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Squaring operations in the Hermitian symmetric spaces
By

Kiminao ISHITOYA

§0. Introduction

In this paper we calculate the squaring operations in the mod 2 cohomology
of the irreducible Hermitian symmetric spaces of compact type. Each of them
is obtained as a quotient of an appropriate compact simple Lie group by the
centralizer of an appropriate 1-dimensional torus, and they are devided into six
classes:

AIll W(m, n) = U(m + n)/(U(m) x U(n)) mn=>1)

BDI Q. = 8S0(n + 2)/(SO22) x SO(n)) (n=13)

CI Sp(n)/U(n) (n=3)

DIII SO(2n)/U(n) n=4

EIII = E¢/(Spin(10)- T") (Spin(10)nT' = Z,)
EVII =E,/(E¢-T") (EsnT' = Z,)

Their cohomology rings have been obtained by several authers:

H*(W(m, n); Z) = Z[ay,...,ap, by,....,0,1/( Y abj; k>1);
i+j=k
m __ 2 — _
H*(Qn; Z) — {Z[t’ e]/(tm"-l 2ea € ) , (n 2m 1),
Z[ta S]/(t - 2St’ §° — 5mStm) (n = 2m);

H*(Sp(m)/U(n); Z) = Z[cy,....c,]/( Y (= Ve k>1);

i+j=2k
2k—1

H*(SO(22n)/U(n); Z) = L[e,, e,,...,€3,-5]/(eax + Z (— 1eyeq—2)

i=1
(it should be understood that e,; = 0 if j > n);

H*(EIIL; Z) = Z[1, w]/(t° — 3w?t, w® + 15w2t* — Owi®);
H*EVIL; Z) = Z[u, v, w]/(v® — 2wu, u** — 24, w?> — 2B)

1+ (=1)" L
where §,, = %, A and B are appropriate integral classes, and
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la;| = |b;| = |¢;] = eyl =26, |t =2, |s|=|e|=2m,
lul=2, |v|]=10 and |w|=28 for EIIl; = 18 for EVII.
For details see [1], [6], [7], [9] and §1.4 in this paper.
For AIIl and CI the cohomology rings are generated by Chern classes and

for DIII by the suspension images of Stiefel-Whitney classes, whence the squaring
operations are obtained by the Wu formula.

SO(2
For BDI (n = 2m) we calculate in H* ( M) through the homomor-
U(l) x U(m)
S0(2 2
phism induced by the projection ﬁa Q,.» and obtain
U(1) x U(m)
. 1\ .
Theorem 1.4. Sq?'s = <m + )st‘ (i >0).
i
. 1\ .
Corollary 1.5. Sq*e = <m + >et' (i>0).
i

For the exceptional types EIIl and EVII we calculate in G/T(T a maximal

torus of G) using the fibration G/ 75 BT BG, where BG is the 4-connective
cover of BG and BT is defined in a similar way (for details see [3]). The results
are

Theorem 2.5. (i) In EIIl we have

Sq@?w =w't, Sq*w =1t% Sq®w =w'?  (where w =w + t%).
(i) In EVII A
Sq?v =0, Sq*v=vu? +u’, Sqfv=w+ou*+u’;
Sq’w =u!®, Sq*w=wu® +u'', Sq®w=o0u®+u'3 Sq'®w=wu'?

As an application we give in the final section the Stiefel-Whitney classes of
EIIl and EVII by use of the Wu classes.

Throughout the paper H*( ) denotes exclusively the mod 2 cohomology
(integral cohomology is always denoted by H*( ; Z)). F, denotes the prime field
of characteristic 2. For an integral element x its mod 2 reduction is denoted
by p(x), or simply by x unless there is danger of confusion. a;(x,,...,x,) denotes

the i-th symmetric polynomial in x,,...,x, (i = 0). 4(a,,...,a,) denotes an algebra
with simple system of generators ay,...,a,.

§1. Classical types

First recall the Wu foromula. Let x,,...,x, be elements of degree d with
Sq'x; =0 (0 <i<d), and put ¢; = 0j(x,,...,X,) (j=0). Then we have
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i j—i+r—1
(1.1) Sqfic,= Y, (’ ’ )cj+,ci_,.
o<r<i r

1.1. The Grassmannian W(m, n). We have the fibration

W(m, n) — BU(m) x BU(n) — BU(m + n).
Put a; = 1*(c; x 1) and b; = 1*(1 x ¢;), where ¢; is the i-th universal Chern

class in BU(m) or BU(n) (i > 0). Then

H*(W(m, n); Z) = Z[ay,...,ap, by,....0,1/( Y, ab;; k>1),

ivj=k

whence by the naturality the operation of Sq' is obtained from the Wu formula
(1.1).

1.2. The space Sp(n)/U(n). The operation of Sq' is again obtained from
the Wu formula since

H*(Sp(n)/U((n); Z) = Z[cy,....c,J/( Y, (= Diiej; k> 1),

i+j=2k
where ¢; is the i-th Chern class (i > 0).

1.3. The space SO(2n)/U(n). We extract from [6], Chap. 3, §6. Using
the fibration

50(2n)/U(n) — BU(n) —> BSO(2n),

1 .
we have unique elements e,; = Ez*cieHz‘(SO(Zn)/U(n); Z) (1<i<n—1). Let

p: SO(2n) - SO(2n)/ U (n) be the projection and ¢: H*(BSO(2n)) - H*(SO(2n)) the
suspension. Then

(1.2) p*(ey) = o(Wpit 1) (w; the Stiefel-Whitney classes);

(1.3) H*(SO(2n)/U(n)) = A(ey, e4,...,€20-5), €3 = ey
(it should be understood that e,; = 0 if j > n).

It follows that p* is injective. So we calculate in SO(2n):

. . 2k —2i+r
P*(Sq%ey) = 0(Sq* w4 q) = U< Z < , >W2k+l +rw2i—r>
0<r<2i
by the Wu formula. Since o annihilates decomposables, we have

. k
PI‘O])OSition 1.1. Sq2'62k = <.>e2k+2i (i, k 2 0).
1

1.4. The complex quadric Q, = SO(n + 2)/(SO(2) x SO(n)). We have the



238 Kiminao Ishitoya

fibration
Q, LN BSO(2) x BSO(n) — BSO(n + 2).

Let te H*(BSO(2); Z) be the canonical generator, and put t = 1*(¢ x 1). Here
we distinguish the two cases (a) n is even, and (b) n is odd.

(@) n=2m. Let yeH*™(BSO(2n); Z) be the Euler class and p,cH%*(BSO(n); Z)
the i-th Pontrjagin class. Using the fibration above we see that

¥t x =0, *(1 x p,)=(—1)"t* and
*(1 x x+ " x 1) =0 mod(2).

Since H*(Q,,,; Z) has no torsion we have a unique element se H>™(Q,,.; Z)
with 25 = 1*(1 x y + t™ x 1). Then the relations above yield

2st =t™*! and 4s* = 2(1 + (— 1)")st™.

Considering the Serre spectral sequence for the fibration SO(2m + 2)/SO(2m)
— Q,.— BSO(2), we obtain

Theorem 1.2. H*(Q,,; Z) = Z[t, s]/(t™** — 2st, s* — J,,st™).

Now consider the diagram:
SO(2m)/U (m)

l

Um+1) 1, S0@m+2) o o0m42/Um+1)
Uy x Um) U1 x U(m)

P,(C) =
(14)

» BU(1) x BU(m) - BU(m + 1)

l

0, = 0@m+2) . peo0) x BSO@m)

" S0(2) x SO(2m)
SO(2m +2) Z) N

(i>1) and ee H*| ——————;
Define t, e,(i>1) and ee <U(1)><U(m)

t=p*@t)=1*(@c, x 1), e;=q*(;) and e= Z (— eyut™
i=1
Then
Lemma 1.3. (i) g¢* induces an isomorphisms of algebras

of SOCm+2) N\ M—!—_Z)Z> et 9,
H <m’ Z>:H ( Um+ 1) > [e1/( + 2te)
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(i) p*(s) = 0,,t™ + (— 1)"e.

Proof. By the definition of t we see that j*t generates the ring
H*(P,(C); Z). Since the spectral sequence for the row in (1.4) collapses, (i) holds
as an isomorphism of modules. Let ¢, ¢’ and ¢” be the total Chern classes of
BU(m), BU(1) and BU(m + 1), respectively. Then q'*(c") =c¢' x c¢. Applying 1'*
we have

1+ 2e, +2e, + -+ 25, =(0*1 xc))-(1 +1¢),
whence
1*(1 % ¢p) = (— (™ + 2e).

Then (t™ + 2e)t = (— 1)™(@'*(1 x ¢,))-t = 0, which completes the proof of (i).
Next from the diagram (1.4) we have

2p*(s) = 1"*(c,y X 1)+ t™ = 26,,t™ + (— 1)"2e,

SO@2m +2)

which proves (ii) since H *<4——,
U() x Um)

Z) is torsion free. q.e.d.
m+ 1

Theorem 1.4. Sq?is =<
i

)st" (i=0).

Proof. As is well known Sq =1 + Sq! + Sq? + -+ is an algebra homomor-
phism, and by 1.2 we can put Sq(s) = s(1 + &t + &,t> + ) (5;€ F,). Applying
p* we have

(1.5) Sq(O,t™ + €) = (0,t™ + &) (1 + £, + &1 + --2).

Now put 4 = H*(P,(C) x P,(C)) = F,[a, b]/(@™*!, b™*!). Then the corre-
spondence t+>a, e,+>bi(i>1) extends to an algebra homomorphism ¢:
H *< S0(2m + 2)

UQl) x Um)
o to (L.5):

)—»A, which commutes with the ‘squaring operations. Apply

(1.6) Sq((6,, + Da™ + ¢) = ((6,, + Da™ + c)(1 + &,a + g,a% + --+),
where ¢=a™+a™ " 'b+---+ b™. First calculating in the quotient field of

F,[[a, b]], we obtain

Sq(c) = i (m + 1)(a"'” +a" T b Y (@ + bY,

i=0 l =0

and then in A using the equalities a™*' +a™*""'b + ...+ b™* =ca’ and
cla+b)=0,

Sq(c) = c(1 + ay"*1!.

Comparing the coefficients of a™b' in both sides of (1.6), we obtain
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1
g = <m+ ), which proves the theorem. q.e.d.
i

(b) n=2m — 1. According to [6]
H*(Q2m—l; Z) = Z[ta e]/(tm - 2e’ e2),

where ¢ is the same as ours. The inclusion SO2m + 1) = SO2m +2) X=X @ 1)
yields a comuutative diagram

Q2m—1 — Q2m
BSO(2) x BSO@2m — 1) L BSO(2) x BSO(2m).

From f*(1 x y) =0 and f'*(t x 1) =t x 1 it follows f*(t) =t and f*(s) = e,
and we have

. 1 .
Corollary 1.5. Sq?%e = <m + )et' (i=0).
1

§2. Exceptional types

In this section £ =6 or 7. Let G be the simply connected exceptional Lie
group of type E, and T a maximal torus of G. Take the root system {«,,...,«,}
as in [2], and define K to be the centralizer of the 1-dimensional torus defined
by the equations a; = 0 (i # ¢). Then the quotient space G/K is the irreducible
Hermitian symmetric space EIIl (£ = 6) or EVII (£ = 7).

Consider the fibration K/T — G/Ti G/K. By the classical theorem of Bott
the odd dimensional parts of the cohomology of both the fibre and the base
vanish. Hence the spectral sequence for the fibration collapses, and p*:
H*(G/K: A)— H*(G/T; A) is injective for any coefficient ring A. Therefore the
action of Sq' in G/K is derived from that in G/T.

First we fix a system of generators of H*(BT; Z) after [7] and [9]. Let
{wy,...,w,} be the fundamental weights of G. Being regarded as elements of
H?*(BT; Z), they form a basis of it. Let R; be the reflection in the plane a; =0,
and put

b =W b= Ry (s )€ > 0> 1), 1, = Ry(ty) and ¢ = oy(t,,...,1,) (i > 0).
Then
H*BT; Z) = L[t,,...,t,, x]/(c; — 3x).

As the canonical mapping i: G/T— BT does not induce a surjection in H*( ),
we introduce BG the 4-connective fibre space over BG to have the commutative
diagram with two fibrations
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G/T—> BT — BG

o
G/T - BT — BG
In H *(BT’ ; Z5)) we have new generators g; (i = 3, 5, 9) with
29, =c3, 2gs=cs=cs+csc; and 29y =cy = ¢y + coC?
(Note that the symbol g* is omitted here). We put
y3=p@s), vs=Sq*y; and y,=Sq%ys eH*(BT).
Then
21 s = p(gs + gsci + cacy) and
Yo = P(go + gs(ca + 1) + gslcs + cact +¢9) + cqct + chey + cucd).

For details see [3]. Note that our y,(i =5,9) are slightly different from
those in [9].

Recall that the generator of maximum degree is w in each case (see §0). So
it is sufficient for us to consider in the range of degree < d,, where d¢ = 14 and
d, = 34. Define polynomials

Iy =92+ c4c? + 8, Ig =cec? +c2+cyct+ 8,
1o =72+ cect + cl°, I, =c2+ cgcac? + c2ct + cyc8,
I =%+ cgcact + coct
and sets
Rg = {c;, ¢3, ¢5, 16}, R, = {cz, ¢3, ¢5, I, Ig, Co, L1g, L1, 114}

Then from §3 in [4] we have

Lemma 2.1. (1) Up to degree d,

H*(G/T)={Fz[tn---’te’)’s]/(Re) (¢ =6),
Fylty,...ot7, V3, s, Vol/(R4) ¢="1).
) Sq*ys = ca, Sq*ys = ys(=cacr + ¢} if £ =16);

Sq?ys = caci +¢f, Sq*ys=c7, Sq°ys =7;

Sqye = cacf, Sq*y, =0, Sq®ye = c¢5cs, Sq'°ye = ciCeCq

where ¢ = cq + c¢Cy.

Now we interpret the results in [7] and [9] to our situation.

2.2) H*(EIIL) = F,[t, w]/(w?t, w3 + t'2),
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where t, W = w + t*e H*(E¢/T; Z) satisfy
t=cy+t, W=cy+ (y3+ it + e t)t mod (2).
(2.3) H*(EVII) = F,[u, v, w]/(v? u'*, w?),
where u =t,, v, we H¥(E,/T; Z) satisfy
20 =0 —Cax + P — x>+ 200 +2u° mod (4),
2W = CeCy + C5Cq + 20503 + (266C, — €2 + 26,821

—(C5€2 — C4C3 + 26,63) 1% + (Co + 281> — (€5 + E3Cy) 1"

—(Coa—B)° —C3x® — " + 2)° + 20u* mod (4)
o . 1 1\ .
with X—§C1—u and ¢; = o; tl—gu,...,t(,—gu (i=0).

We must describe v and w modulo 2 in terms of the t; and the y;. For
EVII the results are a little complicated. So we calculate modulo (c,). Note
that ¢, =0 mod(4) (see [8]) and recall the relation (2.1). Then after some
calculations modulo (4, 2¢,) we obtain the following:

Lemma 2.2. Modulo (c,)
L=ty, W=7yt +c (¢ =6);
U=ty V=ys+ Y383 +cuty, W=yg+ 93tS + cotd ¢="7.
Fortunately we have

Lemma 2.3. (i) In H*(G/T) the ideal (c,) is closed under the operation of
the Sq'.

(i) Up to degree d, the composition of p*: H*(G/K)— H*(G/T) and the
projection n: H¥*(G/T)—> H*(G/T)/(c,) is injective.

Proof. (i) This follows from the Cartan formula.
(ii) For £ =6 put b; = 0,(t,,....ts) (i >0), and let

A=F,[t,,....ts, 73] and B=F,[t;, by,....bs, 73]

Then A is free as a B-module, and hence for any R = B the canonical map
B/BR — A/ AR is injective, where BR denotes the ideal generated by R in B, and
similarly for AR.

Note that B coincides with F,[t;, c¢q,...,Cs, 3] So it contains the set
R ={c,;}URg = {cy, 3, €3, c5, Is}, and B/BR can be regarded as a subset of
A/AR = H*(G/T)/(c;). Then by 22 the image of mop* is contained in
B/BR = F,[t,, c4, 31/(y%), and it is easily seen that up to degree d, the map
H*(G/T)— B/BR is injective.

Similarly for £ =17. g.e.d.
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Now the operation of the Sq' are obtained from 2.2 and 2.1, (2) by calculating
modulo (¢c;). The results are as follows:

Theorem 2.4. (i) In H*(EIIl) we have
Sq?w' = w't, Sq*w' =1° Sq®w =w?
(i) In H*(EVII)
Sq%v =0, Sq*v=vu? +u’, SqPv=w+ou* +u°;

Sq2w = u!®, Sq*w = ovu® + u'', Sq®w=ou® +u'?, Sq'®w=uvu'Z

§3. Stiefel-Whitney classes

For the Hermitian symmetric spaces of classical type the Chern classes have
been obtained in [1], whence so have the Stiefel-Whitney classes by mod 2
reduction. In this section as an application of the previous section we give the
Stiefel-Whitney classes of EIIl and EVII by using the Wu classes.

For a compact n-manifold M the i-th Wu class u;e H'(M) is characterised by

u;-x =Sq'x  for any xe H" ' (M).

Using the Wu classes the Stiefel-Whitney classes w; are given by

w; = Y. Sq'7Ju;, or equivalently
iz0

(3.1 W=SqU,

where W= Yw; and U = Y u; (see [5], for example).
From the previous section it follows that

(3.2) H*(EII) has {w"t,w?n=0,1; 0<i<12} as a basis, and
Sq¥w't!2 " =w't'? (r=0,2,6), Sq'®w?=wt'?,
Sq?'b =0 for the other b of degree 32-2r in the basis;
(3.3) H*(EVII) has {w"v™u'ln,m=0,1; 0<i<13} as a basis, and
Sq¥ woul3 ™" = wou'd (r =0, 4, 12),
Sq%'b = 0 for the other b of degree 54-2r in the basis.
Therefore
Theorem 3.1. The non-zero Wu classes are given as follows:
for EIII, uo =1, ug=1% u,=1% ue=w?

for EVIL, uy=1, ug=u* wuy =u'

Then by use of the formula (3.1) we obtain
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Corollary 3.2. The total Stiefel-Whitney class W is given as Sollows :

for EIII, W=1+0+1t*+154+W?+ 18+ 110 4 wiel2,
SJor EVII,  W=1+u*+u® + u'2

Remark 3.3. For EIII the result coincides with the mod 2 reduction of that

in [8].
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