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Squaring operations in the Hermitian symmetric spaces

By

Kiminao ISHITOYA

§ 0 .  Introduction

In this paper we calculate the squaring operations in the mod 2 cohomology
of the irreducible Hermitian symmetric spaces of com pact type . Each of them
is obtained as a  quo tien t o f an  appropriate compact simple Lie group by the
centralizer of an  appropriate 1-dimensional torus, and they are devided into six
classes:

AIII W(m, n) = U(m + n)I(U(m) x U(n)) (m, n > 1)

BD!Q „ = SO(n + 2)/(S0(2) x SO(n)) (n 3)

CI Sp(n)/U(n) (n 3)

DIII SO (2n)/ U(n) (n > 4)

EIII =  E6 /(Spin(10) • T 1) (Spin(10)n T1 Z 4 )

EVII =  E 7 /(E 6 . T 1) (E6 n T 1 L..' Z 3 )

Their cohomology rings have been obtained by several authers:

H*(W (m,n); Z) = Z[a i ,..., b i ,...,b„]/(  E a b ;  k > 1 );
i + j= k

{ Z[t, e]/(tm — 2e, e 2 )
H*(Q„; Z) =

Z[t, s]/(tm+ 1  — 2st, s 2 — 6„,stm)
(n = 2m —  1),
(n = 2m);

H*(Sp(n)/U(n); Z) = cx( E (— k > 1);
i +j=2 k

2k - 1
H*(S0(2n)/U(n); Z) = Z [e 2 , e4 ,..., e 2 n _ 2 ]/(e 4 k  +  E  ( — e1 )i 2 i  4k - 2i)

1= 1

(it should be understood that e2 i  =  0  if j  n);

H*(EIII; Z) = Z[t, w]/(t 9
 —  3w2 t, w 3 +  15w 2 t4

—  9wt 8 );

H*(EVII; Z) = Z[u, y , w]/(y 2  — 2wu, u" — 2A, w 2 — 2B)

where 6,„ —

1  +  (
—  

1 ) m

2
,  A  and B  are appropriate integral classes, and
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lad = l bd = l cd = e241 = 2 1 , I t I = 2 , l SI =  I el = 2m,
I u =  2 , l  v  =  1 0  a n d  wl = 8 for EIII; = 18 for EVII.

F or details see [1], [6], [7], [9] and §1.4 in  this paper.
F or AIII and C I the  cohomology rings are generated by Chern classes and

for DIII by the suspension images of Stiefel-Whitney classes, whence the squaring
operations are obtained by the Wu formula.

For BDI (n = 2m) we calculate in H* 
(   S O ( 2 m  +  2 )   )  

through the homomor-
U(1) x U(m)

SO(2m + 2) 
U(1) x U(m) —" Q 2m 5

Theorem 1.4. Sq21 s = 
(m + 1 )

s t
i
0 ) .

Corollary 1.5. Sq2 i e = ( m 1 )e t t( i  >  0).

For the exceptional types EIII and EVII we calculate in  GIT(T a maximal

torus o f G) using the  fibration G/T4 /37"-4 13 .Ô, where B a is  the 4-connective
cover of BG and BT is defined in  a  similar way (for details see [ 3 ] ) .  The results
are

Theorem 2.5. (i) In  EIII we have

Sq2 w ' =  w 't, S e  w' = t 6,w f  w / 2 (where w' = w +

(ii) In  EVII

Sq2 v = 0, Sq4 v = vu2 + u 7 , Sq8 v = w + vu 4  +  u 9 ;

Sq2w  1 4 1 0 ,  sew  = VU 6 U " ,  Sq8 w = vu8 +  3, s q l 6 w  = VU12.

As an application we give in the final section the Stiefel-Whitney classes of
EIII and EVII by use of the Wu classes.

Throughout th e  paper H *( ) denotes exclusively th e  m o d  2 cohomology
(integral cohomology is always denoted by H*( ; Z ) ) .  F 2  denotes the prime field
of characteristic 2. F o r  a n  integral element x  its  m od  2  reduction is denoted
by p(x), or simply by x  unless there is danger of confusion. c i (x i ,..., x.) denotes
the i-th symmetric polynomial in x l ,...,x , (i 0). 4(a,,...,a„) denotes an algebra
with simple system of generators

§1. Classical types

First recall the Wu foromula. Let x ,,.. . ,x „  be elements o f degree d  with
Sq i xi  = 0 (0 < i < d ) ,  and  pu t c;  =  a; (x, x„) (j 0). Then we have

phism induced by the projection and  obtain
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1 .1 .  The Grassmannian W(m, n). W e have the fibration

W(m, n) > BU(m) x BU(n) — p BU(m + n).

P u t ai = t*(c i x  1) a n d  bi = 1*(1 x c i) ,  where ci i s  th e  i-th universal Chern
class in  BU(m) o r B U (n ) (1  0). Then

H*(W(m, n); Z)= Z[a i ,..,,a„„ E  ai bi ; k 1),
i + j= k

whence by the naturality the  operation of Sq' is obtained from the Wu formula
(1.1).

1 .2 .  T he space Sp(n)/U(n). The operation o f  Sq i is again obtained from
the W u formula since

H*(Sp(n)/U(n); Z) Z [c i , enii( E (— 1)1 ci ci ; k 1),
i +  j= 2k

where ci i s  the  i-th Chern class (i > 0).

1 .3 .  T he  space SO(2n)/U(n). W e extract from  [6 ] ,  C hap. 3 , § 6 . Using
the fibration

SO(2n)/U(n) BU(n) — BS0(2n),

1
w e have unique elements e2 1 = —1* ci e H 2 t (S0(2n)/U(n); Z ) (1 < i < n — 1). Let

2
p: SO(2n) —> SO(2n)/U(n) be the projection and a: H*(BS0(2n)) —> H*(S0(2n)) the
suspension. Then

(1.2) P*(e21) = a(w21+1) (wi  th e  Stiefel-Whitney classes);

(1.3) H*(S0(2n)/U(n)) = /1(e 2 , e4 ,..., e 2 „_ 2 ), d i = e 4 1

(it should be understood that ez i = 0 if j  > n).

It follows that p* is  injective. So we calculate in  SO(2n):

(
2k — 2i + r

P* (Sce i e2k) = cr(Sce i w2k+ 1) = a E w
2k+ 1 + r W 2 i - r

0 <r . 2 i r

by the  W u form ula . Since a  annihilates decomposables, we have

Proposition 1.1. see2k =
(k )

e 2k+21 (i, k 0).

1 .4 .  T he  complex quadric Q„ = SO(n + 2)/(S0(2) x SO(n)). W e have the
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fibration
Q„ B S0(2) x B SO(n)--> B SO(n + 2).

Let t H 2 (BS0(2); Z) be the canonical generator, and put t  =  t*(t x  1 ) .  Here
we distinguish the tw o cases (a) n  is even, and (b) n is odd.

(a) n  =2m . Let xeH 2 m(BS0(2n); Z) be the Euler class and p ieH 2 (BSO(n); Z)
the i-th Pontrjagin class. Using the fibration above we see that

/*(t x  x) =  0 , t* (1  x  p.) ( —  1)m t 2 -  and

t* (1 x x +  en x 1) 0  m o d  (2 ) .

Since H*(Q 2. ;  Z) has no torsion we have a unique element se  1-12 1"(Q2 . ;  Z)
with 2s = t*(1 x x +  en x  1 ) . T h e n  the relations above yield

2st = en + 1  a n d  4 s 2 = 2(1 + (— 1)m)sen.

Considering the Serre spectral sequence for the fibration SO(2m + 2)/S0(2m)
Q2,n B S 0 ( 2 ) ,  we obtain

Theorem 1.2. H *(Q 2 ,n ; Z) = Z[t, s]/(tm + 1  — 2st, s 2  — Sm stm).

Now consider the diagram :

SO (2m)/ U(m)

U(m + 1) SO(2m + 2) q
P.(C )= SO(2m + 2)/U(m + 1)

U(1) x  U(m) U(1) x U(m)
(1.4)

BU(1) x  BU(m) BU(m + 1)

SO(2m + 2)
Q 2 m   BS0(2) x  BS0(2m)

SO(2) x  SO(2m)

Define t, e 2 i (i 1) and ; )  bye e H * (  SO(2m + 2)
Z

U(1) x U(m)
tm

t  = p*(t)= i'*(c i  X  1 ), e21-= q* (e21) a n d  e = E tm _ i .

i = 1

Then

Lemma 1 .3 .  (i) q *  induces an  isomorphisms of algebras

H * (  SO(2m + 2)H * (  SO(2m + 2) ;  z ) { t ] /( + 12 t e ) .
U(1) x  U (m )' ) U(m + 1)
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(ii) p*(s) = 5 m ttm + (— 1)m e.

P ro o f . B y  th e  defin ition  o f  t w e  s e e  t h a t  j * t  generates the ring
H*(Pm (C); Z ) .  Since the spectral sequence for the row in (1.4) collapses, (i) holds
as an isomorphism of modules. Let c , c ' and c" b e  the total Chern classes of
BU(m), BU (1) and B U(m  + 1), respectively. Then q'*(c") = c' x c. Applying i'*
we have

1 + 2e + 2e 4  + • • • + 2e 2 m  = (1'*(1 x c)). (1 + t),

whence

i'*(1 x  cm ) = ( — 1)m (tm + 2e).

Then (tm + 2e)t = ( — 1)m(i'*(1 x c m ))• t = 0, which completes the proof of (i).
Next from the diagram (1.4) we have

2p*(s) = i'* (c m  x  1) +  trn = 26„,tm + (— 1)tm2e,

( S0(2m + 2)
which proves (ii) since H* ; Z  is  to rs io n  free. q.e.d.

U(1) x U ( m )  
)

T heorem  1 .4 . S e i s =  ( m  +  1 ) (i > 0).

P ro o f . As is well known Sq = 1 + Sq l  + Sq 2 + ••• is an algebra homomor-
phism, and by 1.2 w e can put Sq(s) = s(1 + £ 1 t  e2 t2 + • • .) (e i e F 2 ). Applying
p* we have

(1.5) Sq(Sm  tm +  e) = ((5m en + e)(1 + e l t + e2 t2 + • • •).

Now put A = H*(P m (C) x P m (C)) = F2 [a, b] I (am + 1 , bm + 1 ). Then the corre-
spondence ti—* a, e21 1—bi (i  1 )  e x te n d s  to  a n  algebra hom om orphism  cp:

H *  (S 0(2m + 2)
U(1) x U(m) 

) —> A , which commutes w ith the squaring operations. Apply

cp to (1.5):

(1.6) Sq ((5m + 1)am + c)  = ((bm +  1)am +  c)(1 + e 1 a + e 2 a2  + • .),

w here  c  =  am +  am -  b  + • + b tm . First ca lcu la ting  in the quotient field
F2 [[a, b ]], we obtain

Sq(c) = +  1 ) (a ' + am ''b  + •  •  •  + (a + b ,
i=o i

of

and th e n  in  A  u s in g  th e  equalities a" +  a m + 1
-  b + • • • + b 1 = ca i and

c(a + b) = 0,

Sq(c) = c(1 + a)m+ 1 .

C om paring the coefficients of e l , '  in  b o th  s id e s  o f  (1.6), we obtain
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Ei = which proves the theorem.(
m  + 1 

, q.e.d.
i

(b) n = 2m —  1. According to [6]

H*(Q 2 ,„_ i ; Z) = Z [t, e]l(tm — 2e, e 2 ),

where t is the same as ours. The inclusion SO(2m + 1) c SO (2m + 2) (X F—+ X C) 1)
yields a comuutative diagram

Q 2 m -  1

 

Q 2m

 

BS0(2) x  BS0(2m — 1) BS0(2) x BS0(2m).

From f  '*(1 x x) =  0  and f  '*(t x 1) = t  x 1  it follows f *(t) = t  and f *(s) = e,
and we have

m + 1
iCorollary 1.5. S c e i e = (

)
e t ( i  0 ) .

§ 2. Exceptional types

In  this section t  = 6  o r  7 .  L e t  G be the simply connected exceptional Lie
group of type E , and T a maximal torus of G .  Take the root system {a i ,..., ; }
as in  [2 ], and  define K  to  b e  the centralizer of the 1-dimensional torus defined
by the equations oc, =  0  (i t ) .  Then the quotient space G/K  is  the irreducible
Hermitian symmetric space EIII (t = 6) o r  EVII (t = 7).

Consider the fibration K /T — G /T 4  G / K . By the classical theorem of Bott
the  odd dimensional parts of the cohom ology of b o th  the fibre and the base
v an ish . H en ce  th e  sp e c tra l sequence fo r  th e  f ib ra t io n  collapses, a n d  p*:
H*(G/K : A) —> H*(G/T; A) is injective for any coefficient ring A . Therefore the
action of Sq i i n  G /K  is derived from that in  G/T.

First w e fix a  system o f generators o f H*(BT; Z ) a fte r [7 ] a n d  [9 ] . L e t
{w1 ,..., w ,}  b e  th e  fundamental weights o f  G .  Being regarded a s  elements of
H 2 (BT; Z), they form a  basis of it. L e t  R i  b e  the reflection in the plane oci  = 0,
and put

t e = w e ,  t i = R i ± i (t i + ,)(e > > 1), t ,  = R , ( t 2 ) a n d  c, =  o- ,(t i  , t, ) (i 0).

Then

H*(BT; Z) = Z[t,,..., t, , x]/(c i — 3x).

As the canonical mapping i: GIT —>BT does not induce a surjection in H*( ),
we introduce Bb-  th e  4-connective fibre space over BG to  have the commutative
diagram with two fibrations
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G I - > B 5

g

G/T  B T  - >  B G

In H*(B7'; Z ( 2 ) )  we have new generators gi ( i=  3, 5, 9) with

2g3 -  C3 , 2g 5 =  c5 =  C 5  ±  C 4 C i  a n d  2g9  =  =  C7C? C 6 0

(Note that the symbol g* is omitted here). We put

y 3  -  p(g 3 ), y 5  =  Sq4 y3 a n d  y 9  -  Sq 8 y5 eH*(BT).

Then

(2.1) y , =  P(g5 + g3cT  +  c4c1) and

y9  =  p(g 9  + g 5 (c4 + ct)+ g 3 (c6 + c 4 c + c 7 )+c ,d + c ic i + c 4 c1).

For details see [ 3 ] .  Note that our yi (i = 5, 9) are slightly different from
those in  [9].

Recall that the generator of maximum degree is w in each case (see § 0 ) .  So
it is sufficient for us to consider in the range of degree <  d „ where d6  =  14 and
d, = 3 4 .  Define polynomials

/ 6  = Y32  +  c 4 c i +  CT, 18 = C 6Ci C i  C + C7,

110 = A  + c6 c1 +cr, / 12  =  CZ +  C6C4CT C4C7,

/14 = ci + c 6 c4 ct + c6 c7

and sets

R 6  =  {C 2 , C 3 , es, 16 } , R 7 =  {C 2 , C3, C'5, / 6 , / 8 , C.;, /10 ,  1 12 , 1 14} '

Then from §3  in  [4 ]  we have

Lemma 2 .1 .  (1) U p to  degree d,

H*(GIT )=
{

F 2  [t i •  • •  t6 , y 3 ]/ (R 6 )

F 2 E t i , . . • , t 7 ,  y 3 ,  y 5 ,  y ] / ( R 7 )

(2) Sq 2 y3 = c4 , S q 4 y 3  y 5 (= c4 c1 + c  f  = 6);

Sq 2 y5 = c4 c i + c 7 , S q 4 y5 =  6 , Sq 8 y5 = y 9 ;

Sq 2 y, = c4 c7, Sq4y9 = 0, S e y 9  =  C; C6, S q l 6 y 9  -  C;C6C4

where C c7 + c 6 c 1 .

Now we interpret the results in [7 ]  and [9 ]  to our situation.

(2.2) H*(EIII) = F2 [ t ,  w ,]/ ( w r2 t, w /3 t12),
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where t, w' = w + t 4  e H*(E 6 1 T; Z) satisfy

c, + t i , w' c 4  + (y 3 + cf t + c i t2)t

(2.3) H*(EVII) = F2 [U, y , w ]/ (v 2 , u " , w2 ),

where u = t 7 , v, w e H*(E7  I T; Z) satisfy

2v C5 — e4x + e3x2 — e2 x3 + 2)(5 + 2u 5

mod (2).

mod (4),
2 w  c 6 c3  +  e5 e4  + 2E5 ë; + pc6 c2 — e + 2c 4 e-Dx

—(e5 2 e 4 e3 + 2c 3 c3)x2 + (c6 + 20x 3 ( c 5 + e3 c2 v 4

—(e4 — ci)e — e3x6 — e2x7 + 2 9 + 2vu4 m o d  (4)

with x = —

1  

c, — u and ci = t, — —

1

t
6  

-  -
1

U  ( i  0).3 3 3

W e m ust describe y  a n d  w modulo 2  in  terms o f the  t i a n d  th e  yi . For
EVII the  results a re  a  little com plicated. So we calculate modulo (c,). Note
th a t  c2  0  mod (4) (see [8 ])  a n d  recall the  re la tion  (2.1). Then after some
calculations modulo (4, 2c,) we obtain the following:

Lemma 2 .2 .  M odulo (c1)

t t i , Y 3t1 + C4 v = 6);

u t 7 , v Y 5  ±  t i  C 4 t 7 ,  W  Y 9  ±  Y 3  ±  C 6 v = 7).

Fortunately we have

Lemma 2 .3 .  (i) In  H*(GIT) the ideal (c1 )  is closed under the operation of
the &I'•

(ii) Up to degree d ,  the com position of  p*: H*(GIK)— > H*(GIT) and the
projection it H*(GIT)— > H*(GIT)I(c,) is  injective.

P ro o f . (i) This follows from the Cartan formula.
(ii) F or e = 6 p u t bi = 0), and let

A  = F2 [t i ,...,t 6 , y3 ] a n d  B  = F2 [ti , b i ,...,b 5 , y3 ].

Then A  is free as a B-module, and hence for any R  B  the canonical map
BIBR —> AIAR is injective, where B R denotes the ideal generated by R  in B, and
similarly for AR.

N o te  th a t  B  coincides with F2 [t i  C i , C5, y3 ]. S o  it  c o n ta in s  the set
R = { c 1 } u R 6  = c2, c 3 , c , 1 6 1 , a n d  BI B R  can be regarded a s  a  subset of
A IA R = H*(GIT )I(c,). T h e n  b y  2 .2  th e  im a g e  o f  n o p *  is c o n ta in e d  in
B IB R =F 2 [t i , c4 , y3 ]/(y3), and  it is easily  seen that up to  degree d ,  the  map
H*(GIT) —*BIBR is  injective.

Similarly for é  = 7. q. e. d.
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Now the operation of the Sq` are obtained from 2.2 and 2.1, (2) by calculating
modulo (c1). The results are  as follows:

Theorem 2 .4 .  (i) In  H*(EIII) we have

Sq2 w ' = w 't, S e w ' = t6 , S C I 8 111' = 147 '2 .

(ii) In  H* (EVII)

Sq 2 v = 0, Sq4 v = v u 2 u 7, & l ay  = w + vu 4  +  u9 ;9 .

u 1 3 , s q 16w  =  vu 12.=  VU 8s q 2 w  =  u 10, se w  =  v u 6 u 1 1 , w

§3. Stiefel-Whitney classes

For the Hermitian symmetric spaces of classical type the Chern classes have
been obtained in  [ 1 ] ,  whence so have the Stiefel-Whitney classes by mod 2
reduction. In  this section as an application of the previous section we give the
Stiefel-Whitney classes of EIII and EVII by using the Wu classes.

For a compact n-manifold M the i-th Wu class u, E H t (M) is characterised by

ui • x = Sq i x for any x e (M).

U sing th e  W u  c la s se s  th e  S tie fe l-W h itn e y  c la s se s  w , a re  given by
w , = E Sq i - ju i ,  o r  equivalently

(3.1) W = Sq U,

where W= E w , a n d  U = E u , (see [5 ], for example).
From the  previous section it follows that

(3.2) H*(EIII) has {w' w' 2  In = 0, 1 ; 0 i 12} as  a basis, and

s cer w /t 12 - r w,t12 (r = 0, 2, 6), S q
1 6  w 2 w t 1 2 ,

S q 'b  =  0  f o r th e  other b  o f  degree 32-2r in the basis;

(3.3) H*(EVII) has {wneu t i n, m  =  0 ,  1 ;  0  i 1 3 }  as  a basis, and

s cer w v u l3 - r wvul 3 (r = 0, 4, 12),
b  = 0 f o r the  other b  o f  degree 54-2r in the basis.

Therefore

Theorem 3.1. The non-zero W u classes are given as follows :

f o r EIII, u0  =  1 , u 4 =  t2 , U12 = t 6 , U16 = / 1 / 2  ;

f o r EVII, u, =  1, u, =  u4 , „  =  u 12.

Then by use of the formula (3.1) we obtain
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Corollary 3 .2 .  T he total Stiefel- W hitney class W  is given as follows:

f o r EIII, W = 1t 2 t4 t6 (w/2 t8) t10 vv,t12 ;

f o r EVII,W =  1  +  u 4  + /4 8  +  u 1 2 .

Remark 3 .3 .  F o r  EIII th e  result coincides with th e  mod 2 reduction o f  that
i n  [8].
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