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Relations on pfaffians II: a counterexample
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1. Introduction

Let R be a commutative ring with unity and fix an integer n  >  1 . We denote
by S  the polynomial ring R [{x i i i 1 i < j  S  =  ( D i ,„S i has a structure of
graded ring with deg (x i)  = 1 for 1 i < j  n .  For a positive integer t  such that
1 < 2t < n, Pf2 , denotes the ideal generated by all 2t-order pfaffians of the n by n
generic antisymmetric matrix X  = (x i), where x i ;  = — xi i  fo r i > j, x i i  = 0  for i
= 1, n .

X  = (x i)  has (L) distinct 2t-order pfaffians and they are linearly independent
over R .  Hence there exists a  graded exact sequence

tO l t ) S S/Pf2t

where 0 , sends basis elements of the graded free module S(— t) ( 2 t)  to  distinct 2t-
order pfaffians of X .  Since e l  is homogeneous, Ker (0 1 )  is decomposed into
homogeneous components. By the linear independence of pfaffians, Ker (0,) is
described in the form ( D a > Ø

 Ker (0 i )t ± a . We call each element of Ker (0,),, a a
relation (on 2t-order pfaff ians) of  degree a.

When R  contains the rationals Q , Ker (0 i )  is generated as an S-module by
relations of degree 1 ( [ 4 ] ) .  Furthermore over an arbitrary commutative ring R, it
is true when t  = 1, n = 2t, n = 2t + 1 ([2]) or n = 2t + 2 ([7]).

In [6 ] we have already shown that :

1) Ker (ô I ) is generated a s  a n  S-module b y  C) at,, Ker (0,),, a . (By the
general theory on Gr6bner bases ([1]) we can show this fact immediately,
because the set of all 2t-order pfaffians forms a Gr6bner basis of the ideal
Pf2t.)

2) Suppose that R  is the prime field of characteristic p > O. If 2p> n — 2t,
then Ker WO is generated as an S-module by relations of degree 1.

We can prove 2) in the same way as in the case of generic matrices ( [ 5 ] ) .  By 2)
we know that K e r  ( )  is generated by relations of degree 1  over an arbitrary
commutative ring R when n < 2t + 3. (In this paper we will not use these results
in [6].)
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In  this article we show that Ker (0,) is not generated a s  a n  S-module by
K er (0,),,, in  general. In  fact there exists a  re la tion  of degree 2  which is not
contained in  S, • Ker (0 1) , , ,  when n = 8, t  = 2 and  R  is a field  of characteristic
2. Consequently we know that th e  Betti numbers o f  S / P f2 ,  depend on the
characteristic of the coefficient field in this c a s e . Therefore S / P f2 ,  does not have
generic minimal free resolutions in  general by Proposition 2  of Section 4  in
[ 8 ] .  (In the case of determinantal ideals of generic matrices, the second syzygies
of the ideals are not generated by degree 1 relations on the first syzygies in general
( [ 3 ] ) .  Hence there d o  not exist generic minimal free resolutions in  this case,
either.)

Section 2 is devoted to introducing the main theorem. In Section 3 we reduce
its proof to Lemma 3.3 which will be proved in Section 4.

The author would like to thank Professor J. Nishimura for his valuable advice
and encouragement.

2. Notation and main theorem

Throughout this article let F2 be the prime field of characteristic 2 and E the
F2 -vector space of dimension 8 with basis fe 1 ,...,e 8 1. Then (e, A  e s) is a generic 8
by 8 antisymmetric matrix with entries in S( A2 E )= Sr( A2 E), where Sr (*) or
Ar(*) stands for the r th symmetric or exterior module, respectively. We sometimes
denote S( A2 E ) o r  Sr ( A2 E ) simply by S  o r  Sr a n d  call Sr t h e  homogeneous
component of degree r.

P f, denotes th e  ideal generated by all 4-order pfaffians o f (e, A  e s). This
antisymmetric matrix has ( ) = 70 distinct 4-order pfaffians and they are linearly
independent over F2.

Since S  is  a polynom ial ring over F2, S O Y , has a  graded minimal free
resolution

—) C) S(— 2 — Ofli S( — 2)7° • - ) S S/Pf, 0,
i>cp

where S(a) is a graded free module with grading [S(a)] c = S a + , and 01 sends every
generators of S( — 2)7° to  distinct 4-order pfaffians of (e, A es). Then we have :

Theorem 2.1. W ith notation as above, ,62 is no t 0, i.e., Pf4  has the non-linear
f irst syzygy.

O ur purpose in  this article is to prove this theorem.

3. How to calculate P2

Throughout this a r t ic le ,  f o r  a  graded m odu le  N , N a s ta n d s  f o r  th e
homogeneous component of degree a.

L e t .41  b e  th e  homogeneous maximal ideal o f  S. Then 132 is  e q u a l to
dim , 2 ([T o r(S / P f4 , S/.11)1 4 ). Since both S/Pf4  a n d  S Id i have the  graded S-
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module structures,T o r i  (S I Pf4 , S  d i) is also graded.) Furthermore
[T o4 (5 / P f4 , S/ ) L  is  isom orph ic  to  [T or s

i (P f4 , S I.11)] 4 . ( P f 4  i s  a  graded
submodule of S.) In  order to com pute dim F 2 aTor s, (Pf4 , S/i1)] 4 ) , consider the
Koszul complex

C .: • • • fi( A2 E) C) F 2  S(— i) — >  E  O F 2 S( — 1) — * S  —> 0,

which is a  graded free resolution of S / 4 %  (Boundary maps are defined to be the
following composition;

fi( A2 E) O F ,S ( —  0  2--* fi - 1 ( A2 E) O F 2  A2 E C) F ,S(—

= N - 1 ( A2 E) O F , S i  O F 2 ) fi-1(A 2 CD,
F 2 S(— i + 1),

where 4 is the comultiplication and m is the m ultiplication.) Since (A A2 E) ®F 2

S( — i)) (j) s  Pf4  = f i( A 2 E) C) F 2 Pf4 (— i) ,  th e  degree 4  component o f  th e  graded
complex C. C) s (pf4 ) is written in  the  form

0 A2( A2 E) (R) (Pf 1 A E 6-0  ( P f ( p f  ) nF2 -  4/ 2 —2 — F2 a 4/ 3 4 ,4

Since [Tors
i (PL., S I ./N)]4  = Ker (0)/Im (0), # 2  is  e q u a l to  dim F 2 (Ker (0)/Im (0)).

Hence in order to prove Theorem 2.1, we have only to show the following lemma.

Lemma 3.1. A 2 ( A2 E) F21 - 13f412 A2 E ® F2 (Pf4)3 (Pf4)4
 - * 0  is  n o t

exact.

Since modules in Lemma 3.1 are so big to  calculate, we deal with only some
direct summand as follows.

Definition 3.2. Let ( A2 ( A2 El ® F 2
I  1F2 4/ 2/* be the subspace of

A2 ( A2 E) OF. (P f4 )2 where each basis element e i appears exactly once and define
( A2 E 0  F. (P f4 )3 )*  and ((P f4 )4 )*  sim ilarly. Then it is clear that

( A2 ( A2 E) F2 (13f4)2) * (  A 2 E F2 113.1:(13)* (1 P f 4 1 4 )*  — > 0 ( 1 )

is a direct summand of the complex in Lemma 3.1. (0 * (re sp . te )  is the restriction
of 0 (resp. . )

We will show th a t the sequence (1) is  no t exact.
By direct computations (using plethysm formulas in [6 ])  it is easy to  check

that

dimF2( A2 ( A2 E) OF2(Pf4)2) *  = 210,

dim F 2 ( A2 E F 2 113f 4)3)*  = 280,

dimF2 ((P/4)4) *  = 91.
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Therefore in order to prove Lemma 3.1, it is sufficient to show the following
lemma;

Lemma 3 .3 .  din-1, 2 Ker (0*) > 22.

This will be proved in  the  next section.

Remark 3.4. B y  u s in g  th e  sam e mothod a s  i n  [ 6 ]  it  is  p ro v e d  th a t
13 < 1  So, by Lemma 3.3, we have /32 =  1 . (From Theorem 5.3 in [6], ,6 2 = 0 in
other characteristic. In fact, if we determine appropriate signatures, a set consists
o f 21 elements indexed by 2 < i <j < 8  in  Definition 4.1 forms a free basis of
Ker (49*) in the case of characteristic O.) For instance, one of the Koszul relations
on  4-order pfaffians

(e, A  e2 A  e3 A  e4 ) 0  pf4 (e5 A  e6  A  e7  A  e8 ) (e4 A  e5  A  e6 A  e7 )

0  pf ,(e, A  e2  A  e3 A  e4 )e Ker (M2,2)

is not generated by relations of degree 1. ( M 2 ,2 is  a map defined in Definition 5.1
in  [6].)

4. Proof of Lemma 3.3

This section is devoted to proving Lemma 3.3.
Throughout this section we denote ei sim ply by i  for each i.

Definition 4 .1 .  F o r  i a n d  j  s u c h  t h a t  2 < i < j  < 8, define K .  i n
(A2 (A2 E) (56 )■-• F 2

(Pr ) to be

E E (a ( 1 ) A  k ) l ) ) A  (aa ( 2 )  A  1),( 2 ) 0  pf4 (ao.( 3 )  A  1)„( 3) A  1)5 ( 4 )  A  1),( 5 ) ),
aeS3 reSs

r(1)<r(2)
2(3) <-04) <T(5)

where a1 =1, a 2 =i, a 3 =j, 2  b,<••• <b 5 -  8, la 1 , a 2 , a 3 , b1 ,...,b 5 1=
p i:Jr  A sA tA  u ) =  (r  s ) .(t + (r A t)- (s A u) + (r A u). (s A t) and S k  is  the
symmetric group on  11, 2,...,14. (a, 09 o r  br ( s ) stands for e„,,, or el, (w  respectively.
Note that we are doing on F 2 .  Moreover summations above run over appropriate
permutations.)

Lemma 4 .2 .  Fo r any  i  and j  such that 2 i < j  8 ,  K .  is contained in
Ker (4)*).

P ro o f . It is easily checked by direct computations.

Definition 4 .3 .  W e denote  by  V  th e  F2 -subspace o f ( A2 ( A' E) F2 (
P

f 4 ) 2 )
*

spanned by {K1i 12 < j  8}.

Remark 4 .4 .  A symmetric group S 8  acts E with permutations on (e 1 ,..., e 8 },
i.e., a  contained in  S 8  maps e; to  e 111 fo r i = 1,...,8. So, GL(E) has a  subgroup
isomorphic to S8.
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, 2.I*  and ( A2 E F 2  (P f4 )3 )
* haveIt is easy to see that both ( A2 ( A2 El 6 -6 F 2  (Pf4 1  

the structures of S8 -modules and 4)* is an Sr homomorphism. Therefore for any a
i n  S8 , o - (Ker(4)*)) = Ker (4)*). L e t  S ,  b e  t h e  subgroup  o f  S 8  consists of
permutations fixing 1.

Lemma 4.5. V  is  an S r submodule of (A 2 ( A2

P r o o f .  For s>  t ,  we pu t K s, = K ts . Then for any p  in  S7 , we have p(K u )
= K„(,),,o . Therefore V  is  a n  S7 -submodule of ( A2 ( A26 -6 fE,

For distinct positive integers p , q  and r which satisfy 1 p , q ,r < 8, N  p q r  is
defined to be

cr.s3 reS5
A  k w )  A  (aGr(2) A  br ( 2) ) 0  pf4 (a, ( 3 )  A  b r (3 ) A  k w  A  br (5 ) ),

r(1)<r(2)
r(3)<s(4)<T(5)

where a l  = p, a2 = q, a3 = r, b 1 < • • • <b 5a n d la 1 , a2 , a3 , b1 ,..., b5 1
= {1,...,8 }. B y th is  de fin ition  N 111 = K1» a n d  ii(Npqr) = Np(p) , ( 0 „ ( r ) f o r  any
permutation p.

By direct computations w e have N i p q  + N i p, + N 18 ,.  N p q r = O. Therefore
N p q r i s  c o n t a i n e d  in V. Consequently V  i s  a n  S8 -submodule of
( A2 ( A2 E) f  1F2 Y., 4/21*  • Q. E. D.

Definition 4 .6 .  For an  element E 2
 , , , i „  au  K u  in  V, consider the following

graph;
1) the vertex set is  {2, 3,...,8},
2) draw a  line between i  and j  (i < j )  if  a n d  only if au  0  O.

(This graph is not determined uniquely, because { 1(11 12 i < j  8 }  is not linearly
independent.)

Example. The following graph is one corresponding to E j!= 3  K21.

E) 0  F 2  (
)
f 4 ) 2 )

*
 •

4

5

  

Lemma 4.7. 1 )  E2 j< 8 K i j  — O.
2) E j

8, 3  K y i =  O.

P r o o f .  Before proving this lemma, consider the  following set.



T = { (C1 A  C2) A  (C3 A  C4) 0 pf4  (C5 A  C6 A  C7 A  C8)
}

Cl G C2, C1 G C3 G C4

{c i ,...,c 8 1 = {1,...,8}

C5 G C6 G C7 G C8
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T  is  a free basis of ( R (  E) C), 2 (Pf4 )2 )*  and each K .  is  a  sum of distinct 60
elements in  T.

Now we start to prove 1). Obviously E 2 < i < i „  K i i  is  S,-invariant. Since
each element in S, acts ( A' (A2  E) C), 2 (Pf4 )2 )* as a certain permutation on T, we
have only to compute the coefficients of (1 A 2) A (3 A 4) Ø pf4 (5 A  6 A 7 A 8) and
(2 A 3) A (4 A 5) pf4 (1 A 6 A  7 A 8). It is easy to check that both of them are
zero.

Next we show 2). Since V = 3  K2 i is  invariant under permutations fixing 1
and 2, it suffices to compute the coefficients of (1 A 2) A (3 A 4)0 pf4 (5 A  6 A  7 A  8),
(I A  3) A (2 A 4) pf ,(5 A  6 A 7 A 8), (1 A 3) A (4 A 5) ® pf4 (2 A  6 A 7 A 8), (2 A 3) A
(4 A 5) pf ,(1 A 6 A 7 A 8), and (3 A 4) A (5 A 6) p f 4 (1 A 2 A 7 A  8). It will be
easily checked. Q .  E .  D .

Lemma 4.8. A ny four elements in {K 2  i  < j  8 }  are linearly independent
over F 2 .

P ro o f . Suppose that there exists a relation E2 < 1 < 1 < 8  at ; K  = 0 such that
#{(i, j)I i < j, 0  0 }  is less than or equal to 4, where ail s  are elements in F 2  and
#{ }  stands for the number of elements satisfying a  given condition.

Since K. 0 for 2 < j  8 ,  we may assume #{(i, j)1 <j, a i i  01 = 2, 3 or 4.
First suppose 4 {0, < j, a i i  0 0 }  2. Consider the graph corresponding to

the given element E2 < i < i < 8  a i i K i i . I t  is either Graph A or Graph B.

•- •

Graph BGraph A

(In these graphs the vertices with no lines have been omitted.) For Graph A
(resp. Graph B), we may assume that the given relation is K 2 3  ±  K „ = 0 (resp.
K23 + K4 5  =  0) by an appropriate permutation. It is easy to  check that both
K 2 3  ±  K24 and K23 ± K45 are not zero . (Compute the coefficients of (2 A 5) A
(3 A 6) pf4 (1 A  4 A  7 A 8).)

Next suppose #{(i, i < j, a 1 0  0 }  = 3. The set of graphs with three lines
consists of the following five elements :

• •

• • I A•
Graph D Graph E Graph F

 

Graph C Graph G
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F o r Graph G , we may assume that the  given relation is  K 2 3  ±  K 4 5  K „
= O. S in c e  Ker (4)*) is  an  S8 -submodule of ( A2 ( A2 E ) 66  Pf  1■ - • •  F 2

(
 - 1 we obtain

(78) (K 2 3  ±  K 45 4-  K 6 7 ) -  K 2 3  +  K 4 5  ±  K 6 8  -  0 ,

where (78) is the element in  S, exchanging 7 and 8 . Then we have K „ + K68

=  O. C ontradiction. For Graph D , Graph E and  Graph F, we can show the
linear independence similarly.

F o r  Graph C , w e  m ay  assum e th a t t h e  given re la tion  i s  K23 ± K34

+  K 2 4 .  But it is not zero because (2 A 5) A  (3 A 6) 0 pf4 (1 A 4 A 7 A 8) appears
in  K 2 3  +  K 3 4  ±  K 2 4  with non-zero coefficient.

Lastly assume #{ (j,1)1i < j, a =  4 .  We have only to compute relations
whose graphs is Graph H o r  Graph I.

Graph H

(For other graphs we can use the same technique as in the case of Graph G.)
F o r  G rap h  H  t h e  g iv e n  re la t io n  is K 2 3  ±  K 3 4  ±  K 4 5  K „ .  But

(2 A 6) A (3 A 7) pf4 (1 A  4 A 5 A 8) has non-zero coefficient.
F o r  Graph I we may assume that the  given relation is  K 23  ±  K 34  ±  K 56

4- K 7 8 •  Then we have

(67) (K23 4 -  K 34  - I-  K 5 6  ±  K 7 8 ) -  K 2 3  ±  K 3 4  ±  K 5 7  +  K 6 8  -  0 ,

In this case, we obtain another relation K 5 6  ±  K 7 8  ±  K 5 7  + K 6 8  =  0 whose graph
is Graph H . Contradiction.

We have completed the  proof of Lemma 4.8. Q. E. D.

Lemma 4.9. A ny  f ourteen elem ents in i < j  8 }  a re  linearly
independent. In particular, dim F 2  V  = 14.

P ro o f .  From 2) of Lemma 4.7, V is spanned by {K 0 13 :5_ i < j .  8 } .  Further-
more we have

K =  E  K 1,  -  E K 2 i -  0
.i= 3

by Lemma 4.7. Therefore dim,2 V  is less that o r equal to 14.
Assume that there exists a  re la tion  E3 < i < i < 8 K i i  such that #{(i, j)1 i < j

0 < 14. It is easy to see that we may assume that #{(i, j)I i < j, a 1 0 0} = 5,
6 o r 7 . (See Lemma 4.8 and  remember that E3 < i < i = O.)

First assume that the graph corresponding to the  given relation is Graph J.
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Graph J

We may assume that the given relation is equal to K 3 4  +  K 3 5  ±  K 3 6  +  K 45 ± K56
=  0 .  Then we have

(24)(K34 . ±  K 3 5  4 -  K36 ± K45 +  K56) —  K23 +  K35 +  K36 +  K25 ± K56 —  0 ,

Then K 2 3  ±  K 2 5  +  K 3 4  +  K 4 5  =  0 . Contradiction to Lem m a 4.8.
More generally when °{(i, j)1 i < j, a 0 0}  = 5  o r  7, w e can show the linear

independence by the same technique as in the cases of G raph G  o r  G raph J.
Suppose #{(i, j)I i < j, a 0}  = 6. W e m ay  assum e th a t  th e  graph corre-

sponding to the given relation is  the following one:

Graph K

(For other graphs, we can use the same technique as in the cases of #{(i, <j
au 0 = 5  o r 7.) In  this case the given relation is equal to  K 34 ±  K 35  ±  K 36
±  K 4 5  +  K 4 6  ±  K 5 6 . But (3 A  7) A (4 A  8) pf4 (1 A  2 A  5 A  6) appears in  it with
non-zero coefficient.

W e have completed the  proof of Lemma 4.9. Q. E. D.

Definition 4.10. Let h  be a positive integer such that 1 < h < 8. Define Ah
to be

E (C 1 A  e 2 )  A  (C3 A  C4 ) pf4 (c5 A  C6 A  C7  A  h),

where the above sum runs over the set satisfying the following conditions.

• Ic 1 ,...,c 7 1 = {1,...,h — 1, h + 1,...,8 }.

• c , < c 2 , c , < c 3 < c 4  a n d  c5 < c 6  <  c7 .

It is easy  to  see that A h  is  a  sum of distinct 105 elements in  T.

Lemma 4.11. For a positive integer h such that 1 < h < 8, A h  is contained in
Ker (e ) .

P ro o f . I t  is easy to  compute.

Lem m a 4.12. E:=  A h = 0.
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P ro o f . F o r  any o- i n  S 8 ,  we have a(A h ) = A 0.( h ) . Therefore cr(I: =  A h) =
1 : = 1  A h . Hence we have only to compute the coefficient of (1 A 2) A (3 A  4)
0 pf4 (5 A  6 A  7 A  8). It is obviously zero. Q. E. D.

We put W =  V + E :  l F2 Ah , which is an  S 8 -submodule of Ker (e).

Lemma 4.13. dimF 2  W= 21, i.e., any  seven elem ents in  {A h ll < h < 8} are
linearly independent in  W  V.

P ro o f . Suppose th at 1 : =  b h il, is contained in  V, where bh 's are elements in
F2 and  8 {h1b, 0 0} is neither 0 nor 8.

We may assume 1 8 {h1b,, 0 0} 4. Furthermore by computing the number
of elements in  T , we know that #{1/1bh  0 0} m u s t  be even.

First suppose # {h I bh  0 }  =  2 . S in ce  V is S 8 -invariant by Lemma 4.5, we may
assume that A , + A2 is contained in  V. Put A , + A2 = E3 < f < i < 8 Cii K i i  such that
#{(i, j)lc,., 0 0} < 7. T h e n  for any permutation it fixing 1 and  2, we have

A 1 + A2 — it(A  + A 2 ) = E
3

Therefore 1 3 < i < i < 8  ci i  K i i  — E3 < < < 8 Cii K,(o p ti) = 0. B y L em m a 4 .9 , E 3 < < < 8

Cii K i i  must be O. Hence A , + A 2 = 0. B u t  (1 A  3) A  (4 A 5) 0 pf,(2 A 6 A 7 A  8)
appears in  A, + A 2  with non-zero coefficient. Contradiction.

Next suppose 8 {h1 bh  0 }  =  4 .  W e m ay assume A , + A 2  +  A 3  +  A 4  is  in
V. Then

(45)(A 1 + A 2  ±  A 3  ±  A 4 ) = A 1 + A 2  +  A 3  ±  A ,

is contained in  V. Therefore A 4  + A 5 is  a lso  in  V. Contradiction. Q. E. D.

Definition 4.14. Define a  subset Z of T (see the  proof of Lemma 4.7) to be

If c5  = 1, then c, < c 3  < c 2  < c„.
If c, = 1 and  c2  < c 3  < c 4 ,

then c 3  + c ,  is even.(c, A  C2) A  (C3 A  e4 )
Z = If c l  =  1 and  c3  < c 2  < c 4 ,0 pf4 (c5 A  C6 A  C7 A  C O  E

then e3 + c , is odd.
If c , = 1 and e 3 < e 4  < e 2 ,

then e 3 + c ,  is even.

Then pu t B  = Epe z  q.

It is easy to check that #Z  is odd.

Lemma 4.15. (2345678)(B) = B.

P ro o f .  I t  is easy to compute.

Lemma 4.16. B  is contained in Ker(4)*).
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P ro o f . By direct computations it will be easily checked (use Lemma 4.15).

Proposition 4.17. B  is not contained in  W, i.e., dim, 2 (W  + F2 • B )= 22.

P ro o f . Suppose th a t B +  E : =  b h Ah is  co n ta in ed  i n  V , where bh 's  are
elements in  F 2 .  We may assume °till bh 0 01 = 1 o r  3, because #Z  is odd.

First suppose #{11b 0 0 } =  1 .  If B + A h  is contained in  V for h > 2, so is B
Aa(h) where a = (2345678). Then A h  A ( h ) is in V,

to o . Contradiction. Assume B + A 1 is contained in  V. Put

B + =  E  gi i K i i .
5,j# 5

(Obviously V  is spanned by {K0 12 i < j  8 ,  i 5, j  5} a n d  any fourteen
elements o f  them  a r e  linearly independent.) Computing the coefficients of
(2 A 5) A  (3 A  6) P f 4 ( 1  A  4 A 7 A 8), (2  A 5) A (4 A 6) Pf4 (1 A  3 A 7 A 8 )  and
(2 A 5) A (3 A 4) 0 pf4 (1 A 6 A 7 A 8), we obtain g23 g2 6  = 0, g 2 4  + g 2 6  =  0  and
82 3  + g 2 4  =  1 .  Contradiction.

Next suppose #{12 I bh 0 =  3 .  By using a = (2345678), we can check this
case easily. Q. E. D.

We have completed the  proof of Lemma 3.3.
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