
J . Math. Kyoto Univ. (JMKYAZ)
31-3 (1991) 755-788

Homology planes with quotient singularities
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M . M IY A N ISH I A N D  T . SUGIE

Introduction

We are interested in a nonsingular affine surface X  defined over the complex
field C  whose homology groups H i (X ; Z) vanish for all i > O. W e then call X  a
homology p lan e . Such a surface X  is  a  contractible surface if it is furthermore
simply-connected. In trying to solve the cancellation problem in dimension 2,
C.P. Ramanujam [13] found a contractible surface which is not isomorphic to the
affine plane A2 . Since then, it has become an interesting problem to find other
examples o f  contractible surfaces or possib ly g ive structure theorems on
contractible surfaces or homology planes.

In a recent trend of birational classification of algebraic varieties, we have the
fundamental invariant called the K odaira dimension, and it is a lso  usefu l in
classifying contractible surfaces or homology planes. We refer to Miyanishi [7]
for the definition of Kodaira dimension and relevant results. Let X  be either a
contractible surface or a homology plane and let K (X ) be its Kodaira dimension
which takes values — co, 0, 1, 2. By Gurjar-Miyanishi [3], we know that

(1) If K(X) = — co any homology plane X  is isomorphic to A2 ;
(2) If K(X) =  0  there are no homology planes; (the result is essentially due

to Fujita [2]);
(3 )

 
If K(X) = 1 all homology planes and contractible surfaces are completely
classified and homology planes are not necessarily contractible surfaces.

By this result, any homology plane of K < 1 is rational. In this direction, Gurjar-
Shastri [4] proved in full generality that any homology plane is rational. As for
the structure theorems, the case of Kodaira dimension 2 is left open, though there
are now abundant examples; we found in [3] a contractible surface similar to but
not isomorphic to Ramanujam's example, and in Miyanishi-Sugie [9] infinitely
many contractible surfaces which are obtained by the blowing-up method from the
configurations of two curves on the projective plane P 2 . Independently, Petrie
and tom Dieck [15, 16, 17] constructed infinitely many examples by the blowing-
up method from the arrangements of lines and curves of low degree on P2 . See
furthermore tom Dieck [18].

Besides the classification of such surfaces, it seems interesting to consider the
automorphism groups of homology planes. Petrie [1 2 ]  posed the following
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conjecture and proved it for all contractible surfaces known by then.

Homology Plane Conjecture. L e t X  be a  homology plane admitting a  non-
trivial automorphism of finite order. T h e n  X  is isomorphic to A2 .

The conjecture itself was negated by examples of tom  D ieck [18] and the
authors [19]. W e include one of examples in  this article (see §4).

In the present article, we consider a Q-homology p la n e . A nonsingular affine
surface X  is a  Q-homology plane if H i (X  ; Q) = (0) for all i > O. We also define a
logarithmic homology plane (resp. a  logarithmic Q-homology plane) as a norm al
affine surface X  with at worst quotient singularities for which H i (X  ; Z) = (0) (resp.
H i (X  ; Q) = (0)) for all i > O. Surfaces of these kinds are more abundant and have
more chances to  admit non-trivial automorphisms. These surfaces are, moreover,
interrelated v ia  finite autom orphism s. Indeed, w e shall show  th a t  if  X  i s  a
homology plane admitting an effective action of a finite group of prime order such
that the fixed point locus is isolated then the quotient surface X /G  is a logarithmic
homology p lan e . O n  th e  other hand, let Y be a  logarithmic Q-homology plane
and let Y° = Y— Sing Y . Let Z ° be a finite unramified Galois covering of Y° and
let Z  be  the  normalization of Y  in  the function fie ld  C (Z °). Then Z  has only
quotient singularities and the Galois group G of C(Z°)/C(Y°) acts on Z  so  that Y
= Z I G .  Such a  covering a s  Z °/ Y ° does occur a s  th e  o n e  associated with
H ,(Y ° ;  Z ) . In most cases, Y has positive second Betti n u m b e r . So, it would be
interesting to ask when Y becomes a  logarithmic Q-homology plane.

In  § 1 , we classify Q-homology planes w ith  K odaira  dimension less than
2. W e again  encounter a  difficulty in the case of K odaira dim ension 2. We do
not even know whether o r  no t a Q-homology plane of Kodaira dimension 2 is
rational.

In §2, we consider a logarithmic homology plane and give a structure theorem
in  the  case  o f K oda ira  d im ension  —  oo  and  the  case  w h e re  it  h a s  a  C *-
fib ra tion . In  the  first case, there appear tw o m ore types o ther than the affine
plane, one of which is a quotient space C 2 /G  b y  a  small finite subgroup G  of
G L(2, C ). Moreover, they are  all contractible surfaces. In the second case, we
can determine which of logarithmic homology planes are contractible.

In §3, we give an  example of homology plane X  with Kodaira dimension 2
which admits an involution. This example is given independently by tom Dieck
[18]

In §4, we give a  remark on the boundary divisor of a Q-homology plane with
Kodaira dimension 2  and a result on the automorphism group A ut(X ) of such a
surface X.

§1. Q-homology planes which are not homology planes

1.1. Let X  be a nonsingular affine algebraic surface defined over the complex
fie ld  C . It a  Q-homology plane if H i (X  ; Q) = 0  for i > O. More precisely, for a
positive integer n, we define an n-primary homology plane to  b e  a  nonsingular



Homology planes 757

affine surface X  defined over C such that H i (X  ; Z/nZ) =  0 for all i > O. A n n-
primary homology plane is clearly a Q-homology plane, but not v ice v ersa. Given
such a surface X , we can find a  nonsingular projective surface V and an effective
reduced divisor D  with simple normal crossings o n  V such that V — D = X .  We
always consider the following cohomology exact sequence fo r a  pa ir  (V , D) with
coefficients in  K , K  being Z, Q , Z /nZ  etc.:

H o ( v ,  D ) H o  ( v ) H o  ( D )  _ ÷  H i ( v ,  D ) H i  ( v ) H i  ( D )

H 2 (V, D) H2(V ) — > H 2 (D) —> 11 3 (V, D) 113(V) — > 0

--> 1.1 4 (V , D) --> I-14 (V) — > 0,

where

Hi(V , D)L#.' H 4 _ ( X )  an d  H ( V )  H 4 _(V ) f o r all i

by Lefschetz and Poincaré dualities. F rom  th is exact sequence, we deduce the
next

Lemma 1 .1 .  ( 1 )  L et X  be a Q-hom ology  plane. Then the irregularity q(V )
and the geometric genus p g (V) vanish, and D is simply connected, i.e., each irreducible
component of  D is isomorphic to P 1 and its dual graph is a tree. M oreov er, Pic(X )
is  a  f inite group and F((9 x )* = C * .  I f  X  i s  rational, H i (X  ; Z) =  0 f o r i  2,
H o (X  ; Z) = Z and 11 1 (X  ; Z) = Coker (H 2 (V ; Z) — > H 2 (D; Z)).

(2) I f  X  is rational then w e have the isomorphisms

Pic (X) H  , ( X  ; Z) H 2 (X  ; Z) Coker (H 2 (D ; Z) -- >  H 2 ( V; Z))

(3) I f  X  is an n-prim ary  homology plane then H,(X  ; Z /nZ ) is  an n-tosion
group.

P ro o f .  Since I1 3 (V , D; C) = 0 , we have  113 (V ; C )  H,(V ; C )  H i  (V; C)
= O. T h e n  w e  o b t a i n  q(V) = dim 11 1 (V , 0 )= 0  by the Hodge
decomposition. Since H 2 (V, D; C) = 0, w e  have H 2 (V; C) = 111 (V, Qv)
= H 2 (D ; C ), whence p g (V ) = dim H 2 (V , 0,,) = O. W e  th e n  have I-1 1 (D; C) = 0,
which implies that D  is simply connected. I f  X  i s  rational, H 2 (V; Z ) and
H 2 (D; Z) are free abelian groups of the same rank. Hence the homomorphism
H 2 (V ; Z)—> H 2 (D; Z) is injective. Thence we can verify the assertions (1) and (3)
above.

In  order to prove the assertion (2), observe the following sequence of integral
homology groups;

• H 2 (D ; Z) — > H 2 (V; Z) H 2 (V, D ;

— > H ,(D ; Z) — > H „(V ; Z) — >

where H 2 (V , D; Z )  H 2 (X ; Z) = Pic  (X ). Since H ,(D ; Z) = 0  a n d  H 2 (V ; Z)
H 2 (V ; Z), we have

H 2 (X  ; Z) Coker(H 2 (D; Z) H2(V ; Z)).
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O n the  other hand, by the  universal coefficient theorem we have

H 2 (X ; Z) Hom(H 2 (X ; Z), Z)C)Ext i  (H i (X ; Z), Z),

w here H 2 (X ; Z) = (0) b y  the  assertion  (1) above  a n d  Exi t  (H i (X ; Z), Z)
H i (X ; Z) because H i (X ; Z) is a  finite abelian g ro u p . Thus we have an isomor-
phism H 2 (X ; Z) H I (X ; Z). •

1.2. Let X be a  Q-homology plane and let K(X) be the Kodaira dimension of
X , which takes value — oo, 0, 1 or 2. If K(X) = — co, we can describe the surface
X  as follows:

Theorem 1.2. L e t  X  b e  a  Q-homology p la n e  o f  Kodaira dimension
— co. T h e n  X  has an A'-fibration f: X —) A 1 such that f o r every point P  o f  A 1 ,
f  - ' (P )  is irreducible and f - 1 (P) r e d  is isom orphic  to  V .  T he homology group
H i (X ; Z) is a product of  cyclic components ZI itti Z, where i s  the multiplicity of  a
multiple fiber F i o f  f  and F i runs through all multiple .fibers of f.

P ro o f . Since K(X) = — co, X  has a n  A'-fibration f: X —)C, where C  is  a
sm ooth curve and  f (X )=  C .  Since th e  boundary D  consists o f  nonsingular
rational curves, C  m ust b e  ra tio n a l. Since H 2 (X ; Q) = 0, it is not difficult to
show that C is isomorphic to A1 and every fiber of f  is irreducible. The rest of the
assertion is easy to verify. •

Next we consider the case K(X) = O. A ccord ing  to  Fujita [2, (8.64)] we have
the following:

Theorem 1.3. L e t X  b e  a  Q-homology plane w ith tc(X )= O. T hen X  is
isomorphic to one of  the surfaces listed below:

(1) H[k, — k] with k >  1 .  L et E, be the Hirzebruch surface of  degree k, let
M  be the minimal section and let e be a f iber o f  the  P 1 -fibration f: P1 of
E k .  Let M , be a cross-section off  such that M , M  +  (k  +  1 )e , let t

1
, e2 be two

f ibers of f  not passing the point P :=  M nM 1 , le t  13 ,1 := ( i n M i  and  le t P i 2  be the
inf initely  near p o in t to  P i l  o f  t h e  f irst o rder ly ing  o n  th e  f ib e r ei , w here i
=  1, 2. Let o- : V—) E k  be the blowing-up of  the points P u  w ith i, j = 1, 2 and let E.
be the exceptional curve obtained by blowing up the point P .2  w ith  i =  1, 2. Then
H[k, — k] is the surface X := V —  (o- ' ( M  +  M ,  +  +  e2 )— E1 — E 2 ). W e have
H i (X ; Z ) Z /4 k Z .

(2) Y{3, 3, 3}. Let 1', (1 =  1, 2, 3) be three non-concurrent lines on P 2 , let P u

:= ei ne,, le t PU be the infinitely near point to  P u  of  the f irst order ly ing on the
line ei , where (ij) = (12), (23), (31) and let e4  be a fourth line not passing any of the
points P U s. L et o- : V --)P 2 b e  the blowing-up of  six  points P u  and  PU and let E L'
be  the exceptional curve obtained by  blow ing up the point PU, where i =  1, 2, 3.
Then Y{3, 3, 3} is the surface X := V — (G - 1 (e i + ( 2 + e3 + (4 )— Ei— E ).
Moreover, H i (X ; Z) Z / 9 Z .

(3) Y{2, 4, 4 }. L et M i and e, be respectively cross-sections and fibers of  the
P'-fibration f on the Hirzebruch surface E, =  P 1 x  f"  with i =  1, 2, 3, let P u := Mi
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ne ;  and  le t .13 3 and  P 2  b e  the infinitely near points to  P 2 3  and P 3 2  o f  the f irst
order ly ing on the cross-sections M 2  and M 3 ,  respectively . L e t a: V  Z o  b e  the
blowing-up of  six  points P 1 2 , P 1 3 , P 2 3 , P 3 2 , P 3 ,  P 2  and let E, 2 , E13, E2' 3 5 E 2  be
the exceptional curves obtained from  the blowing-up of  the points P, 2 , P13 , r23 ,

P32. T hen Y{2, 4, 4} i s  the surface X := V — (a- - 1 (M , + M 2  ±  M 3  +  / 1  +  ( 2

+ 6 )  E 12 E 13 E 3  —  E 3 2 ) .  Moreover, 1-1,(X ; Z ) Z /8Z .
(4) Y{2, 3, 6 }. W e d o  not specif y  the construction of  th is  surf ace . See

[2, (8.59) and (8.61)]. W e have H,(X  ; Z) Z / 6 Z .

1 .3 . Now let X  be  a  Q-homology plane with K(X) =  1 . Our argument in
this case will basically follow the one in [ 3 ] .  It is known [7 ] that there is a  C*-
fibration n: X —> C, where C is isomorphic to either or A' because F ((O x )* = C*
(cf. Lemma 1.1). The fibration n: X —* C is extended to a P 1 -fibration p: V — B,
where V is a  nonsingular rational surface such that X  is an open subset of V and
D:= V — X is an effective divisor with simple normal crossings, B is a  nonsingular
complete curve containing C  as an open set and the restriction of p  onto X  is
n. The boundary divisor D contains one or two horizontal components according
as the  C*-fibration n  is twisted o r  n o t .  I f  n  is twisted, we denote the unique
horizontal com ponent by H , a n d  if  n  is untw isted, w e denote tw o horizontal
components by H I a n d  H 2 .  Except for the horizontal components, all the other
components of D are contained in singular fibers of the P'-fibration p. Since X  is
affine, any singular fiber F of the C*-fibration n has the following fo rm . Namely,
F = A + F, w here Fr e d  = 4), C *  o r  A1 + A 1 ,  a n d  A r e d  i s  a  d isjo in t un ion  o f
A l 's. W e  have the following:

Lemma 1.4. (1) I f  C is isomorphic to P 1 then n is untwisted, every fiber of  n
is irreducible and there is exactly  one f iber F  such that F r e d  L" A'.

(2) I f  C  is isom orphic to A ' and n  is untw isted, then all the f ibers o f  n  are
irreducible ex cept f o r  o n e  singular f iber w hich  consists o f  two irreducible
com ponents. I f  C is isomorphic to A ' and n is twisted, all fibers are irreducible and
there is exactly  one f iber w hich is isom orphic to A1 .

P ro o f . We follow the proof of Lemma 3.2 in [ 3 ] .  Let F 1 ,...,F„ exhaust all
the singular fibers of n. Let F .  be the fiber of p  containing Fi . Write

r i s i

F i  —  E + E
j=1

where g i s and D s  a re  irreducible components such that C i f  n X  0 (/) and Do X
4).

Suppose n  is twisted a n d  C  P l. . Then

rank Pic(X ) = 2 + (s, — 1) — (1 + (si — ri)) = 1 + (ri — 1) 1 ,

which is not the case because rank Pic(X ) = 0  by Lem m a 1.1.
Suppose n  is tw isted  a n d  C  A ' .  T hen  H  h a s  tw o  ramification points



j= 1 i=

= 0

ri r„

)
E  i[ c i i]  =  • • •  =  E  lini[C. ] =0

j= 1 i=1

Eoci i [c iA = o
r, r,,

)
E [Ci i ] = ... = E  i t,,,[c n i]

Pic(X ) —

if C  P1 a n d

Pic(X )=

Cu]
= 1, , ri

i = 1, , n
Cu ]

j = 1,...,r i
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P1, P 2  of nIn: H —> B .  Since D is a  tree, the unique fiber of n contained in D must
pass through P I  o r  P 2 , say P , .  Then the fiber rt -

l (p(P2 )) is isomorphic to A' and
other fibers are isomorphic to A. F o r  otherwise, D  would not be a  tree.

Suppose C  P 1 , whence 7C is untwisted. Then we have a relation

.1H,—  H2 + (of fiber components of D ) .
Eoci i c i • 

Therefore Pic(X ) is  the  abelian group defined by the  following generators and
relations

a  linear combination

i f  C  A '. H en ce  rank (Pic (X )) > E7= 1  ri — n i f  C  P 1 a n d  rank (Pic (X )) >
E7_, ri — (n + 1) if C  V .  Since Pic(X ) is a  finite group, we have ri = 1 for all
i  if C ,  and ri = 1 for all i > 2 and r l  = 2 if  C  A'.

If C  P I  one of the fibers F , F „ must be isomorphic to A 1 , for otherwise
D would be disconnected. However there are no two such fibers, for otherwise D
would not be a  tree. •

1 .4 .  In the subsequent paragraphs, we construct examples of a  Q-homology
planes with an  automorphism of finite order whose fixed point locus consists of
several disconnected components, one of them being isomorphic to the complex
line C and the others being isomorphic to the complex line with one point deleted
off C*. These surfaces are not homology planes by virtue of the following

Lemma 1.5. L et X  be a homology plane with an ef fective action of  a cyclic
group G of  prim e order p. Then we have:

(1) The f ixed point locus X G  is connected.
(2) If  dim X G  =1  th en  X G  i s  the complex line C.

P ro o f .  Recall the following result from the theory of transformation groups.
Let G be a cyclic group of finite order p, let X  be a finite-dimensional G-space

and let X ' b e  the fixed point locus. Then, for cohomology groups with Z/pZ-
coefficients, we have

rank Il i (X G  ; Z/pZ) rank Il i (X  ; Z/pZ) for Vn e Z.
i =n i =n
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We apply this result to our homology plane X  with n = O. S in ce  H i (X  ; Z/pZ)
= 0 for all n > 0 and H ° (X G ; Z/pZ) 0 ,  we must have H i (X G  ; Z/pZ) = 0 for all
n > 0 and rank H ° (X G  ; Z/pZ) = 1. This implies that the fixed point locus X G  is
connected and the Euler characteristic e(X G ) equals I. We shall show that X G  is
nonsingular. I f  dim X G = 0  we have nothing to prove . S o , suppose  dim X G

= 1. Suppose that X G has two irreducible components, say C , and C2 , meeting
at a point P .  If C , and C , have different tangents at the point P, then the action
o f  G  o n  X  is  trivial near th e  p o in t P , hence everywhere o n  X .  T his is  a
contradiction. Suppose that C , and C2 have the same tangent at P .  Then blow
up G-equivariantly the point P .  The proper transforms C i and C  of C , and C2

either get separated over the  poin t P  o r  still have  a  common point P'. Then
repeat the above argument again with Ci, C  and P'. After repeating several G-
equivariant blowing-ups, the  proper transforms o f C , a n d  C 2  have  a  common
point and different tangents there. This is a contradiction. So, we conclude that
X G  is irreducible. We shall show that the curve X G  is nonsingular. If X G  has a
singular point P , the induced action of G on its Zariski cotangent space is trivial
and the Zariski cotangent space is identified with the Zariski cotangent space of X
at P .  So, the action of G on X  is trivial near the point P, hence everywhere on X,
which is a  co n trad ic tio n . Hence X G  is nonsingular. I f  dim X G  =1, X G i s
homeomorphic to the complex line. Therefore, X G  is  algebracally isomorphic to
the complex line. •

Similar results hold for Q-homology p la n e s . Namely we have

Lem m a 1.6. L et X  be a Q-homology plane with an effective action of a cyclic
group G of  prim e order p. Then X G is nonsingular. N am ely , if  X ' contains an
irreducible curv e, it is nonsingular an d  every  connected com ponent o f  X G  i s
irreducible. M oreover, X G  has the Euler number e(X G ) = 1. If X is an n-primary
rational homology plane and n  is prim e to p then either X G  is a single point or
isomorphic to the complex line. I f  X  is p-prim ary  and rational, we have

N — 1 + bi; (X G) b l  (X ),

w h e re  N  i s  t h e  num ber o f  irreducible com ponents o f  X G  and  131(X )
= dim z i p z  H i (X  ; Z/pZ) and 131(X G ) = diniz ipzHi(X G  ; Z/pZ).

P ro o f . Similar arguments as in Lemma 1.5 apply to this case, as well. The
Euler number e(X G ) = 1 is obtained from the Lefschetz fixed point theorem. The
last inequality is an easy consequence of the inequality cited in the proof of Lemma
1.6. IN

Exam ple 1. Let ei ,e,,e, be concurrent lines on P 2 with the common point
P and let ( 4  be a line not passing through P .  Let a: Y —.13 2 be a composite of the
following blowing-ups: First blow up the point P  and let E  be the resulting (— 1)
curve. For 1 i 3, let P i (resp. Qi ) be the intersection point of E (resp. ( 4 ) with
the proper transform of Next blow up these six point P i 's and Qi 's to obtain
the surface Y and let A i 's and B's be the resulting (— 1)-curves on Y as the inverse
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images of P i 's and Q i 's, respectively. Name the proper transform of t i on  X  as L i

for 1 < i < 4 and the proper transform of E as C .  Then we have (C 2 ) = - 4,(M)
=  -  2  f o r  1  <  < 3  and  (L i) = -  2.

Let p: V  - > Y b e  the double covering with branch locus C, L 1 , L 2 , L 3  and
L 4 . Then V is a rational surface w ith  rank  8 . Let M = (C), E i = p - 1 (A), Fi

= p - 1 (B1), H i = p - 1 (L 1) for 1 i 3 and  le t N  = (L 4 ). Then p*(C) = 2M,
p*(A i) = E i , p*(B i) = F 1, p*(L i) = 21-11 f o r  1 i 3  a n d  p*(L 4 ) = 2 N .  Hence
(M 2 ) = - 2 ,  ( N 2 )  = = = - 2 a n d  (117)= - 1 f o r  1 i < 3. T h e
covering involution , acts on  V in such a way that the fixed point locus V' consists
of M, N, H 1 , H 2 and H 3 .  Now obtain an affine surface X  as an open set of V by
removing the curves M, N, E2, E3, H3, F,, F 2  and F 1 . Then there exists a  C*-
fibration on X  obtained as the restriction of the P'-fibration 1E 3  ±  H 3  ±  F 3 1 onto
P 1 . The involution / acts along this C*-fibration and there is only one reducible
fiber (E 1 +  H 1 ) n x . It is now straightforward to verify that H i (X ; Q) = 0 for all i
> O. So, X  is a Q -hom ology plane. Furthermore X ' consists of (H 1 +  H2 )n x
which consists of tw o disjoint curves, one being isomorphic to C  and the  other
being isomorphic to C*.

Example 2. Let C be an irreducible rational curve of degree n> 1 in P 2 with
a  cusp P of order n  - 1  and let e (1 <i < n) be lines passing through the cusp P
which are no t tangent to  the curve C a t  P, thus e  meeting C in a single point
different from P .  L et W  b e  a  cyclic covering of P 2 o f  order n  branched over
C u t i  u•• , u  „ and le t V be the minimal resolution of singularities o f  W . Then V
has a 1 1 -fibration p :  /  P 1 and  the  proper transform of e (1 < i < n) on V is a
(- 1)-curve E. contained in  a  reducible fiber r i o f  p  with a  linear chain of length
n +  1  as its dual graph which is described as follows:

r i = A (1) + nE i + (n - 1) B!! ) +  ( n  -  2) /3„i ) 2 •• • ±

where (,4 ( i ) )2  =  -  
n ,  ( B !,0 1 )2 (BLi) 2 )2  = (B(ii))2 2, (24 ( i ) • E i) = (E B!! )

 i )
= (B 1  0,2_ 2 ) = • • • = (BT =  1 .  The fibration p has two sections M and  N ,
w here  M  is a  (- 2)-curve m apped to  the  po in t P  b y  the composite  i t  o f  th e
resolution morphism and the covering morphism and N  is  a (- 1)-curve mapped
to  th e  curve C  a n d  w here M  m eets A(1 ) a n d  N  meets B V . Except fo r fibers
f l ,...,F„, p has one more singular fiber A, which is contained in the inverse image
by it of the tangent line of C at P and can be contracted to a  smooth fiber without
changing the self-intersection numbers of M  and N .  Let X  be an affine open set
obtained from V by removing the curves M, N, A, all components of F 1 other than
E l  and /3„12 1 an d  all components of r i other than E. for every 2 < i <  n. Then it
is straightforward to show that :

(1) X  i s  an  n -p rim ary  rational hom ology p lane  w ith  H 1 (X  ; Z /nZ)
(Z/nZ)"

(2) X  has an automorphism of order N  inheriting the covering transforma-
tion of V-■ P2.
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(3 )
 

X' consists of X (1 Ei  which is isomorphic to C and x n E i fo r 2 < i < n
which is isomorphic to C*.

1.5. We shall construct further examples of Q-homology planes of Kodaira
dimension 0  admitting non-trivial automorphisms.

Example 3 .  T ake X  to  b e  H [k , -  k ]  i n  Theorem 1.3. Choose an
inhomogeneous coordinate t  on  the  base  curve P 1 so  th at t = 0 , 1 , - 1  a t the
points f ( 13), f(P11) f (P 2 1 ) , respectively. L et 1: P 1 P l  be the involution such
that /*(t) =  -  t. Suppose k 1 (mod 2). Then / induces an involution on Zk ,
which we denote by the same letter /. This involution i fixes two fibers including
the one passing the point P  and exchanges the fibers passing the points P „  and
P 2 1 .  SO, / induces an involution on X  such that the fixed point locus is the fiber t
= co plus a  po in t on  the  fiber t = O.

Example 4. Take X  to be the surface Y{3, 3, 3} in  Theorem 1.3. We choose
the  po in ts P2 3 , P 3 1  a n d  P 1 2  to be (1, 0, 0), (0, 1, 0) a n d  (0, 0, 1), respectively.
Choose the line ( 4  to be defined by the equation xo  + cox i  + (.02 x 2 = O. So, ( 4

meets the lines e,,( 2  and  ( 3  respectively at the points (0 , -  w, 1), ( -  w2 , 0, 1) and
( -  w, 1, 0). Let p  be a n  automorphism of order 3 o n  P 2  defined by

x o0  1  0  x o

p ( x ) =

., (  00 1 ) ( x i  .
x 21  0  0  x 2

Then the line ( 4  and the set {Pu , POW = (12), (23), (31)1 are p-stab le. Hence p
induces an automorphism of order 3 on X  such that the fixed point locus consists
of three points (1, 1, 1), (1, co, co 2 )  and (1, w2 , co).

Example 5. Take X  to be the surface Y{2, 4, 4} i n  Theorem 1.3. Choose
inhomogeneous coordinates (t, u) on P l  x  P I  in  such a  way that the cross-sections
(resp. fibers) M 1 ,  M 2 ,  M 3  (resp. el , ( 2 ,  ( 3 )  are  defined by u = 0, 1, - 1 (resp. t
=  0 , 1 , - 1 ). Define an involution / o n  P 1 x  P 1 b y  /*(t, u) = (- t, u). Then /
induces an involution on X  such that the fixed point locus consists of a single
point (C I , LC') = (0, 0).

1.6. A s  w e  h a v e  observed above, Q-homology p la n e s  w ith  Kodaira
dimension < 1 are rational and usually have non-trivial automorphisms of finite
order unless they a re  not homology p la n e s . S o , we can raise th e  following
questions :

Question 1. Is a  Q-homology plane of Kodaira dimension 2 rational?

If  such a  Q-homology plane X  exists, a  smooth completion V  of X  must
satisfy q(V ) = p g (V )= 0  in  view of Lemma 1.1.

Question 2. Can one evaluate the order of the automorphism group Aut (X )
when X  is a  Q-homology plane of Kodaira dimension 2 ?
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§ 2 .  Logarithmic Q-homology planes

2 .1 .  L e t  (X , x )  b e  a  g e rm  o f no rm al su rface  singu larity . It is  ca lled
logterminal if the following two conditions are satisfied :

(1) K ,  is Q-Cartier,
(2) Let f: Y — > X  b e  a m inim al resolution o f  singularity and  le t F i ,...,F„

exhaust irreducible exceptional curves of f . If we write

K y = f*(K x ) +  E ai F, at eQ,
i=1

then we have 0 > ai > —  1 for every i.
It  is know n (cf. Tsunoda [14 ]) th a t  a  log-terminal singularity (X , x ) is  a

quotient singularity. Namely, (X , x) is isom orphic to (C 2 /G, (0)), where G  is  a
sm all fin ite  subgroup o f  GL(2, C). W e  c a ll a  n o r m a l algebraic surface X
logarithmic if it has only log-terminal singularities. A logarithmic affine surface X
is called  a  logarithmic homology plane (resp. logarithmic Q-homology plane) if
H i (X  ; Z) = (0) (resp. H i (X  ; Q) = (0)) for all i > O. In  this section, we shall look
into  structures of logarithmic Q-homology p la n e s . We shall begin with

Lem m a 2.1. L et X  be a Q-hom ology plane w ith a f inite group G acting on
it. L e t S  = X  IG  be the algebraic quotient of  X  by  G . T hen S  is a logarithmic Q-
homology plane.

P ro o f . L e t  n : X  -4 S  b e  th e  q u o tie n t morphism. T h e n  ir induces an
isomorphism of the cohomology rings

n*: H* (S ; Q) H* (X ; Q)G.

Since H*(X  ; Q )  H
°

(X  ; Q) Q  by the hypothesis, we conclude that H i (S; Q)
= (0) for i > O. H e n c e  S  is  a  Q-homology p la n e .  •

L et X  be  a  logarithmic affine algebraic surface, let E  = { x, , x,,,} be  the
singular locus and let cp.: Y—> X be the minimal resolution of singularities. Let V
b e  a normal projective surface such  tha t X  i s  a n  o p e n  subset o f  V  and the
complement D:= V — X  is an effective divisor with simple normal crossings and let
f : W—> V be the minimal resolution of singularities of V. Then Y is an open set of
W and f l y  = cp. We identify the divisor D  on  V  with the divisor f  (D ) on
W . Set A  = f  - 1 (E ) and X ° = X — E.

L em m a 2.2. W ith these notations we have the following:
(1) W e  have isomorphisms and ex act sequences

111 (V, D; Z) H 3 (Y ; Z ), 112 (V, D; Z )  112 (X ° ; Z)

H i (V , D; Z) ; Z) 1 1 4 _,(Y ; Z) fo r i1 , 2

0 Z'N H3(X ° ; Z) D; Z) — O
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0 — > ZOE' — > II,(X° ; --> H 3 ( Y; Z) --> 0

0 —> H 2 (X° ; --> H2(17 ; 0 7 =  V " ' — V O ,

where N  i s  the  num ber o f  singular points and r i i s  the  num ber o f  irreducible
components of  f  (x i).

(2) W e have isomorphisms and an ex act sequence

H i (V, D; Z) f I 4 - i(X  ; Z ) f o r i = 0, 1, 4,

0 — H 2 (V, D; Z) H2(X ; — >  H 1 (07"; Z) —> H 3  (V, D; Z)

H  ;  Z) —> 0.

(3) I f  X  is a  logarithmic Q-homology plane, then D  is simply connected and
O W ) = q(W) = 0. Moreover, F(X , (9x )* = C*.

P ro o f . (1) W r i te  a long exact sequence of integral cohomologies attached to
the inclusion of pairs((D u E, D) c  (V, D);

0 H°(V, D U E;  Z) —> H ° (V, D; Z) —> H ° (D U E, D; Z)

— *H 1 (V, DUE; Z) -->  H 1 (V,D; Z ) - - >H 1(DUE, D; Z)

- - * H 2 (V, DU E; Z ) --> H 2 (V, D; Z) --> H 2(D U D; Z)

—> H 3 (V, DUE; Z) — H 3 (V, D; Z) 0

- II 4 (V, DUE; Z) -->  H 4 (V, D; Z) 0,

where

H ° (Du E, D; Z) Z ' N  a n d  H i (Du E, D; Z) = (0) for i 0, 2.

Furthermore, we have isomorphisms

IP(V, Du E ; Z) H 4 _ i (X °  Z) for Vi > O.

H ence w e obtain  the isomorphisms and exact sequence involving (V , D) and
X ° .  In a similar way, write down a long exact sequence of integral cohomologies
attached to the inclusion (D U A , D) c (W, D ) .  Noting that W— (D U A )  X °  and
that each connected component of A  is a tree of nonsingular rational curves, we
obtain the isomorphisms and exact sequences,

H i (X° ; Z )  H i ( Y; Z) for i 0 2,3

0 —> Z) --> 113 ( Y; Z) 0

0 —> H 2 (X ° ; Z) —> H 2 ( Y; Z) —>  Ç 1  Z 4 ". ' — + 0

C om bining these tw o results, w e obtain  the stated isom orphism s and exact
sequences.

(2) Write E = Ix i , xx l . For all i, choose a closed neighbourhood Ti of x i

so that 7 n =  0 whenever i j .  Let OT, be the boundary of T . W r i t e  T:= T,
U • • • U TN and OT = OT, u • • • u O TN . C o n s id e r  a long exact sequence of integral
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homologies :

0 --+  H 4 (X ; Z) H4(X, T; Z) H3(T; — >H 3 (X ;  Z )  - - )

H 3 (X, T; Z) H2(T; Z) H2(X ;  Z )  - - )  H 2 (X, T; - - ) H , ( T ;  Z)

H,(X ; - - ) H i (X , T; Z )  - - )  H o (T; Z ) - - - ) H 0 (X ; Z) Ho(X, T;

- >  0,

where H i (X, T; Z) H i (X°, aT; Z ) for every i  b y  the excision theorem. Since
every x i is a quotient singular point, we may assume tha t Ti is  a quotient Bi /Gi of
the  closed ball Bi := {(z 1 , z 2 )  z 1

2  + 1z212 <  El in  C 2 w h ic h  is  stable under the
induced linear a c tio n  o f  a  sm all finite subgroup G. o f  GL(2, C ) .  Since Bi is
contractible, T  is contrac tib le  by  C onner's theorem  (cf. Kraft-Petrie-Randall
[ 5 ] ) .  Hence we have

H o (T; =  Z e N  a n d  H i (T; Z) = (0) for Vi > O.

Thence we have isomorphisms and an exact sequence

H i (X ; Z) H i (X, T; Z) for i > 2,

0 — )H ,(X  ; Z) T; - - - ) H o (T; — ) H 0 (X ; Z) O.

On the other hand, we have a long exact sequence of homologies attached to a pair
(X °, ET),

0 — )H 4 (X ° ; Z) - - - )H 4 (X°, OT; Z) H3(ö T; Z )  - - )  H3 (X ° ;

H 3 (X°, OT; Z) — ) H 2 (aT; Z) — )H 2 (X °; — ) H 2 (X ° , OT; Z)

- H i (aT; H,(X° ; Z) Hi (X°, ET; Z) - - ) H 0 (0T; Z)

- H o (X ° ; —*O.

Since the action of G. o n  aB, ,L, s3 is  orientation preserving, we have

Ho (aTi ; Z) H3 ( a  ; Z) Z.

I t  i s  k n o w n  t h a t  Hi (aTi ; 7 1(aT)/[7 1(0 7 ) , gi OD ], w h ic h  is  a  finite
group. Then, by Poincaré duality and the universal coefficient theorem, we know
tha t H 2 (8 =  (0 ) . Therefore we have an isomorphism and exact sequences,

H4 (X°; Z) H4 (X°, aT ; Z)

0 - - ) H 3 (0T; Z) — )1/ 3 (X°; Z) H3(X°, OT; Z) — *0

0 — ) H2 (X ; H2 (X °, 7 ';  Z ) (ET; Z) Hi (X ° ; Z)

- - )  H I (X°, OT; Z) - - ) H o (aT; Z) ----) H 0 (X °; Z) — ) 0.
Now comparing the above isomorphisms and exact sequences, we obtain

H4 (X°; Z) H4 (X°, aT ; Z) 114 (X, T; Z) L-• H 4 (X ; Z),
H 1 (V, D; Z) H 3 (X°, aT; Z) H 3 (X, T; Z) H 3 (X ; Z),
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0 H2(X ° ; Z) 1-1,(X ; Z) Hi(OT; Z)

H i  (X ° ; Z) H,(X  ; Z) O.

Now the stated results are easily verified in view of the assertion (1) above.
(3) S in c e  H 1 (ET; Z ) is a torsion group, we have isomorphisms

H 2 (V , D; Q )  H 2 (X  ;  Q )  a n d  H 3 (V , D; Q )  H i  (X  ; Q).

Suppose X  is a logarithmic Q-homology plane. Then, by virtue of the assertions
(1) and (2) above, we have H i (Y ; Q) = (0) for i 0, 2 and
H2 (Y; Q) E L o o k  at a long exact sequence of rational cohomologies
attached to a pair (W, D),

0 H°(W , D) H° (W) H°(D) 111(W, D) 111(W) Hl(D)

H 2 (W, D) — > H 2 (W) H2(D) H3(W , D) H3(W ) 0

114 (W, D) 114(W) 0,

where

H'(VV, D )  114 _ i (Y) for Vi.

Taking the above remark into account, we know from this exact sequence that

H3 (W )  11 1 (W ) = (0) a n d  111 (D) = (0),

whence we conclude the assertion (3) as in L em m a 1 .1 . •

Lemma 2.1 can be strengthened to the following effect :

Theorem 2.3. Let X  be a homology plane with an effective action of a cyclic
group G of prime order p. Suppose that X G  is isolated. Let Z  = X  IG . Then Z is
a logarithmic homology plane.

P ro o f . Let P  be the unique G-fixed point of X  (cf. Lemma 1.5). Let q: X
Z  be the quotient morphism and let Q  = q (P). Then Q  has a cyclic quotient

singularity, and Z  is  a  logarithmic Q-homology plane by Lemma 2.1. Hence
.11,(Z; Q )  Q .  Suppose H,(Z  ; Z) ( 0 ) .  Then H i (Z °; Z )  ( 0 )  and is  a  finite
group, where Z° = Z  —  {42

}
 (cf. Lemma 2.2). Since q: X °  Z ° is an unramified

covering, H,(Z° ; Z) Z /pZ . On the other hand, 11-11 (Z° ; Z)//m (I-11(X ° Z ) I  P
by a  general theory. Hence H i  (Z e  ; Z) = Z/pZ. Since 111 (0T; Z) = Z/pZ and
since H 2 ( Z  Z) = (0) (cf. the proof of Lemma 2.6), we obtain H i  (Z  ; Z) = (0) by
Lemma 2.2 (or an exact sequence in its proof). This is a contradiction. Thus Z
is a  logarithmic homology plane. •

2 .2 .  Let X  be a normal affine surface with a  A1-fibration p: X —> C .  Let
Y —> X be a minimal resolution of singularities. Then we have the following

result by Miyanishi [6] :

Lem m a 2.4. Let X  be as above. T hen w e have:
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(1) Every singular po in t P o f  X  is a  cyclic quotient singular point.
(2) Ev ery  f iber o f  p  is  a disjoint union of  curves which are  isomorphic to

A 1 . Each irreducible com ponent has at m ost one singular point of  X.
(3) L et P be a singular point lying on an irreducible component T of p - 1 (p(P))

and let C 1 ,..., C,. exhaust all irreducible components of (p - 1 (P), where C r  m eets the
proper transf orm  cp'(T ), (C i • Ci , i )  = 1  f o r 1 <  r  and (C i) = —  a, w ith
l i > 2. (W e say that P is of type (a,,...,a,.).) Then the multiplicity of  P is equal to

ii(P)= a i — 2(r — 1).
i=

(4) L e t [ a , , . . . ,a r ]  be  the continued fraction

[a l  , • • • , Œr] —

   

az

     

Œ3

1
• —  1 — —oc,

and w rite dle = Ea, ,..., 0 4 1  w ith e < d  an d  e  an d  d  relatively p rim e . I f  P  is  a
singular point of  type [a 1 ,...,a ,.] then (X , P) has the same singularity as (C 2  I G, (0)),
where G = a> is  a  cyclic group o f  order d, being a prim itive d-th root o f  unity,
and G  acts on C 2 b y  (x, y) (Cx , Cex ).

In order to construct a normal affine surface X  with an A'-fibration carrying a
singular point of type (a,,..., a r ), we start with a normal projective surface V with a
P 1 -fibration p: V  — B , where B  is  a  nonsingular com plete curve. W e assume
furthermore that there is a  cross-section M  of p. For example, the surface X  with
the A 1 -fibration p: X  —> C considered in the above lemma has an open immersion
into a normal projective surface V endowed with a P 1 -fibration p: V -+ C such that
p Ix  =  p  and that the  complement D:= V  — X  is  an effective divisor with simple
normal crossings a n d  th a t D  contains a n  irreducible component M which is a
cross -section of p; we may assume without loss of generality that there are no (—  I)-
curves contained in D possibly except f or the  component M .  Let F  be a  smooth
fiber of p  and let P ,  be a  poin t on  F .  Let o- , : Vi —> V  be the blowing-up of P,
and let E 0  = o -

0
- 1  (Po). Let P, = cr,(F)n E0 , o- 0(F) signifying the proper transform

of F  via 0-
0 , let a : — >  VI be the blowing-u p  of P ,  and let E2 =  o-

1
- 1  (P 1 ). Now

let P2 be either E,n(cr o o-
1 )'(F) o r  E 2  n 0-i (E0 ), let a,: V , —■ V, be the blowing-up of

P 2  and let E 3  = C72- 1  ( P 2 ) .  Next, let P , be one of the intersection points of E 3  with
two adjacent com ponents. W e continue this process altogether (n + 1)-times to
obtain a normal projective surface W by the blowing-up of points P 0 ,...,P„, say
f : W —> V, where the i-th point P  is one of the intersection points of the exceptional
curve E. = 1 )  w ith  tw o adjacent com ponents. W e denote  th e  proper
transform of E i on W also by the same letter E i . The surface W has a P'-fibration
given by a morphism p • f: W —■ B and the fiber (p • f) -

1 (p(F)) cosists of irreducible
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components f '(F), which form a chain of rational curves. Call this fiber
F . Then we can write Fred = E0  + E + E i , where E ,  is the one of two connected
components of Fred — E„ which meets f '(M ) and X , is  the other one. We note
that E„ is the unique (— 1)-curve in the fiber I' provided n >  1. T h e n  E , can be
contracted to a cyclic quotient singular point of type (a 1 ,...,a ,.), which is uniquely
determined by the above blowing-up process. W e denote by V  the normal
algebraic surface obtained from W by contracting E ,  to  a po in t. Then V will
inherit the P'-fibration from W, which we denote by /5: V—> B .  Denote the fiber
/5'( p ( F ) )  by F .  It is proved in [6 ] that a  cyclic quotient singular point with
arbitrarily given r-tuple (a, ,... ,Zr ) can be produced by this process. When we
start with a normal affine surface X  with an A1-fibration p: X  —> C , we consider
its completion V  with a  1"-fibration p: V —* B .  Then choose a  smooth fiber F,
which corresponds to a  reduced and irreducible fiber of p  and apply the above-
described process to F to produce a cyclic quotient singular point on the replaced
fiber F . It is straightforward to show that the open subset of V with the image
of (D — M )uf '(M )uE0  removed off is affine. We denote this affine surface by
g  and say that g  is obtained from X  by attaching a cyclic singular point of type
(a ar) (or equivalently, of type dle  if d le =  [a 1 ..... a r]  as in Lemma 2.4) to the
fiber F ° =  F n x .  Indeed, X-  has an A'-fibration )5: Ï  C  w h ic h  is  the same as
the A1-fibration p  on X  except that the fiber F°  is replaced by a multiple fiber F.
=Fn Ï .  Its multiplicity is equal to d in Lemma 2.4 (cf. Miyanishi [7, pp. 76-80]).

2 .3 .  Let X  be a logarithmic Q-homology plane. With the notations of 2.1,
we can consider the Kodaira dimension K(X °) and call it the Kodaira dimension of
X .  We write K (X ) instead of K (X ° ) . We shall now look into the structure of a
logarithmic homology plane X  of Kodaira dimension — cc. W e employ here the
notations E, X°, V, Y, W , etc. in tro d u ced  i n  2.1. W e  a p p ly  th e  results
[7; Theorem 2.11] and [8 ; Lemma 3] to obtain the next result.

Lemma 2.5. Let X  be a logarithmic Q-homology plane of Kodaira dimension
— cc. T h e n  one o f  the following holds:

(I) X  has an 10-fibration p: X  —> C;
(II) There exists a Zarisk i open set U of  X° and a proper birational morphism

0:U — > T' onto a nonsingular algebraic surface T ' defined over C  such that:

(1) Either U = X ° o r X ° —  U has pure dimension one;
(2) T ' is  an open set of a Platonic C*-f iber space T  w ith dim (T  —  T ')< 0.

For the definition of Platonic C*-f iber space, see [8].

Consider th e  case  (II). S in ce  U  is quasi-affine, it h a s  n o  complete
curves. Hence 0 is an isomorphism. This implies that F ( U ,  x )* = F(T', (Ç T )*
= F(T , O r r  = C *  (cf. [ 8 ] ) .  Suppose X ' — U  h as  pure dimension one. Let
G 1 , ..., Gs b e  the closures of irreducible components of X  — U  in  V. Since
I-12 (V ; Q )  I12(D; Q) and V  has at worst quotient singularities, some positive
multiple of (G, + • • • + Gs )  is linearly equivalent to a  divisor supported by V
— X .  Hence there exists a non-constant function h on V  which is invertible on
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U .  This is a contradiction. So, X ° = U .  Since dim (T —  T ')< 0, X  is affine and
T  is isomorphic to C 2 /G — (0) for some small finite subgroup G of GL(2, C), we
conclude that

F(X , F ( T ' ,  F ( T ,  T) [ '(C 2  / G , e c 2 IG ),

whence X  C 2 / G .  Since C 2 / G  is contractible by Conner's theorem, X  i s  a
logarithmic homology plane.

Next, consider th e  case  (I)  above. Since F(X , O x )* = C * , q(W ) = 0  and
H 2 (V; Q )  I/2 (D; Q), the base curve C is isomorphic to A' and every fiber of p is
irreducible ; indeed, it is some multiple of A 1 . Moreover, every singular point of X
is a  cyclic quotient singular point and each fiber of p  has at most one singular
point lying o n  i t .  We consider a  completion p:V—>B of p: X  — >C as in 2.1; in
particular, we assume that D:= V —  X  contains no ( — 1)-curves possibly except for
the cross-section M .  Furthermore, consider a P '-firation q:= p. f : W -> B  on the
surface W obtained by the minimal resolution of singularities f: W—> V.

Lemma 2 .6 . (1) L et H = m L  be a f iber of  p, w h e re  L  A ' an d  m  1 , let
= q - 1 (p(H)), and  le t E  b e  the closure of (,9 - 1 (L )  in  W . I f  m > 1 , then f  is  a
reducible f iber. Suppose that H  has a cyclic quotient singular point P of  ty pe dle
w ith (d, e)= 1. W rite 

1 .- r e d

 = E 0  4 -  E  + E l, w h ere  f  - 1 ( P )  = E ,.  T h e n  E  is  a
unique (— 1)-curve in the f iber F, in is divisible by d, and  F r e d  is  a linear chain if  and
only  if  m  = d.

(2) L et H i ,..., H ,. be all multiple f ibers o f  p .  Then H,(X ° ; Z) ()X i Z/
mi Z, where m i i s  the multiplicity o f  H i . L e t P ,,...,P N exhaust all singular points
of  X ; w e m ay  assum e P.EH, for 1  <  N .  L e t  d i le i b e  the ty pe of  P i . T h e n
111 (0T; Z) Z / d iZ .  Moreover, we have an ex act sequence

O _ .  0  7=, z/diz z / m i z  ;  z ) _) 0.

P ro o f . (1) Since E  is a unique (— 1)-curve in the fiber, we can contract E.
Then, after the contraction of E, one of the adjacent components of E becomes a
(— 1)-curve if the contracted fiber is still reducible. Then contract again a (— 1)-
curve. Thus, starting with E, we can contract successively all irreducible compo-
nents but one and finally obtain a  nonsingular rational curve with multiplicity 1
and self-intersection number 0 .  In this process, there appear no (-1)-curves which
meet three other components. Hence, when the last component of E l is contrac-
ted, all the components contracted already in  the  preceding contraction process
form a  linear chain, say Z .  Call A  the component of F which then becomes a
(— 1)-curve or a curve with self-intersection number 0 and let a be its multiplicity.
Then m  is divisible by a. Think of A  a s  a  smooth fiber of a P '-fibration and
reverse the above contraction process to regain the chain Z  b a c k . We then readily
show that d = m la.

If in =  d then A  has multiplicity 1. If A becomes a (— 1)-curve when the last
component of E ,  is  con tracted , then  F. contains another ( — 1)-curve. This
contradicts the hypothesis. So, A becomes a curve with self-intersection number 0,
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which must be a  smooth fiber of a Pi-fibration. Thus Pred is a  linear chain if m
= d. The converse is already verified.

(2) It is straightforward to show  that 111 (X 0 ; Z) C) ;
N:, Z/m i Z  via an

isomorphism 111 (X
0  ; Z) H 3 (W, D u ;  Z). Meanwhile, 111 (OT ; Z) 0 7 = i

111 (07;; Z) and H1 (87 i ; Z) n 1 (07) - Z/di Z. Thence we obtain H i (OT; Z)
Z/di Z .  The exact sequence in the assertion is obtained from the sequence

in  Lemma 2.2, (2) if we show that H 2 (X ; Z) = (0). In  order to show this, note
that H 3 (X ; Z) = (0) because X  is  an  affine surface . By the  universal coefficient
theorem, we have

H 3 (X ; Z) H om  (H 3 (X ; Z), Z) 0 Ext i  (H 2 (X ; Z), Z)

and H 2 (X ; Z) is a torsion group. Hence the above isomorphism entails H 2 (X ; Z)
= (0). •

Now we have proved a structure theorem on logarithmic homology planes of
Kodaira dimension -  cc.

Theorem 2 .7 .  Let X  be a logarithmic homology plane of Kodaira dimension
-  cc. T h e n  X  is isom orphic to one of the follow ing three surfaces:

(1) A2 ;
(2) C 2 /G, where G  is a small f inite subgroup o f  GL(2, C);
(3) A  surface X  w ith an A 1 -fibration p: X  it 1 such  that ev ery  f iber is

irreducible and that there are exactly  N  multiple f ibers H 1 ,..., FIN with respective
each of  them  carry ing a cyclic quotient singular point P i o f

type d ie t , w here N  is an arbitrary  positive integer.
T hese surfaces are all contractib le  surfaces and dom inated  by  A2 . In

particular, a surface of type (3) is birationally dominated by A 2
.

P ro o f . The last two assertions need proofs. N ote  that A 2 a n d  C2 /G are
contractible and dominated by A 2 . C onsider the case (3). Let {Q

1
,...,12 N , Q }

be the points of P i  such that the multiple fiber H i lies over Q .  fo r  1 < i < N  and
Q c o  is  the point at infinity L et U = P 1 - {Q ,,..., Q N, q z0 } . Then p - 1 (U) - - _' A 1

x  U and 7C1(p - 1 (U)) - - +n1(X ° )  is  surjective. Set

YoolY dl i = = Y dNN  = Y 1 YNYoo = 1 >.

Then, as in [3 ; Lemma 3.2], one knows that n i (X ")'._-=' F .  Hence In i (X°)I < oc if
and only if N  =1, and rc l (X ° )  Z/y i  Z if N  = 1. By this observation, we know
that any unramified covering space of X °  is obtained as the  normalization of a
cartesian product o f  X  o v e r  A i w ith  a  covering T -*A l  ram ified over
{Q1,- A N } .  In particular, any covering space of X °  has a n  A 1 -fibration which
comes from the  A i -fibration p: X  - > A ' .  Now, consider a n  unramified covering
space a: Y-* X .  For any Pi , 1 < i < N ,  o- - 1 (P i) consists of singular points on Y
with th e  same singularity as

 P .
 H e n c e  th e  exceptional locus of the minimal

resolution of any point of (5- ' ( P i) is the same as that of P i . Therefore, the surface
IT obtained from Y by resolving minimally all points of o- - 1 (Pi) is an  unramified
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covering space of the surface obtained from  X  by resolving minimally the
singular point P i . If the exceptional locus of the minimal resolution of P i is added
to  the  fiber H i ,  it is considered a s  a  fiber o f  m ultip lic ity  1 . This implies the
following result:

L e t a  =  b e  a  su b se t of P O  a n d  l e t  X a = X ° U
{P 11 , ,  P  .  Then ml (XŒ)  r g y i , = • •• = y i r  =  l> .  In particular, n i (X ) = (1).

Therefore, all surfaces in Theorem 2.7 are contractible. It is easy to see that
X  in  the  case  (3) w ith  N  = 1  is  w ritten  a s  C 2 In i (X ° ) .  I f  N > 2 , X  is not
isomorphic to A 2  n o r  C 2 /G.

We shall show that a surface X  in the case (3) is birationally dominated by
A2 . W e  c a n  e m b e d  X  in to  a projective normal surface V  so  th a t p: X -0 A 1

extends to a 13 1 -fibration p: V-0 P I . Let f: W -0 V be the minimal resolution of
singularities. Then q = p•f: W-> 13 ' is  s t ill a  1“-fib ra tion . W e can choose the
projective surface V so  that the fiber of q containing H i ,  for each i, has a  linear
chain of rational curves X , + H + I ,  as in 2.2, where E , is the exceptional locus
f - 1 (P i ). L e t  K i b e  th e  te rm in a l com ponent o f  t h e  g rap h  co n ta in ed  in
X .  Noting that K i has multiplicity 1 in the fiber, it is easy to show that X ' = (X
- H.) U (U7_ K.) A ' .  T hus w e  ob ta in  a birational m orphism  A 2  X '
-0 X .  •

Theorem 2.8. Let X be a logarithmic Q-homology plane of  Kodaira dimension
- cx). I f  it is not isom orphic to one o f  three k inds listed in  Theorem 3.6, it is
isomorphic to a surface of  the following kind:

(4) A  surface X  w ith an  A'-fibration p X -0 such that ev ery  f iber is
irreducible and H ,(X  ; Z ) (0 ).

Let be all multiple f ibers w ith respective multiplicities
w here  H 1 ,..., HN  c a r r y  cy clic  quotien t singular p o in ts  P 1 ,...,P N  o f  t y p e
d,le,,...,d N IeN , respectively w h i l e  HN+1,...,HN , h a v e  n o n e  o f  singular
p o in ts . Then H,(X ; C Y ,'= ,Z1 (m 1ld1)Z  C ) Is1+ 1 Z / M 1 Z  and H i (X ; Z) = (0)
f o r Vi 0 1.

Example 1. Let (u, t) be  a  coordinate system on C * x  C  and le t o - b e  an
involution on C* x C  defined by cr*(u, t) = (u -  ,  -  t ) .  The fixed point locus
consists o f  tw o  points Q1 : (u, t) = (1, 0 )  a n d  Q 2 : (14, =  —  1 ,  0). L e t  X = C*
x  C g o - >. Then X = Spec (A ), where A  =  q u  +  ,  u 2 t 2 , t(1 - u 2 )]. L e t C
= SpecC[v] with v = u + u - 1 . T h e n  the m orphism  p: X -> C induced by the
inclusion C[v] c  A  is an A' -fibration which has two multiple fibers H , and H 2  of
multiplicities 2 carrying d o u b le  p o in ts  P , a n d  P 2  o f  ty p e  2 /1 , i.e ., of type
A , .  Indeed, H , and H 2  are defined by v = 2 a n d  v  =  -  2 , respectively.

2.4. Next, we consider a  logarithmic affine surface X  w ith a C*-fibration
i t : X - C .C .  W e employ the notations of 1.3 and 2.2 mixed up . A s in  1 .3 , the
fibration 7r is extended to a  P l -fibration p: V-0 B, where V is a normal projective
su rface  w h ich  is  sm oo th  a long  D :=  V -  X .  L e t f: W -0  V  b e  the minimal
resolution of singularities. Then q = p•f: W-0 B is  a  P '-fib ra tion  on  a  smooth
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surface W  We call a  (— 1) curve E a (— 1) component if E is a  fiber component,
i.e., E  is contained in  a  fiber of p  o r  q. W e assume tha t D  contains n o  (— 1)
components possibly except f o r  a  (— 1) component meeting either two cross-
sections or a 2-section contained in  D.

Lemma 2.9. L e t F be a f iber o f  7E. Then we have:
(1) F = F + 4 ,  where F r e d  = 0 ,  A , o r C , + C 2  w ith C, C 2  A ' meeting

transversally in one point, and A r e d  i s  a disjoint union o f  A l 's.
(2) I f  Fre d  = Ai, , there are no singular points ly ing on F.
(3) I f  Fre d  =  C 1 +  C 2 , then P:= C 1 nC 2 c an  b e  a  cyclic quotient singular

point.
(4) Each com ponent o f  d r e d  has at m ost one cyclic quotient singular point

except in the case:
(4- 1) Suppose a smooth f iber L  touches a 2-section H in a point Q. B low ing

up Q and its infinitely near point of  the f irst order ly ing on H, we have a degenerate
f iber E , + E2 ± 2E such that (Eb = (E) = —  2, (E 2) =  —  1 and E meets the proper
transform H ' o f  H . S tarting w ith a point Po = E n H', apply a process of  blowing-
ups to  produce a  chain o f  curves E ., + E „ + E , connec ting  E  an d  H ', where
E nE o  0 ,  E ,  fl H '  0  and (E n

2 ) = — 1, and contract the curves E, + E 2  E + l o
to produce a quotient singular point P of  Dy nk in ty pe Dr . Then the image of E„
gives a  curve in  X  isomorphic to A l  w ith a singular po in t 3 .

(4- 2) In the situation of  (4- 1), contract E , and E2 to rational double points of
type A ,. T hen  E  g iv es a f iber isom orphic to A l  w ith these tw o singular points.

(5) L et P be a cyclic quotient singular point of  type die ly ing on a component
A  o f  4 .  L et m  be  the multiplicity o f  A  in  F .  Then d  divides m.

P ro o f .  Let î  =  q -
1 (n (F) ) . All (— 1) components of i then com e from  the

components of F except for a (— 1) component meeting either two cross-sections or
a  2 -sec tion  in  D .  Furthermore, since X  i s  affine, D  is connected a n d  every
connected component of T. -  F which is disjoint from D is contracted to a singular
p o in t .  Hence every irreducible component of F gives rise to a (— 1) component of-
F  except for C , o r  C 2  of Fre d  —  C l ±  C 2 . O n the  other hand, it is well-known
that any (— 1) component o f a  degenerate fiber o f  a  P'-fibration does not meet
three other fiber components and that if a (— 1) component has multiplicity 1 there
is another (— 1) com ponent. A ll th e  stated assertions can be verified without
difficulty by virtue of these observations. •

Lemma 2.10. L et X  be a  logarithmic Q-homology plane with a C*-fibration
n: X —> C. T hen w e hav e:

(1) C  is either 13 '  or A ' .  If  the f ibration is tw isted then C A'.
(2) If  C Id  then every fiber of  i t  is irreducible, and there is exactly one fiber

isomorphic to A l .
(3) I f  C  A l  an d  it is untw isted, all f ibers are  irreducible except one which

consists of  two irreducible com ponents. I f  C  A l  and  it is tw isted, all f ibers are
irreducible and there is ex actly  one f iber isom orphic to A'.



774 M . M iyanishi and T . Sugie

P ro o f . This is the restatement of Lemma 1.4 except for the assumption that
X  has possibly quotient singularities. •

Lemma 2.11. L et X  be as abov e . Suppose n is untwisted a n d  C  P 1 . Let
F0 , . . . , F  be all singular f ibers w ith respectiv e m ultiplicities m o ,...,m „, w here
FO,red A1 . A s in [3], le t H , and  H 2 be cross-sections of  p contained in D such
that H , n H 2  =  0  and (11?) = - a w ith a > 0; so , b y  the blowing-downs o f  ( - 1 )
components in W  and its im ages, H , is m apped to the m inim al section f i, of  a
Hirzebruch surface L 'a , le t 6 , be  the m ultiplicity  of  (F b re d  (t h e  closure of  the
proper transform of  (F La on 117) in the total transform of  H2 o n  W . Then we have:

(1) ic(X )= 1 , 0  o r -  co  if  and  on ly  if

n
(n  - 1 ) - —  > 0, =  0 o r < 0, respectively.

i =1 mi

(2) Let d ie  b e  the ty pe of  a cyclic quotient singular point ly ing on F o  i f  it
ex ists at all. Then H,(X  ; Z) is a torsion group o f  order equal to

-

d
• Imo • • • /lino - E  m o  • • •  Phii=0

where d  divides m0  and b o . Moreover, H i (X  ; Z) = 0 if  i 0 ,  1.
(3) The surface X  is contractible if  and only if  a = 1, m o  = d, n = 2 and m 1 m2

- m 1 62 - m 2 6 1 = ±  I. M o re o v e r, i f  X  is  con trac tib le , there  is  a birational
morphism p: X 1 X ,  where X , is a nonsingular contractible surface with K(X 1 ) = 1.

P ro o f . (1) Consider the peeling of the bark of K v  + D,

K v  + D = (K v  + D#)+ Bk(D)

(cf. [1 0 ] ) . Let E be a unique (- 1) component of the fiber q '(m (F 0 )) which is the
closure o f ( F ,) ,"  o n  W . T h e n  i t  i s  n o t  h a r d  t o  show t h a t  (K v  + E )
< 0. H e n c e , b y  the theory of peeling (cf. [ibid]), w e m ay include E  in the
boundary divisor without changing K (X ). The rest of the proof of the assertion
(1) is just a repetition of the proof of Lemma 3.8 in [3].

( 2 )  It is straightforward to show tha t d  divides m , and 60  (cf. the proof of
Lemma 2.6). Let X °  = X  -  S in g (X ) . By Lemma 2.2 (or its proof), we have an
exact sequence

0 H2(X ° ; Z) H2(X ; Z ) — H i (OT; Z)

H,(X ° ; Z) Hi(X  ; Z) ---+ 0,

where H 2 (X e ; Z) = 0, ,(0T ; Z )  Z /d Z  and

H, (X ° ; Coker (H 2 (D Uf - 1  (Sing X ); Z) H 2(W; Z)) Pic (X°).

Thence H 2 (X  ; Z) is given as in the proof of Lemma 2.6. The order of Pic (X ") is
computed in the same fashion as in [3 ; p p . 110-111], and is equal to
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Imo • • • m na - mo • • • Mi 111. 6 i1-
i- 0

Hence we obtain the  order of H,(X ; Z ) as it is given above.
(3) The proof for the first assertion is almost the same as for [3 ; Theorem

3 ] .  S o , w e d o  not reproduce it. T o  f in d  a  smooth contractible surface X,
birationally mapping to X , consider the minimal resolution of the cyclic singular
p o in t  P ,  ly in g  o n  t h e  fiber F 0 . C o n t a in  th e  term inal com ponent of the
exceptional locus, no t meeting the proper transform of F 0 ,  in to  the interior and
throw away, instead, the proper transform of F 0  a s  a  component of the boundary
divisor. Thus, we obtain a  nonsingular affine surface X 1 , which is a  contractible
surface with K (X 1 ) =  1  b y  [3 ;  T h e o re m  3 ] . This construction shows a lso  the
existence of a birational morphism p: X ,  X .  •

R em ark 2.12. B y Lem m a 2.11, (1), K(X ) =  0  if  a n d  on ly  if n = 2 = m,

=  in,. T h e n  the order of H i (X ; Z) is equal to -
d

14m0 u -  40 0  -  2m0 6 1 -  2m 0 62 1,

which is an  even in teger. So, X  is  no t a  homology plane.

E xam ple  2 . L e t  a = 1 , (m0 , 6 0 ) 4- =  (2 , 1), (m,, 6,)* = (3, 1) and (m 2 , 6 2 )*
= (5, 1); for the notation (m1 , 6,) + o r  (m1, 6,)*, se e  [3 ;  p p . 1 1 2 ]. T h e n  X  is  a
nonsingular homology plane with K(X ) = 1, bu t X  is not contractib le . One can
show  th a t  X  h a s  an  involution a  and  the  quo tien t su rface  Y= Xl<a> i s  a
contractible surface of Kodaira dimension 1 which has a  rational double point of
Dynkin type A ,.

E xam ple  3 . L e t a = 1, (m,, 6,)* = (3, 1) and (m 2 , 6 2 )*  =  (5, 1). T ake  the
fiber F 0  so that m 0  =  4 , 6 0  =  2  and dle = 2 / 1 .  Then X  is a  homology plane with
one rational double point of type A , and K(X ) = 1.

In  th e  subsequent arguments, w e need a  notion of oscila ting sequence of
blowing-ups. Let Z  be a  nonsingular projective surface and let P 0  b e  a point of
Z .  A birational morphism Y  Z  from a nonsingular projective surface Y onto
Z is called an oscilating sequence of blowing -ups with initial point P, if a induces an
isomorphism between Y- 0- ' ( P 0 )  a n d  Z -  a - 1(P0)  is  a  linear chain of
nonsingular rational curves and a - 1 (P0 )  contains a  un ique  (- 1 ) curve.

Lemma 2.13. (1) Let Z be as abov e . L et H and e be irreducible curves such
that (e2 ) = 0  and (e• H)= 1, and  le t P 0 = e n i l .  L et a : Y  Z  be  an  oscilating
sequence o f  blowing-ups with initial point P , such that (o-'(( )) 2  <  -  2. W rite the
linear chain a'(H)Ua - 1 (P 0 )Ua' (e) as  a graph

o-' (H ) - 1 - c 1 ,..., - c 11 - (- 1 ) - 1 - b s ,..., - b 2 1 -

where (- b i ) or ( - c f ) represents a nonsingular rational curve whose self-intersection
num ber is (- b i )  o r ( - c i ). L et (crV )) 2 =  -  b , an d  le t E  b e  the unique ( - 1)
curv e . L et m and 6 be the multiplicities o f  E in o-*(e) and o- * (H ) .  Then we have
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-
6  

= [b 1 , b 2 ,...,b s ] a n d  -  [c 1 , c 2 ,...,c 1],
m  - 6

where (m, (5) = 1 (cf . L em m a 2.4 for the notation).
(2) L e t Z  be as above, le t H  be an  irreducible curve o n  Z  an d  le t P, be a

smooth point of  H .  Let o - :  Y  Z  be an oscilating sequence o f  blowing-ups with
initial point P 0 . W rite a-'(H)uo - - '(13

0 )  as  a linear graph

o- '(H ) - c i , . . . ,  -  c ,}  -  ( -  1 )  -  { -  b s ,..., -  b ,}

an d  d en o te  b y  E  th e  un ique  (-  1 ) cu rv e . L e t  6  b e  th e  multiplicity  o f  E  in
o- * ( H ) .  Then we have

where ((5, q)= 1.
(3) Let the situation be as in (1) ab o v e . Rewrite the chain o- '(H)uo - - i (P,)u

o e )  as follows:

o- ' (H ) - {  - c 1 , ,c .}  -  ( c . + 1 )  -  {  -  c .,  2 , ,  c i l  -  ( -  1 )

-  { -  b „ . . . , -  b . , 2 }  -  ( -  b v „, ) -  { -  b r ,..., -  b 1 }.

L e t  C ,  a n d  C 2  b e  c o m p o n e n ts  e x p re s se d  b y  ( -  c ., 1 ) a n d  ( -  b . , , ) ,
respectively . Let n i and y i b e  the multiplicities of  C i in  a* e and o-* H, respectively,
w here i = 1, 2. Write

N
1r

N 2  ria
L C u + 2 ,• • • ,c , ]  a n d  = Lov+29 — bs],

qi q2

where (N,, q 1 ) = (N 2 , q 2 ) = I. T h e n  w e  have

m y ,  -  n ,6  = N ,  an d  my2  -  n2 6 = N 2 .

(4) In the situation of  (3) above, consider an oscilating sequence of  blowing-ups
with initial point (- c.)n(- c.„,) and let G  be the resulting, unique (- 1) cu rv e . Let
n and y be the multiplicities of  G in the total transform of  e and H .  A s the graph of
the total transform of  e is linear, let { - (1 1 , . . . ,  -  d r }  be the sub-chain in between G
and E  and le t N  be  the numerator o f  [d , , . . . ,c 1 ,].  Then Im y  - n6I = N.

P ro o f . ( 1 )  A s in  [7 ; p . 78], we rewrite the chain as

o- ' (H) -  {( - - (m 2 +  2 ) , (- -  (ma  + 1)}

- (- 1 ) - { (- 2 )m -

if a  is even and

-  (ma  _ +  2 ) ,. . . ,( - 2)m2 ' , - (m, + 1)}

(H) -  {( -  2)"11 - 1 , - (m 2 +  2 ) ,..., -  (ma i 2), (- 2)m- - 1 1

-  ( -  -  { - (ma +  1 ), (- 2)" 1 -  (m a -2  ±

(- 2)m 2 - 1 , - (m , + 1)1
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if  a  is odd, where ( - 2 )" represents a  sub-chain { - 2, - -  2 } with - 2
iterated m times and - (m, + 1) represents a' (0 . Then the argument in [7] shows
that

+ 1 , (2 )m 2  -1 , ...,(2 )m" - 1 ] if a 0 (mod 2)
6 t .  C m 1  +  1 , (2)m 2  1 , ,  ( 2 ) '  I + 1 , ma + 1] if a 0 (mod 2).

It is straightforward to show that the right-hand side of the above equality is equal
to

CCm1, m2, = m1 +

m2 +

If a 0 (mod 2), write

-

d
= Em2 + 1 , (2 r 2 1  , ..., ma + 1]  =  Cm2, ma] ],

where (c, d) =  1 .  Then

c + d
= [m2 + 2 , (2 )m 3 - 1 ,..., ma + 1],

m c + d
= [(2)" - 1 , m  + 2, ... , + 1].

(m, - 1)c + d

O n the  other hand, we have m = m1 c + d  and 6 = c because

[Erni ,  ... ,  m a]] =  m l +  —
C

   

Hence we have (m - 1) c + d = m  - b. This shows that

m  -  6  
= Cc 1, ,c e ].

The case a 0 (mod 2) can be treated similarly.
(2) First of all, we work in the situation of (1) above. Let o :  Z , Z o be

the blowing-up of Po and let E, = o-
0
- 1  (P0 ). Then the next point to be blown up

in  the  oscilating sequence cy of blowing-ups is P, := k i n o-,(e) ,  for otherwise the
proper transform of E0 o r  0-0 (el would remain as a (- 1) curve in o- - 1  (P o). Hence
P, is the intersection point of two components with multiplicity 1 in at (e), where
the component leading to a  branch { - bs , . . . ,  -  b 1 } is  a  (- 1 ) curve.

Now in  the  present situation, let o-, : Z ,  Z o  be also the  blowing-up of P,
and let E0 = cro

- 1 (P0 ). If the point P , to be blown up next is o-0(H)n Eo , we are

1

1

d

and

d  mi c + d
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in a situation to  the one as observed above. Hence the multiplicity (5 of E  in the
present situation corresponds to  m in the case (1). If P, E 0 n o- (H), let a- , : Z2

Z , be the blowing-up of P , and let E, = o- ,- 1 (13
1 ). If the point P2 to be blown

up next is o (E 0 )n E 1 , we are in the situation as observed above. Otherwise, blow
up P 2 .  Continuing this way, either we are in the situation as observed above or
th e  last exceptional curve E  appears in  u * H  a s  a  terminal component with
multiplicity 1. In  this case we understand 1 = [0 ] .

(3) Define sequences of integers fpX=. 0  a n d  fq1} =0  successively as follows:

( 1) PO — 1, P1 — Cl , P i  =  C iP i -  1 P i - 2 for 2 < i < t,

(ii) go  =0 , g , =1 ,...,g i = c i gi _,—  g i _ 2 for 2 < i < t.

Then we have

Pi Pi— =[c ,,. . . ,c i], = [c i , . . . , c 1 ] and qiPi-i= — 1
qi Pi-

for 0 < i < t (cf. Orlik-Wagreich [10]). By (1) above, we have

Hence we have

Pi
qt — 6

and 1),
61. 111 — 71'

— n1 6  = — 9.) — Pu(P/ — q1) = Ptq u .

N ote that

Yo:= Puqu+i — quPu+i =  1

:= P u q u +2 q u P u +2 P u (C u +2 9 u +1 qu) q u ( c u +2 P u - 1 Pu)

—  c .+2 (P u q u +i — —  c u +2

j : =  P u q u + j+1 q u P u +j+ 1 C u + j+1 Y  j-1 Y  j- 2

fo r 2 < j  < t — u — 1. Then yt , _  =  N ,  =  my, — n1 15. T h e  other case can be
proved in  a  similar way.

(4) An oscilating sequence of blowing-ups is a composition of blowing-ups of
p o in ts . After each blowing-up of as point, let n', y' be the multiplicities of the new
exceptional curve in the total transforms of a n d  H , respectively. Then one can
show th a t  my' — n' 61 is equal to the numerator o f [d'„,...,c41, where 1— d',,...,
— d'e l  is the sub-chain in the middle between the new exceptional curve and E  in
the total transform of i. W e  om it the details o f the  p r o o f .  •

Lemma 2.14. L et X  be as abov e . Suppose n is twisted a n d  C  A ' .  Let H
be a 2-section of  p contained in D . T hen w e hav e:

(1) 131u: 11 B  has two ramifying points Po , P so , and we may assume that the
f iber t 00 := p - 1 (Q), w hich is necessarily  reducible, is contained in  D , w here Q.
=  p ( P . ) .  The f iber F o := n * (Q0), n ( P 0 ) ,  i s  w r i t t e n  as  F o  = m o Co ,  where
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C ,  A ' and  C , has
(i) one cyclic quotient singular point,
(ii) one quotient singular point of  Dynk in type D, (cf . Lemma 2.9, (4- 1)), or
(iii) tw o rational double points o f  type A , (c f . ibid., (4- 2))

provided X  is not smooth.
(2) Let F 1 := m i C i (1 i  <  r )  be all other singular f ibers of  m . Then C i

(3) H i (X  ; Z) = (0) if  i 0, 1, and I I,(X  ; Z ) L 'f l1  z/miz in the cases (ii)
and (iii) above and H,(X  ; Z) is an extension of Z1m, Z x 1- 1= , z/nt,z by Z/2Z if
X  is sm ooth or in the case (i) above, where m, divides m,.

(4) K(X) = 1, 0 o r –  o o  if  an d  only  if

r

(r – 1) –
1E > 0, = 0  or < 0, respectively.

i=tm i

(5) If  H i (X  ; Z) = (0) then K (X ) = – oo.

P ro o f . (1) Since D is a tree, it is clear that one fiber of p totally contained in
D meets H in P , or P .  S o ,  we assume that it passes through P .  It is also easy
to show that (F ø )r e d  A l .

(2) I f  (Fbred fo r  some 1 < i < r, then D  would not be a  tree. So,
dred A ,1 for all 1 i

(3) We shall show that H i (X  ; Z) is a  finite abelian group. A s in  the  proof
o f  L em m a 2.6 this im p l ie s  H i (X  ; Z) = (0) if i 0, 1. L e t  X  = X
–  S ing (X ). T h e n  w e  have H ,(X ° ; Z) Pic (W)I L(D u E), where E
= f  '(S in g  (X ))  a n d  L (D u E) i s  t h e  subgroup o f  Pic(W ) generated by all
irreducible components of D  and E .  Indeed, we have an exact sequence

II,(W ; Z) — H 3 (W, DUE; Z) --> H 2 (D U Z )  ` >  H 2 (W; Z)

H 2 (W, D U E ; Z) Hi(D u Z ) ,

where
( i ) H ,(D U E; Z) = (0) because D U E is a  tree of nonsingular rational curves,
(ii) H2 (W ; Z ) H 2 (W ; Z ) Pic (W ) a n d  H 3 (W; Z) = (0) because W  is

rational, and
(iii) H 3 ( W ,  D UE; Z) = (0) because th e  homomorphism 0  followed by the

Poincare duality isomorphism (5: II,( W ; Z) –> H2 (W; Z) is an injection.
O n the  other hand, by the  universal coefficient theorem, we have

113 (W, D U E ; Z ) H om  (H 3 (W , DUE; Z), Z)

Ext i  (H 2 (W, D UE; Z ), Z) H 2 (W , DUE; Z).

Hence, by the  Lefschetz duality, we have

11,(X` ) ; Z )'=- ' 112(W, DUE; Z).

In  order to compute 111 (X "; Z ), note that W with the  P'-fibration q: W –> B is
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obtained by blowing up points from a relatively minimal ruled surface 4: B
with a minimal section M. Thus H is obtained as the proper transform of a 2-
section Fl of Z. S in c e  I-1 — 2M + se on Ea , we have a relation

H  2M' + fiber components of— E +
= o (Du E

where M ' is  the proper transform o f M . Furthermore, we have a relation

fiber components ofmi c. +
(DUE

for 0 < i < r.

Thus 111 (X° ; Z) has generators [Ci] and ri :=  —  M '] and relations

m0 0  =  •  = =  0  and 2 11 = +  +

Therefore we have an exact sequence

0 Z/mi Z Hi (X ° ; Z) Z /2Z 0.
i= o

Suppose Sing (X) =  0 .  Then H 1 (X ; Z) H 1(X 0 ;  Z )  and i t  is  an extension of
It=ozimiz by Z / 2 Z .  Suppose Sing (X) 0  0 .  As in the proof of Lemma 2.11,
we have an exact sequence

0 — > H, (0 T; Z) Hi(X° ; H, (X ; Z) 0.

To compute H I  (0T; Z), we employ the same notation as used in Lemma 2.13:
A graph expressed by a string of integers

{ —  b,, — bs } — ( — 1) — {— c„ — c ,}  with Vbi >  2  a n d  Vci  > 2

is a linear chain of nonsingular rational curves consisting of components expressed
by their self-intersection numbers (— ci), and (— 1).

If X  has a unique cyclic singular point, it is produced as follows :
Choose a point P , on E , or E2, say E l  (cf. Lemma 2.9, case (4-1)), which can

be E  E ,  or E n E 2 . Apply an oscilating sequence of blowing-ups with initial
point P , .  We obtain thus a  linear chain of the form as indicated above

1— — bs} — (— 1) — 1— c„..., — c i l,

where the component (— c1 )  is connected to the proper transform of E  if  P o

= E n E , (or E , if P, 0  En E i ). The unique (— 1) component will give rise to a
component C o  in the fiber F o . Then contract the sub-chain 1— b 1 , ,  — 13,1 to a
cyc lic  quotient singular p o in t o f typ e  (b i ,...,b s ) (cf. th e  paragraph 2.2
above). Lemma 2.13 or its  variation then shows that the multiplicity mo is
divisible b y  H ,(0T; Z)1, which is the numerator of a continued fraction Eb1 ,..., bd.

Suppose X  has a quotient singular point of Dynkin type Dr . Then it is
produced as follows:

Produce a  tree below by an oscilating sequence of blowing-ups with initial
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point H nE,
[El]

— — — (— 1) — { — bs ,..., —  b i l —  LE]

[ E2]

where [E ], [E 1 ]  a n d  [E 2 ]  a re  the  proper transforms o f E , E , and E 2 . T h e n
contract th e  sub-tree o n  th e  right-hand side o f a  un ique  (— 1) component to
produce a  singular point of Dynkin type Dr . Note that the multiplicity of [E] in
g*(Q 0 )  is  2  and  1H1 (OT; Z)I 4 m ,  where

m = (b — 1)n — g, b = — ([E]) 2  a n d

(cf. Brieskorn [1]). Lemma 2.13 shows that m0 /2 is equal to the multiplicity of a
(— 1) curve in  a  linear chain

{ —  c 1 , . . . ,  — c t } — ( — 1) — {— b „ . . . ,  — b 1 ,  — (b — 1)}

which is obtained by an oscilating sequence of blowing-ups from a  smooth fiber of
a  P 1 -fibration. Hence m0 /2  is the numerator of [b  — 1, b 1 , . . . , b s]  which is equal
to  m . S o , m0  = 2m a n d  , (X ; Z) f r =i z /miz.

The case X  has two rational double points of type A , can be treated in the
same fashion.

(4) A  straightforward computation shows that

D + E + K w e ,  +  Go + Gco — e oo ,

(Q0) a n d  P - 1 (Q.),where G , a n d  Goa a re  effec tive  divisors supported by p -

respectively such that the  components appearing in  G , a n d  G  have negative-
definite intersection matrices. Hence K (X ) = 1, 0 o r  — co if and only if

r 1
(r — 1) — E — > o, = 0  or <O , respectively.

i=  ini

(5) If H ,(X  ; Z) =  (0) then there are no singular fibers of type mC with m > 2
and C A .  H e n c e  K (X ) = — co. •

We consider next the case where n  is untwisted and C  A 1 . Let H 1 an d  H2
be tw o cross-sections of p  contained in  D, and let é'  the unique fiber of p
totally contained in D .  If H 1 and  H 2 meet each other, then ( c o  m ust pass through
the point H 1 nH2 , fo r otherwise D  would contain a  lo o p . T h e n , by repeating
elementary transformations with center H 1 n H 2  (i.e., blowing up a point on a fiber
and contracting the proper transform of the fiber), we may assume that H 1 n H2

=  0 .  Then we may also assume that e op is a  sm ooth fiber. By Lem m a 2.9, all
fibers of m  a r e  irreducible except f o r  o n e  fibe r F 0  w h ic h  c o n s is ts  o f  two
conponents. W e have two cases to consider:
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(I) F0 = n,G , + n 2 G2 ,  where G, LL-z G 2  A ' and G , and G 2 meet in one
point which might be a  cyclic quotient singular point;

(II) F,= m o C ,+ n G , where Co A I ,  G  A ', co n G  =0  and there might
be a single cyclic quotient singular point on G.

W e denote by F i = m i C , (1  < i <r)  a l l  the irreducible singular fibers of
m. Then Ci '=

L e t  : W—> Ea be a birational morphism onto a Hirzebruch surface E a  which
preserves the P l -fibration and H , n H2 = 0 , where H 1 = T (H ,), i= 1, 2. We may
assume that (H ?) = (H ?)= — a. So, the fibers F. = g -

1 (7t(F1) )  (0  <  i r )  are
obtained from smooth fibers by blowing up first the intersection points of the fibers
with H 2. W e w rite

r
T* H 2  = R  + (other components),

1=1

where R  = 7 1 G , + y 2 6 2  in the case (I) and R  = (5,C, + y d  in the case (II), and
Gi 's  and G  are the closure of Ci 's , GIs and G.

Then we have the following result.

Lemma 2 .1 5 .  L et the assumptions and notations be as  abov e . Suppose the
case (I) occurs. T hen w e have:

(1) H,(X  ; Z) -= (0) i f  i 0, 1 and 11,(X  ; Z )  f J
,  Z/miZ.

(2) K (X ) = 1, 0 or —  œ  if  and only  if

r 1
(r — 1)—  E > o, = o or < 0, respectively.

i=1 M i

(3) If 11 1 (X  ; Z) = (0) in particular, then K(X )= —  co.

P ro o f . (1) Let Po b e  the fiber of g: B  containing F o . Then P o is  a
linear chain, and one of d i and 6 2  is  a (— 1) cu rve . If the other is not a (— 1)
curve, the graph of Po looks like the one in Lemma 2.13, (3), where we take H
=  H 2  and ( = T(P 0 )  on E a ,  and either 6, = (—  c„,,) and 6 2  =  —  1), or G ,

= (— 1) and G2 =  —  bv .,.„). With the notations in Lemma 2.13, the sub-chain
— ci l  or 1— b „2 1  is contracted to a cyclic quotient singularc.+25•••, 

po in t. If both 6 , and G2  are (— 1) curves, the graph of To looks like the one in
Lemma 2.13, (4).

On the other hand, 1-1,(X°; Z) is generated by and n with
relations

non. +  n2112 — m1c1 = =  trir r  =

Y ln l Y2112  +  (5 1 1  +  • • •  +  (5g , = 0,

where r/i and 11 2 a r e  respectively th e  c lasses  o f Ci ,  G ,  a n d  G 2  in
H ,(X °; Z ) .  Therefore we have an exact sequence

Oz h n i z H i (x. ; F
i=1



Homology planes 783

where 1 = (Z 1 +  Z 1/2)/<n1ril + n2)/2, + Y2 112> and T I =  In i y2 — n2 yi  I. So,
by Lemma 2.13, = II -11( T; Z ) I .  Then, invoking the exact sequence

0 H i (OT; Z) I  i (X° ; Z) H i (X ; Z) 0,

we know that H I (X ; Z)
(2) This can be proved straightforwardly a s  in  Lemma 2.14.
(3) I f  H i (X ; Z) =  (0) then m 1 =  ••• =  m ,. =  1 . S o ,  Ti = q '(n (F i) )  i s  a

sm ooth fiber fo r 1  <  i < r , a n d  th e  boundary D u  E  o f  X  in  W  contains a
connected linear chain

Ç  + H2 ± (a  connected maximal subchain of Fo nD),
where ((1)= O. Then, by  [7 ; C or 2.4.3], X °  contains an -fibra tion . Hence

K(X)— oo. •

Lemma 2 .1 6 .  L et the assumptions and notations be as  abov e . Suppose the
case (II) occurs. T h e n  w e  have:

(1) Hi (X ; Z) = (0) i f  i 0, 1 and 1- 1 = 1 ZIm i Z  is  a  subgroup o f  1-11 (X ; Z).
(2) K(X) = 1, 0 or — cc if  and only  if

r

(r — 1) >  0 ,  =  0  or < 0, respectively.
1=1 Mi

(3) I f  H i (X ; Z) — (0) in particular, then K(X)= — co.

P ro o f . (1) As in the previous lemma, let P o be  the fiber of q containing F o .
Its graph is obtained from the graph in  Lemma 2.13, (3) by applying an oscilating
sequence of blowing-ups with initial point on a component (— c. + 1 ) or (—
Moreover, H i (X° ; Z) has generators and relations as indicated in  Lemma 2.15,
where and ri2  a re  replaced by the classes of Co a n d  G in H i (X ';  Z ) .  We can
show by Lemma 2.13 that II/ 1 (0T; Z)1 divides Imo — nbo l but does not necessarily
equal I mo y —n60 1. The assertion (2) is straightforward. The proof of the assertion
(3) is sim ilar to  L em m a 2 .15 . •

Summarizing Lemmas 2.11, 2.14, 2.15 and 2.16, we obtain the following result.

Theorem 2 .1 7 .  L et X  be a  logarithmic homology plane w ith a  C*-fibration
i t :  X -> C . S uppose K(X)> 0. Then K(X)= 1 and it is an untwisted C*-fibration
with C  P ' .  Moreover, X  has at m ost one singular point which has necessarily a
cyclic quotient singularity. T he structure of  X  and the condition f or X  to be
contractible are described in Lemma 2.11.

§ 3 .  A  homology plane with non-trivial involution

3 . 1 .  W e w ork on the projective plane P 2  with homogeneous coordinates
(x0 , x 1 , x 2 ). Let C be a  conic defined by 4, =  x + x3 and let ei ,e 2  a n d  e3  be
three concurrent lines defined by x, = — x o , x , =  0 and x, =  x o , respectively. So,
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e l and  ( 3  touch C in points P,:= (1 , - 1, 0) and P 3 := (1, 1, 0), respectively, while
e, meets C in  two points P 2 1  and  P 2 2 .  Let P .:=  (0, 0, 1) and  Po := (0, 1, 0).
This configuration of curves admits an involution a. defined by a: (x 0 , x 1 , x 2 )i-
(x0 ,  -  x l , x 2 ). The action a-  fixes the line e2  pointwise and stabilizes the line eo

defined by x , =  0 ; the points Po a n d  P .  are fixed points on Jo .
Let a l : P2 be the blowing-up of the point P .  and let M .= o

-
l (P.),

where E l is  the Hirzebruch surface of degree 1. Let V i
i )  =  a iv o n M . and Q(

3
1 )

=  (is) n M., where a- , vi ) and ((,) signify, as usual, the proper transforms of
( i  and (3  by a , .  Next, let o-

2 : 17 - ). E , be a composite of blowing-ups with centers
QV) , Q(31 ) , /1 ), p(1) (i =  0 , 1 )  and P (A(0 < j < 4), where, for s  = 1 and  3, P(

s

°)
 =  Ps

and Ps
i )  is an infinitely near point of Ps of order one lying on the conic oi (C), and

where P(
2
(:) =  P21 and, for 1 < j < 4, pp, is an infinitely near point of P21 of order j

lying on the conic a', (C ) . The surface V inherits the P'-fibration p: V - > P I from
t h e  Hirzebruch surface  E l . T h e  lines e ,,e2 , ( , give rise to  the fibers
Tu ) , T ( 2 ) , T ( 3 )  o f  p , which have the graphs indicated below:

T ( 1 ) : S . -  A u )  -  ( -  3) -  ( -  1) -  ( -  2)

T ( 2 ) : S .  -

So

T ( 3 ) : S .  - A ( 3 ) -  ( -  3 )  -  ( -  1 )  -  ( -  2 ) ,

So

where S o , S ., A( 2 ) , A" )  a n d  A( 3 ) a re  respectively the  proper transforms of a; (C),
M . and 0-i (( 1) by o-

2 a n d  a  ( Q (
1
1 ) ) and o-

2
-  (Q (

3
1 )), and where (S.2 ) =  - 1 , (S4)

5 and (A( )̀)2 =  -  1 .  Let D = (o
-
 2 • a 1)

-
 1  (C  el ue2 u( 3 ) — Au) — 2 ( 2 )  -  A ( 3 )  and

let X  = V -  D .  Then we have the following result:

Theorem 3.1. (1) X  has an involution a induced by the involution o- on P2  as
defined as above.

(2) X  is a  homology plane of  K odaira dim ension 2.
(3) T he inv olution a on X  has a unique f ix ed point (a 2 a,) - 1 (P0 ).
(4) Let Y  be the quotient space of  X  by  Œ. T hen Y  is a logarithmic homology

plane of  Kodaira dimension 2 with a  cyclic quotient singular point of  Dynkin type
A ,.

P ro o f . (1) Note that the centers of the above blowing-ups are fixed points
under the action of a- o r  th e  induced action of S o ,  a- preserves the boundary
divisor D ,  a n d  hence induces a n  in v o lu t io n  o n  X .  T h e  assertion (3 ) is
straightforward.
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(2) As divisors o n  V, we can write

T ( i ) = u i A( i ) + (other fiber components), i — 1, 3
T (2) = u 2  -Â(2) + (other fiber components)

at (M„,) = u 1 A ( 1 )  + y 3 A( 3 ) + (other boundary components)

at o- ', (C) = w;1 ( 2 )  + (other boundary components),

where u, u2 u 3 y ,  y 2 — 1 and w  =  5 . Since we have relations T ( 1 ) — T( 2 )

— T( 3 ) a n d  at a- , (C) — 2a' (M o o ) + 2at (o- , (e 2 ) )  in  Pic(V ), we compute

(
u, 0

IH ,(X  ; Z)1 = 0A I w ith  A = det U2 — U3 .

1)1 2 V 3  2 U 2  —  w

Hence 111 (X ; Z) = (0). This implies that X  is a  homology plane.
(4) The involution a on V interchanges the fibers T " ) an d  T ( 3 ) , has the fixed

curves A( 2 ) an d  two (— 2) curves, all appearing in the fiber T ( 2 ) and disjoint from
each other, has the fixed points Q0 :— (o- ,a 1) - 1 (P0) , Q .:= S . n (0-2 0-i )' (( o ) and Q2
:=  So n 24( 2 ) a n d  stabilizes the curves S  S 0 . Let a 3 : i-/—> V  be the blowing-
ups of the  poin ts Q0 , Q .  a n d  Q 2 .  L e t W= 17 /<o-> a n d  le t p : -17,  W be the
quotient m orphism . Then the  quo tien t space W  is  a  nonsingular projective
surface with a  P 1-fibration g : 14/.-- P 1 such that

(1) R .:= p ( S )  is a  cross-section of g  and  Ro := p(S o )  is a 2-section of g;
(2) U1 := p (T " )) = p ( T 3 )  a n d  it is a  fiber of g  with the graph:

R . —  (— 1)* — (— 3) — (— 1) — (— 2) ;

R o

(3) U2 := p ( T 2 ) is a  fiber of g  with the  graph:

R . —  (— 2) — (— 1) — (— 4) — (— 1) — (— 4) — (— 1)* — (— 2) ;

Ro

(4) U 0 := P*(0 14 0- 2aMeorn is a  fiber of g  with the  graph:

— (— 2) — ( — 1)* — ( — 2)** .

Ro

Let k be the open set of W obtained by removing all components of R .u R o

uU o u U ,u U , but the components marked with (*). Contract the component in
U0 marked with (**) to obtain an  affine surface Y with a unique cyclic quotient
singular point of Dynkin type A , .  Then Y X g a - ) . It is straightforward to
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show that Y is a  logarithmic homology plane of Kodaira dimension 2. •

§ 4 .  The automorphism group of a homology plane

4 .1 .  In this section we shall prove the following

Theorem 4.1. L e t  X  be  a Q-hom ology  plane def ined over C  adm itting an
effective action of a cyclic group G, let (V , D) be a G-normal completion, i.e., V  is a
nonsingular projective surface containing X  as an open set such that the G-action on
X  ex tends to a G -action on V  and D  = V —  X  is a  div isor w ith simple normal
crossings, and let T  = T (V , D) be the weighted dual graph o f  D .  Suppose G acts
trivially on T  and K (X ) = 2. Then D  has no irreducible components with positive
self-intersection number.

P ro o f . Our proof proceeds by reduction absurdum.
(1) If T  i s  a  linear chain, X  must contain a  cylinderlike open set (cf.

[ 7 ] ) .  Hence K(X ) = — oo, a contradiction. So, T  has a branch point. Let C be
an irreducible component with (C2 ) = n > O. If the vertex v(C) corresponding to
C  is not a branch point, one can show easily that either X  contains a cylinderlike
o p e n  s e t  o r  X  ad m its  a  C*-fibration. I n  e ith e r  case, K ( X )  2, a
contradiction. So, v (C ) i s  a  branch point. Let B i , . . . ,B ,  be all irreducible
components of D  w ith  (B i • C )> 0 ,  where r > 3. O n the other hand, every
irreducible component of D is a nonsingular rational curve and stable under the G-
action by the assumption. In particular, C  is a  component of VG = the G-fixed
point locus.

(2) Choose (n — 1) points on C  which are distinct from Bi  n C
(1 < j  < r). Let o

-
: V ' V  be the blowing-up of points and let C'

= B  = o-' (B i ) (1  <j < r) and E . = (P i) (1 i n  — 1). Then (C')2 = 1,
whence the linear system 1C'I has dimension 2. Write the parameter space of 1C'I
b y  W; so, 1/1/--; P 2 =  P(H

°
(V', (9y . ( C ) ) ) .  The group G  acts on H

°
(V ', (9 (C))

linearly and hence on P 2 .

C L A I M . L et to  b e  the point of  W  corresponding to C'. W e then hav e a  line
L  W . ' such that W G  = Lu {t 0 } and t o “- .

P ro o f . Choose a system of homogeneous coordinates Ix o , x 1 , x 2 1 on W such

,

w h ere  is  a primitive root of unity of order I GI and a, /3 > O. This is possible
because G is a cyclic group. Now, let P be a general point of C ' (other than P i 's
and /3; n C's) and let T p  V "  - ÷  V ' b e  the blowing-up of P .  Let C" = -C (C ), E
= T,7, 1 ( P ) .  Then (C") 2 =  0  and dim  IC" = I. M o reo ver, G  acts on the linear

that to is given by (1, 0, 0) and

xo 1 0 0 \ x0

x , ) = (

(
COE 0 x

x2 0 0 V' x 2
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pencil IC"1. H e n c e  th e re  is  a  m em ber D (P )e IC '1 , D (P ) C ', w h ic h  is  G-
s ta b le . The linear pencil (tp), I C"1 is a  sublinear system of 1C'l corresponding to
the line e(p) through to  and  the  poin t [D (P ) ] .  The G-action acts along the line
o i l .  Hence we must have a = /3. Then the line L: x o  =  0 is contained in  WG,
and to L .  If a > 0 then we are d o n e . If a = 0 then  W= W G . Namely, every
member of 1C'l is G -stable . By the next claim, each member of 1C'l then contains
a pointwise G-fixed component and, in fact, there are too many (infinitely many, in
fact) such com ponents. A  contradiction. •

(3) We shall verify

CLAIM. W ith the above notations, D (P ) is reducible and  contains a  G-fixed
component.

P ro o f  The curve D(P) is reduced to a single G-stable rational curve by G-
equivariant blow ing dow ns. A fter these G-equivariant blowing downs, th e  last
c o m p o n e n t  is  G -s ta b le  a n d  m e e t  t h e  im a g e s  o f  B i , . . . ,B „  E i ,...,E„_
transversally. So, the  last curve m ust be  pointwise fixed by the G-action. So,
back on the surface V ', the  proper transform of this last curve is pointwise G-
f ix ed . This component, after contracting E back o n  V ', is still pointwise G-fixed
and hence cannot meet C'. If so, the G-action on V ' would be trivial. Namely,
D(P) is reducible. This argument can apply to any G-stable member of IC I. •

Let H(P) be the irreducible component of D(P) which meets C' a t the point
P .  T hen  H (P ) i s  G -stable  and not contained i n  D .  L e t  K (P )=  H (P ) with
D n H(P), E. n H(P)'s (if not empty) and H(P) n (other components of D(P)) removed
off. N o t e  that these removed points on H(P) are G-fixed po in ts. T h is is clear for
D nH (P ) a n d  Ei n H (P ) 's . If  there a re  several n o n  G-fixed points contained in
H(P)n (other components of D (P )), one can readily show  th a t D (P ) contains a
loop, w hich  is no t th e  c a se . Therefore we have shown that {K(P)1 € _ S X
possibly with a  finite set S, and the G-action on X  is along K (P )'s . Since K(P)

H(P) ,  K ( P )  m ust be e ither C  o r  C *  fo r general P 's . So, ,c(X ) < 1, a
contradiction. •

4 .2 .  Let X  be a  Q-homology plane of Kodaira dimension 2 . Then it is well
known that the automorphism group Aut(X) is a  finite g ro u p . L e t (V, D) be an
Aut(X)-normal completion o f  X , whose existence is guaranteed  by  Sumihiro's
th eo rem . L e t T  b e  the  weighted dual graph of D .  Then A ut(X ) acts on the
graph T in a natural w ay . L e t N be the normal subgroup of Aut(X) consisting of
elements which acts trivially on  T. As in the proof of Theorem 4.1, D contains an
irreducible component, say C , which corresponds to  a  branch poin t of T. Let
B 1 ,..., B r be all irreducible components of D which meet the component C .  Then
C is  pointwise fixed by N  a n d  N  acts effectively o n  each  o f  th e  components
B ,,...,B ,.. Then one can easily show that N  is a  subgroup of the multiplicative
group G . .  Hence N  is  a  cyclic g ro u p . W e have proved the following :

Theorem 4 .2 .  L et X  be a  Q-homology plane w ith K(X)=- 2. Then Aut(X)
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contains a  cyclic norm al subgroup N  such that the quotient group A ut(X )IN  is a
subgroup o f  A ut(T ), which is the symmetric automorphism group of  the boundary
weighted graph T o f  X.
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