Isogenous tori and the class number formulae

By
Shin-ichi Katayama

Introduction

T. Ono and J.-M. Shyr generalized Dedekind's class number formulae to a class number formula of an algebraic torus T defined over \mathbf{Q} (cf. [7], [10]). From this generalized class number formula, they obtained a relation between the relative class number of two isogenous tori and their Tamagawa numbers and q-symbols of several maps induced by an isogeny of them (cf. Lemma 1). Here q-symbols of α is defined as follows. Let A, B be commutative groups and α be a homomorphism $A \rightarrow B$. If Ker α and Cok α are both finite, that is, α is admissible, we define the q-symbol of α by putting

$$
q(\alpha)=\frac{[\operatorname{Cok} \alpha]}{[\operatorname{Ker} \alpha]},
$$

where $[X]$ denotes the order of a finite group X.
Let F be an algebraic number field of finite degree over \mathbf{Q} and T be an algebraic torus defined over F. $h(T)$ denotes the class number of T. Consider the following exact sequence of algebraic tori defined over F

$$
0 \longrightarrow R_{K / F}^{(1)}\left(G_{m}\right) \longrightarrow R_{K / F}\left(G_{m}\right) \longrightarrow G_{m} \longrightarrow 0
$$

where K is a finite extension of F and $R_{K / F}$ is the Weil functor of restricting the field of definition from K to F. As a generalization of the formula of Gauss on the genera of binary quadratic forms, T. Ono defined a new arithmetical invariant $E(K / F)$ by putting

$$
E(K / F)=h\left(R_{K / F}\left(G_{m}\right)\right) /\left(h\left(R_{K / F}^{(1)}\left(G_{m}\right)\right) \cdot h\left(G_{m}\right)\right) .
$$

In [9], he obtained a formula of $E(K / F)$ expressed in terms of cohomological invariants for K / F. He also defined another invariant $E^{\prime}(K / F)$, and in [5], we briefly announced similar formula for $E^{\prime}(K / F)$ when K / F is finite normal. In [6], using I. T. Adamson's non-normal cohomology, we announced that one could generalize these formulae of $E(K / F)$ and $E^{\prime}(K / F)$ for any finite extension K / F.

In this paper, we shall prove these announced results of [5] and [6] in §1. In §2, we shall show another class number formula for a biquadratic extension K / F. In $\S 3$, we shall show this formula implies some class number
formula of Dirichlet for biquadratic extensions $\mathbf{Q}(\sqrt{q}, \sqrt{-1}) / \mathbf{Q}$ (q is a prime number). Hence, the formula may be viewed as a generalization of this formula of Dirichlet.
§ 1. Following [9], we shall start by recalling the definition of the class number of a torus. Let F be an algebraic number field of finite degree and F_{p} be the completion of F at a place \mathfrak{p} of F. When \mathfrak{p} is non-archimedean, we denote the ring of \mathfrak{p}-adic integers by O_{p}.
Then $U_{F}=\prod_{\mathfrak{p} \text { :archimedean }} F_{\mathfrak{p}}^{\times} \times \prod_{\mathfrak{p}: \text { non }- \text { archimedean }} O_{p}^{\times}$is the unit group of the idele group F_{A}^{\times}. Here, for a ring A, A^{\times}denotes the multiplicative group consisting of all the invertible elements of A. Let T be an algebraic torus defined over $F . \quad T(F)$ denotes the group of F-rational points of T and $T\left(F_{p}\right)$ denotes the group of F_{p}-rational points of T. We denote the character module of T by $\hat{T}=\operatorname{Hom}\left(T, G_{m}\right)$, where G_{m} is the multiplicative group of the universal domain. Let \hat{T}_{0} be the integral dual of \hat{T}. Then, for the case when \mathfrak{p} is non-archimedean, $T\left(O_{\mathfrak{p}}\right)$ the unique maximal compact subgroup of $T\left(F_{p}\right)$ is isomorphic to $\hat{T}_{0} \otimes O_{p}^{\times}$. The adelization of T over F shall be written $T\left(F_{A}\right)$. Then the unit group of $T\left(F_{A}\right)$ is defined by $T\left(U_{F}\right)=\prod_{\mathfrak{p}} T\left(O_{\mathfrak{p}}\right)$, where \mathfrak{p} runs all the places of F and $T\left(O_{p}\right)=T\left(F_{p}\right)$ when \mathfrak{p} is archimedean. We define the class group of T over F by putting

$$
C(T)=T\left(F_{A}\right) /\left(T\left(U_{F}\right) \cdot(T(F)) .\right.
$$

We call the order $[C(T)]$ the class number of the torus T and denote it by $h(T)$. Let K be a finite extension of F and $R_{K / F}$ be the Weil functor restricting the field of definition from K to F. Then, from the definition of the class group of tori, we have $C\left(G_{m}\right) \cong F_{A}^{\times} / U_{F} F^{\times}$and $C\left(R_{K / F}\left(G_{m}\right)\right) \cong K_{A}^{\times} / U_{K} K^{\times}$. Hence the class numbers $h\left(G_{m}\right)$ and $h\left(R_{K / F}\left(G_{m}\right)\right)$ are usual class numbers of algebraic number fields h_{F} and h_{K}, respectively. Let T, T^{*} be the tori defined over F and $\lambda: T \rightarrow T^{*}$ be an isogeny defined over F. $\quad \lambda$ induces the following natural homomorphisms

$$
\begin{aligned}
& \hat{\lambda}(F): \hat{T}^{*}(F) \longrightarrow \hat{T}(F), \\
& \lambda\left(O_{\mathfrak{p}}\right): T\left(O_{\mathfrak{p}}\right) \longrightarrow T^{*}\left(O_{\mathfrak{p}}\right), \\
& \lambda\left(O_{F}\right): T\left(O_{F}\right) \longrightarrow T^{*}\left(O_{F}\right) .
\end{aligned}
$$

Here $\hat{T}(F)$ denotes the submodule of \hat{T} consisting of all the rational characters of T defined over F. In this situation, we have the following key lemma.

Lemma 1 (cf. [7] or [10]). With the notations as above, we have

$$
\frac{h(T)}{h\left(T^{*}\right)}=\frac{\tau(T) \prod_{\mathfrak{p}} q\left(\lambda\left(O_{\mathfrak{p}}\right)\right)}{\tau\left(T^{*}\right) q\left(\lambda\left(O_{F}\right)\right) q(\hat{\lambda}(F)),}
$$

where $\tau(T), \tau\left(T^{*}\right)$ are the Tamagawa nombers of T, T^{*}.
Let $\gamma: T \rightarrow T$ be a F-isogeny of T. Then, from this lemma, the following corollary is obvious.

Corollary 1. For any F-isogeny $\gamma: T \rightarrow T$, we have

$$
1=\frac{\prod q\left(\lambda\left(O_{p}\right)\right)}{q\left(\lambda\left(O_{F}\right)\right) q(\hat{\lambda}(F))}
$$

Consider the following exact sequence of algebraic tori defined over F

$$
\begin{equation*}
0 \longrightarrow T^{\prime} \xrightarrow{\alpha} T \xrightarrow{\mu} T^{\prime \prime} \longrightarrow 0, \tag{1}
\end{equation*}
$$

where α and μ are defined over F. Maschke's theorem states that every rational representation of a finite group is completely reducible. Hence, one can take a homomorphism $\beta: T \rightarrow T^{\prime}$ defined over F such that $\lambda=\beta \times \mu: T \rightarrow T^{\prime} \times T^{\prime \prime}$ and $\gamma=\beta \cdot \alpha: T^{\prime} \rightarrow T^{\prime}$ are F-isogenies. From Lemma 1, we have the equality

$$
\begin{equation*}
\frac{h(T)}{h\left(T^{\prime}\right) h\left(T^{\prime \prime}\right)}=\frac{\tau(T)}{\tau\left(T^{\prime}\right) \tau\left(T^{\prime \prime}\right)} \times \frac{\prod_{\mathfrak{p}} q\left(\lambda\left(O_{\mathfrak{p}}\right)\right)}{q(\hat{\lambda}(F)) q\left(\lambda\left(O_{F}\right)\right)} \tag{2}
\end{equation*}
$$

Let L be a common finite normal splitting field of $T, T^{\prime}, T^{\prime \prime}$. We denote $\operatorname{Gal}(L / F)$ by G. First, we provide following elementary lemma.

Lemma 2. Let $W=X \times Y$ be an abelian group and A be a subgroup of finite index. Then we have the equality

$$
[W: A]=[X: A Y / Y][Y: A \cap Y],
$$

where W / Y and $\{1\} \times Y$ are identified with X and Y.
Consider the following short exact sequence of G-modules induced from (1)

$$
0 \longrightarrow T^{\prime}\left(O_{L}\right) \longrightarrow T\left(O_{L}\right) \longrightarrow T^{\prime \prime}\left(O_{L}\right) \longrightarrow 0
$$

From the long exact sequence derived from this sequence, we have

$$
0 \longrightarrow T^{\prime}\left(O_{F}\right) \xrightarrow{\alpha\left(O_{F}\right)} T\left(O_{F}\right) \xrightarrow{\mu\left(O_{F}\right)} T^{\prime \prime}\left(O_{F}\right) \longrightarrow H^{1}\left(G, T^{\prime}\left(O_{L}\right)\right) \longrightarrow H^{1}\left(G, T\left(O_{L}\right)\right) \longrightarrow \cdots .
$$

The map $\beta\left(O_{F}\right) \times \mu\left(O_{F}\right): T\left(O_{F}\right) \rightarrow T^{\prime}\left(O_{F}\right) \times T^{\prime \prime}\left(O_{F}\right)$ shall be written $\lambda\left(O_{F}\right)$. Then, from Lemma 2 and the above long exact sequence, the cokernel of the map $\lambda\left(O_{F}\right)$ satisfies

$$
\begin{aligned}
{\left[\operatorname{Cok} \lambda\left(O_{F}\right)\right] } & =\left[T^{\prime \prime}\left(O_{F}\right): \mu\left(O_{F}\right)\left(T\left(O_{F}\right)\right)\right] \times\left[T^{\prime}\left(O_{F}\right): \beta\left(O_{F}\right)\left(T\left(O_{F}\right) \cap \operatorname{Ker} \mu\left(O_{F}\right)\right)\right] \\
& =\left[\operatorname{Ker}\left(H^{1}\left(G, T^{\prime}\left(O_{L}\right)\right) \longrightarrow H^{1}\left(G, T\left(O_{L}\right)\right)\right)\right] \times\left[T^{\prime}\left(O_{F}\right): \gamma\left(O_{F}\right)\left(T^{\prime}\left(O_{F}\right)\right)\right] \\
& =\left[\operatorname{Ker}\left(H^{1}\left(G, T^{\prime}\left(O_{L}\right)\right) \longrightarrow H^{1}\left(G, T\left(O_{L}\right)\right)\right)\right]\left[\operatorname{Cok} \gamma\left(O_{F}\right)\right] .
\end{aligned}
$$

On the other hand, the kernel of the map satisfies

$$
\begin{aligned}
{\left[\operatorname{Ker} \lambda\left(O_{F}\right)\right] } & =\left[\operatorname{Ker} \beta\left(O_{F}\right) \cap \operatorname{Ker} \mu\left(O_{F}\right)\right] \\
& =\left[\operatorname{Ker} \beta\left(O_{F}\right) \cap \alpha\left(O_{F}\right)\left(T^{\prime}\left(O_{F}\right)\right)\right]=\left[\operatorname{Ker} \gamma\left(O_{F}\right)\right] .
\end{aligned}
$$

Hence we have

$$
q\left(\lambda\left(O_{F}\right)\right)=q\left(\gamma\left(O_{F}\right)\right)\left[\operatorname{Ker}\left(H^{1}\left(G, T^{\prime}\left(O_{L}\right)\right) \longrightarrow H^{1}\left(G, T\left(O_{L}\right)\right)\right)\right] .
$$

In the same way as above, the following equality holds for all \mathfrak{p}

$$
q\left(\lambda\left(O_{\mathfrak{p}}\right)\right)=q\left(\gamma\left(O_{\mathfrak{p}}\right)\right)\left[\operatorname{Ker}\left(H^{1}\left(G_{\mathfrak{P}}, T^{\prime}\left(O_{\mathfrak{F}}\right)\right) \longrightarrow H^{1}\left(G_{\mathfrak{P}}, T\left(O_{\mathfrak{P}}\right)\right)\right)\right]
$$

where \mathfrak{P} is an extension of \mathfrak{p} to L and $G_{\mathfrak{P}}$ is the decomposition group of \mathfrak{P}. Therefore, from the formula (2), we have

$$
\begin{aligned}
& \frac{h(T)}{h\left(T^{\prime}\right) h\left(T^{\prime \prime}\right)}= \frac{\tau(T)}{\tau\left(T^{\prime}\right) \tau\left(T^{\prime \prime}\right)} \times \frac{\prod_{\mathfrak{p}} q\left(\gamma\left(O_{\mathfrak{p}}\right)\right)}{q(\hat{\lambda}(F)) q\left(\gamma\left(O_{F}\right)\right)} \\
& \times \frac{\prod_{\mathfrak{p}}\left[\operatorname{Ker}\left(H^{1}\left(G_{\mathfrak{P}}, T^{\prime}\left(O_{\mathfrak{P}}\right)\right) \longrightarrow H^{1}\left(G_{\mathfrak{B}}, T\left(O_{\mathfrak{P}}\right)\right)\right)\right]}{\left[\operatorname{Ker}\left(H^{1}\left(G, T^{\prime}\left(O_{L}\right)\right) \longrightarrow H^{1}\left(G, T\left(O_{L}\right)\right)\right)\right]} \\
& \prod_{\mathfrak{n}} q\left(\gamma\left(O_{\mathfrak{p}}\right)\right)
\end{aligned}
$$

Finally, by virtue of the fact $\frac{p_{p}}{q\left(\gamma\left(O_{F}\right)\right)}=q(\hat{\gamma}(F))$, we have the following theorem.
Theorem 1. With the notations as above, we have the following class number formula

$$
\begin{aligned}
\frac{h(T)}{h\left(T^{\prime}\right) h\left(T^{\prime \prime}\right)}= & \frac{\tau(T)}{\tau\left(T^{\prime}\right) \tau\left(T^{\prime \prime}\right)} \times \frac{q(\hat{\gamma}(F))}{q(\hat{\lambda}(F))} \\
& \times \frac{\left[\operatorname{Ker}\left(H^{1}\left(G, T^{\prime}\left(U_{L}\right)\right) \longrightarrow H^{1}\left(G, T\left(U_{L}\right)\right)\right)\right]}{\left[\operatorname{Ker}\left(H^{1}\left(G, T^{\prime}\left(O_{L}\right)\right) \longrightarrow H^{1}\left(G, T\left(O_{L}\right)\right)\right)\right]} \\
= & \frac{\tau(T) q(\hat{\gamma}(F)) \prod_{p}\left[T^{\prime \prime}\left(O_{p}\right): \mu\left(O_{p}\right)\left(T\left(O_{p}\right)\right)\right]}{\tau\left(T^{\prime}\right) \tau\left(T^{\prime \prime}\right) q(\hat{\lambda}(F))\left[T^{\prime \prime}\left(O_{F}\right): \mu\left(O_{F}\right)\left(T\left(O_{F}\right)\right)\right]} .
\end{aligned}
$$

Here U_{L} denotes the unit group of the idele group L_{A}^{\times}.
Let K be a finite extension of F and $R_{K / F}$ is the Weil functor restricting the field of definition from K to F. Consider the following special exact sequence of algebraic tori defined over F

where N is the norm map for K / F and $R_{K / F}^{(1)}\left(G_{m}\right)=$ Ker N. The invariant $E(K / F)$ is defined by putting

$$
E(K / F)=\frac{h(T)}{h\left(T^{\prime}\right) h\left(T^{\prime \prime}\right)}=\frac{h_{K}}{h_{F} h_{K / F}},
$$

where $h_{K / F}$ denotes the class number $h\left(T^{\prime}\right)$. For this case, F-morphism $\beta: T \rightarrow T^{\prime}$ is defined by $\beta(x)=x^{m}(N x)^{-1}(m=[K: F])$. From the fact that $T^{\prime}=R_{K / F}^{(1)}\left(G_{m}\right)$ is an anisotropic torus, the elements $q(\hat{\gamma}(F))$ and $q(\hat{\lambda}(F))$ in Theorem 1 are both equal to 1. The Tamagawa numbers $\tau(T)=\tau\left(T^{\prime \prime}\right)=1$ and $\tau\left(T^{\prime}\right)=\left[K_{0}: F\right] /\left[F^{\times} \cap N_{K / F} K_{A}^{\times}: N_{K / F} K^{\times}\right]$, where K_{0} is the maximal abelian extension of F contained in K. Furthermore, we get

$$
\begin{aligned}
& {\left[T^{\prime \prime}\left(O_{F}\right): N\left(O_{F}\right)\left(T\left(O_{F}\right)\right)\right]=\left[O_{\mathcal{F}}^{\times}: N_{K / F} O_{\mathbb{K}}^{\times}\right],} \\
& \prod_{\mathfrak{p}}\left[T^{\prime \prime}\left(O_{\mathfrak{p}}\right): N\left(O_{\mathfrak{p}}\right)\left(T\left(O_{\mathfrak{P}}\right)\right)\right]=\prod_{\mathfrak{p}}\left[O_{\mathfrak{p}}^{\times}: \prod_{\mathfrak{P} \mid \mathfrak{p}} N_{K_{\mathbb{q}} / F_{\mathfrak{p}}} O_{\mathfrak{P}}^{\times}\right] \\
& \\
& =\left[U_{\mathfrak{F}}: N_{K / \mathcal{F}} U_{K}\right] .
\end{aligned}
$$

Combining these, we get

$$
E(K / F)=\frac{\left[F^{\times} \cap N_{K / F} K_{A}^{\times}: N_{K / F} K^{\times}\right]\left[U_{F}: N_{K / F} U_{K}\right]}{\left[K_{0}: F\right]\left[O_{K}^{\times}: N_{K / F} O_{K}^{\times}\right]} .
$$

L denotes the Galois closure of K / F and G, H denote the Galois groups $\operatorname{Gal}(L / F)$, $\operatorname{Gal}(L / K)$. Then L is a common Galois splitting field of $T, T^{\prime}, T^{\prime \prime}$. We denote I. T. Adamson's non-normal cohomology group $H^{0}\left([G: H], O_{L}^{\times}\right)$by $H^{0}\left(K / F, O_{K}^{\times}\right)$. From [1], Theorem 4.5, we have $H^{0}\left(K / F, O_{K}^{\times}\right) \cong O_{F}^{\times} / N_{K / F} O_{K}^{\times}$. Finally, using these non-normal cohomology groups, we get the following interpretation of $E(K / F)$

$$
E(K / F)=\frac{\left[\operatorname{Ker}\left(H^{0}\left(K / F, K^{\times}\right) \longrightarrow H^{0}\left(K / F, K_{A}^{\times}\right)\right)\right]\left[H^{0}\left(K / F, U_{K}\right)\right]}{\left[K_{0}: F\right]\left[H^{0}\left(K / F, O_{K}^{\times}\right)\right]} .
$$

Theorem 2. For any finite extension K / F, we have

$$
\begin{aligned}
E(K / F) & =\frac{\left[\operatorname{Ker}\left(H^{0}\left(K / F, K^{\times}\right) \longrightarrow H^{0}\left(K / F, K_{A}^{\times}\right)\right)\right]\left[H^{0}\left(K / F, U_{K}\right)\right]}{\left[K_{0}: F\right]\left[H^{0}\left(K / F, O_{K}^{\times}\right)\right]} \\
& =\frac{\left[F^{\times} \cap N_{K / F} K_{A}^{\times}: N_{K / F} K^{\times}\right]\left[U_{F}: N_{K / F} U_{K}\right]}{\left[K_{0}: F\right]\left[O_{F}^{\times}: N_{K / \mathbf{F}} O_{K}^{\times}\right]} .
\end{aligned}
$$

When K / F is normal, I. T. Adamson's non-normal cohomology group coincides with usual Tate cohomology group. Hence we have the following class number formula ([9], Theorem).

Corollary 2. For a normal extension K / F, we have

$$
E(K / F)=\frac{\left[\operatorname{Ker}\left(H^{0}\left(G, K^{\times}\right) \longrightarrow H^{0}\left(G, K_{A}^{\times}\right)\right)\right]\left[H^{0}\left(G, U_{K}\right)\right]}{\left[K_{0}: F\right]\left[H^{0}\left(G, O_{K}^{\times}\right)\right]},
$$

where $G=\operatorname{Gal}(K / F)$ and $\left[H^{0}\left(G, U_{K}\right)\right]=\prod_{\mathfrak{p}} e_{p}^{0}$. $e_{\mathfrak{p}}^{0}$ is the ramification exponent of the maximal abelian subextension over $F_{\mathfrak{p}}$ which is contained in $K_{\mathfrak{P}}(\mathfrak{P}$ is an extension of \mathfrak{p} to K).

Now, consider the following exact sequence of algebraic tori

where K is a finite extension of F of degree m and $\mu^{\prime}(x)=x \bmod G_{m}\left(x \in R_{K / F}\left(G_{m}\right)\right)$. Let β^{\prime} be the norm map from T to T^{\prime}. Then there exist F-isogenies $\lambda^{\prime}=\beta^{\prime} \times \mu^{\prime}: T \rightarrow T^{\prime} \times T^{\prime \prime}$ and $\gamma^{\prime}=\beta^{\prime} \cdot \alpha^{\prime}: T^{\prime} \rightarrow T^{\prime}$, where γ^{\prime} is the map $\gamma^{\prime}(x)$ $=x^{m}\left(x \in T^{\prime}=G_{m}\right)$. L denotes the Galois closure of K over F. Then L is a common splitting field of $T, T^{\prime}, T^{\prime \prime}$. We denote the Galois group $\operatorname{Gal}(L / F)$ by G and $\operatorname{Gal}(L / K)$ by H. Let $G=\bigcup_{i=1}^{m} \sigma_{i} H$ be the right-coset decomposition of G with respect to H. Then the character modules of $T, T^{\prime}, T^{\prime \prime}$ are $\hat{T} \cong \mathbf{Z}[G / H]$ $=\mathbf{Z}\left\langle\sigma_{i} H \mid 1 \leqq i \leqq n\right\rangle \cong \operatorname{Ind}_{H}^{G} \mathbf{Z}, \hat{T}^{\prime} \cong \mathbf{Z}$ and $\hat{T}^{\prime \prime} \cong I[G / H]=\mathbf{Z}\langle\sigma H-H \mid \sigma \in G\rangle$, respectively. We denote the integral dual of $I[G / H]$ by $J[G / H]$. $h_{K / F}^{\prime}$ denotes the class number of the torus $R_{K / F}\left(G_{m}\right) / G_{m}$. Then the invariant $E^{\prime}(K / F)$ is defined by $E^{\prime}(K / F)=\frac{h_{k}}{h_{F} h_{K / F}^{\prime}}$. From Theorem 1, we have

$$
E^{\prime}(K / F)=\frac{\tau(T) q\left(\hat{\gamma}^{\prime}(F)\right)\left[\operatorname{Ker}\left(H^{1}\left(G, U_{L}\right) \longrightarrow H^{1}\left(H, U_{L}\right)\right)\right]}{\tau\left(T^{\prime}\right) \tau\left(T^{\prime \prime}\right) q\left(\hat{\lambda}^{\prime}(F)\right)\left[\operatorname{Ker}\left(H^{1}\left(G, O_{L}^{\times}\right) \longrightarrow H^{1}\left(H, O_{L}^{\times}\right)\right)\right]},
$$

where U_{L} is the unit group of the idele group L_{A}^{\times}and $O_{L}^{\times}=L^{\times} \cap U_{L}$ is the global unit group of L. We shall calculate the Tamagawa numbers, q-symbols,

$$
\left(\operatorname{Ker}\left(H^{1}\left(G, U_{L}\right) \longrightarrow H^{1}\left(G, U_{L}\right)\right)\right] \quad \text { and } \quad\left[\operatorname{Ker}\left(H^{1}\left(G, O_{L}^{\times}\right) \longrightarrow H^{1}\left(H, O_{L}^{\times}\right)\right)\right]
$$

First, one sees the Tamagawa numbers $\tau(T)=\tau\left(T^{\prime}\right)=1$ and

$$
\tau\left(T^{\prime \prime}\right)=\frac{\left[H^{1}\left(G, \hat{T}^{\prime \prime}\right)\right]}{\left[\operatorname{Ker}\left(H^{1}\left(G, T^{\prime \prime}(L)\right) \longrightarrow H^{1}\left(G, T^{\prime \prime}\left(L_{A}\right)\right)\right)\right]} \quad \text { (cf. [8]). }
$$

Consider the following exact sequences of G-modules

$$
\begin{aligned}
& 0 \longrightarrow I[G / H] \longrightarrow \mathbf{Z}[G / H] \longrightarrow \mathbf{Z} \longrightarrow 0 \\
& 0 \longrightarrow \mathbf{Z} \longrightarrow \mathbf{Z}[G / H] \longrightarrow J[G / H] \longrightarrow 0 \\
& 0 \longrightarrow T^{\prime}(L) \longrightarrow T(L) \longrightarrow T^{\prime \prime}(L) \longrightarrow 0 \\
& 0 \longrightarrow T^{\prime}\left(L_{A}\right) \longrightarrow T\left(L_{A}\right) \longrightarrow T^{\prime \prime}\left(L_{A}\right) \longrightarrow 0
\end{aligned}
$$

From the fact that $\hat{T}^{\prime \prime} \cong I[G / H]$, we have $\left[H^{1}\left(G, \hat{T}^{\prime \prime}\right)\right]=\left[H^{1}(G, I[G / H])\right]$ $=\left[\operatorname{Cok}\left(H^{0}(H, \mathbf{Z}) \rightarrow H^{0}(G, \mathbf{Z})\right)\right]=[G: H]=[K: F]=m$. Since $T^{\prime}(L) \cong L^{\times}$and $T^{\prime}\left(L_{A}\right) \cong L_{A}^{\times}$and $H^{2}\left(G, L^{\times}\right) \rightarrow H^{2}\left(G, L_{A}^{\times}\right)$is injective, we have $H^{2}\left(G, T^{\prime}(L)\right)$ $\rightarrow H^{2}\left(G, T^{\prime}\left(L_{A}\right)\right)$ is injective. Since $T(L) \cong \mathbf{Z}[G / H] \otimes L^{\times}$and $T\left(L_{A}\right)$ $\cong \mathbf{Z}[G / H] \otimes L_{A}^{\times}$, we have $H^{1}(G, T(L)) \cong H^{1}\left(G, \mathbf{Z}[G / H] \otimes L^{\times}\right) \cong H^{1}\left(H, L^{\times}\right)=\{0\}$ and $H^{1}\left(G, T\left(L_{A}\right)\right) \cong H^{1}\left(G, \mathbf{Z}[G / H] \otimes L_{A}^{\times}\right) \cong H^{1}\left(H, L_{A}^{\times}\right)=\{0\}$. Therefore we have the following commutative diagram with exact rows and colums

By diagram chasing, we have $H^{1}\left(G, T^{\prime \prime}(L)\right) \rightarrow H^{1}\left(G, T^{\prime \prime}\left(L_{A}\right)\right)$ is injective. Hence the Tamagawa number $\tau\left(T^{\prime \prime}\right)$ equals to m. Since $T^{\prime \prime}$ is an anisotropic torus, we have $q(\hat{\lambda}(F))=[\mathbf{Z}: \mathbf{Z}]=1$ and $q(\hat{\gamma}(F))=[\mathbf{Z}: m \mathbf{Z}]=m$. Now, we shall recall the following lemma on non-normal cohomology groups.

Lemma 3 (cf. [1]). Let G be a finite group and A be a G-module and H be a subgroup of G. Then the following sequence is exact

$$
0 \longrightarrow H^{1}([G: H], A) \longrightarrow H^{1}(G, A) \longrightarrow H^{1}(H, A),
$$

where $H^{1}([G: H], A)$ is I. T. Adamson's non-normal cohomology group.
We denote $H^{1}\left([G: H], U_{L}\right)$ and $H^{1}\left([G: H], O_{L}^{\times}\right)$by $H^{1}\left(K / F, U_{K}\right)$ and $H^{1}\left(K / F, O_{K}^{\times}\right)$, respectively. Then, from Lemma 3, we have $\operatorname{Ker}\left(H^{1}\left(G, U_{L}\right)\right.$ $\left.\rightarrow H^{1}\left(H, U_{L}\right)\right) \cong H^{1}\left(K / F, U_{K}\right)$ and $\operatorname{Ker}\left(H^{1}\left(G, O_{L}^{\times}\right) \rightarrow H^{1}\left(H, O_{L}^{\times}\right)\right) \cong H^{1}\left(K / F, O_{K}^{\times}\right)$. Hence we have the formula

$$
E^{\prime}(K / F)=\frac{\left[H^{1}\left(K / F, U_{K}\right)\right]}{\left[H^{1}\left(K / F, O_{K}^{\times}\right)\right]} .
$$

In the following, we shall calculate the number $\left[H^{1}\left(K / F, U_{K}\right)\right]$. Let \mathfrak{P} be an extension of \mathfrak{p} to L. Then we have

$$
\begin{aligned}
H^{1}\left(K / F, U_{K}\right) & \cong \operatorname{Ker}\left(H^{1}\left(G, U_{L}\right) \longrightarrow H^{1}\left(H, U_{L}\right)\right) \\
& \cong \sum_{\mathfrak{P}} \operatorname{Ker}\left(H^{1}\left(G, \operatorname{Ind}_{G_{\mathfrak{W}}}^{G} O_{\mathfrak{P}}^{\times}\right) \longrightarrow H^{1}\left(H, \operatorname{Ind}_{G_{\mathfrak{Y}}}^{G} O_{\mathfrak{P}}^{\times}\right)\right),
\end{aligned}
$$

where $G_{\mathfrak{B}}$ is the decomposition group of \mathfrak{P}. Let $G=\bigcup_{j=1}^{r} H \tau_{j} G_{\mathfrak{B}}$ be a double coset decomposition of G. We denote the extensions of \mathfrak{p} to K by $\mathfrak{p}_{1}(K)$, $\mathfrak{p}_{2}(K), \ldots, \mathfrak{p}_{r}(K)$, where $\mathfrak{p}_{j}(K)=\mathfrak{p}_{1}(K)^{\tau_{j}}$. The ramification exponents of $\mathfrak{P} / \mathfrak{p}$ and $\mathfrak{p}_{j}(K) / \mathfrak{p}$ shall be written $e(\mathfrak{P} \mid \mathfrak{p})$ and $e\left(\mathfrak{p}_{j}(K) \mid \mathfrak{p}\right)$, respectively. If \mathfrak{p} is archimedean, $\mathfrak{P} / \mathfrak{p}$ ramifies if and only if $L_{\mathfrak{P}}=\mathbf{C}$ and $F_{\mathfrak{p}}=\mathbf{R}$ and the ramification exponent
$e(\mathfrak{P} / \mathfrak{p})=[\mathbf{C}: \mathbf{R}]=2$. Let \mathfrak{P}^{\prime} be an extension of $\mathfrak{p}_{j}(K)$ to L. Then \mathfrak{P}^{\prime} is conjugate to \mathfrak{P} and we obtain the equality $e\left(\mathfrak{P}^{\prime} \mid \mathfrak{p}\right)=e\left(\mathfrak{P}^{\prime} \mid \mathfrak{p}_{j}(K)\right) e\left(\mathfrak{p}_{j}(K) \mid \mathfrak{p}\right)$. Since L / F is normal, we have $e\left(\mathfrak{P}^{\prime} \mid \mathfrak{p}\right)=e(\mathfrak{P} \mid \mathfrak{p})$. Hence, we may write $e\left(\mathfrak{P}^{\prime} \mid \mathfrak{p}{ }_{j}(K)\right.$) by $e\left(\mathfrak{P} \mid \mathfrak{p}_{j}(K)\right)$. There exists a commutative diagram for every place \mathfrak{P}

From induction, one can easily show the following elementary lemma.

Lemma 4. Let e, $a_{1}, a_{2}, \ldots, a_{r}, b_{1}, b_{2}, \ldots, b_{r}$ be the natural numbers such that $a_{1} \cdot b_{1}=a_{2} \cdot b_{2}=\cdots=a_{r} \cdot b_{r}=e$. We denote the greatest common divisor of $a_{1}, a_{2}, \ldots, a_{r}$ by d and the least common multiple of $b_{1}, b_{2}, \ldots, b_{r}$ by g. Then we have $d \cdot g=e$.

Using this lemma, we have

$$
\begin{aligned}
& \operatorname{Ker}\left(\mathbf{Z} / e(\mathfrak{P} \mid \mathfrak{p}) \mathbf{Z} \longrightarrow \sum_{j=1}^{r} \mathbf{Z} / e\left(\mathfrak{P} \mid \mathfrak{p}_{j}(K)\right) \mathbf{Z}\right) \\
& \quad \cong g \mathbf{Z} / e(\mathfrak{P} \mid \mathfrak{p}) \mathbf{Z} \\
& \quad \cong \mathbf{Z} / e_{\mathfrak{p}}(K) \mathbf{Z}
\end{aligned}
$$

Here g denotes the L.C.M. of $e\left(\mathfrak{P} \mid \mathfrak{p}_{j}(K)\right.$) and $e_{\mathfrak{p}}(K)$ denotes the G.C.D. of $e\left(\mathfrak{P}_{j}(K) \mid \mathfrak{p}\right)$. Hence, we have obtained an isomorphism

$$
H^{1}\left(K / F, U_{K}\right) \cong \sum_{\mathfrak{p}} \mathbf{Z} / e_{\mathfrak{p}}(K) \mathbf{Z}
$$

where \mathfrak{p} runs all the ramified places of K / F. Hence we have $\left[H^{1}\left(K / F, U_{K}\right)\right]$ $=\Pi e_{\mathrm{p}}(K)$. Combining these, we have the following theorem.

Theorem 3. With the notations as above, we have

$$
E^{\prime}(K / F)=\frac{\left[H^{1}\left(K / F, U_{\mathbf{K}}\right)\right]}{\left[H^{1}\left(K / F, O_{K}^{\times}\right)\right]}=\frac{\prod_{\mathfrak{p}} e_{\mathfrak{p}}(k)}{\left[H^{1}\left(K / F, O_{K}^{\times}\right)\right]} .
$$

When K / F is normal, we have the following corollary.
Corollary 3. When K / F is a finite normal extension, we have

$$
E^{\prime}(K / F)=\frac{\left[H^{1}\left(G, U_{K}\right)\right]}{\left[H^{1}\left(G, O_{\mathbf{K}}^{\times}\right)\right]}=\frac{\prod_{\mathfrak{p}} e_{\mathfrak{p}}}{\left[H^{1}\left(G, O_{\mathbf{K}}^{\times}\right)\right]},
$$

where \mathfrak{p} runs all the places of \mathcal{F} and $e_{\mathfrak{p}}$ is the ramification exponent of \mathfrak{P} over $\mathfrak{p}(\mathfrak{P}$ is an extension of \mathfrak{p} to $K)$.

Remark. We want to take this opportunity to make the following corrections to our paper ([6], Remark 2). In Remark 2, we have written " $\left[H^{1}\left(K / k, U_{K}\right)\right]$ $=\prod_{\mathfrak{p}}\left[H^{1}\left(K_{\mathfrak{P}} / k_{\mathfrak{p}}, O_{\mathfrak{P}}^{\times}\right)\right]=\prod_{\mathfrak{p}} e_{\mathfrak{p}}$, where $e_{\mathfrak{p}}$ is the ramification index of \mathfrak{P}." The correct form of this remark is above Theorem 3. Hence, for " e_{p} " read " $e_{p}(K)$ " and for "the ramification index of \mathfrak{P} " read "the G.C.D. of the ramification indices of $e\left(\mathfrak{p}_{j}(K) \mid \mathfrak{p}\right)$ " and suppress " $\prod_{\mathfrak{p}}\left[H^{1}\left(K_{\mathfrak{p}} / k_{\mathfrak{p}}, O_{\mathfrak{p}}^{\times}\right) "\right.$
§2. First, we shall provide elementary tools on Galois modules and Galois cohomology groups. Let G be a finite group and H be a subgroup of index m. Let $G=\bigcup_{i=1}^{m} \sigma_{i} H$ be the right-coset decomposition of G with respect to H. $J[G / H]$ the integral dual of $I[G / H]$ is the left G-module $\mathbf{Z}[G / H] / \mathbf{Z}$ $\cong \mathbf{Z}\langle\overline{\sigma H}| \sigma \in G$ and $\left.\sum_{i=1}^{m} \overline{\sigma_{i} H}=0\right\rangle$. As usual, $J[G /\{1\}]$ and $I[G /\{1\}]$ shall be written $J[G]$ and $I[G]$, respectively. For any G-module A, we have the following lemma.

Lemma 5. With the notations as above, we have

$$
\begin{aligned}
& (I[G / H] \otimes A)^{G} \cong N_{G / H}^{-1}(0) \cap A^{H} \text { and } \\
& H^{0}(G, I[G / H] \otimes A) \cong N_{G / H}^{-1}(0) \cap A^{H} / N_{H}\left(D_{G} A\right),
\end{aligned}
$$

where $A^{H}=(a \in A \mid \sigma(a)=a$ for every $\sigma \in H\}$ and $D_{G} A=\langle\sigma(a)-a \mid \sigma \in G, a \in A\rangle$.
Proof. Consider the following exact sequence of G-modules

$$
0 \longrightarrow A \otimes I[G / H] \longrightarrow A \otimes \mathbf{Z}[G / H] \longrightarrow A \longrightarrow 0
$$

From this exact sequence, we have

$$
\begin{aligned}
& \quad 0 \rightarrow(A \otimes I(G / H])^{\boldsymbol{G}} \rightarrow(A \otimes \mathbf{Z}[G / H])^{G} \rightarrow A^{G} \rightarrow \cdots \text {. Since }(A \otimes \mathbf{Z}[G / H])^{G} \\
& =\sum_{i=1}^{m} \sigma_{i}\left(A^{H} \otimes H\right) \cong A^{H}, \text { we obtain }(A \otimes I[G / H])^{G} \cong \operatorname{Ker}\left(N_{G / H}: A^{H} \rightarrow A^{G}\right) \\
& =N_{G / H}^{-1}(0) \cap A^{H} . \quad \text { On the other hand, from } A \otimes I[G / H]=\langle a \otimes(\sigma H-H) \mid a \in A, \sigma \in G\rangle, \\
& \text { we have }
\end{aligned}
$$

$$
\left\langle N_{G}(a \otimes(\sigma H-H))\right\rangle=\left\langle\sum_{\tau \in G}(\tau(a \otimes \sigma H)-\tau(a \otimes H))\right\rangle
$$

$$
\begin{aligned}
& =\left\langle\sum_{\tau \in G} \tau\left(\left(\sigma^{-1}-1\right) a \otimes H\right)\right\rangle \\
& =\left\langle\sum_{i=1}^{m} \sigma_{i}\left(N_{H}\left(\left(\sigma^{-1}-1\right) a \otimes H\right)\right)\right\rangle \cong N_{H}\left(D_{G} A\right) \subset A^{H} .
\end{aligned}
$$

Therefore we have

$$
\begin{aligned}
H^{0}(G, A \otimes I[G / H]) & \cong(A \otimes I[G / H])^{G} / N_{G}(A \otimes I[G / H]) \\
& \cong N_{G / H}^{-1}(0) \cap A^{H} / N_{H}\left(D_{G} A\right)
\end{aligned}
$$

In the following, we shall restrict ourselves to the case when G is isomorphic to $(\mathbf{Z} / 2 \mathbf{Z})^{2}$. Let F be an algebraic number field and K be a biquadratic extension of F. We denote the Galois group $\operatorname{Gal}(K / F)=G$ by $\langle\sigma\rangle \times\langle\tau\rangle$. Here $\sigma^{2}=\tau^{2}=1$ and $\sigma \tau=\tau \sigma$. Let $K(\sigma), K(\tau)$ and $K(\sigma \tau)$ be the intermediate fields of K / F corresponding to the subgroups $\langle\sigma\rangle,\langle\tau\rangle$ and $\langle\sigma \tau\rangle$. Then the character modules of $R_{K / F}^{(1)}\left(G_{m}\right)$ and $R_{K(\sigma \tau) / \mathbf{F}}^{(1)}\left(G_{m}\right)$ are isomorphic to $J[G]$ and $J[G /\langle\sigma \tau\rangle]$. There exist isomorphisms

$$
\begin{aligned}
& J[G]=\mathbf{Z}\langle\bar{\sigma}, \bar{\tau}, \overline{\sigma \tau}, \overline{1} \mid \overline{1}+\bar{\sigma}+\bar{\tau}+\overline{\sigma \tau}=0\rangle \\
& \begin{aligned}
& J[G /\langle\sigma \tau\rangle] \cong \mathbf{Z}\langle\langle\overline{\sigma \tau}\rangle \mid \sigma\langle\overline{\sigma \tau}\rangle+\langle\overline{\sigma \tau}\rangle=0\rangle \\
& \cong \mathbf{Z}\langle\overline{1}+\overline{\sigma \tau}\rangle \subset J[G] .
\end{aligned}
\end{aligned}
$$

We shall construct the following exact sequence of G-modules

$$
\begin{equation*}
0 \longrightarrow J[G /\langle\sigma\rangle] \oplus J[G /\langle\tau\rangle] \xrightarrow{\hat{\mu}} J[G] \xrightarrow{\hat{a}} J[G /\langle\sigma \tau\rangle] \longrightarrow 0 . \tag{3}
\end{equation*}
$$

Here $\hat{\mu}(\overline{\langle\sigma\rangle})=\overline{1}+\bar{\sigma}, \hat{\mu}(\overline{\langle\tau\rangle})=\overline{1}+\bar{\tau}$ and $\hat{\alpha}(\bar{\rho})=\overline{\rho\langle\sigma \tau\rangle}(\rho \in G)$. The exactness of (3) follows if $\operatorname{Ker} \hat{\alpha}=\operatorname{Im} \hat{\mu}$ and μ is injective, because of the fact that $\hat{\alpha}$ is a natural surjective homomorphism of G-modules. From the definition of α, Ker $\hat{\alpha}=\mathbf{Z}\langle a \bar{\sigma}+b \bar{\tau}+c \overline{\sigma \tau} \mid c=a+b\rangle=\mathbf{Z}\langle\bar{\sigma}+\overline{\sigma \tau}, \quad \bar{\tau}+\overline{\sigma \tau}\rangle=\mathbf{Z}\langle\overline{1}+\bar{\sigma}, \overline{1}+\bar{\tau}\rangle$. On the other hand, we have
$\hat{\mu}: J[G /\langle\sigma\rangle] \oplus J[G /\langle\tau\rangle] \cong \mathbf{Z}\langle\overline{1}+\bar{\sigma}, \overline{1}+\bar{\tau}\rangle$. Hence (3) is an exact sequence of G-modules. From the integral dual of (3), we have another exact sequence

$$
0 \longrightarrow I[G /\langle\sigma \tau\rangle] \xrightarrow{\hat{\alpha}_{0}} I[G] \xrightarrow{\hat{\mu}_{0}} I[G /\langle\sigma\rangle] \oplus I[G /\langle\tau\rangle] \longrightarrow 0,
$$

where $\quad \hat{\alpha}_{0}(\sigma\langle\sigma \tau\rangle-\langle\sigma \tau\rangle)=\sigma+\tau-1-\sigma \tau \quad$ and $\quad \hat{\mu}_{0}(\rho-1)=(\rho\langle\sigma\rangle-\langle\sigma\rangle$, $\rho\langle\tau\rangle-\langle\tau\rangle$) for every $\rho \in G$. Dualizing (3), we obtain the following exact sequence of algebraic tori defined over F

$$
\begin{equation*}
0 \longrightarrow R_{K(\sigma \tau) / F}^{(1)}\left(G_{m}\right) \xrightarrow{\alpha} R_{K / F}^{(1)}\left(G_{m}\right) \xrightarrow{\mu} R_{K(\sigma) / \mathcal{F}}^{(1)}\left(G_{m}\right) \times R_{K(\tau) / \mathcal{F}}^{(1)}\left(G_{m}\right) \longrightarrow 0, \tag{4}
\end{equation*}
$$

where $\mu(x)=\left(N_{K / K(\sigma)} x, N_{K / K(\tau)} x\right)$ for every $x \in R_{K / F}^{(1)}\left(G_{m}\right)$. Appling Theorem 1 to (4), we have

$$
\begin{aligned}
& \frac{h_{K / F}}{h_{K(\sigma) / F} h_{K(\tau) / F} h_{K(\sigma \tau) / F}}=\frac{\tau(K / F)}{\tau(K(\sigma) / F) \tau(K(\tau) / F) \tau(K(\sigma \tau) / F)} \\
& \times \frac{q(\hat{\gamma}(F))}{q(\hat{\lambda}(F))} \times \frac{\left[\operatorname{Ker}\left(H^{1}\left(G, I[G /\langle\sigma \tau\rangle] \otimes U_{K}\right) \rightarrow H^{1}\left(G, I[G] \otimes U_{K}\right)\right)\right]}{\left[\operatorname{Ker}\left(H^{1}\left(G, I[G /\langle\sigma \tau\rangle] \otimes O_{K}^{\times}\right) \rightarrow H^{1}\left(G, I[G] \otimes O_{K}^{\times}\right)\right)\right]},
\end{aligned}
$$

where $\tau(K / F)$ is the Tamagawa number $\tau\left(R_{K / F}^{(1)}\left(G_{m}\right)\right)$ and $\gamma=\beta \cdot \alpha: R_{K / F}^{(1)}\left(G_{m}\right)$ $\rightarrow R_{K / F}^{(1)}\left(G_{m}\right)$ and $\lambda=\mu \times \beta$. Here β and γ are the morphisms $\beta=N_{K / K(\sigma \tau)}$ and $\gamma(x)$ $=x^{2}$ for every $x \in R_{K / F}^{(1)}\left(G_{m}\right)$. First we have $q(\hat{\gamma}(F))=q(\hat{\lambda}(F))=1$ because of the fact that all the tori of (4) are anisotropic. The Tamagawa numbers $\tau(K(\sigma) / F)$ $=\tau(K(\tau) / F)=\tau(K(\sigma \tau) / F)=2$, because Hasse's norm theorem holds for the quadratic extension, and $\tau(K / F)=4 /\left[F^{\times} \cap N_{K / F} K_{A}^{\times}: N_{K / F} K^{\times}\right]$from [8]. Let A_{K} be either U_{K} or O_{K}^{\times}. Then, using Lemma 5 and the exact sequence (4), we have

$$
\begin{aligned}
\operatorname{Ker} & \left(H^{1}\left(G, I[G /\langle\sigma\rangle] \otimes A_{K}\right) \longrightarrow H^{1}\left(G, I[G] \otimes A_{K}\right)\right) \\
\cong & \operatorname{Cok}\left(\left(I[G] \otimes A_{K}\right)^{G} \longrightarrow\left((I[G /\langle\sigma\rangle] \oplus I\{G /\langle\tau\rangle]) \otimes A_{K}\right)^{G}\right) \\
\cong & {\left[\left(N_{K(\sigma) / F}^{-1}(1) \cap A_{K(\sigma)}\right) \times\left(N_{K(\tau) / \boldsymbol{F}}^{-1}(1) \cap A_{K(\tau) / \boldsymbol{F}}\right):\left(N_{K / K(\sigma)} \times N_{K / K(\sigma)}\right)\left(N_{K / F}^{-1}(1) \cap A_{K}\right)\right] } \\
\cong & \operatorname{Cok}\left(H^{0}\left(G, I[G] \otimes A_{K}\right) \longrightarrow H^{0}\left(G,(I[G /\langle\sigma\rangle] \oplus I[G /\langle\tau\rangle]) \otimes A_{K}\right)\right) \\
\cong & \operatorname{Cok}\left(\left(N^{-1}(1) \cap A_{K}\right) / D_{G} A_{K} \longrightarrow\left(\left(N_{K(\sigma) / \mathbf{F}}^{-1}(1) \cap A_{K(\sigma)}\right) / N_{K / K(\sigma)}\left(D_{G} A_{K}\right)\right)\right. \\
& \left.\times\left(\left(N_{K(\tau) / \mathcal{F}}^{-1}(1) \cap A_{K(\tau)}\right) / N_{K / K(\tau)}\left(D_{G} A_{K}\right)\right)\right) .
\end{aligned}
$$

Theorem 4. With the notations as above, we have

$$
\begin{aligned}
& \frac{h_{K / F}}{h_{K(\sigma) / F} h_{K(\tau) / F} h_{K(\sigma \tau) / F}}=\frac{1}{2\left[F^{\times} \cap N_{K / F} K_{A}^{\times}: N_{K / F} K^{\times}\right]} \\
& \quad \times \frac{\left[\operatorname{Ker}\left(H^{1}\left(G, I[G /\langle\sigma \tau\rangle] \otimes U_{K}\right) \longrightarrow H^{1}\left(G, I[G] \otimes U_{K}\right)\right)\right]}{\left[\operatorname{Ker}\left(H^{1}\left(G, I[G /\langle\sigma \tau\rangle] \otimes O_{K}^{\times}\right) \longrightarrow H^{1}\left(G, I[G] \otimes O_{K}^{\times}\right)\right)\right]},
\end{aligned}
$$

where the last factor equals to

$$
\frac{\left[\left(N_{K(\sigma / F}^{-1}(1) \cap U_{K(\sigma)}\right) \times\left(N_{K(\tau) / F}^{-1}(1) \cap U_{K(\tau)}\right): N\left(N_{K / F}^{-1}(1) \cap U_{K}\right)\right]}{\left[\left(N_{K(\sigma) / F}^{-1}(1) \cap O_{K(\sigma)}^{\times}\right) \times\left(N_{K(\tau) / F}^{-1}(1) \cap O_{K(\tau)}^{\times}\right): N\left(N_{K / F}^{-1}(1) \cap O_{K}^{\times}\right)\right]} .
$$

Here N is the map $N=N_{K / K(\sigma)} \times N_{K / K(\tau)}$.
§3. In this section, we shall obtain explicit form of Theorem 4 when $F=\mathbf{Q}$ and $K=\mathbf{Q}(\sqrt{q}, \sqrt{-1})$ (q is a prime). We define σ, τ by putting

$$
(\sqrt{q})^{\sigma}=\sqrt{q},(\sqrt{-1})^{\sigma}=-\sqrt{-1} \text { and }(\sqrt{q})^{\tau}=-\sqrt{q},(\sqrt{-1})^{\tau}=\sqrt{-1} .
$$

For the sake of simplicity, we shall restrict ourselves to the case when $q \equiv 1$ (mod 4). In the following, we shall calculate the right factors of Theorem 4. First, we shall show

$$
\left[\operatorname{Ker}\left(H^{1}\left(G, I[G /\langle\sigma\rangle] \otimes O_{K}^{\times}\right) \longrightarrow H^{1}\left(G, I[G] \otimes O_{K}^{\times}\right)\right)\right]=4 .
$$

There exist isomorphisms

$$
\begin{aligned}
\operatorname{Ker} & \left(H^{1}\left(G, I[G /\langle\sigma \tau\rangle] \otimes O_{K}^{\times}\right) \longrightarrow H^{1}\left(G, I[G] \otimes O_{K}^{\times}\right)\right) \\
& \cong \operatorname{Cok}\left(H^{0}\left(G, I[G] \otimes O_{K}^{\times}\right) \longrightarrow H^{0}\left(G,(I[G /\langle\sigma\rangle] \oplus I[G /\langle\tau\rangle]) \otimes O_{K}^{\times}\right)\right) .
\end{aligned}
$$

Let ε be the fundamental unit of $K(\sigma)=\mathbf{Q}(\sqrt{q})$. Since $q \equiv 1(\bmod 4), N_{K(\sigma) / \mathbf{Q}}{ }^{\varepsilon}$ $=-1$ and the unit group $O_{K}^{\times}=\langle\varepsilon\rangle \times\langle\sqrt{-1}\rangle$. $O_{\sigma}^{\times}, O_{\tau}^{\times}, O_{\sigma \tau}^{\times}$denote the unit groups of $\mathbf{Q}(\sqrt{q}), \mathbf{Q}(\sqrt{-1}), \mathbf{Q}(\sqrt{-q})$, respectively. Then $O_{\sigma}^{\times}=\langle-1\rangle \times\langle\varepsilon\rangle$ and $O_{\tau}^{\times}=\langle\sqrt{-1}\rangle$ and $\mathrm{O}_{\sigma \tau}^{\times}=\langle-1\rangle$. From the fact $N_{K / \mathbf{Q}}\left(O_{K}^{\times}\right)=N_{K(\sigma \tau) / \mathbf{Q}}$ $\left(N_{K / K(\sigma \tau)} O_{K}^{\times}\right)=\{1\}$ and Lemma 5, one sees

$$
H^{0}\left(G, I[G] \otimes O_{K}^{\times}\right) \cong N_{K / \mathbf{Q}}^{-1}(1) / D_{G} O_{K}^{\times}=O_{K}^{\times} / D_{G} O_{K}^{\times} .
$$

From the fact that $\varepsilon^{\sigma}=\varepsilon,(\sqrt{-1})^{\sigma}=-\sqrt{-1}, \varepsilon^{\tau}=-\varepsilon^{-1},(\sqrt{-1})^{\tau}=\sqrt{-1}$, we see $D_{G} O_{K}^{\times}=\left\langle\varepsilon^{2}\right\rangle \times\langle-1\rangle$. Hence we have

$$
H^{0}\left(G, I[G] \otimes O_{K}^{\times}\right) \cong\langle\varepsilon\rangle \times\langle\sqrt{-1}\rangle /\left\langle\varepsilon^{2}\right\rangle \times\langle-1\rangle \cong(\mathbf{Z} / 2 \mathbf{Z})^{2} .
$$

Next, we have

$$
\begin{aligned}
H^{0}\left(G, I[G /\langle\sigma\rangle] \otimes O_{K}^{\times}\right) & \cong\left(O_{\sigma}^{\times} \cap N_{K(\sigma) / \mathbf{Q}}^{-1}(1)\right) / N_{K / K(\sigma)}\left(D_{G} O_{K}^{\times}\right) \\
& =\left\langle\varepsilon^{2}\right\rangle \times\langle-1\rangle /\left(\left\langle\varepsilon^{2}\right\rangle \times\langle-1\rangle\right)^{\sigma+1} \\
& =\left\langle\varepsilon^{2}\right\rangle \times\langle-1\rangle /\left\langle\varepsilon^{4}\right\rangle \cong(\mathbf{Z} / 2 \mathbf{Z})^{2} .
\end{aligned}
$$

Finally we have

$$
\begin{aligned}
H^{0}\left(G, I[G /\langle\tau\rangle] \otimes O_{\mathbf{K}}^{\times}\right) & \cong\left(O_{\tau}^{\times} \cap N_{K(\tau) / \mathbf{Q}}^{-1}(1)\right) / N_{K / K(\tau)}\left(D_{G} O_{K}^{\times}\right) \\
& =\langle\sqrt{-1}\rangle /\left(\left\langle\varepsilon^{2}\right\rangle \times\langle-1\rangle\right)^{\tau+1} \\
& =\langle\sqrt{-1}\rangle \cong \mathbf{Z} / 4 \mathbf{Z} .
\end{aligned}
$$

Since $\left(N_{K / K(\sigma)} \varepsilon, N_{K / K(\tau)} \varepsilon\right)=\left(\varepsilon^{\sigma+1}, \varepsilon^{\tau+1}\right)=\left(\varepsilon^{2},-1\right)$ and $\left(N_{K /(\sigma)}(\sqrt{-1})\right.$, $\left.N_{K / K(\tau)}(\sqrt{-1})\right)=(1,-1)$, we have the equality
$\left[\operatorname{Cok}\left(H^{0}\left(G, I[G] \otimes O_{K}^{\times}\right) \rightarrow H^{0}\left(G,(I[G /\langle\sigma\rangle] \oplus I[G /\langle\tau\rangle]) \otimes O_{K}^{\times}\right)\right)\right]$

$$
=4 \times 2 \times 2 / 2 \times 2=4 .
$$

Next, we shall calculate the number

$$
\left[\operatorname{Cok}\left(H^{0}\left(G, I[G] \otimes U_{K}\right) \longrightarrow H^{0}\left(G,(I[G /\langle\sigma\rangle] \oplus I(G /\langle\tau\rangle]) \otimes U_{K}\right)\right)\right] .
$$

For any prime p, \mathfrak{B} denotes an extension of p to $K . . \mathbf{Q}_{p}(\sqrt{q}, \sqrt{-1})$ the completion of K at \mathfrak{P} shall be written $K_{\mathfrak{p}}$. $O_{\mathfrak{P}}^{\times}$denotes the local unit group of $K_{\mathfrak{P}}$. We denote the decomposition group $\mathrm{Gal}\left(K_{\mathfrak{P}} / \mathbf{Q}_{p}\right)$ by $G_{\mathfrak{P}}$, which is considered as a subgroup of G. Then, as G-module, U_{K} is isomorphic to $\sum_{p} \operatorname{Ind}_{G_{\mathfrak{P}}}^{G} O_{\mathfrak{P}}^{\times}$. We denote $\operatorname{Ind}_{G_{P}}^{G} O_{\mathfrak{F}}^{\times}$by $U_{p} . f_{p}$ denotes the number $\left[\operatorname{Cok}\left(H^{0}\left(G, I[G] \otimes U_{p}\right) \rightarrow\right.\right.$ $\left.\left.H^{0}\left(G,(I[G /\langle\sigma\rangle] \oplus I[G /\langle\tau\rangle]) \otimes U_{p}\right)\right)\right]$. For the archimedean place, we denote this number by f_{∞}. Then the number $\left[\operatorname{Cok}\left(H^{0}\left(G, I[G] \otimes U_{K}\right) \rightarrow H^{0}(G,(I[G /\right.\right.$
$\left.\left.\left.\langle\sigma\rangle] \oplus I[G /\langle\tau\rangle]) \otimes U_{K}\right)\right)\right]$ equals to $\Pi f_{p} \times f_{\infty}$. When $K_{\mathfrak{\beta}} / \mathbf{Q}_{p}$ is unramified, that is, $p \nmid 2 q, U_{p}$ is cohomologically trivial. For any subgroup $H \subset G$, $\mathbf{Z}[G / H] \otimes U_{p}$ is also cohomologically trivial. Hence $I[G / H] \otimes U_{p}$ is also cohomologically trivial. Therefore we have $f_{p}=1$ when $p \neq 2, p \neq q, p \neq \infty$. Hence we have $\prod_{p} f_{p} \times f_{\infty}=f_{2} \times f_{q} \times f_{\infty}$.
(i) Calculation of $f_{p}(p=q)$.

Since $\left(\frac{-1}{p}\right)=1$, we see $G_{\mathfrak{P}}=\langle\tau\rangle$ and $U_{p}=\left(O_{\mathfrak{P}}^{\times}\right)^{\sigma} \times O_{\mathfrak{P}}^{\times}$. Hence we have

$$
\begin{aligned}
& H^{0}\left(G, I[G] \otimes U_{p}\right) \cong H^{-1}\left(G, U_{p}\right) \\
& \quad=\left\{\left(x^{\sigma}, y\right) \mid(x y)^{\tau+1}=1 \text { and } x, y \in O_{\mathfrak{P}}^{\times}\right\} / D_{G} U_{p} \cong H^{-1}\left(G_{\mathfrak{P}}, O_{\mathfrak{P}}^{\times}\right)
\end{aligned}
$$

$\cong \mathbf{Z} / 2 \mathbf{Z}$. Here $D_{G} U_{p}=\left\langle\left(x^{\sigma \tau-\sigma}, y^{\tau-1}\right),\left(x^{\sigma}, x^{-1}\right) \mid x, y \in O_{\Re}^{\times}\right\rangle$. Next, we have

$$
H^{0}\left(G, I[G /\langle\sigma\rangle] \otimes U_{p}\right) \cong N_{G /\langle\sigma\rangle}^{-1}(1) \cap U_{p}^{\langle\sigma\rangle} / N_{\langle\sigma\rangle}\left(D_{G} U_{p}\right),
$$

where $U_{p}^{\langle\sigma\rangle}=\left\{\left(x^{\sigma}, x\right) \mid x \in O_{\mathfrak{P}}^{\times}\right\}$. On the other hand, we have

$$
\begin{aligned}
& N_{G /\langle\sigma\rangle}^{-1}(1) \cap U_{p}^{\langle\sigma\rangle}=\left\{\left(x^{\sigma}, x\right) \mid x \in O_{\mathfrak{P}}^{\times}, x^{\tau+1}=1\right\} \text { and } \\
& N_{\langle\sigma\rangle}\left(D_{G} U_{p}\right)=\left\{\left(x^{\sigma \tau-\tau}, x^{\tau-1}\right) \mid x \in O_{\mathfrak{p}}^{\times}\right\} . \text {Hence we have } \\
& H^{0}\left(G, I[G /\langle\sigma\rangle] \otimes U_{p}\right) \cong N_{\langle\tau\rangle}^{-1}(1) \cap O_{\mathfrak{P}}^{\times} / D_{\langle\tau\rangle} O_{\mathfrak{P}}^{\times} \cong H^{-1}\left(\langle\tau\rangle, O_{\mathfrak{P}}^{\times}\right) \cong \mathbf{Z} / 2 \mathbf{Z} .
\end{aligned}
$$

Next, we have

$$
H^{0}\left(G, I[G /\langle\tau\rangle] \otimes U_{p}\right) \cong N_{G /\langle\tau\rangle}^{-1}(1) \cap U_{p}^{\langle\tau\rangle} / N_{\langle\tau\rangle}\left(D_{G} U_{p}\right)
$$

where $U_{p}^{\langle\tau\rangle}=\left\{\left(x^{\sigma}, y\right) \mid x, y \in\left(O_{\mathfrak{P}}^{\times}\right)^{\langle\tau\rangle}=\mathbf{Z}_{p}^{\times}\right\}$. On the other hand, we have

$$
\begin{aligned}
& N_{G /\langle\tau\rangle}^{-1}(1) \cap U_{p}^{\langle\tau}=\left\{\left(x^{\sigma}, X^{-1}\right) \mid x \in \mathbf{Z}_{p}^{\times}\right\} \text {and } \\
& N_{\langle\tau\rangle}\left(D_{G} U_{p}\right)=\left\{\left(x^{\sigma \tau+\sigma}, x^{-\tau-1}\right) \mid x \in O_{\Re}^{\times}\right\} . \text {Hence we have } \\
& H^{0}\left(G, I[G /\langle\tau\rangle] \otimes U_{p}\right) \cong H^{0}\left(\langle\tau\rangle, O_{\mathfrak{P}}^{\times}\right) \cong \mathbf{Z}_{p}^{\times} / N_{\langle\tau\rangle} O_{P}^{\times} \cong \mathbf{Z} / 2 \mathbf{Z} .
\end{aligned}
$$

Therefore we have $f_{q}=[\operatorname{Cok}(\mathbf{Z} / 2 \mathbf{Z} \rightarrow(\mathbf{Z} / 2 \mathbf{Z} \oplus \mathbf{Z} / 2 \mathbf{Z}))]$. Hence $f_{q}=2$ or 4. It is easy to show $\left(x^{\sigma}, 1\right) \bmod D_{G} O_{\mathfrak{P}}^{\times} \in H^{-1}\left(G, U_{p}\right)$ for any $x \in O_{\mathfrak{F}}^{\times}$such that $x^{\tau+1}=1$. On the other hand, for any $x\left(x \in O_{\mathfrak{P}}^{\times}\right.$and $\left.x^{\tau+1}=1\right)$, we have $N_{K / K(\sigma)}$ $\times N_{K / K(\tau)}\left(x^{\sigma}, 1\right)=\left(x^{\sigma}, x\right) \bmod N_{\langle\sigma\rangle}\left(D_{G} U_{p}\right) \times(1,1) \bmod N_{\langle\tau\rangle}\left(D_{G} U_{p}\right) . \quad$ Hence
$\operatorname{Cok}\left(H^{0}\left(G, I[G] \otimes U_{p}\right) \longrightarrow H^{0}\left(G,(I[G /\langle\sigma\rangle] \oplus I[G /\langle\tau\rangle]) \otimes U_{p}\right)\right)$
$\cong H^{0}\left(G, I[G /\langle\tau\rangle] \otimes U_{p}\right) \cong H^{0}\left(\langle\tau\rangle, O_{\mathfrak{P}}^{\times}\right) \cong \mathbf{Z} / 2 \mathbf{Z}$. Therefore we have $f_{q}=2$.
(ii) Calculation of f_{2}.

First, we treat the case when $q \equiv 1(\bmod 8)$. Then $\left(\frac{q}{2}\right)=1$, that is, $\mathbf{Q}_{2}(\sqrt{q})=\mathbf{Q}_{2}$ and the decomposition group $G_{\mathfrak{P}}$ equals to $\langle\sigma\rangle$. Therefore, in the same way as above, we have
$\left.\operatorname{Cok}\left(H^{0}\left(G, I[G] \otimes U_{p}\right) \longrightarrow H^{0}\left(G,(I[G /\langle\sigma\rangle] \oplus I[G /\langle\tau\rangle]) \otimes U_{p}\right)\right)\right]$
$\cong H^{0}\left(G, I[G /\langle\sigma\rangle] \otimes U_{p}\right) \cong H^{0}\left(\langle\sigma\rangle, O_{\mathfrak{\beta}}^{\times}\right) \cong \mathbf{Z} / 2 \mathbf{Z}$. Hence $f_{2}=2$.
For $q \equiv 5(\bmod 8)$, one sees $\left(\frac{q}{2}\right)=-1$, that is, $\mathbf{Q}_{2}(\sqrt{q})$ is the unramified quadratic extension of \mathbf{Q}_{2}. Since $\mathbf{Q}_{2}(\sqrt{-1}) / \mathbf{Q}_{2}$ is a ramified quadratic extension, the decomposition group $G_{\mathfrak{P}}$ equals to $\langle\sigma\rangle \times\langle\tau\rangle$. Hence $U_{p}=O_{\mathfrak{P}}^{\times}$. Therefore we have

$$
\begin{aligned}
& H^{0}\left(G, I[G] \otimes U_{p}\right) \cong H^{-1}\left(G, U_{p}\right)=H^{-1}\left(G, O_{\mathfrak{F}}^{\times}\right) \\
& \quad=\left\{x \in O_{\mathfrak{P}}^{\times} \mid x^{\sigma \tau+\sigma+\tau+1}=1\right\} / D_{G} O_{\mathfrak{F}}^{\times} .
\end{aligned}
$$

Here $D_{G} O_{\mathfrak{P}}^{\times}=\left\langle x^{1-\sigma}, y^{1-\tau} \mid x, y \in O_{\mathfrak{P}}^{\times}\right\rangle$.
Next we have

$$
H^{0}\left(G, I[G /\langle\sigma\rangle] \otimes U_{p}\right)=H^{0}\left(G, I[G /\langle\sigma\rangle] \otimes O_{\mathfrak{F}}^{\times}\right) \cong N_{G}^{-1 /\langle\sigma\rangle}(1) \cap U_{\sigma} / N_{\langle\sigma\rangle}\left(D_{G} O_{\mathfrak{F}}^{\times}\right)
$$

$\cong\left\{x \in U_{\sigma} \mid x^{\tau+1}=1\right\} /\left\{y^{(\sigma+1)(1-\tau)} \mid y \in O_{\mathfrak{F}}^{\times}\right\}$. Here U_{σ} is the local unit group $\left(O_{\mathfrak{\beta}}^{\times}\right)^{\langle\sigma\rangle}$.
Since $\mathbf{Q}_{2}(\sqrt{q}) / \mathbf{Q}_{2}$ is an unramified extension, U_{σ} is a cohomologically trivial $G /\langle\sigma\rangle$-module. Hence we have $H^{-1}\left(G /\langle\sigma\rangle, U_{\sigma}\right)=1$, that is, $N_{G /\langle\sigma\rangle}^{-1}(1) \cap U_{\sigma}$ $=\left\{x^{1-\tau} \mid x \in U_{\sigma}\right\}$. Therefore we can define the following surjective homomorphism δ
$\delta: \mathbf{Z} / 2 \mathbf{Z} \cong H^{0}\left(\langle\sigma\rangle, O_{\mathfrak{F}}^{\times}\right) \rightarrow H^{0}\left(G, I[G /\langle\sigma\rangle] \otimes O_{\mathfrak{F}}^{\times}\right)$, where δ is defined by $\delta\left(x \bmod N_{\langle\sigma\rangle} O_{\mathfrak{P}}^{\times}\right)=x^{1-\tau} \bmod N_{\langle\sigma\rangle}\left(D_{G} O_{\mathfrak{F}}^{\times}\right)$. One can easily show the kernel of δ equals to $\mathbf{Z}_{p}^{\times} N_{\langle\sigma\rangle} O_{\mathfrak{P}}^{\times} / N_{\langle\sigma\rangle} O_{\mathfrak{P}}^{\times}$. Hence we have
$H^{0}\left(G, I[G /\langle\sigma\rangle] \otimes O_{\mathfrak{P}}^{\times}\right) \cong U_{\sigma} / \mathbf{Z}_{p}^{\times} N_{\langle\sigma\rangle} O_{\mathfrak{P}}^{\times}$. Hence we have
$\left[H^{0}\left(G, I[G /\langle\sigma\rangle] \otimes O_{\mathfrak{p}}^{\times}\right)\right] \leqq 2$. Since $H^{0}\left(G /\langle\sigma\rangle, U_{\sigma}\right)=1$, that is, \mathbf{Z}_{p}^{\times}
$=N_{\langle\sigma\rangle} O_{\mathfrak{F}}^{\times}$, we can define the following surjective homomorphism

$$
\delta^{\prime}: H^{0}\left(G, I[G /\langle\sigma\rangle] \otimes O_{\mathfrak{P}}^{\times} \cong U_{\sigma} / \mathbf{Z}_{p}^{\times} N_{\langle\sigma\rangle} O_{\mathfrak{P}}^{\times} \longrightarrow \mathbf{Z}_{p}^{\times} /\left(\mathbf{Z}_{p}^{\times}\right)^{2} N_{G} O_{\mathfrak{F}}^{\times} .\right.
$$

Here δ^{\prime} is defined by $\delta^{\prime}\left(x \bmod \mathbf{Z}_{p}^{\times} N_{\langle\sigma\rangle} O_{\mathfrak{F}}^{\times}\right)=x^{\tau+1} \bmod \left(\mathbf{Z}_{p}^{\times}\right)^{2} N_{G} O_{\mathfrak{p}}^{\times}$. Since $H^{0}\left(G, O_{\mathfrak{ß}}^{\times}\right)=\mathbf{Z}_{p}^{\times} / N_{G} O_{\mathfrak{P}}^{\times} \cong \mathbf{Z} / 2 \mathbf{Z}$, we have $N_{G} O_{\mathfrak{P}}^{\times} \supset\left(\mathbf{Z}_{p}^{\times}\right)^{2}$. Therefore $Z_{p}^{\times} /\left(\mathbf{Z}_{p}^{\times}\right)^{2} N_{G}$ $O_{\mathfrak{F}}^{\times} \cong \mathbf{Z}_{p}^{\times} / N_{G} O_{\mathfrak{F}}^{\times} \cong H^{0}\left(G, O_{\mathfrak{p}}^{\times}\right) \cong \mathbf{Z} / 2 \mathbf{Z}$. Therefore $\quad\left[H^{0}\left(G, I[G /\langle\sigma\rangle] \otimes O_{\mathfrak{F}}^{\times}\right)\right] \geqq 2$. Combining these, we have $H^{0}\left(G, I[G /\langle\sigma\rangle] \otimes O_{\mathfrak{P}}^{\times}\right) \cong \mathbf{Z} / 2 \mathrm{Z}$. Finally we have

$$
H^{0}\left(G, I[G /\langle\tau\rangle] \otimes U_{p}\right)=H^{0}\left(G, I[G /\langle\tau\rangle] \otimes O_{\mathfrak{F}}^{\times}\right) \cong N_{G}^{-1} /\langle\tau\rangle(1) \cap U_{\tau} / N_{\langle\tau\rangle}\left(D_{G} O_{\mathfrak{P}}^{\times}\right)
$$

$\cong\left\{x \in U_{\tau} \mid x^{\sigma+1}=1\right\} /\left\{y^{(\tau+1)(1-\sigma)} \mid y \in O_{\mathfrak{B}}^{\times}\right\}$. Here U_{τ} is the local unit group $\left(O_{\mathfrak{B}}^{\times}\right)^{\langle\tau\rangle}$. Since $H^{0}\left(\langle\tau\rangle, O_{\mathfrak{F}}^{\times}\right)=1$, we have $N_{\langle\tau\rangle} O_{\mathfrak{F}}^{\times}=U_{\tau}$. Therefore we have $H^{0}\left(G, I[G /\langle\tau\rangle] \otimes O_{\mathfrak{F}}^{\times}\right) \cong\left\{x \in U_{\tau} \mid x^{\sigma+1}=1\right\} /\left\{y^{1-\sigma} \mid y \in U_{\tau}\right\}=H^{-1}\left(G /\langle\tau\rangle, U_{\tau}\right)$ $\cong \mathbf{Z} / 2 \mathbf{Z}$.

Let α be the following map

$$
\begin{aligned}
\alpha: & \left\{x \in O_{\mathfrak{\beta}}^{\times} \mid x^{\sigma \tau+\sigma+\tau+1}=1\right\} / D_{G} O_{\mathfrak{P}}^{\times} \longrightarrow\left(\left\{x \in U_{\sigma} \mid x^{\tau+1}=1\right\} /\left\{y^{(\sigma+1)(1-\tau)}=1 \mid y \in O_{\mathfrak{\beta}}^{\times}\right\}\right) \\
& \times\left(\left\{x \in U_{\tau} \mid x^{\sigma+1}=1\right\} /\left\{y^{(\tau+1)(1-\sigma)}=1 \mid y \in O_{\mathfrak{\beta}}^{\times}\right\}\right) .
\end{aligned}
$$

Here α is defined by $\alpha\left(x \bmod D_{G} O_{\mathfrak{p}}^{\times}\right)=\left(x^{\sigma+1} \bmod N_{\langle\sigma\rangle}\left(D_{G} O_{\mathfrak{p}}^{\times}\right), x^{\tau+1} \bmod N_{\langle\tau\rangle}\right.$ $\left(D_{G} O_{\mathfrak{F}}^{\times}\right)$). From Lemma 2 and $H^{0}\left(\langle\tau\rangle, O_{\mathfrak{F}}^{\times}\right)=1$, we have $[\operatorname{Cok} \alpha]=2 / a$. Here
a is the order of the following group A

$$
A=\left(x^{\sigma+1} \mid x \in O_{\mathfrak{P}}^{\times} \text {and } x^{\tau+1}=y^{(\tau+1)(1-\sigma)} \quad \text { for some } y \in O_{\mathfrak{P}}^{\times}\right\} / N_{\langle\sigma\rangle}\left(D_{G} O_{\mathfrak{F}}^{\times}\right) .
$$

For any $x \in O_{\mathfrak{P}}^{\times}$such that $x^{\tau+1}=y^{(1-\sigma)(\tau+1)}$, we have $\left(x \times y^{\sigma-1}\right)^{\tau+1}=1$. Since $H^{-1}\left(\langle\tau\rangle, O_{\mathfrak{P}}^{\times}\right)=1$, there exists an element $z \in O_{\mathfrak{P}}^{\times}$such that $x \times y^{\sigma-1}=z^{1-\tau}$. Hence $x=y^{1-\sigma} \times z^{1-\sigma}$. Therefore $x^{\sigma+1}=z^{(\sigma+1)(1-\tau)} \in N_{\langle\sigma\rangle}\left(D_{G} O_{\mathfrak{p}}^{\times}\right)$. Hence $a=1$. Therefore f_{2} is also equals to 2 for $q \equiv 5(\bmod 8)$.
(iii) Calculation of f_{∞}.

From $U_{\infty} \cong \mathbf{C}^{\times} \times \mathbf{C}^{\times}$, we have $H^{0}\left(G, I[G] \otimes U_{\infty}\right) \cong H^{-1}\left(G, U_{\infty}\right)$ $\cong\left\{\left(x^{\sigma}, y\right) \mid x, y \in \mathbf{C}^{\times},(x y)^{\tau+1}=1\right\} /\left\langle\left(x^{\sigma}, x^{-1}\right),\left(1, y^{1-\tau}\right) \mid x, y \in \mathbf{C}^{\times}\right\rangle$. In the same way as the calculation of f_{q}, we have $H^{0}\left(G, I[G /\langle\sigma\rangle] \otimes U_{\infty}\right) \cong N^{-1}\left(\langle\tau\rangle, \mathbf{C}^{\times}\right) \cong\{1\}$ (Hilbert's Theorem 90). On the other hand

$$
\begin{aligned}
& H^{0}\left(G, I[G /\langle\tau\rangle] \otimes U_{\infty}\right) \cong N_{G /\langle\tau\rangle}^{-1}(1) \cap U_{\infty}^{\langle\tau} / N_{\langle\tau\rangle}\left(D_{G} U_{\infty}\right) \\
& \cong\left\{\left(x^{\sigma}, x^{-1}\right) \mid x \in \mathbf{R}^{\times}\right\} /\left\{\left(x^{\sigma \tau+\sigma}, x^{-1-\tau}\right) \mid x \in \mathbf{C}^{\times}\right\} \cong H^{0}\left(\langle\tau\rangle, \mathbf{C}^{\times}\right) \cong \mathbf{R}^{\times} / \mathbf{R}_{+}^{\times} \cong \mathbf{Z} / 2 \mathbf{Z} .
\end{aligned}
$$

Let β be the map

$$
\beta: H^{0}\left(G, I[G] \otimes U_{\infty}\right) \longrightarrow H^{0}\left(G, I[G /\langle\tau\rangle] \otimes U_{\infty}\right)
$$

defined by putting

$$
\beta\left(\left(x^{\sigma}, y\right) \bmod D_{G} U_{\infty}\right)=\left(x^{\sigma \tau+\sigma}, y^{\tau+1}\right) \bmod N_{\langle\tau\rangle}\left(D_{G} U_{\infty}\right) .
$$

From the definition, we have $y^{\tau+1}=x^{-1-\tau}$. Hence we obtained $f_{\infty}=[\operatorname{Cok} \beta]$ $=2$. Therefore, we have obtained $f_{2}=f_{q}=f_{\infty}=2$ for $q \equiv 1(\bmod 4)$. Hence, from Theorem 4, we have

$$
\begin{aligned}
& \frac{h_{K / \mathbf{Q}}}{h_{K(\sigma) / \mathbf{Q}} h_{K(\tau) / \mathbf{Q}} h_{K(\sigma \tau) / \mathbf{Q}}}=\frac{2 \times 2 \times 2}{8 \times\left[\mathbf{Q}^{\times} \cap N_{K / \mathbf{Q}} K_{A}^{\times}: N_{K / \mathbf{Q}} K^{\times}\right]} \\
& =\frac{1}{\left[\mathbf{Q}^{\times} \cap N_{K / \mathbf{Q}} K_{A}^{\times}: N_{K / \mathbf{Q}} K^{\times}\right]} .
\end{aligned}
$$

It is known that Scholz's number knot group $\mathbf{Q}^{\times} \cap N_{K / \mathbf{Q}} K_{A}^{\times} / N_{K / \mathbf{Q}} K^{\times}$is isomorphic to $\operatorname{Ker}\left(H^{3}(G, \mathbf{Z}) \rightarrow \sum_{p} H^{3}\left(G_{\mathfrak{P}}, \mathbf{Z}\right)\right.$), where $G_{\mathfrak{P}}$ is the decomposition group for every prime p. From Lyndon's formula, we have $H^{3}(G, \mathbf{Z}) \cong \mathbf{Z} / 2 \mathbf{Z}$ for this case. Hence we have

$$
\begin{array}{ll}
\mathbf{Q}^{\times} \cap N_{K / \mathbf{Q}} K_{A}^{\times} / N_{K / \mathbf{Q}} K^{\times} \cong \mathbf{Z} / 2 \mathbf{Z} & (q \equiv 1(\bmod 8)), \\
\mathbf{Q}^{\times} \cap N_{K / \mathbf{Q}} K_{A}^{\times} / N_{K / \mathbf{Q}} K^{\times} \cong\{1\} & (q \equiv 5(\bmod 8)) .
\end{array}
$$

Hence we have obtained the following formula

$$
\frac{h_{K / \mathbf{Q}}}{h_{K(\sigma) / \mathbf{Q}} h_{K(\tau) / \mathbf{Q}} h_{K(\sigma \tau) / \mathbf{Q}}}=\left\{\begin{array}{ll}
1 / 2 & (q \equiv 1(\bmod 8)) \tag{4}\\
1 & (q \equiv 5(\bmod 8))
\end{array} .\right.
$$

From Corollary 2 , we have $E(K(\sigma) / \mathbf{Q})=1, E(K(\tau) / \mathbf{Q})=2, \quad E(K(\sigma \tau) / \mathbf{Q})=1$.

From the above calculation on the order of Scholz's knot group, we have

$$
E(K / \mathbf{Q})= \begin{cases}2 & (q \equiv 1(\bmod 8)) \\ 1 & (q \equiv 5(\bmod 8))\end{cases}
$$

Let $h_{\sigma}, h_{\tau}, h_{\sigma \tau}$ be the class numbers of the quadratic fields $\mathbf{Q}(\sqrt{q}), \mathbf{Q}(\sqrt{-1})$, $\mathbf{Q}(\sqrt{-q})$, respectively. There exists an equation

$$
\frac{h_{K}}{h_{\sigma} h_{\tau} h_{\sigma \tau}}=\frac{E(K / \mathbf{Q})}{E(K(\sigma) / \mathbf{Q}) E(K(\tau) / \mathbf{Q}) E(K(\sigma \tau) / \mathbf{Q})} \times \frac{h_{K / \mathbf{Q}}}{h_{K(\sigma) / \mathbf{Q}} h_{K(\tau) / \mathbf{Q}} h_{K(\sigma \tau) / \mathbf{Q}}} .
$$

Combining these and the fact $h_{\tau}=1$, we have $\frac{h_{K}}{h_{\sigma} h_{\sigma \tau}}=\frac{1}{2}$.
Finally, we have obtained the following Dirichlet's class number formula.
Corollary 4. With the notations as above, we have

$$
h_{K}=\frac{h_{\sigma} h_{\sigma \tau}}{2} \quad(q \equiv 1(\bmod 4)) .
$$

Department of Mathematics College of General Education Tokushima University

References

[1] I. T. Adamson, Cohomology theory for non-normal subgroups and non-normal fields, Proc. Glasgow Math. Assoc., 2 (1954), 66-76.
[2] K. S. Brown, Cohomology of Groups, Springer-Verlag, New York, 1982.
[3] J. W. S. Cassels and A. Fröhlich (editors), Algebraic Number Theory, Academic Press, London, 1967.
[4] H. Cohn, A Classical Invitation to Algebraic Nembers and Class Fields, Springer-Verlag, New York, 1988.
[5] S. Katayama, Class number relations of algebraic tori I, Proc. Japan Acad., 62A (1986), 216-218.
[6] S. Katayama, Class number relations of algebraic tori II, ibid., 62A (1986), 320-322.
[7] T. Ono, Arithmetic of algebraic tori, Ann. of Math., 74 (1961), 101-139.
[8] T. Ono, On the Tamagawa number of algebraic tori, ibid., 78 (1963), 47-73.
[9] T. Ono, On some class number relations for Galois extensions, Nagoya Math. J., 107 (1987), 121-133.
[10] J.-M. Shyr, On some class number relations of algebraic tori, Michigan Math. J., 24 (1977), 365-377.
[11] T. Takagi, Lectures on Elementary Number Theory, 2nd ed. (in Japanese), Kyoritu, Tokyo, 1971.
[12] A. Weil, Adeles and Algebraic Groups, notes by M. Demazure and T. Ono, Birkhäuser, Boston, 1982.

