contractible surface of Kodaira dimension 1 which has a rational double point of
Dynkin type A4;.

Example 3. Let a=1, (m;,,)* =3, 1) and (m,, §,)* =(5, 1). Take the
fiber F, so that my =4, 6, =2 and d/e =2/1. Then X is a homology plane with
one rational double point of type 4, and x(X) = 1.

In the subsequent arguments, we need a notion of oscilating sequence of
blowing-ups. Let Z be a nonsingular projective surface and let P, be a point of
Z. A birational morphism o: Y — Z from a nonsingular projective surface Y onto
Z is called an oscilating sequence of blowing-ups with initial point P, if ¢ induces an
isomorphism between Y — ¢~ !(P,) and Z — {P,}, ”!(P,) is a linear chain of
nonsingular rational curves and ¢~ !(P,) contains a unique (— 1) curve.

Lemma 2.13. (1) Let Z be as above. Let H and ¢ be irreducible curves such
that (¢*)=0 and ((-H)=1, and let Py=¢NH. Let 6: Y—Z be an oscilating
sequence of blowing-ups with initial point Py such that (o'(£))*> < — 2. Write the
linear chain ¢'(H)Uo ™ *(Po)Ud'(¢) as a graph

oH)y—{—cc.. — ¢} — (= 1) = {=b,..., — b} — d'(¢),

where (— b;) or (— c;) represents a nonsingular rational curve whose self-intersection
number is (—b;) or (—c;). Let (6'(£))* = — b, and let E be the unique (— 1)
curve. Let m and 6 be the multiplicities of E in 6*(¢) and o*(H). Then we have
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m

m
g=[b1, bz,...,bs] and mz[cl’CZ"“’cl]’

where (m, ) = 1 (¢f. Lemma 2.4 for the notation).

(2) Let Z be as above, let H be an irreducible curve on Z and let P, be a
smooth point of H. Let o:Y— Z be an oscilating sequence of blowing-ups with
initial point P,. Write o' (H)Ua ™ '(P,) as a linear graph

GI(H) - {_ Cireeey — Ct} - (_ 1) - {_ bs’-~~’ - bl}

and denote by E the unique (— 1) curve. Let 6 be the multiplicity of E in
o*(H). Then we have

0
—=[b,,...,b],
q
where (0, q) = 1.
(3) Let the situation be as in (1) above. Rewrite the chain o'(H)Uo ™' (Py)U
a'(¢) as follows:
oH)—{—cp,..oe) —(cu+ 1) = {—cysasecp — (= 1)
- {_ bs,..., - bv+2} - (_ bv+1) - {_ bv’“" - bl}

Let C, and C, be components expressed by (—c,.y) and (—b,.,),
respectively. Let n; and y; be the multiplicities of C; in 6*¢ and o* H, respectively,
where i = 1,2. Write

N N
L = Teusare.nne] and —2=[by,,,....b.],
q: q>

where (N, q,) = (N,, q,) = 1. Then we have
my, —n, 6 =N, and my, —n,0 =N,.

(4) In the situation of (3) above, consider an oscilating sequence of blowing-ups
with initial point (— ¢,)N(— ¢,+,) and let G be the resulting, unique (— 1) curve. Let
n and y be the multiplicities of G in the total transform of ¢ and H. As the graph of
the total transform of ¢ is linear, let {—d,,..., —d,} be the sub-chain in between G
and E and let N be the numerator of [d,,...,dy]. Then |my —né| = N.

Proof. (1) As in [7; p. 78], we rewrite the chain as
o' (H)—{(=2™ 7" —(my +2), (=™, (=27 —(m+ 1)}
— (=)= {(=2m, —(Me_y + 2),....(— 2™, —(my + 1)}
if a is even and
oH)— {(—= 2™, —(my+2),..., — (Me_y +2), (— 2™}
— (=D —={=m+ 1), (=", —(my_2 +2),...,
(=27 —(my + 1)}
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if a is odd, where (— 2)" represents a sub-chain {—2, —2,...,—2} with —2
iterated m times and — (m, + 1) represents ¢’(¢). Then the argument in [7] shows
that

m_ ([m+ 1@ L@ if a=0 (mod?2)
o lIm + 1, @™, ,@r " my+ 1] if a#0 (mod?2).

It is straightforward to show that the right-hand side of the above equality is equal
to

[[ml’ mZv---ama]] =my +

If a =0 (mod?2), write

C
i [m,+ 1, Q™Y ...,m,+ 1] =[[my,...,m,]],

where (¢, d) = 1. Then

d
c:i' =[my +2, Q™ 1,...,m, + 1],
and
myc+d _
m= (@™ Ymy,+2,...,m,+1].
1

On the other hand, we have m = m,;c + d and é = ¢ because

d mc+d
[[m1,---,ma]]=ml+z=_1 - .

Hence we have (m; — 1)c +d =m — 6. This shows that

m
—— =[cy,...,¢].

m—>9
The case a # 0 (mod2) can be treated similarly.

(2) First of all, we work in the situation of (1) above. Let 0,: Z, > Z, be
the blowing-up of P, and let E, = g5 * (Py). Then the next point to be blown up
in the oscilating sequence ¢ of blowing-ups is P,:= E,N0oy(¢), for otherwise the
proper transform of E, or a,(¢) would remain as a (— 1) curve in ¢~ *(P,). Hence
P, is the intersection point of two components with multiplicity 1 in ¢} (£), where
the component leading to a branch {— b,,..., — b,} is a (— 1) curve.

Now in the present situation, let g4: Z, — Z, be also the blowing-up of P,
and let E, = o, ' (P,y). If the point P, to be blown up next is o5 (H)NE,, we are
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in a situation to the one as observed above. Hence the multiplicity 6 of E in the
present situation corresponds to m in the case (1). If P, # Eonoy(H), let 6,: Z,
— Z, be the blowing-up of P, and let E; = ¢; ' (P,). If the point P, to be blown
up next is g1 (Eg)n E,, we are in the situation as observed above. Otherwise, blow
up P,. Continuing this way, either we are in the situation as observed above or
the last exceptional curve E appears in ¢*H as a terminal component with
multiplicity 1. In this case we understand 1 = [@].

(3) Define sequences of integers {p;}i—, and {g;}i-, successively as follows:

(1) Po=1,p,=cy,...,Pi=CiDi-1 — Di—> for2<i<t,
(i1) 30=0,9,=1,....4; =¢;q; .1 — q;_» for 2 <i<t.

Then we have

Di Di
—=[c1s.n6), —
qi Pi-1

for 0 <i <t (cf. Orlik-Wagreich [10]). By (1) above, we have

=[¢»....eq] and pigioy —qipi-y = — 1

m n
bo_ M and Pu _ !

g m-—29 qu. "1_)’1'

Hence we have

my, —ny6 = p,(p. — 4.) — Pu(P: — 4) = Pudi — PiGu-
Note that

V0= Pulu+1 — quPu+1 = 1

Y1:= Pubus2 — QuPu+2 = PulCur2Gusr = 4u) — Gu(Cus2Pu—1 — Pu)
=Cus2(PuGus1 — GuPu+1) = Cus2

Yi*= Pubu+j+1 = QuPu+j+1 = Cuvj+1Vj-1 — Vj-2

for 2<j<t—u—1. Then y,_,_, =N;=my; —n;8. The other case can be
proved in a similar way.

(4) An oscilating sequence of blowing-ups is a composition of blowing-ups of
points. After each blowing-up of as point, let ', y’ be the multiplicities of the new
exceptional curve in the total transforms of £ and H, respectively. Then one can
show that |my’ — n’S| is equal to the numerator of [d},...,d;], where {—d,...,
—d,.} is the sub-chain in the middle between the new exceptional curve and E in
the total transform of . We omit the details of the proof. B

Lemma 2.14. Let X be as above. Suppose n is twisted and C ~ A'. Let H
be a 2-section of p contained in D. Then we have:

(1) plg: H— B has two ramifying points P, P, and we may assume that the
fiber ¢ :=p~'(Q.), which is necessarily reducible, is contained in D, where Q.
= p(P,). The fiber Fy:= n*(Qo), Qo:= n(Py), is written as F, =m,C,, where
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Co = A' and C, has
(i) one cyclic quotient singular point,
(ii) one quotient singular point of Dynkin type D, (c¢f. Lemma 2.9, (4-1)), or
(iii) two rational double points of type A, (cf. ibid., (4-2))
provided X is not smooth.
(2) Let F;:= m;C; (1 <i <) be all other singular fibers of n. Then C; >~ Aj.
(B) H(X:Z)=0)if i#0,1, and H(X;Z)=[];_,Z/m;Z in the cases (ii)
and (iii) above and H (X ; Z) is an extension of Z/myZ x [[i_, Z/mZ by Z/2Z if
X is smooth or in the case (i) above, where mq divides m.
4 x(X)=1,0 or — o if and only if

ro1
r—1)— Y —>0, =0 or <O, respectively.

(5) If H,(X:Z)=(0) then x(X) = — oo.

Proof. (1) Since D is a tree, it is clear that one fiber of p totally contained in
D meets H in P, or P,,. So, we assume that it passes through P, . It is also easy
to show that (F,),., = A’.

(2 If (F)q=A' for some 1 <i<r, then D would not be a tree. So,
(Flg=AL foral 1<i<r.

(3) We shall show that H,(X ; Z) is a finite abelian group. As in the proof
of Lemma 26 this implies H,(X;Z)=0) if i#0,1. Let X°=X
— Sing(X). Then we have H,(X°;Z)x~ Pic(W)/L(DUZX), where X
=f1(Sing(X)) and L(DuZX) is the subgroup of Pic(W) generated by all
irreducible components of D and 2. Indeed, we have an exact sequence

Hy(W; Z) — Hy(W, DUZ; Z) — H,(DUZX; Z) —— H,(W; Z)

— H,(W,DUX;Z)— H,(DUZL; Z),

where
(i) H,(DuZX;Z)=(0) because DUZ is a tree of nonsingular rational curves,
(i) H,(W;Z)=~ H*(W;Z)= Pic(W) and H;(W;Z)=(0) because W is
rational, and
(iii)y Hs(W,DuZX; Z)=(0) because the homomorphism 6 followed by the
Poincare duality isomorphism &: H,(W; Z) - H?>(W; Z) is an injection.
On the other hand, by the universal coefficient theorem, we have
H3(W,DUZX; Z) = Hom(H4(W, DUZ; Z), Z)
@ Ext'(H,(W,DUZX;Z),Z) = H,(W,DuZX; Z).
Hence, by the Lefschetz duality, we have
H(X°;Z)=H,(W,DuZ;Z2).

In order to compute H,(X°; Z), note that W with the P'-fibration q: W— B is
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obtained by blowing up points from a relatively minimal ruled surface §: £, — B
with a minimal section M. Thus H is obtained as the proper transform of a 2-
section H of g. Since H ~2M + s¢ on X, we have a relation

H~2M + i 5.C, + <ﬁber components of )
i=0 Dux

where M’ is the proper transform of M. Furthermore, we have a relation

¢, ~mC;+ (ﬁber components of> for 0<i<r
DuZx

Thus H,(X°; Z) has generators ¢;:=[C;] and #:=[— M’'] and relations
myby=--=mé& =0 and 25 =0y, + -+ + 6,¢,.

Therefore we have an exact sequence
0— []Z/mZ—H,(X°;Z)—> Z/2Z —0.
i=0

Suppose Sing(X)=0. Then H,(X;Z)~ H,(X°;Z) and it is an extension of
[li=oZ/mZ by Z/2Z. Suppose Sing(X)#@. As in the proof of Lemma 2.11,
we have an exact sequence

0— H,(0T;Z)— H,(X°;Z)— H,(X;Z)— 0.

To compute H,(0T; Z), we employ the same notation as used in Lemma 2.13:
A graph expressed by a string of integers

{=bi..— b} —(=1)—{—c,....,— ¢} with Vb;>2 and Vc¢;>2

is a linear chain of nonsingular rational curves consisting of components expressed
by their self-intersection numbers (— b)).(— ¢;), and (— 1).

If X has a unique cyclic singular point, it is produced as follows:

Choose a point Py on E, or E,, say E, (cf. Lemma 2.9, case (4-1)), which can
be ENE; or EnE,. Apply an oscilating sequence of blowing-ups with initial
point P,. We obtain thus a linear chain of the form as indicated above

{=by, = b} — (=D —{—cp.., —c1},

where the component (— c¢;) is connected to the proper transform of E if P,
=EnE, (or E; if P, # EnE,;). The unique (— 1) component will give rise to a
component C, in the fiber F,. Then contract the sub-chain {—b,,..., — by} to a
cyclic quotient singular point of type (by,...,b,) (cf. the paragraph 2.2
above). Lemma 2.13 or its variation then shows that the multiplicity m, is
divisible by |H,(0T; Z)|, which is the numerator of a continued fraction [b,...,b,].

Suppose X has a quotient singular point of Dynkin type D,. Then it is
produced as follows:

Produce a tree below by an oscilating sequence of blowing-ups with initial
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point HNE,
LE,]
{—cyeer,—c}— (= 1) = {—=by,...,— b} — [E] ,
e LE.]

where [E], [E,] and [E,] are the proper transforms of E, E, and E,. Then
contract the sub-tree on the right-hand side of a unique (— 1) component to
produce a singular point of Dynkin type D,. Note that the multiplicity of [E] in
a*(Qo) is 2 and |H,(0T; Z)| ~ 4m, where

—(b—1)n—gq, b= —([E]? and g=[b1,...,bs]

(cf. Brieskorn [1]). Lemma 2.13 shows that m,/2 is equal to the multiplicity of a
(— 1) curve in a linear chain

{—cppeee—c}—(=1)—={=bs...,— by, —(b—1)}

which is obtained by an oscilating sequence of blowing-ups from a smooth fiber of
a P!-fibration. Hence mg,/2 is the numerator of [b — 1, b,,...,b,] which is equal
to m. So, my=2m and H\(X;Z)~][][;_,Z/mZ.

The case X has two rational double points of type 4, can be treated in the
same fashion.

(4) A straightforward computation shows that

D+ X+ Ky~ Z ZC+GO+GOO—{®,

where G, and G, are effective divisors supported by p~'(Q,) and p~'(Q.),
respectively such that the components appearing in G, and G, have negative-
definite intersection matrices. Hence k(X)=1,0 or — oo if and only if

LA |
r—1— Z E >0, =0 or <0, respectively.

(5) If H,(X ; Z) = (0) then there are no singular fibers of type mC with m > 2
and C~A). Hence kx(X)= —c. N

We consider next the case where z is untwisted and C ~ A'. Let H, and H,
be two cross-sections of p contained in D, and let /., be the unique fiber of p
totally contained in D. If H, and H, meet each other, then ¢, must pass through
the point H,nH,, for otherwise D would contain a loop. Then, by repeating
elementary transformations with center H, n H, (i.e., blowing up a point on a fiber
and contracting the proper transform of the fiber), we may assume that H,nH,
=@. Then we may also assume that /, is a smooth fiber. By Lemma 2.9, all
fibers of m are irreducible except for one fiber F, which consists of two
conponents. We have two cases to consider:
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(I) Fo=n,G, +n,G,, where G, ~ G, ~A' and G, and G, meet in one
point which might be a cyclic quotient singular point;

(I) Foy=myCy + nG, where Co >~ AL, G A', ConG =@ and there might
be a single cyclic quotient singular point on G.

We denote by F;=m;C; (1 <i<r) all the irreducible singular fibers of
n. Then C; >~ Al.

Let 7: W— 2 be a birational morphism onto a Hirzebruch surface X', which
preserves the P!-fibration and H,nH, = @, where H,=t(H), i=1,2. We may
assume that (H?)=(H?} = —a. So, the fibers F,=q '(n(F)) (0<i<r) are
obtained from smooth fibers by blowing up first the intersection points of the fibers
with H,. We write

T*H, = Z 5;C; + R + (other components),

where R =y,G, + y,G, in the case (I) and R = 8oCo + yG in the case (I1), and
C;s, G s and G are the closure of C;’s, Gjs and G.
Then we have the following result.

Lemma 2.15. Let the assumptions and notations be as above. Suppose the
case (I) occurs. Then we have:

() H(X;Z)=0)if i#0,1 and H\(X;Z)~[];_,Z/m,Z.
2) k(X)=1,0 or — o0 if and only if

Mw

r—1)—

>0, =0 or <O, respectively.

]

1
i 1m,

3) If H(X;Z)=(0) in particular, then k(X)= — o©

Proof. (1) Let 170 be the fiber of q: W— B containing F,. Then Fyis a
linear chain, and one of G, and G, is a (— 1) curve. If the other is not a (— 1)
curve, the graph of FO looks like the one in Lemma 2.13, (3), where we take_H
=H, and ¢ = t(fo) on X,, and either G, = (— ¢,+;) and G, = (— 1), or G,
=(—1) and G, = (— b, ). With the notations in Lemma 2.13, the sub-chain
{—cur2see, —c} or {=bg,...., — by, 2} is contracted to a cyclic quotient singular
point. If both G, and G, are (— 1) curves, the graph of F, looks like the one in
Lemma 2.13, (4).

On the other hand, H,(X°; Z) is generated by ¢&,,...,¢,, n, and », with
relations

niny +npny =mé; =--=mg =0
Yifly + Valy + 6.8 + - + 6,8, =0,
where ¢;,7n, and 7, are respectively the classes of C;, G, and G, in

H,(X°; Z). Therefore we have an exact sequence

0— l_l Z/mZ — H(X";Z)— I —0,
i=1



Homology planes 783

where I" = (Zn, + Zn,)/{nyny + nafy, YoMy + 9200 and [I'] = [nyy, — nyy4l. So,
by Lemma 2.13, |I'| =|H,(0T; Z)|. Then, invoking the exact sequence

0— H,(0T; Z) — H,(X"; Z) — H,(X ; Z) — 0,

we know that H\(X ; Z) = [[_,Z/m;Z.

(2) This can be proved straightforwardly as in Lemma 2.14.

3) If H(X;Z)=(©) then m, =---=m,=1. So, ﬁ,. =q Y(n(F)) is a
smooth fiber for 1 <i<r, and the boundary DuX of X° in W contains a
connected linear chain

¢, + H, + (a connected maximal subchain of F,n D),
where (¢2) =0. Then, by [7; Cor 2.4.3], X° contains an A'-fibration. Hence
K(X)—c. H

Lemma 2.16. Let the assumptions and notations be as above. Suppose the
case (II) occurs. Then we have:

(1) H(X;Z)=(©) if i#0,1 and [[;_,Z/mZ is a subgroup of H (X ; Z).

2) k(X)=1,00r — oo if and only if

LA
r—1)-Y — =0 or <0, respectively.

i=1 m;
(3) If H(X; Z)— (0) in particular, then k(X)= — c0.

Proof. (1) As in the previous lemma, let F o be the fiber of g containing F,.
Its graph is obtained from the graph in Lemma 2.13, (3) by applying an oscilating
sequence of blowing-ups with initial point on a component (— ¢, ) or (— b, ).
Moreover, H,(X°; Z) has generators and relations as indicated in Lemma 2.15,
where 1, and 5, are replaced by the classes of C, and G in H,(X°; Z). We can
show by Lemma 2.13 that |H,(0T; Z)| divides |myy — nd,| but does not necessarily
equal [myy—ndy|. The assertion (2) is straightforward. The proof of the assertion
(3) is similar to Lemma 2.15. W

Summarizing Lemmas 2.11, 2.14, 2.15 and 2.16, we obtain the following result.

Theorem 2.17. Let X be a logarithmic homology plane with a C*-fibration
n: X > C. Suppose k(X)>0. Then k(X)=1 and = is an untwisted C*-fibration
with C =~ P!.  Moreover, X has at most one singular point which has necessarily a

cyclic quotient singularity. The structure of X and the condition for X to be
contractible are described in Lemma 2.11.

§3. A homology plane with non-trivial involution

3.1. We work on the projective plane P? with homogeneous coordinates
(xo, Xy, X;). Let C be a conic defined by x3 = x? + xZ and let #,, 7, and £; be
three concurrent lines defined by x; = — x4, x;, = 0 and x; = x,, respectively. So,
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¢, and ¢, touch C in points P,:= (1, — 1, 0) and P5:= (1, 1, 0), respectively, while
¢, meets C in two points P,; and P,,. Let P :=(0,0,1) and P,:= (0, L, 0).
This configuration of curves admits an involution ¢ defined by o: (x4, X, X,)—
(X9, — X1, X,). The action ¢ fixes the line ¢, pointwise and stabilizes the line ¢,
defined by x, = 0; the points P, and P, are fixed points on /.

Let o,: X, —» P? be the blowing-up of the point P, and let M, = o; }(P,),
where X, is the Hirzebruch surface of degree 1. Let Q¥ = o1(¢,)n M, and Q%"
=o0;(/3)N M, where o] (£,) and g (¢£;) signify, as usual, the proper transforms of
¢, and /4 by o,. Next, let 6,: V— X, be a composite of blowing-ups with centers
oL, oW, PP, PY (i =0, 1) and PY,(0 <j <4), where, for s =1 and 3, P® = P,
and PV is an infinitely near point of P, of order one lying on the conic o} (C), and
where P{) = P,, and, for 1 <j <4, PY) is an infinitely near point of P,, of order j
lying on the conic ¢ (C). The surface V inherits the P!-fibration p: V— P! from
the Hirzebruch surface X,. The lines ¢,,¢,,¢; give rise to the fibers
TV, T® T® of p, which have the graphs indicated below:

TW: S, — AV — (=)= (- )= (- 2)

So
T®: Sy —A? = (-2 = (=)= (=2 — (= 2) = (- )= 4?

So
TO: S, — A% = (=3) = (= ) = (= 2),

So

where S,, S, A?, AY) and A® are respectively the proper transforms of o1 (C),
M and o}(£;) by o, and o5 ' (Q'") and o5 ' (Q¥), and where (S2) = — 1, (Sd) =
—Sand (A2 = — 1. Let D =(0,°0,) }(CU£,UL,Uls) — AD — AP — 4® and
let X =V—D. Then we have the following result:

Theorem 3.1. (1) X has an involution o induced by the involution o on P* as
defined as above.

(2) X is a homology plane of Kodaira dimension 2.

(3) The involution ¢ on X has a unique fixed point (6,06,)™*(P,).

(4) Let Y be the quotient space of X by 6. Then Y is a logarithmic homology
plane of Kodaira dimension 2 with a cyclic quotient singular point of Dynkin type
A,

Proof. (1) Note that the centers of the above blowing-ups are fixed points
under the action of ¢ or the induced action of 6. So, o preserves the boundary
divisor D, and hence induces an involution on X. The assertion (3) is
straightforward.
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(2) As divisors on V, we can write
T = u;A"Y + (other fiber components), i = 1, 3
T® =y, A? + (other fiber components)
o¥(M) = u; AV 4+ v;4A® + (other boundary components)
6% 6} (C) = wA® + (other boundary components),

where u, =u, =u3;=v, =v,=1and w=35. Since we have relations T") ~ T?
~ T® and 6%06}(C) ~ 205 (M) + 26%(a((£;)) in Pic(V), we compute

U,  —u, 0
|H (X ; Z) =|4| with A=det< 0 u, — Uy ) .
20, 203 2u,—w
Hence H,(X ; Z) = (0). This implies that X is a homology plane.

(4) The involution ¢ on V interchanges the fibers T and T®, has the fixed
curves A® and two (— 2) curves, all appearing in the fiber T'? and disjoint from
each other, has the fixed points Qq:= (6,0,)" ' (Py), Qo := S, N(,0,) (£,) and Q,
:= SoNA® and stabilizes the curves S, and S,. Let a5: V> V be the blowing-
ups of the points Q,, Q. and Q,. Let W= V/{c) and let p: V— W be the

quotient morphism. Then the quotient space W is a nonsingular projective
surface with a P!-fibration q: W— P! such that

(1) Ro:=p(S,) is a cross-section of ¢ and Ry:= p(S,) is a 2-section of q;
(2) U;:=p (TP) = p,(T®) and it is a fiber of g with the graph:

Roy—(=D*=(=3) (=D —(=2);

R,
(3) U,:=p,(T?) is a fiber of q with the graph:
Rey—=(=2) = (=) —=(=4)—-(-D—=(—4— (- D*—=(-2);

R,
@) Ug:= p,(06%((0,0,)(£y))) is a fiber of q with the graph:
Ry —(=2) = (= D* = (= 2**.

Ro

Let Y be the open set of W obtained by removing all components of R, UR,
UUouU,uU, but the components marked with (*). Contract the component in
U, marked with (**) to obtain an affine surface Y with a unique cyclic quotient
singular point of Dynkin type 4,. Then Y=~ X/{o). It is straightforward to
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show that Y is a logarithmic homology plane of Kodaira dimension 2. H

§4. The automorphism group of a homology plane

4.1. In this section we shall prove the following

Theorem 4.1. Let X be a Q-homology plane defined over C admitting an
effective action of a cyclic group G, let (V, D) be a G-normal completion, i.e., V is a
nonsingular projective surface containing X as an open set such that the G-action on
X extends to a G-action on V and D=V — X is a divisor with simple normal
crossings, and let T = T(V, D) be the weighted dual graph of D. Suppose G acts
trivially on T and k(X)=2. Then D has no irreducible components with positive
self-intersection number.

Proof. Our proof proceeds by reduction absurdum.

(1) If T is a linear chain, X must contain a cylinderlike open set (cf.
[7]). Hence k(X) = — oo, a contradiction. So, T has a branch point. Let C be
an irreducible component with (C?) =n > 0. If the vertex v(C) corresponding to
C is not a branch point, one can show easily that either X contains a cylinderlike
open set or X admits a C*fibration. In either case, x(X)#2, a
contradiction. So, v(C) is a branch point. Let B,,...,B, be all irreducible
components of D with (B;-C)>0, where r>3. On the other hand, every
irreducible component of D is a nonsingular rational curve and stable under the G-
action by the assumption. In particular, C is a component of V¢ = the G-fixed
point locus.

(2) Choose (n — 1) points Py,...,P,_; on C which are distinct from B;nC
(1<j<r). Let og: V' >V be the blowing-up of points P,,....,P,_; and let C’
=d'(C), Bj=0'(B) (1 <j<r)and E;=¢"'(P) (1 <i<n—1). Then (C) =1,
whence the linear system |C’| has dimension 2. Write the parameter space of |C'|
by W; so, W~ P2 =PH°(V’', 0,.(C"))). The group G acts on H°(V', ©,.(C))
linearly and hence on P2

CLAM. Let t, be the point of W corresponding to C'. We then have a line
L< W€ such that W¢ = LU{t,} and to¢L.

Proof. Choose a system of homogeneous coordinates {x,, x;, x,} on W such
that t, is given by (1, 0, 0) and

Xo 1 0 0 X

X, 0 0 !/ \x,
where ( is a primitive root of unity of order |G| and «, f > 0. This is possible
because G is a cyclic group. Now, let P be a general point of C’ (other than P;’s

and B;nC’s) and let 7,: V" —> V' be the blowing-up of P. Let C" =1,(C’), E
=15 '(P). Then (C")*=0 and dim|C”"| =1. Moreover, G acts on the linear
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pencil |C”|. Hence there is a member D(P)e|C’|, D(P)# C’, which is G-
stable. The linear pencil (7p),|C"| is a sublinear system of |C’| corresponding to
the line Z(P) through t, and the point [D(P)]. The G-action acts along the line
¢(P). Hence we must have o« = f. Then the line L: x, = 0 is contained in W€,
and to¢L. If a >0 then we are done. If « =0 then W= W° Namely, every
member of |C’| is G-stable. By the next claim, each member of |C’| then contains
a pointwise G-fixed component and, in fact, there are too many (infinitely many, in
fact) such components. A contradiction. W

(3) We shall verify

CLAIM. With the above notations, D(P) is reducible and contains a G-fixed
component.

Proof. The curve D(P) is reduced to a single G-stable rational curve by G-
equivariant blowing downs. After these G-equivariant blowing downs, the last
component is G-stable and meet the images of B,,....,B,, E;,... E,_,
transversally. So, the last curve must be pointwise fixed by the G-action. So,
back on the surface V', the proper transform of this last curve is pointwise G-
fixed. This component, after contracting E back on V', is still pointwise G-fixed
and hence cannot meet C’. If so, the G-action on V' would be trivial. Namely,
D(P) is reducible. This argument can apply to any G-stable member of [C’|. W

Let H(P) be the irreducible component of D(P) which meets C' at the point
P. Then H(P) is G-stable and not contained in D. Let K(P)= H(P) with
DnH(P), E;n H(P)’s (if not empty) and H(P)n(other components of D(P)) removed
off. Note that these removed points on H(P) are G-fixed points. This is clear for
DnH(P) and E;nH(P)'s. If there are several non G-fixed points contained in
H(P)n(other components of D(P)), one can readily show that D(P) contains a
loop, which is not the case. Therefore we have shown that {K(P)}pc-s< X
possibly with a finite set S, and the G-action on X is along K(P)’s. Since K(P)
< H(P) @ P!, K(P) must be either C or C* for general P’s. So, k(X)<1, a
contradiction. W

4.2. Let X be a Q-homology plane of Kodaira dimension 2. Then it is well
known that the automorphism group Aut(X) is a finite group. Let (V, D) be an
Aut(X)-normal completion of X, whose existence is guaranteed by Sumihiro’s
theorem. Let T be the weighted dual graph of D. Then Aut(X) acts on the
graph T in a natural way. Let N be the normal subgroup of Aut(X) consisting of
elements which acts trivially on T. As in the proof of Theorem 4.1, D contains an
irreducible component, say C, which corresponds to a branch point of T. Let
B,,..., B, be all irreducible components of D which meet the component C. Then
C is pointwise fixed by N and N acts effectively on each of the components
B,,...,B,. Then one can easily show that N is a subgroup of the multiplicative
group G,. Hence N is a cyclic group. We have proved the following:

Theorem 4.2. Let X be a Q-homology plane with x(X)=2. Then Aut(X)
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contains a cyclic normal subgroup N such that the quotient group Aut(X)/N is a
subgroup of Aut(T), which is the symmetric automorphism group of the boundary
weighted graph T of X.
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