# Relations on pfaffians II: a counterexample 

By

Kazuhiko Kurano

## 1. Introduction

Let $R$ be a commutative ring with unity and fix an integer $n \geq 1$. We denote by $S$ the polynomial ring $R\left[\left\{x_{i j} \mid 1 \leq i<j \leq n\right\}\right] . S=\oplus_{i \geq 0} S_{i}$ has a structure of graded ring with $\operatorname{deg}\left(x_{i j}\right)=1$ for $1 \leq i<j \leq n$. For a positive integer $t$ such that $1<2 t \leq n, P f_{2 t}$ denotes the ideal generated by all $2 t$-order pfaffians of the $n$ by $n$ generic antisymmetric matrix $X=\left(x_{i j}\right)$, where $x_{i j}=-x_{j i}$ for $i>j, x_{i i}=0$ for $i$ $=1, \ldots, n$.
$X=\left(x_{i j}\right)$ has $\binom{n}{2 t}$ distinct $2 t$-order pfaffians and they are linearly independent over $R$. Hence there exists a graded exact sequence

$$
S(-t)^{\binom{n}{2 t} \xrightarrow{\partial_{1}}} S \longrightarrow S / P f_{2 t} \longrightarrow 0
$$

where $\partial_{1}$ sends basis elements of the graded free module $S(-t)^{\left(2^{n}\right)}$ to distinct $2 t$ order pfaffians of $X$. Since $\partial_{1}$ is homogeneous, $\operatorname{Ker}\left(\partial_{1}\right)$ is decomposed into homogeneous components. By the linear independence of pfaffians, $\operatorname{Ker}\left(\partial_{1}\right)$ is described in the form $\oplus_{a>0} \operatorname{Ker}\left(\partial_{1}\right)_{t+a}$. We call each element of $\operatorname{Ker}\left(\partial_{1}\right)_{t+a} a$ relation (on $2 t$-order pfaffians) of degree $a$.

When $R$ contains the rationals $\mathbf{Q}, \operatorname{Ker}\left(\partial_{1}\right)$ is generated as an $S$-module by relations of degree 1 ([4]). Furthermore over an arbitrary commutative ring $R$, it is true when $t=1, n=2 t, n=2 t+1$ ([2]) or $n=2 t+2$ ([7]).

In [6] we have already shown that:

1) $\operatorname{Ker}\left(\partial_{1}\right)$ is generated as an $S$-module by $\oplus_{a=1}^{t} \operatorname{Ker}\left(\partial_{1}\right)_{t+a}$. (By the general theory on Gröbner bases ([1]) we can show this fact immediately, because the set of all $2 t$-order pfaffians forms a Gröbner basis of the ideal $P f_{2 t}$.)
2) Suppose that $R$ is the prime field of characteristic $p>0$. If $2 p>n-2 t$, then $\operatorname{Ker}\left(\partial_{1}\right)$ is generated as an $S$-module by relations of degree 1 .

We can prove 2) in the same way as in the case of generic matrices ([5]). By 2) we know that $\operatorname{Ker}\left(\partial_{1}\right)$ is generated by relations of degree 1 over an arbitrary commutative ring $R$ when $n \leq 2 t+3$. (In this paper we will not use these results in [6].)

In this article we show that $\operatorname{Ker}\left(\partial_{1}\right)$ is not generated as an $S$-module by $\operatorname{Ker}\left(\partial_{1}\right)_{t+1}$ in general. In fact there exists a relation of degree 2 which is not contained in $S_{1} \cdot \operatorname{Ker}\left(\partial_{1}\right)_{t+1}$ when $n=8, t=2$ and $R$ is a field of characteristic 2. Consequently we know that the Betti numbers of $S / P f_{2 t}$ depend on the characteristic of the coefficient field in this case. Therefore $S / P f_{2 t}$ does not have generic minimal free resolutions in general by Proposition 2 of Section 4 in [8]. (In the case of determinantal ideals of generic matrices, the second syzygies of the ideals are not generated by degree 1 relations on the first syzygies in general ([3]). Hence there do not exist generic minimal free resolutions in this case, either.)

Section 2 is devoted to introducing the main theorem. In Section 3 we reduce its proof to Lemma 3.3 which will be proved in Section 4.

The author would like to thank Professor J. Nishimura for his valuable advice and encouragement.

## 2. Notation and main theorem

Throughout this article let $\mathbf{F}_{2}$ be the prime field of characteristic 2 and $E$ the $\mathbf{F}_{2}$-vector space of dimension 8 with basis $\left\{e_{1}, \ldots, e_{8}\right\}$. Then $\left(e_{i} \wedge e_{j}\right)$ is a generic 8 by 8 antisymmetric matrix with entries in $\mathrm{S}\left(\wedge^{2} E\right)=\oplus_{r \geq 0} \mathrm{~S}_{r}\left(\wedge^{2} E\right)$, where $\mathrm{S}_{r}(*)$ or $\Lambda^{r}(*)$ stands for the $r$ th symmetric or exterior module, respectively. We sometimes denote $S\left(\wedge^{2} E\right)$ or $S_{r}\left(\Lambda^{2} E\right)$ simply by $S$ or $S_{r}$ and call $S_{r}$ the homogeneous component of degree $r$.
$P f_{4}$ denotes the ideal generated by all 4 -order pfaffians of $\left(e_{i} \wedge e_{j}\right)$. This antisymmetric matrix has $\binom{8}{4}=70$ distinct 4 -order pfaffians and they are linearly independent over $\mathbf{F}_{2}$.

Since $S$ is a polynomial ring over $\mathbf{F}_{2}, S / P f_{4}$ has a graded minimal free resolution

$$
\cdots \longrightarrow \underset{i>0}{\oplus} S(-2-i)^{\beta_{i}} \longrightarrow S(-2)^{70} \xrightarrow{\partial_{1}} S \longrightarrow S / P f_{4} \longrightarrow 0,
$$

where $S(a)$ is a graded free module with grading $[S(a)]_{c}=S_{a+c}$ and $\partial_{1}$ sends every generators of $S(-2)^{70}$ to distinct 4-order pfaffians of $\left(e_{i} \wedge e_{j}\right)$. Then we have:

Theorem 2.1. With notation as above, $\beta_{2}$ is not 0 , i.e., $P f_{4}$ has the non-linear first syzygy.

Our purpose in this article is to prove this theorem.

## 3. How to calculate $\boldsymbol{\beta}_{2}$

Throughout this article, for a graded module $N, N_{a}$ stands for the homogeneous component of degree $a$.

Let $\mathscr{M}$ be the homogeneous maximal ideal of $S$. Then $\beta_{2}$ is equal to $\operatorname{dim}_{\mathbf{F}_{2}}\left(\left[\operatorname{Tor}_{2}^{S}\left(S / P f_{4}, S / \mathscr{M}\right)\right]_{4}\right)$. Since both $S / P f_{4}$ and $S / \mathscr{M}$ have the graded $S$ -
module structures, $\operatorname{Tor}_{2}^{S}\left(S / P f_{4}, S / \mathscr{M}\right)$ is also graded.) Furthermore $\left[\operatorname{Tor}_{2}^{S}\left(S / P f_{4}, S / \mathscr{M}\right)\right]_{4}$ is isomorphic to $\left[\operatorname{Tor}_{1}^{S}\left(P f_{4}, S / \mathscr{M}\right)\right]_{4} .\left(P f_{4}\right.$ is a graded submodule of $S$.) In order to compute $\operatorname{dim}_{\mathbf{F}_{2}}\left(\left[\operatorname{Tor}_{1}^{S}\left(P f_{4}, S / \mathscr{M}\right)\right]_{4}\right)$, consider the Koszul complex

$$
\text { C. }: \cdots \longrightarrow \wedge^{i}\left(\wedge^{2} E\right) \otimes_{\mathbf{F}_{2}} S(-i) \longrightarrow \cdots \longrightarrow \wedge^{2} E \otimes_{\mathbf{F}_{2}} S(-1) \longrightarrow S \longrightarrow 0,
$$

which is a graded free resolution of $S / \mathscr{M}$. (Boundary maps are defined to be the following composition;

$$
\begin{aligned}
& \Lambda^{i}\left(\wedge^{2} E\right) \otimes_{\mathbf{F}_{2}} S(-i) \xrightarrow{\Delta \otimes 1} \Lambda^{i-1}\left(\Lambda^{2} E\right) \otimes_{\mathbf{F}_{2}} \Lambda^{2} E \otimes_{\mathbf{F}_{2}} S(-i) \\
& \quad=\Lambda^{i-1}\left(\Lambda^{2} E\right) \otimes_{\mathbf{F}_{2}} S_{1} \otimes_{\mathbf{F}_{2}} S(-i) \xrightarrow{1 \otimes m} \Lambda^{i-1}\left(\wedge^{2} E\right) \otimes_{\mathbf{F}_{2}} S(-i+1),
\end{aligned}
$$

where $\Delta$ is the comultiplication and $m$ is the multiplication.) Since $\left(\Lambda^{i} \Lambda^{2} E\right) \otimes_{\mathbf{F}_{2}}$ $S(-i)) \otimes_{S} P f_{4}=\Lambda^{i}\left(\Lambda^{2} E\right) \otimes_{\mathbf{F}_{2}} P f_{4}(-i)$, the degree 4 component of the graded complex $\mathbf{C} . \otimes_{S}\left(P f_{4}\right)$ is written in the form

$$
0 \longrightarrow \Lambda^{2}\left(\Lambda^{2} E\right) \otimes_{\mathbf{F}_{2}}\left(P f_{4}\right)_{2} \xrightarrow{\phi} \Lambda^{2} E \otimes_{\mathbf{F}_{2}}\left(P f_{4}\right)_{3} \xrightarrow{\psi}\left(P f_{4}\right)_{4} \longrightarrow 0 .
$$

Since $\left[\operatorname{Tor}_{1}^{S}\left(P f_{4}, S / \mathscr{M}\right)\right]_{4}=\operatorname{Ker}(\psi) / \operatorname{Im}(\phi), \beta_{2}$ is equal to $\operatorname{dim}_{\mathbf{F}_{2}}(\operatorname{Ker}(\psi) / \operatorname{Im}(\phi))$. Hence in order to prove Theorem 2.1, we have only to show the following lemma.

Lemma 3.1. $\Lambda^{2}\left(\Lambda^{2} E\right) \otimes_{\mathbf{F}_{2}}\left(P f_{4}\right)_{2} \xrightarrow{\phi} \Lambda^{2} E \otimes_{\mathbf{F}_{2}}\left(P f_{4}\right)_{3} \xrightarrow{\psi}\left(P f_{4}\right)_{4} \longrightarrow 0$ is not exact.

Since modules in Lemma 3.1 are so big to calculate, we deal with only some direct summand as follows.

Definition 3.2. Let $\left(\Lambda^{2}\left(\Lambda^{2} E\right) \otimes_{\mathbf{F}_{2}}\left(P f_{4}\right)_{2}\right)^{*} \quad$ be the subspace of $\Lambda^{2}\left(\Lambda^{2} E\right) \otimes_{\mathbf{F}_{2}}\left(P f_{4}\right)_{2}$ where each basis element $e_{i}$ appears exactly once and define $\left(\wedge^{2} E \otimes_{\mathbf{F}_{2}}\left(P f_{4}\right)_{3}\right)^{*}$ and $\left(\left(P f_{4}\right)_{4}\right)^{*}$ similarly. Then it is clear that

$$
\begin{equation*}
\left(\wedge^{2}\left(\Lambda^{2} E\right) \otimes_{\mathbf{F}_{2}}\left(P f_{4}\right)_{2}\right)^{*} \xrightarrow{\phi^{*}}\left(\Lambda^{2} E \otimes_{\mathbf{F}_{2}}\left(P f_{4}\right)_{3}\right)^{*} \xrightarrow{\psi^{*}}\left(\left(P f_{4}\right)_{4}\right)^{*} \longrightarrow 0 \tag{1}
\end{equation*}
$$

is a direct summand of the complex in Lemma 3.1. $\left(\phi^{*}\left(\right.\right.$ resp. $\left.\psi^{*}\right)$ is the restriction of $\phi$ (resp. $\psi$ ).)

We will show that the sequence (1) is not exact.
By direct computations (using plethysm formulas in [6]) it is easy to check that

$$
\begin{aligned}
& \operatorname{dim}_{\mathbf{F}_{2}}\left(\wedge^{2}\left(\Lambda^{2} E\right) \otimes_{\mathbf{F}_{2}}\left(P f_{4}\right)_{2}\right)^{*}=210, \\
& \operatorname{dim}_{\mathbf{F}_{2}}\left(\wedge^{2} E \otimes_{\mathbf{F}_{2}}\left(P f_{4}\right)_{3}\right)^{*}=280, \\
& \operatorname{dim}_{\mathbf{F}_{2}}\left(\left(P f_{4}\right)_{4}\right)^{*}=91
\end{aligned}
$$

Therefore in order to prove Lemma 3.1, it is sufficient to show the following lemma;

Lemma 3.3. $\quad \operatorname{dim}_{\mathbf{F}_{2}} \operatorname{Ker}\left(\phi^{*}\right) \geq 22$.
This will be proved in the next section.
Remark 3.4. By using the same mothod as in [6] it is proved that $\beta_{2} \leq 1$. So, by Lemma 3.3, we have $\beta_{2}=1$. (From Theorem 5.3 in [6], $\beta_{2}=0$ in other characteristic. In fact, if we determine appropriate signatures, a set consists of 21 elements indexed by $2 \leq i \leq j \leq 8$ in Definition 4.1 forms a free basis of $\operatorname{Ker}\left(\phi^{*}\right)$ in the case of characteristic 0 .) For instance, one of the Koszul relations on 4-order pfaffians

$$
\begin{aligned}
&\left(e_{1} \wedge e_{2} \wedge e_{3} \wedge e_{4}\right) \otimes p f_{4}\left(e_{5}\right.\left.\wedge e_{6} \wedge e_{7} \wedge e_{8}\right)-\left(e_{4} \wedge e_{5} \wedge e_{6} \wedge e_{7}\right) \\
& \otimes p f_{4}\left(e_{1} \wedge e_{2} \wedge e_{3} \wedge e_{4}\right) \in \operatorname{Ker}\left(M_{2,2}\right)
\end{aligned}
$$

is not generated by relations of degree 1. ( $M_{2,2}$ is a map defined in Definition 5.1 in [6].)

## 4. Proof of Lemma $\mathbf{3 . 3}$

This section is devoted to proving Lemma 3.3.
Throughout this section we denote $e_{i}$ simply by $\mathbf{i}$ for each $i$.
Definition 4.1. For $i$ and $j$ such that $2 \leq i<j \leq 8$, define $K_{i j}$ in $\left(\wedge^{2}\left(\Lambda^{2} E\right) \otimes_{\mathbf{F}_{2}}\left(P f_{4}\right)_{2}\right)^{*}$ to be

$$
\sum_{\sigma \in \mathrm{S}_{3}} \sum_{\substack{\tau \in \mathrm{S}_{5} \\ \tau(3)<\tau(4)<\tau(4)<\tau(5)}}\left(\mathbf{a}_{\sigma(1)} \wedge \mathbf{b}_{\tau(1)}\right) \wedge\left(\mathbf{a}_{\sigma(2)} \wedge \mathbf{b}_{\tau(2)}\right) \otimes p f_{4}\left(\mathbf{a}_{\sigma(3)} \wedge \mathbf{b}_{\tau(3)} \wedge \mathbf{b}_{\tau(4)} \wedge \mathbf{b}_{\tau(5)}\right),
$$

where $a_{1}=1, a_{2}=i, a_{3}=j, 2 \leq b_{1}<\cdots<b_{5} \leq 8,\left\{a_{1}, a_{2}, a_{3}, b_{1}, \ldots, b_{5}\right\}=\{1, \ldots, 8\}$, $p f_{4}(\mathbf{r} \wedge \mathbf{s} \wedge \mathbf{t} \wedge \mathbf{u})=(\mathbf{r} \wedge \mathbf{s}) \cdot(\mathbf{t} \wedge \mathbf{u})+(\mathbf{r} \wedge \mathbf{t}) \cdot(\mathbf{s} \wedge \mathbf{u})+(\mathbf{r} \wedge \mathbf{u}) \cdot(\mathbf{s} \wedge \mathbf{t})$ and $\mathbf{S}_{\boldsymbol{k}}$ is the symmetric group on $\{1,2, \ldots, k\}$. ( $\mathbf{a}_{\sigma(r)}$ or $\mathbf{b}_{r(s)}$ stands for $e_{a_{\sigma(r)}}$ or $e_{b_{\tau(s)}}$, respectively. Note that we are doing on $\mathbf{F}_{2}$. Moreover summations above run over appropriate permutations.)

Lemma 4.2. For any $i$ and $j$ such that $2 \leq i<j \leq 8, K_{i j}$ is contained in $\operatorname{Ker}\left(\phi^{*}\right)$.

Proof. It is easily checked by direct computations.
Definition 4.3. We denote by $V$ the $\mathbf{F}_{2}$-subspace of $\left(\Lambda^{2}\left(\Lambda^{2} E\right) \otimes_{\mathbf{F}_{2}}\left(P f_{4}\right)_{2}\right)^{*}$ spanned by $\left\{K_{i j} \mid 2 \leq i<j \leq 8\right\}$.

Remark 4.4. A symmetric group $\mathbf{S}_{8}$ acts $E$ with permutations on $\left\{e_{1}, \ldots, e_{8}\right\}$, i.e., $\sigma$ contained in $\mathbf{S}_{8}$ maps $e_{i}$ to $e_{\sigma(i)}$ for $i=1, \ldots, 8$. So, $\operatorname{GL}(E)$ has a subgroup isomorphic to $\mathbf{S}_{8}$.

It is easy to see that both $\left(\wedge^{2}\left(\Lambda^{2} E\right) \otimes_{\mathbf{F}_{2}}\left(P f_{4}\right)_{2}\right)^{*}$ and $\left(\Lambda^{2} E \otimes_{\mathbf{F}_{2}}\left(P f_{4}\right)_{3}\right)^{*}$ have the structures of $\mathbf{S}_{8}$-modules and $\phi^{*}$ is an $\mathbf{S}_{8}$-homomorphism. Therefore for any $\sigma$ in $\mathbf{S}_{8}, \sigma\left(\operatorname{Ker}\left(\phi^{*}\right)\right)=\operatorname{Ker}\left(\phi^{*}\right)$. Let $\mathbf{S}_{7}$ be the subgroup of $\mathbf{S}_{8}$ consists of permutations fixing 1 .

Lemma 4.5. $\quad V$ is an $\mathbf{S}_{8}$-submodule of $\left(\Lambda^{2}\left(\Lambda^{2} E\right) \otimes_{\mathbf{F}_{2}}\left(P f_{4}\right)_{2}\right)^{*}$.
Proof. For $s>t$, we put $K_{s t}=K_{t s}$. Then for any $\mu$ in $\mathbf{S}_{7}$, we have $\mu\left(K_{i j}\right)$ $=K_{\mu(i) \mu(j)}$. Therefore $V$ is an $\mathbf{S}_{7}$-submodule of $\left(\wedge^{2}\left(\wedge^{2} E\right) \otimes_{\mathbf{F}_{2}}\left(P f_{4}\right)_{2}\right)^{*}$.

For distinct positive integers $p, q$ and $r$ which satisfy $1 \leq p, q, r \leq 8, N_{p q r}$ is defined to be
where $\quad a_{1}=p, \quad a_{2}=q, \quad a_{3}=r, \quad b_{1}<\cdots<b_{5} \quad$ and $\quad\left\{a_{1}, a_{2}, a_{3}, b_{1}, \ldots, b_{5}\right\}$ $=\{1, \ldots, 8\}$. By this definition $N_{1 i j}=K_{i j}$, and $\mu\left(N_{p q r}\right)=N_{\mu(p) \mu(q) \mu(r)}$ for any permutation $\mu$.

By direct computations we have $N_{1 p q}+N_{1 p r}+N_{1 q r}+N_{p q r}=0$. Therefore $N_{p q r}$ is contained in $V$. Consequently $V$ is an $\mathbf{S}_{8}$-submodule of $\left(\wedge^{2}\left(\wedge^{2} E\right) \otimes_{\mathbf{F}_{2}}\left(P f_{4}\right)_{2}\right)^{*}$.
Q.E.D.

Definition 4.6. For an element $\sum_{2 \leq i<j \leq 8} a_{i j} K_{i j}$ in $V$, consider the following graph;

1) the vertex set is $\{2,3, \ldots, 8\}$,
2) draw a line between $i$ and $j(i<j)$ if and only if $a_{i j} \neq 0$.
(This graph is not determined uniquely, because $\left\{K_{i j} \mid 2 \leq i<j \leq 8\right\}$ is not linearly independent.)

Example. The following graph is one corresponding to $\sum_{j=3}^{8} K_{2 j}$.


Lemma 4.7. 1) $\sum_{2 \leq i<j \leq 8} K_{i j}=0$.
2) $\sum_{j=3}^{8} K_{2 j}=0$.

Proof. Before proving this lemma, consider the following set.

$$
T=\left\{\begin{array}{l|l}
\left(\mathbf{c}_{1} \wedge \mathbf{c}_{2}\right) \wedge\left(\mathbf{c}_{3} \wedge \mathbf{c}_{4}\right) \otimes p f_{4}\left(\mathbf{c}_{5} \wedge \mathbf{c}_{6} \wedge \mathbf{c}_{7} \wedge \mathbf{c}_{8}\right) & \begin{array}{l}
\left\{c_{1}, \ldots, c_{8}\right\}=\{1, \ldots, 8\} \\
c_{1}<c_{2}, c_{1}<c_{3}<c_{4} \\
c_{5}<c_{6}<c_{7}<c_{8}
\end{array}
\end{array}\right\}
$$

$T$ is a free basis of $\left(\wedge^{2}\left(\wedge^{2} E\right) \otimes_{\mathbf{F}_{2}}\left(P f_{4}\right)_{2}\right)^{*}$ and each $K_{i j}$ is a sum of distinct 60 elements in $T$.

Now we start to prove 1). Obviously $\sum_{2 \leq i<j \leq 8} K_{i j}$ is $\mathbf{S}_{7}$-invariant. Since each element in $\mathbf{S}_{7}$ acts $\left(\wedge^{2}\left(\wedge^{2} E\right) \otimes_{\mathbf{F}_{2}}\left(P f_{4}\right)_{2}\right)^{*}$ as a certain permutation on $T$, we have only to compute the coefficients of $(1 \wedge 2) \wedge(3 \wedge 4) \otimes p f_{4}(5 \wedge 6 \wedge 7 \wedge 8)$ and $(2 \wedge 3) \wedge(4 \wedge 5) \otimes p f_{4}(1 \wedge 6 \wedge 7 \wedge 8)$. It is easy to check that both of them are zero.

Next we show 2). Since $\sum_{j=3}^{8} K_{2 j}$ is invariant under permutations fixing 1 and 2 , it suffices to compute the coefficients of $(1 \wedge 2) \wedge(3 \wedge 4) \otimes p f_{4}(5 \wedge 6 \wedge 7 \wedge 8)$, $(1 \wedge 3) \wedge(2 \wedge 4) \otimes p f_{4}(5 \wedge 6 \wedge 7 \wedge 8),(1 \wedge 3) \wedge(4 \wedge 5) \otimes p f_{4}(2 \wedge 6 \wedge 7 \wedge 8),(2 \wedge 3) \wedge$ $(4 \wedge 5) \otimes p f_{4}(1 \wedge 6 \wedge 7 \wedge 8)$, and $(3 \wedge 4) \wedge(5 \wedge 6) \otimes p f_{4}(1 \wedge 2 \wedge 7 \wedge 8)$. It will be easily checked.
Q.E.D.

Lemma 4.8. Any four elements in $\left\{K_{i j} \mid 2 \leq i<j \leq 8\right\}$ are linearly independent over $\mathrm{F}_{2}$.

Proof. Suppose that there exists a relation $\sum_{2 \leq i<j \leq 8} a_{i j} K_{i j}=0$ such that \# $\left\{(i, j) \mid i<j, a_{i j} \neq 0\right\}$ is less than or equal to 4 , where $a_{i j}$ 's are elements in $\mathbf{F}_{2}$ and " $\{$ \} stands for the number of elements satisfying a given condition.

Since $K_{i j} \neq 0$ for $2 \leq i<j \leq 8$, we may assume ${ }^{\#}\left\{(i, j) \mid i<j, a_{i j} \neq 0\right\}=2,3$ or 4 .
First suppose $\#\left\{(i, j) \mid i<j, a_{i j} \neq 0\right\}=2$. Consider the graph corresponding to the given element $\sum_{2 \leq i<j \leq 8} a_{i j} K_{i j}$. It is either Graph A or Graph B.


Graph A


Graph B
(In these graphs the vertices with no lines have been omitted.) For Graph A (resp. Graph B), we may assume that the given relation is $K_{23}+K_{24}=0$ (resp. $K_{23}+K_{45}=0$ ) by an appropriate permutation. It is easy to check that both $K_{23}+K_{24}$ and $K_{23}+K_{45}$ are not zero. (Compute the coefficients of $(\mathbf{2} \wedge \mathbf{5}) \wedge$ $(3 \wedge 6) \otimes p f_{4}(1 \wedge 4 \wedge 7 \wedge 8)$.)

Next suppose ${ }^{\#}\left\{(i, j) \mid i<j, a_{i j} \neq 0\right\}=3$. The set of graphs with three lines consists of the following five elements:


Graph C


Graph D


Graph E



For Graph G, we may assume that the given relation is $K_{23}+K_{45}+K_{67}$ $=0$. Since $\operatorname{Ker}\left(\phi^{*}\right)$ is an $\mathbf{S}_{8}$-submodule of $\left(\Lambda^{2}\left(\Lambda^{2} E\right) \otimes_{\mathbf{F}_{2}}\left(P f_{4}\right)_{2}\right)^{*}$, we obtain

$$
(78)\left(K_{23}+K_{45}+K_{67}\right)=K_{23}+K_{45}+K_{68}=0,
$$

where (78) is the element in $\mathbf{S}_{8}$ exchanging 7 and 8 . Then we have $K_{67}+K_{68}$ $=0$. Contradiction. For Graph D, Graph E and Graph F, we can show the linear independence similarly.

For Graph C, we may assume that the given relation is $K_{23}+K_{34}$ $+K_{24}$. But it is not zero because $(2 \wedge 5) \wedge(3 \wedge 6) \otimes p f_{4}(1 \wedge 4 \wedge 7 \wedge 8)$ appears in $K_{23}+K_{34}+K_{24}$ with non-zero coefficient.

Lastly assume ${ }^{\#}\left\{(i, j) \mid i<j, a_{i j} \neq 0\right\}=4$. We have only to compute relations whose graphs is Graph H or Graph I.


Graph H


Graph I
(For other graphs we can use the same technique as in the case of Graph G.)
For Graph H the given relation is $K_{23}+K_{34}+K_{45}+K_{25}$. But $(2 \wedge 6) \wedge(3 \wedge 7) \otimes p f_{4}(1 \wedge 4 \wedge 5 \wedge 8)$ has non-zero coefficient.

For Graph I we may assume that the given relation is $K_{23}+K_{34}+K_{56}$ $+K_{78}$. Then we have

$$
(67)\left(K_{23}+K_{34}+K_{56}+K_{78}\right)=K_{23}+K_{34}+K_{57}+K_{68}=0,
$$

In this case, we obtain another relation $K_{56}+K_{78}+K_{57}+K_{68}=0$ whose graph is Graph H. Contradiction.

We have completed the proof of Lemma 4.8.
Q.E.D.

Lemma 4.9. Any fourteen elements in $\left\{K_{i j} \mid 3 \leq i<j \leq 8\right\}$ are linearly independent. In particular, $\operatorname{dim}_{\mathbf{F}_{2}} V=14$.

Proof. From 2) of Lemma 4.7, $V$ is spanned by $\left\{K_{i j} \mid 3 \leq i<j \leq 8\right\}$. Furthermore we have

$$
\sum_{3 \leq i<j \leq 8} K_{i j}=\sum_{2 \leq i<j \leq 8} K_{i j}-\sum_{j=3}^{8} K_{2 j}=0
$$

by Lemma 4.7. Therefore $\operatorname{dim}_{\mathbf{F}_{2}} V$ is less that or equal to 14 .
Assume that there exists a relation $\sum_{3 \leq i<j \leq 8} a_{i j} K_{i j}$ such that ${ }^{\#}\{(i, j) \mid i<j$, $\left.a_{i j} \neq 0\right\} \leq 14$. It is easy to see that we may assume that ${ }^{\#}\left\{(i, j) \mid i<j, a_{i j} \neq 0\right\}=5$, 6 or 7. (See Lemma 4.8 and remember that $\sum_{3 \leq i<j \leq 8} K_{i j}=0$.)

First assume that the graph corresponding to the given relation is Graph J.


Graph J

We may assume that the given relation is equal to $K_{34}+K_{35}+K_{36}+K_{45}+K_{56}$ $=0$. Then we have

$$
(24)\left(K_{34}+K_{35}+K_{36}+K_{45}+K_{56}\right)=K_{23}+K_{35}+K_{36}+K_{25}+K_{56}=0,
$$

Then $K_{23}+K_{25}+K_{34}+K_{45}=0$. Contradiction to Lemma 4.8.
More generally when ${ }^{\#}\left\{(i, j) \mid i<j, a_{i j} \neq 0\right\}=5$ or 7 , we can show the linear independence by the same technique as in the cases of Graph G or Graph J.

Suppose " $\left\{(i, j) \mid i<j, a_{i j} \neq 0\right\}=6$. We may assume that the graph corresponding to the given relation is the following one:


Graph K
(For other graphs, we can use the same technique as in the cases of " $\{(i, j) \mid i<j$, $\left.a_{i j} \neq 0\right\}=5$ or 7.) In this case the given relation is equal to $K_{34}+K_{35}+K_{36}$ $+K_{45}+K_{46}+K_{56} . \quad$ But $(3 \wedge 7) \wedge(4 \wedge 8) \otimes p f_{4}(1 \wedge 2 \wedge 5 \wedge 6)$ appears in it with non-zero coefficient.

We have completed the proof of Lemma 4.9.
Q.E.D.

Definition 4.10. Let $h$ be a positive integer such that $1 \leq h \leq 8$. Define $A_{h}$ to be

$$
\sum\left(\mathbf{c}_{1} \wedge \mathbf{c}_{2}\right) \wedge\left(\mathbf{c}_{3} \wedge \mathbf{c}_{4}\right) \otimes p f_{4}\left(\mathbf{c}_{5} \wedge \mathbf{c}_{6} \wedge \mathbf{c}_{7} \wedge \mathbf{h}\right)
$$

where the above sum runs over the set satisfying the following conditions.

- $\left\{c_{1}, \ldots, c_{7}\right\}=\{1, \ldots, h-1, h+1, \ldots, 8\}$.
- $c_{1}<c_{2}, c_{1}<c_{3}<c_{4}$ and $c_{5}<c_{6}<c_{7}$.

It is easy to see that $A_{h}$ is a sum of distinct 105 elements in $T$.
Lemma 4.11. For a positive integer $h$ such that $1 \leq h \leq 8, A_{h}$ is contained in $\operatorname{Ker}\left(\phi^{*}\right)$.

Proof. It is easy to compute.
Lemma 4.12. $\sum_{h=1}^{8} A_{h}=0$.

Proof. For any $\sigma$ in $\mathbf{S}_{8}$, we have $\sigma\left(A_{h}\right)=A_{\sigma(h)}$. Therefore $\sigma\left(\sum_{h=1}^{8} A_{h}\right)=$ $\sum_{h=1}^{8} A_{h}$. Hence we have only to compute the coefficient of $(1 \wedge 2) \wedge(3 \wedge 4)$ $\otimes p f_{4}(5 \wedge 6 \wedge 7 \wedge 8)$. It is obviously zero.
Q.E.D.

We put $W=V+\sum_{h=1}^{8} \mathbf{F}_{2} \cdot A_{h}$, which is an $\mathbf{S}_{8}$-submodule of $\operatorname{Ker}\left(\phi^{*}\right)$.
Lemma 4.13. $\operatorname{dim}_{\mathbf{F}_{2}} W=21$, i.e., any seven elements in $\left\{A_{h} \mid 1 \leq h \leq 8\right\}$ are linearly independent in $W / V$.

Proof. Suppose that $\sum_{h=1}^{8} b_{h} A_{h}$ is contained in $V$, where $b_{h}$ 's are elements in $\mathbf{F}_{2}$ and " $\left\{h \mid b_{h} \neq 0\right\}$ is neither 0 nor 8 .

We may assume $1 \leq{ }^{\#}\left\{h \mid b_{h} \neq 0\right\} \leq 4$. Furthermore by computing the number of elements in $T$, we know that ${ }^{\#}\left\{h \mid b_{h} \neq 0\right\}$ must be even.

First suppose ${ }^{\#}\left\{h \mid b_{h} \neq 0\right\}=2$. Since $V$ is $\mathbf{S}_{8}$-invariant by Lemma 4.5, we may assume that $A_{1}+A_{2}$ is contained in $V$. Put $A_{1}+A_{2}=\sum_{3 \leq i<j \leq 8} c_{i j} K_{i j}$ such that ${ }^{\#}\left\{(i, j) \mid c_{i j} \neq 0\right\} \leq 7$. Then for any permutation $\mu$ fixing 1 and 2 , we have

$$
A_{1}+A_{2}=\mu\left(A_{1}+A_{2}\right)=\sum_{3 \leq i<j \leq 8} c_{i j} K_{\mu(i) \mu(j)} .
$$

Therefore $\sum_{3 \leq i<j \leq 8} c_{i j} K_{i j}-\sum_{3 \leq i<j \leq 8} c_{i j} K_{\mu(i) \mu(j)}=0$. By Lemma 4.9, $\sum_{3 \leq i<j \leq 8}$ $c_{i j} K_{i j}$ must be 0 . Hence $A_{1}+A_{2}=0$. But $(\mathbf{1} \wedge 3) \wedge(4 \wedge 5) \otimes p f_{4}(2 \wedge 6 \wedge 7 \wedge 8)$ appears in $A_{1}+A_{2}$ with non-zero coefficient. Contradiction.

Next suppose ${ }^{\#}\left\{h \mid b_{h} \neq 0\right\}=4$. We may assume $A_{1}+A_{2}+A_{3}+A_{4}$ is in V. Then

$$
(45)\left(A_{1}+A_{2}+A_{3}+A_{4}\right)=A_{1}+A_{2}+A_{3}+A_{5}
$$

is contained in $V$. Therefore $A_{4}+A_{5}$ is also in $V$. Contradiction. Q.E.D.
Definition 4.14. Define a subset $Z$ of $T$ (see the proof of Lemma 4.7) to be

$$
Z=\left\{\begin{array}{c|c}
\left(\mathbf{c}_{1} \wedge \mathbf{c}_{2}\right) \wedge\left(\mathbf{c}_{3} \wedge \mathbf{c}_{4}\right) \\
\otimes p f_{4}\left(\mathbf{c}_{5} \wedge \mathbf{c}_{6} \wedge \mathbf{c}_{7} \wedge \mathbf{c}_{8}\right) \in T & \begin{array}{r}
\text { If } c_{5}=1, \text { then } c_{1}<c_{3}<c_{2}<c_{4} . \\
\text { If } c_{1}=1 \text { and } c_{2}<c_{3}<c_{4} \\
\text { then } c_{3}+c_{4} \text { is even. } \\
\text { If } c_{1}=1 \text { and } c_{3}<c_{2}<c_{4} \\
\text { then } c_{3}+c_{4} \text { is odd. } \\
\text { If } c_{1}=1 \text { and } c_{3}<c_{4}<c_{2} \\
\text { then } c_{3}+c_{4} \text { is even. }
\end{array}
\end{array}\right\}
$$

Then put $B=\sum_{q \in Z} q$.
It is easy to check that ${ }^{\#} Z$ is odd.

Lemma 4.15. $(2345678)(B)=B$.
Proof. It is easy to compute.
Lemma 4.16. $B$ is contained in $\operatorname{Ker}\left(\phi^{*}\right)$.

Proof. By direct computations it will be easily checked (use Lemma 4.15).
Proposition 4.17. $B$ is not contained in $W$, i.e., $\operatorname{dim}_{\mathbf{F}_{2}}\left(W+\mathbf{F}_{2} \cdot B\right)=22$.
Proof. Suppose that $B+\sum_{h=1}^{8} b_{h} A_{h}$ is contained in $V$, where $b_{h}$ 's are elements in $\mathbf{F}_{2}$. We may assume ${ }^{\#}\left\{h \mid b_{h} \neq 0\right\}=1$ or 3 , because ${ }^{\#} Z$ is odd.

First suppose ${ }^{\#}\left\{h \mid b_{h} \neq 0\right\}=1$. If $B+A_{h}$ is contained in $V$ for $h \geq 2$, so is $B$ $+A_{\sigma(h)} \quad$ where $\quad \sigma=(2345678)$. Then $A_{h}+A_{\sigma(h)}$ is in $V$, too. Contradiction. Assume $B+A_{1}$ is contained in $V$. Put

$$
B+A_{1}=\sum_{\substack{2 \leq i<j \leq 8 \\ i \neq 5, j \neq 5}} g_{i j} K_{i j}
$$

(Obviously $V$ is spanned by $\left\{K_{i j} \mid 2 \leq i<j \leq 8, i \neq 5, j \neq 5\right\}$ and any fourteen elements of them are linearly independent.) Computing the coefficients of $(2 \wedge 5) \wedge(3 \wedge 6) \otimes p f_{4}(1 \wedge 4 \wedge 7 \wedge 8),(2 \wedge 5) \wedge(4 \wedge 6) \otimes p f_{4}(1 \wedge 3 \wedge 7 \wedge 8)$ and $(2 \wedge 5) \wedge(3 \wedge 4) \otimes p f_{4}(1 \wedge 6 \wedge 7 \wedge 8)$, we obtain $g_{23}+g_{26}=0, g_{24}+g_{26}=0$ and $g_{23}+g_{24}=1$. Contradiction.

Next suppose ${ }^{\#}\left\{h \mid b_{h} \neq 0\right\}=3$. By using $\sigma=(2345678)$, we can check this case easily.
Q.E.D.

We have completed the proof of Lemma 3.3.
Tokyo Metropolitan University

## References

[1] B. Buchberger, Gröbner bases: An algorithmic method in polynomial ideal theory, in Multidimensional System Theory, Ed. N. K. Bose, D. Reidel Publ. Comp. (1985), Chapter 6.
[2] D. A. Buchsbaum and D. Eisenbud, Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension 3, Amer. J. of Math., 99 (1977), 447-485.
[3] M. Hashimoto, Determinantal ideals without generic minimal free resolutions, Nagoya J. Math., to appear.
[4] T. Józefiak, P. Pragacz, and J. Weyman, Resolutions of determinantal varieties and tensor complexes associated with symmetric and antisymmetric matrices, Astérisque, 87-88, 109-189.
[5] K. Kurano, The first syzygies of syzygies of determinantal ideals, J. Alg., 124 (1989), 414-436.
[6] K. Kurano, Relations on pfaffians I: Plethysm formulas, preprint.
[7] P. Pragacz, Characteristic free resolution of $(n-2)$-order pfaffians of $n \times n$-antisymmetric matrix, J. Alg., 78 (1982), 386-396.
[8] P. Roberts, Homological invariants of modules over commutative rings, Presses Univ. Montreal, Montreal, 1980.

