Squaring operations in the Hermitian symmetric spaces

By
Kiminao Ishitoya

§0. Introduction

In this paper we calculate the squaring operations in the mod 2 cohomology of the irreducible Hermitian symmetric spaces of compact type. Each of them is obtained as a quotient of an appropriate compact simple Lie group by the centralizer of an appropriate 1 -dimensional torus, and they are devided into six classes:

AIII	$W(m, n)=U(m+n) /(U(m) \times U(n))$	($m, n \geq 1$)
BDI	$Q_{n} \quad=S O(n+2) /(S O(2) \times S O(n))$	($n \geq 3$)
CI	$S p(n) / U(n)$	$(n \geq 3)$
DIII	$\mathrm{SO}(2 n) / U(n)$	$(n \geq 4)$
EIII	$=E_{6} /\left(\operatorname{Spin}(10) \cdot T^{1}\right)$	$\left(\operatorname{Spin}(10) \cap T^{1} \cong \mathbf{Z}_{4}\right)$
EVII	$=E_{7} /\left(E_{6} \cdot T^{1}\right)$	$\left(E_{6} \cap T^{1} \cong \mathbf{Z}_{3}\right)$

Their cohomology rings have been obtained by several authers:

$$
\left.\begin{array}{c}
H^{*}(W(m, n) ; \mathbf{Z})=\mathbf{Z}\left[a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{n}\right] /\left(\sum_{i+j=k} a_{i} b_{j} ; k \geq 1\right) ; \\
H^{*}\left(Q_{n} ; \mathbf{Z}\right)=\left\{\begin{array}{l}
\mathbf{Z}[t, e] /\left(t^{m}-2 e, e^{2}\right) \\
\mathbf{Z}[t, s] /\left(t^{m+1}-2 s t, s^{2}-\delta_{m} s t^{m}\right) \\
(n=2 m-1), \\
(n=2 m) ;
\end{array}\right. \\
H^{*}(S p(n) / U(n) ; \mathbf{Z})=\mathbf{Z}\left[c_{1}, \ldots, c_{n}\right] /\left(\sum_{i+j=2 k}(-1)^{i} c_{i} c_{j} ; k \geq 1\right) ; \\
H^{*}(\operatorname{SO}(2 n) / U(n) ; \mathbf{Z})=\mathbf{Z}\left[e_{2}, e_{4}, \ldots, e_{2 n-2}\right] /\left(e_{4 k}+\sum_{i=1}^{2 k-1}(-1)^{i} e_{2 i} e_{4 k-2 i}\right) \\
\quad\left(\text { it should be understood that } e_{2 j}=0 \text { if } j \geq n\right) ; \\
H^{*}(\mathrm{EIII} ; \mathbf{Z})=\mathbf{Z}[t, w] /\left(t^{9}-3 w^{2} t, w^{3}+15 w^{2} t^{4}-9 w t^{8}\right) ;
\end{array}\right\} \begin{aligned}
& H^{*}(\mathrm{EVII} ; \mathbf{Z})=\mathbf{Z}[u, v, w] /\left(v^{2}-2 w u, u^{14}-2 A, w^{2}-2 B\right) \\
& \text { where } \delta_{m}=\frac{1+(-1)^{m}}{2}, A \text { and } B \text { are appropriate integral classes, and }
\end{aligned}
$$

$$
\begin{aligned}
& \left|a_{i}\right|=\left|b_{i}\right|=\left|c_{i}\right|=\left|e_{2 i}\right|=2 i, \quad|t|=2, \quad|s|=|e|=2 m \\
& |u|=2, \quad|v|=10 \quad \text { and } \quad|w|=8 \text { for EIII; }=18 \text { for EVII. }
\end{aligned}
$$

For details see [1], [6], [7], [9] and § 1.4 in this paper.
For AIII and CI the cohomology rings are generated by Chern classes and for DIII by the suspension images of Stiefel-Whitney classes, whence the squaring operations are obtained by the Wu formula.

For BDI $(n=2 m)$ we calculate in $H^{*}\left(\frac{S O(2 m+2)}{U(1) \times U(m)}\right)$ through the homomorphism induced by the projection $\frac{S O(2 m+2)}{U(1) \times U(m)} \rightarrow Q_{2 m}$, and obtain

Theorem 1.4. $\quad \mathrm{Sq}^{2 i} s=\binom{m+1}{i} s t^{i} \quad(i \geq 0)$.
Corollary 1.5. $\quad \mathrm{Sq}^{2 i} e=\binom{m+1}{i} e t^{i} \quad(i \geq 0)$.
For the exceptional types EIII and EVII we calculate in $G / T(T$ a maximal torus of G) using the fibration $G / T \xrightarrow{\tilde{i}} B \tilde{T} \rightarrow B \tilde{G}$, where $B \tilde{G}$ is the 4-connective cover of $B G$ and $B \tilde{T}$ is defined in a similar way (for details see [3]). The results are

Theorem 2.5. (i) In EIII we have

$$
\mathrm{Sq}^{2} w^{\prime}=w^{\prime} t, \quad \mathrm{Sq}^{4} w^{\prime}=t^{6}, \quad \mathrm{Sq}^{8} w^{\prime}=w^{\prime 2} \quad\left(\text { where } w^{\prime}=w+t^{4}\right)
$$

(ii) In EVII

$$
\begin{array}{lll}
\mathrm{Sq}^{2} v=0, & \mathrm{Sq}^{4} v=v u^{2}+u^{7}, & \mathrm{Sq}^{8} v=w+v u^{4}+u^{9} \\
\mathrm{Sq}^{2} w=u^{10}, & \mathrm{Sq}^{4} w=v u^{6}+u^{11}, & \mathrm{Sq}^{8} w=v u^{8}+u^{13}, \quad \mathrm{Sq}^{16} w=v u^{12}
\end{array}
$$

As an application we give in the final section the Stiefel-Whitney classes of EIII and EVII by use of the Wu classes.

Throughout the paper $H^{*}()$ denotes exclusively the mod 2 cohomology (integral cohomology is always denoted by $H^{*}(; \mathbf{Z})$). $\quad \mathbf{F}_{2}$ denotes the prime field of characteristic 2. For an integral element x its $\bmod 2$ reduction is denoted by $\rho(x)$, or simply by x unless there is danger of confusion. $\sigma_{i}\left(x_{1}, \ldots, x_{n}\right)$ denotes the i-th symmetric polynomial in $x_{1}, \ldots, x_{n}(i \geq 0) . \quad \Delta\left(a_{1}, \ldots, a_{n}\right)$ denotes an algebra with simple system of generators a_{1}, \ldots, a_{n}.

§ 1. Classical types

First recall the Wu foromula. Let x_{1}, \ldots, x_{n} be elements of degree d with $\operatorname{Sq}^{i} x_{j}=0(0<i<d)$, and put $c_{j}=\sigma_{j}\left(x_{1}, \ldots, x_{n}\right)(j \geq 0)$. Then we have

$$
\begin{equation*}
\mathrm{Sq}^{d i} c_{j}=\sum_{0 \leq r \leq i}\binom{j-i+r-1}{r} c_{j+r} c_{i-r} . \tag{1.1}
\end{equation*}
$$

1.1. The Grassmannian $W(m, n)$. We have the fibration

$$
W(m, n) \xrightarrow{\iota} B U(m) \times B U(n) \longrightarrow B U(m+n) .
$$

Put $a_{i}=\iota^{*}\left(c_{i} \times 1\right)$ and $b_{i}=\iota^{*}\left(1 \times c_{i}\right)$, where c_{i} is the i-th universal Chern class in $B U(m)$ or $B U(n)(i \geq 0)$. Then

$$
H^{*}(W(m, n) ; \mathbf{Z})=\mathbf{Z}\left[a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{n}\right] /\left(\sum_{i+j=k} a_{i} b_{j} ; k \geq 1\right),
$$

whence by the naturality the operation of Sq^{i} is obtained from the Wu formula (1.1).
1.2. The space $S p(n) / U(n)$. The operation of Sq^{i} is again obtained from the Wu formula since

$$
H^{*}(S p(n) / U(n) ; \mathbf{Z})=\mathbf{Z}\left[c_{1}, \ldots, c_{n}\right] /\left(\sum_{i+j=2 k}(-1)^{i} c_{i} c_{j} ; k \geq 1\right),
$$

where c_{i} is the i-th Chern class $(i \geq 0)$.
1.3. The space $\operatorname{SO}(2 n) / U(n)$. We extract from [6], Chap. 3, §6. Using the fibration

$$
S O(2 n) / U(n) \xrightarrow{\prime} B U(n) \longrightarrow B S O(2 n),
$$

we have unique elements $e_{2 i}=\frac{1}{2} l^{*} c_{i} \in H^{2 i}(S O(2 n) / U(n) ; \mathbf{Z})(1 \leq i \leq n-1)$. Let $p: S O(2 n) \rightarrow S O(2 n) / U(n)$ be the projection and $\sigma: H^{*}(B S O(2 n)) \rightarrow H^{*}(S O(2 n))$ the suspension. Then

$$
\begin{align*}
& p^{*}\left(e_{2 i}\right)=\sigma\left(w_{2 i+1}\right) \quad\left(w_{j} \text { the Stiefel-Whitney classes }\right) ; \tag{1.2}\\
& H^{*}(S O(2 n) / U(n))=\Delta\left(e_{2}, e_{4}, \ldots, e_{2 n-2}\right), \quad e_{2 i}^{2}=e_{4 i} \tag{1.3}\\
& \text { (it should be understood that } \left.e_{2 j}=0 \text { if } j \geq n\right) .
\end{align*}
$$

It follows that p^{*} is injective. So we calculate in $S O(2 n)$:

$$
p^{*}\left(\mathrm{Sq}^{2 i} e_{2 k}\right)=\sigma\left(\mathrm{Sq}^{2 i} w_{2 k+1}\right)=\sigma\left(\sum_{0 \leq r \leq 2 i}\binom{2 k-2 i+r}{r} w_{2 k+1+r} w_{2 i-r}\right)
$$

by the Wu formula. Since σ annihilates decomposables, we have
Proposition 1.1. $\quad \mathrm{Sq}^{2 i} e_{2 k}=\binom{k}{i} e_{2 k+2 i} \quad(i, k \geq 0)$.
1.4. The complex quadric $Q_{n}=S O(n+2) /(S O(2) \times S O(n))$. We have the
fibration

$$
Q_{n} \xrightarrow{\prime} \mathrm{BSO}(2) \times \mathrm{BSO}(n) \longrightarrow \mathrm{BSO}(n+2) .
$$

Let $t \in H^{2}(\operatorname{BSO}(2) ; \mathbf{Z})$ be the canonical generator, and put $t=\iota^{*}(t \times 1)$. Here we distinguish the two cases (a) n is even, and (b) n is odd.
(a) $n=2 m$. Let $\chi \in H^{2 m}(B S O(2 n) ; \mathbf{Z})$ be the Euler class and $p_{i} \in H^{2 i}(B S O(n) ; \mathbf{Z})$ the i-th Pontrjagin class. Using the fibration above we see that

$$
\begin{aligned}
& l^{*}(t \times \chi)=0, \quad \iota^{*}\left(1 \times p_{m}\right)=(-1)^{m} t^{2 m} \quad \text { and } \\
& l^{*}\left(1 \times \chi+t^{m} \times 1\right) \equiv 0 \bmod (2) .
\end{aligned}
$$

Since $H^{*}\left(Q_{2 m} ; \mathbf{Z}\right)$ has no torsion we have a unique element $s \in H^{2 m}\left(Q_{2 m} ; \mathbf{Z}\right)$ with $2 s=\iota^{*}\left(1 \times \chi+t^{m} \times 1\right)$. Then the relations above yield

$$
2 s t=t^{m+1} \quad \text { and } \quad 4 s^{2}=2\left(1+(-1)^{m}\right) s t^{m}
$$

Considering the Serre spectral sequence for the fibration $S O(2 m+2) / S O(2 m)$ $\rightarrow Q_{2 m} \rightarrow B S O$ (2), we obtain

Theorem 1.2. $H^{*}\left(Q_{2 m} ; \mathbf{Z}\right)=\mathbf{Z}[t, s] /\left(t^{m+1}-2 s t, s^{2}-\delta_{m} s t^{m}\right)$.

Now consider the diagram:

$$
\begin{aligned}
& \begin{array}{c}
\mathrm{SO}(2 m) / U(m) \\
\downarrow
\end{array} \\
& P_{m}(\mathbf{C})=\frac{U(m+1)}{U(1) \times U(m)} \xrightarrow{j} \frac{S O(2 m+2)}{U(1) \times U(m)} \xrightarrow{q} S O(2 m+2) / U(m+1) \\
& Q_{2 m}=\frac{S O(2 m+2)}{S O(2) \times S O(2 m)} \xrightarrow{\iota} B S O(2) \times B S O(2 m)
\end{aligned}
$$

Define $t, \quad e_{2 i}(i \geq 1)$ and $e \in H^{*}\left(\frac{S O(2 m+2)}{U(1) \times U(m)} ; \mathbf{Z}\right)$ by

$$
t=p^{*}(t)=t^{*}\left(c_{1} \times 1\right), \quad e_{2 i}=q^{*}\left(e_{2 i}\right) \quad \text { and } \quad e=\sum_{i=1}^{m}(-1)^{i} e_{2 i} t^{m-i} .
$$

Then
Lemma 1.3. (i) q^{*} induces an isomorphisms of algebras

$$
H^{*}\left(\frac{S O(2 m+2)}{U(1) \times U(m)} ; \mathbf{Z}\right) \cong H^{*}\left(\frac{S O(2 m+2)}{U(m+1)} ; \mathbf{Z}\right)[t] /\left(t^{m+1}+2 t e\right)
$$

(ii)

$$
p^{*}(s)=\delta_{m} t^{m}+(-1)^{m} e .
$$

Proof. By the definition of t we see that $j^{*} t$ generates the ring $H^{*}\left(P_{m}(\mathbf{C}) ; \mathbf{Z}\right)$. Since the spectral sequence for the row in (1.4) collapses, (i) holds as an isomorphism of modules. Let c, c^{\prime} and $c^{\prime \prime}$ be the total Chern classes of $B U(m), B U(1)$ and $B U(m+1)$, respectively. Then $q^{\prime *}\left(c^{\prime \prime}\right)=c^{\prime} \times c$. Applying $i^{\prime *}$ we have

$$
1+2 e_{2}+2 e_{4}+\cdots+2 e_{2 m}=\left(\imath^{\prime} *(1 \times c)\right) \cdot(1+t)
$$

whence

$$
t^{\prime *}\left(1 \times c_{m}\right)=(-1)^{m}\left(t^{m}+2 e\right)
$$

Then $\left(t^{m}+2 e\right) t=(-1)^{m}\left(\iota^{\prime *}\left(1 \times c_{m}\right)\right) \cdot t=0$, which completes the proof of (i).
Next from the diagram (1.4) we have

$$
2 p^{*}(s)=i^{\prime *}\left(c_{m} \times 1\right)+t^{m}=2 \delta_{m} t^{m}+(-1)^{m} 2 e,
$$

which proves (ii) since $H^{*}\left(\frac{S O(2 m+2)}{U(1) \times U(m)}\right.$; $\left.\mathbf{Z}\right)$ is torsion free.
q.e.d.

Theorem 1.4. $\quad \mathrm{Sq}^{2 i} s=\binom{m+1}{i} s t^{i} \quad(i \geq 0)$.
Proof. As is well known $\mathrm{Sq}=1+\mathrm{Sq}^{1}+\mathrm{Sq}^{2}+\cdots$ is an algebra homomorphism, and by 1.2 we can put $\operatorname{Sq}(s)=s\left(1+\varepsilon_{1} t+\varepsilon_{2} t^{2}+\cdots\right)\left(\varepsilon_{i} \in \mathbf{F}_{2}\right)$. Applying p^{*} we have

$$
\begin{equation*}
\mathrm{Sq}\left(\delta_{m} t^{m}+e\right)=\left(\delta_{m} t^{m}+e\right)\left(1+\varepsilon_{1} t+\varepsilon_{2} t^{2}+\cdots\right) . \tag{1.5}
\end{equation*}
$$

Now put $A=H^{*}\left(P_{m}(\mathbf{C}) \times P_{m}(\mathbf{C})\right)=\mathbf{F}_{2}[a, b] /\left(a^{m+1}, b^{m+1}\right)$. Then the correspondence $t \mapsto a, e_{2 i} \mapsto b^{i}(i \geq 1)$ extends to an algebra homomorphism φ : $H^{*}\left(\frac{S O(2 m+2)}{U(1) \times U(m)}\right) \rightarrow A$, which commutes with the squaring operations. Apply φ to (1.5):

$$
\begin{equation*}
\mathrm{Sq}\left(\left(\delta_{m}+1\right) a^{m}+c\right)=\left(\left(\delta_{m}+1\right) a^{m}+c\right)\left(1+\varepsilon_{1} a+\varepsilon_{2} a^{2}+\cdots\right), \tag{1.6}
\end{equation*}
$$

where $c=a^{m}+a^{m-1} b+\cdots+b^{m}$. First calculating in the quotient field of $\mathbf{F}_{2}[[a, b]]$, we obtain

$$
\mathrm{Sq}(c)=\sum_{i=0}^{m}\binom{m+1}{i}\left(a^{m+i}+a^{m+i-1} b+\cdots+b^{m+i}\right) \cdot \sum_{j \geq 0}(a+b)^{j},
$$

and then in A using the equalities $a^{m+i}+a^{m+i-1} b+\cdots+b^{m+i}=c a^{i}$ and $c(a+b)=0$,

$$
\mathrm{Sq}(c)=c(1+a)^{m+1}
$$

Comparing the coefficients of $a^{m} b^{i}$ in both sides of (1.6), we obtain
$\varepsilon_{i}=\binom{m+1}{i}$, which proves the theorem.
q.e.d.
(b) $n=2 m-1$. According to [6]

$$
H^{*}\left(Q_{2 m-1} ; \mathbf{Z}\right)=\mathbf{Z}[t, e] /\left(t^{m}-2 e, e^{2}\right)
$$

where t is the same as ours. The inclusion $S O(2 m+1) \subset S O(2 m+2)(X \mapsto X \oplus 1)$ yields a comuutative diagram

From $f^{\prime *}(1 \times \chi)=0$ and $f^{\prime *}(t \times 1)=t \times 1$ it follows $f^{*}(t)=t$ and $f^{*}(s)=e$, and we have

Corollary 1.5. $\quad \mathrm{Sq}^{2 i} e=\binom{m+1}{i} e t^{i} \quad(i \geq 0)$.

§2. Exceptional types

In this section $\ell=6$ or 7 . Let G be the simply connected exceptional Lie group of type E_{ℓ} and T a maximal torus of G. Take the root system $\left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\}$ as in [2], and define K to be the centralizer of the 1-dimensional torus defined by the equations $\alpha_{i}=0(i \neq \ell)$. Then the quotient space G / K is the irreducible Hermitian symmetric space EIII ($\ell=6$) or EVII $(\ell=7)$.

Consider the fibration $K / T \rightarrow G / T \xrightarrow{p} G / K$. By the classical theorem of Bott the odd dimensional parts of the cohomology of both the fibre and the base vanish. Hence the spectral sequence for the fibration collapses, and p^{*} : $H^{*}(G / K: A) \rightarrow H^{*}(G / T ; A)$ is injective for any coefficient ring A. Therefore the action of Sq^{i} in G / K is derived from that in G / T.

First we fix a system of generators of $H^{*}(B T ; \mathbf{Z})$ after [7] and [9]. Let $\left\{w_{1}, \ldots, w_{\ell}\right\}$ be the fundamental weights of G. Being regarded as elements of $H^{2}(B T ; \mathbf{Z})$, they form a basis of it. Let R_{j} be the reflection in the plane $\alpha_{j}=0$, and put

$$
t_{\ell}=w_{\ell}, t_{i}=R_{i+1}\left(t_{i+1}\right)(\ell>i>1), t_{1}=R_{1}\left(t_{2}\right) \quad \text { and } \quad c_{i}=\sigma_{i}\left(t_{1}, \ldots, t_{\ell}\right)(i \geq 0) .
$$

Then

$$
H^{*}(B T ; \mathbf{Z})=\mathbf{Z}\left[t_{1}, \ldots, t_{\ell}, x\right] /\left(c_{1}-3 x\right) .
$$

As the canonical mapping $i: G / T \rightarrow B T$ does not induce a surjection in $H^{*}()$, we introduce $B \tilde{G}$ the 4 -connective fibre space over $B G$ to have the commutative diagram with two fibrations

In $H^{*}\left(B \tilde{T} ; \mathbf{Z}_{(2)}\right)$ we have new generators $g_{i}(i=3,5,9)$ with

$$
2 g_{3}=c_{3}, \quad 2 g_{5}=c_{5}^{\prime}=c_{5}+c_{4} c_{1} \quad \text { and } \quad 2 g_{9}=c_{9}^{\prime}=c_{7} c_{1}^{2}+c_{6} c_{1}^{3}
$$

(Note that the symbol g^{*} is omitted here). We put

$$
\gamma_{3}=\rho\left(g_{3}\right), \quad \gamma_{5}=\mathrm{Sq}^{4} \gamma_{3} \quad \text { and } \quad \gamma_{9}=\mathrm{Sq}^{8} \gamma_{5} \quad \in H^{*}(B \tilde{T}) .
$$

Then

$$
\begin{align*}
& \gamma_{5}=\rho\left(g_{5}+g_{3} c_{1}^{2}+c_{4} c_{1}\right) \text { and } \tag{2.1}\\
& \gamma_{9}=\rho\left(g_{9}+g_{5}\left(c_{4}+c_{1}^{4}\right)+g_{3}\left(c_{6}+c_{4} c_{1}^{2}+c_{1}^{6}\right)+c_{7} c_{1}^{2}+c_{4}^{2} c_{1}+c_{4} c_{1}^{5}\right) .
\end{align*}
$$

For details see [3]. Note that our $\gamma_{i}(i=5,9)$ are slightly different from those in [9].

Recall that the generator of maximum degree is w in each case (see §0). So it is sufficient for us to consider in the range of degree $\leq d_{\ell}$, where $d_{6}=14$ and $d_{7}=34$. Define polynomials

$$
\begin{array}{ll}
I_{6}=\gamma_{3}^{2}+c_{4} c_{1}^{2}+c_{1}^{6}, & I_{8}=c_{6} c_{1}^{2}+c_{4}^{2}+c_{4} c_{1}^{4}+c_{1}^{8}, \\
I_{10}=\gamma_{5}^{2}+c_{6} c_{1}^{4}+c_{1}^{10}, & I_{12}=c_{6}^{2}+c_{6} c_{4} c_{1}^{2}+c_{4}^{2} c_{1}^{4}+c_{4} c_{1}^{8}, \\
I_{14}=c_{7}^{2}+c_{6} c_{4} c_{1}^{4}+c_{6} c_{1}^{8} &
\end{array}
$$

and sets

$$
R_{6}=\left\{c_{2}, c_{3}, c_{5}^{\prime}, I_{6}\right\}, \quad R_{7}=\left\{c_{2}, c_{3}, c_{5}^{\prime}, I_{6}, I_{8}, c_{9}^{\prime}, I_{10}, I_{12}, I_{14}\right\}
$$

Then from §3 in [4] we have
Lemma 2.1. (1) $U p$ to degree d_{e}

$$
H^{*}(G / T)= \begin{cases}\mathbf{F}_{2}\left[t_{1}, \ldots, t_{6}, \gamma_{3}\right] /\left(R_{6}\right) & (\ell=6), \\ \mathbf{F}_{2}\left[t_{1}, \ldots, t_{7}, \gamma_{3}, \gamma_{5}, \gamma_{9}\right] /\left(R_{7}\right) & (\ell=7)\end{cases}
$$

$$
\begin{array}{ll}
\mathrm{Sq}^{2} \gamma_{3}=c_{4}, & \mathrm{Sq}^{4} \gamma_{3}=\gamma_{5}\left(=c_{4} c_{1}+c_{1}^{5} \text { if } \ell=6\right) ; \tag{2}\\
\mathrm{Sq}^{2} \gamma_{5}=c_{4} c_{1}^{2}+c_{1}^{6}, & \mathrm{Sq}^{4} \gamma_{5}=c_{7}^{\prime}, \quad \mathrm{Sq}^{8} \gamma_{5}=\gamma_{9} ; \\
\mathrm{Sq}^{2} \gamma_{9}=c_{4} c_{1}^{6}, & \mathrm{Sq}^{4} \gamma_{9}=0, \quad \mathrm{Sq}^{8} \gamma_{9}=c_{7}^{\prime} c_{6}, \quad \mathrm{Sq}^{16} \gamma_{9}=c_{7}^{\prime} c_{6} c_{4}
\end{array}
$$

where $c_{7}^{\prime}=c_{7}+c_{6} c_{1}$.
Now we interpret the results in [7] and [9] to our situation.

$$
\begin{equation*}
H^{*}(\mathrm{EIII})=\mathbf{F}_{2}\left[t, w^{\prime}\right] /\left(w^{\prime 2} t, w^{\prime 3}+t^{12}\right) \tag{2.2}
\end{equation*}
$$

where $t, w^{\prime}=w+t^{4} \in H^{*}\left(E_{6} / T ; \mathbf{Z}\right)$ satisfy

$$
\begin{equation*}
t \equiv c_{1}+t_{1}, w^{\prime} \equiv c_{4}+\left(\gamma_{3}+c_{1}^{2} t+c_{1} t^{2}\right) t \quad \bmod (2) \tag{2.3}
\end{equation*}
$$

where $u=t_{7}, v, w \in H^{*}\left(E_{7} / T ; \mathbf{Z}\right)$ satisfy

$$
\begin{array}{rlr}
2 v \equiv & \bar{c}_{5}-\bar{c}_{4} \chi+\bar{c}_{3} \chi^{2}-\bar{c}_{2} \chi^{3}+2 \chi^{5}+2 u^{5} & \bmod (4), \\
2 w \equiv & \bar{c}_{6} \bar{c}_{3}+\bar{c}_{5} \bar{c}_{4}+2 \bar{c}_{5} \bar{c}_{2}^{2}+\left(2 \bar{c}_{6} \bar{c}_{2}-\bar{c}_{4}^{2}+2 \bar{c}_{4} \bar{c}_{2}^{2}\right) \chi & \\
& -\left(\bar{c}_{5} \bar{c}_{2}-\bar{c}_{4} \bar{c}_{3}+2 \bar{c}_{3} \bar{c}_{2}^{2}\right) \chi^{2}+\left(\bar{c}_{6}+2 \bar{c}_{2}^{3}\right) \chi^{3}-\left(\bar{c}_{5}+\bar{c}_{3} \bar{c}_{2}\right) \chi^{4} \\
& -\left(\bar{c}_{4}-\bar{c}_{2}^{2}\right) \chi^{5}-\bar{c}_{3} \chi^{6}-\bar{c}_{2} \chi^{7}+2 \chi^{9}+2 v u^{4} & \bmod (4) \tag{4}
\end{array}
$$

with $\chi=\frac{1}{3} c_{1}-u$ and $\bar{c}_{i}=\sigma_{i}\left(t_{1}-\frac{1}{3} u, \ldots, t_{6}-\frac{1}{3} u\right)(i \geq 0)$.
We must describe v and w modulo 2 in terms of the t_{i} and the γ_{j}. For EVII the results are a little complicated. So we calculate modulo (c_{1}). Note that $c_{2} \equiv 0 \bmod (4)$ (see [8]) and recall the relation (2.1). Then after some calculations modulo ($4,2 c_{1}$) we obtain the following:

Lemma 2.2. Modulo (c_{1})

$$
\begin{array}{lll}
t \equiv t_{1}, & w^{\prime} \equiv \gamma_{3} t_{1}+c_{4} & (\ell=6) \\
u \equiv t_{7}, & v \equiv \gamma_{5}+\gamma_{3} t_{7}^{2}+c_{4} t_{7}, & w \equiv \gamma_{9}+\gamma_{3} t_{7}^{6}+c_{6} t_{7}^{3}
\end{array} \quad(\ell=7) .
$$

Fortunately we have
Lemma 2.3. (i) In $H^{*}(G / T)$ the ideal $\left(c_{1}\right)$ is closed under the operation of the Sq^{i}.
(ii) Up to degree d_{ℓ} the composition of $p^{*}: H^{*}(G / K) \rightarrow H^{*}(G / T)$ and the projection $\pi: H^{*}(G / T) \rightarrow H^{*}(G / T) /\left(c_{1}\right)$ is injective.

Proof. (i) This follows from the Cartan formula.
(ii) For $\ell=6$ put $b_{i}=\sigma_{i}\left(t_{2}, \ldots, t_{6}\right)(i \geq 0)$, and let

$$
A=\mathbf{F}_{2}\left[t_{1}, \ldots, t_{6}, \gamma_{3}\right] \quad \text { and } \quad B=\mathbf{F}_{2}\left[t_{1}, b_{1}, \ldots, b_{5}, \gamma_{3}\right] .
$$

Then A is free as a B-module, and hence for any $R \subset B$ the canonical map $B / B R \rightarrow A / A R$ is injective, where $B R$ denotes the ideal generated by R in B, and similarly for $A R$.

Note that B coincides with $F_{2}\left[t_{1}, c_{1}, \ldots, c_{5}, \gamma_{3}\right]$. So it contains the set $R=\left\{c_{1}\right\} \cup R_{6}=\left\{c_{1}, c_{2}, c_{3}, c_{5}^{\prime}, I_{6}\right\}$, and $B / B R$ can be regarded as a subset of $A / A R=H^{*}(G / T) /\left(c_{1}\right)$. Then by 2.2 the image of $\pi \circ p^{*}$ is contained in $B / B R=F_{2}\left[t_{1}, c_{4}, \gamma_{3}\right] /\left(\gamma_{3}^{2}\right)$, and it is easily seen that up to degree d_{ℓ} the map $H^{*}(G / T) \rightarrow B / B R$ is injective.

Similarly for $\ell=7$.

Now the operation of the Sq^{i} are obtained from 2.2 and 2.1, (2) by calculating modulo $\left(c_{1}\right)$. The results are as follows:

Theorem 2.4. (i) In $H^{*}(\mathrm{EIII})$ we have

$$
\mathrm{Sq}^{2} w^{\prime}=w^{\prime} t, \quad \mathrm{Sq}^{4} w^{\prime}=t^{6}, \quad \mathrm{Sq}^{8} w^{\prime}=w^{\prime 2}
$$

(ii) $\operatorname{In} H^{*}(\mathrm{EVII})$

$$
\begin{array}{lll}
\mathrm{Sq}^{2} v=0, & \mathrm{Sq}^{4} v=v u^{2}+u^{7}, & \mathrm{Sq}^{8} v=w+v u^{4}+u^{9} \\
\mathrm{Sq}^{2} w=u^{10}, & \mathrm{Sq}^{4} w=v u^{6}+u^{11}, & \mathrm{Sq}^{8} w=v u^{8}+u^{13}, \quad \mathrm{Sq}^{16} w=v u^{12}
\end{array}
$$

§3. Stiefel-Whitney classes

For the Hermitian symmetric spaces of classical type the Chern classes have been obtained in [1], whence so have the Stiefel-Whitney classes by mod 2 reduction. In this section as an application of the previous section we give the Stiefel-Whitney classes of EIII and EVII by using the Wu classes.

For a compact n-manifold M the i-th Wu class $u_{i} \in H^{i}(M)$ is characterised by

$$
u_{i} \cdot x=\mathrm{Sq}^{i} x \quad \text { for any } x \in H^{n-i}(M)
$$

Using the Wu classes the Stiefel-Whitney classes w_{i} are given by $w_{i}=\sum_{j \geq 0} \mathrm{Sq}^{i-j} u_{j}$, or equivalently

$$
\begin{equation*}
W=\operatorname{Sq} U, \tag{3.1}
\end{equation*}
$$

where $W=\sum w_{i}$ and $U=\sum u_{i}$ (see [5], for example).
From the previous section it follows that
(3.2) H^{*} (EIII) has $\left\{w^{\prime n} t^{i}, w^{\prime 2} \mid n=0,1 ; 0 \leq i \leq 12\right\}$ as a basis, and

$$
\mathrm{Sq}^{2 r} w^{\prime} t^{12-r}=w^{\prime} t^{12}(r=0,2,6), \quad \mathrm{Sq}^{16} w^{2}=w t^{12}
$$

$\mathrm{Sq}^{2 r} b=0$ for the other b of degree $32-2 r$ in the basis;
$H^{*}(\mathrm{EVII})$ has $\left\{w^{n} v^{m} u^{i} \mid n, m=0,1 ; 0 \leq i \leq 13\right\}$ as a basis, and

$$
\begin{equation*}
\mathrm{Sq}^{2 r} w v u^{13-r}=w v u^{13}(r=0,4,12), \tag{3.3}
\end{equation*}
$$

$\mathrm{Sq}^{2 r} b=0$ for the other b of degree $54-2 r$ in the basis.
Therefore
Theorem 3.1. The non-zero Wu classes are given as follows:
for EIII, $\quad u_{0}=1, u_{4}=t^{2}, \quad u_{12}=t^{6}, \quad u_{16}=w^{\prime 2}$;
for EVII, $u_{0}=1, u_{8}=u^{4}, u_{24}=u^{12}$.
Then by use of the formula (3.1) we obtain

Corollary 3.2. The total Stiefel-Whitney class W is given as follows:
for EIII, $\quad W=1+t^{2}+t^{4}+t^{6}+\left(w^{\prime 2}+t^{8}\right)+t^{10}+w^{\prime} t^{12}$;
for EVII, $\quad W=1+u^{4}+u^{8}+u^{12}$.
Remark 3.3. For EIII the result coincides with the $\bmod 2$ reduction of that in [8].

Department of Mathematics, Aichi University of Education

References

[1] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces, Amer. J. Math., 80 (1958), 458-538.
[2] N. Bourbaki, Groupes et algèbres de Lie IV-VI, Hermann, 1968.
[3] A. Kono and K. Ishitoya, Squaring operations in the 4-connective fibre spaces over the classifying spaces of the exceptional Lie groups, Publ. RIMS Kyoto Univ., 21 (1985), 1299-1310.
[4] A. Kono and K. Ishitoya, Squaring operations in mod 2 cohomology of quotients of compact Lie groups by maximal tori, Lecture Notes in Math., 1298, Springer-Verlag, 1987, 192-206.
[5] E. H. Spanier, Algebraic topology, McGraw-Hill, 1966.
[6] H. Toda and M. Mimura, Topology of Lie groups, Kinokuniya, 1978 (in Japanese).
[7] H. Toda and T. Watanabe, The integrtal cohomology ring of F_{4} / T and E_{6} / T, J. Math. Kyoto Univ., 14 (1974), 257-286.
[8] M. Tsuge and K. Ishitoya, The Chern class of the symmetric space EIII, Bull. Aichi Univ. Education, 33 (1984), 21-26.
[9] T. Watanabe, The integral cohomology ring of the symmetric space EVII, J. Math. Kyoto Univ., 15 (1975), 363-385.

