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§ 1. Introduction

Suppose th a t  D  i s  a  simply connected domain o f  hyperbolic type in the
Riemann sphere t  = C u f ° a l. T h e n  the Poincaré metric pp  in D is defined by

1 — ig(z)1 2 '

where g  is any conform al m apping o f  D  o n to  th e  u n it  d isk  A  = {z: IzI < 1 } .
B 2 (D) will denote the Banach space consisting of all holomorphic functions cp in
D such that the norm

II (p IID = sup I (p(z) Ipp(z) - 2

is finite.
If f  is  a  locally univalent meromorphic function, the  Schwarzian derivative

of f  is given by

Sf = l ( f : )2f ' 2  f  '

W e set after Flinn [6]

S = {S f : f  is conformal in  A},

J = {S f  eS: f (4 )  is  a  Jordan  domain},

T= {S f eS : f  (A) is a  quasidisk}.

T is called the universal Teichmiiller space. It is known that T c J c S c  B 2 (4),
T  is open, S  is closed a n d  T = Int S  (see [ 7 ] ,  [ 9 ] ) .  Let I" be a  Fuchsian group
acting on A  and  B 2 (A, I )  denote the closed subspace of B 2 (A):

{(pe B2 (A): (cpoy)• (7') 2  = cp for all y e F1 .
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F u r th e r  w e  set S(F) = S nB2 (A, F), J (F ) =  J  n B,(A, F ), T (F ) =  Tn B2 (A, F).
Then T(F ) coincides with the Bers embedding of the Teichmiiller space of F  (see
3 ] ) .

Bers conjectured that S  =  T  i.e ., S(1) = T(1) in  [ 2 ] .  Generalizing this

conjecture, by  the B ers conjecture for F  we shall m ean that S(F) = T(F) .
In [8 ], Gehring showed that the Bers conjecture is  fa lse  i.e ., S \ T  4 ), in

fact essentially he showed that S \ J  4). Moreover Flinn proved that J 0  4)
in [6] (see the next section for the details). Our main purpose in this paper is
to  show the following

Theorem 1. Suppose that F  is a  Fuchsian group of  the second kind. T h e n
S(F)\J 0 4) and J (F )\ T  4 ).

Corollary. When F  is  of  the second kind, the B ers conjecture f or F  is
fa lse . In  other words, S(F) 2 T(F) .

On the other hand, the author does not know whether the Bers conjecture
for Fuchsian groups of the first kind is true or not.

This paper is organized as fo llow s. In §2 we introduce simply connected
domains which are constructed by Gehring and Flinn and quote two results from
Flinn [6] for later use. Gehring's (or Flinn's) domain is essentially obtained by
removing a spiral (respectively, countable sequence o f closed Jordan regions
approximating a spiral) from  a d isk  so  th a t the boundary of the domain is
adequately irregular. For a given Fuchsian group F  of the second kind, in §3
we construct a F-invariant simply connected domain A ' in A  which contains the
Gehring's or Flinn's domain adjacent to  a free side of the Dirichlet fundamental
region of F .  Let F: A —) A ' be a Riemann mapping function of A', then S F  e S(G)
where G =  F  F F  is  a Fuchsian group. W hile  it turns out la te r tha t S .
(respectively, 5, and that G is qc ( = quasiconformally) equivalent to F(Lemma
4 ,  C o ro lla ry ) , th e se  fa c ts  n e e d  n o t im p ly  th a t  S ( F ) \ J  4) (respectively,
J(F)\ T  4)) . Now we consider to deform A ' by an appropriate qc  mapping so
th a t  the Schwarzian derivative as a b o v e  b e lo n g s  to  S (F ) .  In  § 4 , su c h  a
deformation is presented and we state a slightly general result (Theorem 2) which
contains Theorem 1. § 5  is devoted to the proof of Theorem 2.

§ 2 .  Gehring's and Flinn's construction

(Fix ac 0 ,  —

1

and set a closed Jordan arc
8ir

ya = {± t e [0, oo)} {0}.

Theorem A (G ehring  [8 ]). Let F: A  -+ \ y  b e  a Riemann mapping function
o f t\y„, then SFES\J.
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W e set

A  =  Ix  + iy: y >  1} u {x + iy: x >  — 4, y>  —  1}

and D, = A\y a . As we shall find later, the following theorem also holds.

Theorem A '. L e t F: 4—>D 1 b e  a R iem ann m apping function o f  D 1 ,  then
S F E S \ j.

For each positive integer in EN, we set um =  —  ,  r m  =  e -
 2 ' ,  Ern = R„,U Pa ,

ir y
8

(

P a , -=  feicz: zey a ,  — a (7„,}u{z:lz1 T .},

R,„ = {x sin um ,  — 1< y  < — cos o- m }\A.

Then each Ea ,  is  a  closed Jordan region, E 1 E 2  D  •  • •  a n d  (-)Mc'_, Ern = V a . L e t
V denote the translation V(z) = z + 8  and  se t D 2  =  A\U = ( E m ) .  O ne can
easily see that D 2 is a Jordan domain in C. T h e  next theorem is essentially due
to Flinn.

Theorem B (Flinn [6, Theorem 2 ] ) .  L et F --+ D 2  be a R iem ann mapping
function o f  D 2 , then SF e J\

Theorems A ' and  B  are direct conclusions of the following Lemmas 1 and
2 , respectively. L e t  a , =  {z = e( - a : t e (0, c c )} , a , = {z: — zeoc,} . Then a ,
a n d  a 2 a r e  logarithmic spirals in  D 2  which converge o n to  th e  p o in t 0  from
opposite sides of ya .

Lemma 1 (cf. Flinn [6, Lemma 2]). There exists a constant (5, > 0  with the
follow ing property . I f  f  is conformal in D , w ith 11S1 11 <— 6 1,

lim  f ( z ) =  fim  f(z).
a2 Dz—.0

In particular, f (D 1 )  is not a Jordan domain.

Let fi be the  subarc Ix +  iyeeD i : — 4 < x < co} of a l) , .  W e note tha t if
f: R , —> R2 is a  conformal mapping of a Jordan domain R , onto another Jordan

domain R 2 , then f  is uniquely extended to a  homeomorphism f :  —R,

Lemma 2 (cf. Flinn [6, Proof of Theorem 2]). There exists a constant 32  >

w ith the f ollow ing property . If  f  is conform al in  D y  w i t h  S f D2 <o2 an d  i f
f(D 2 )  is a Jordan dom ain, then f(f3) is not a  quasiarc.

Remark. In  Thorems A ' a n d  B, w e can replace the dom ain A  by  a  half
plane Ix + iy : y>  — 11.

where

then
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§ 3 .  Construction of group invariant domains

Let F  be an  arbitrary Fuchsian group of the second kind acting on the unit
disk A .  In this section we construct r-invariant simply connected domains which
have the same property as the  Gehring's o r  Flinn's d o m a in . Since F  is  of the
second kind, Q(F) n 3A 0  where Q (F) is  th e  region o f discontinuity o f F  in

-C . Now we pick a sufficiently small disk Y in Q(F) whose boundary is orthogonal
to  azi so that no  two distinct points of Y  are r-equivalent. Let a be a Möbius
transformation such that a(Y) = A and that a ( Y )  =  A + where IT +  =  Yn A and
A + = Iz e  A : Im z > 0 1 .  F ix  r o , r e (0, 1 )  s u c h  th a t  r , <  ro . L e t  A , = lz e A :
Iz i <11, A,. =  Ar nzl + a n d  1 7, -+ ( 7 - 1 (A r

+ )  for r e(0, 1).
L et M (A ) b e  the  space of Beltrami coefficients supported in  A: ItteL '(A ):

till. <  11. For tie M (A), w" will denote the normalized u-conformal selfmapping
of A  which fixes three points 1, 1, —  1 c a d . W e set

M y (4)k =  {Ye L '(4 ): u = 0  on a n d  II II <

for k e (0 , 1 ]. N o tice  tha t ve is conformal in  Yr .+  f o r  tie M y ,,o (A)k .

Lemma 3. Let 6 0 = min 0 ,,  6 2 )  where b i  and (5 2  are  as  in  Lemmas 1 and
2, respectively, then there exists a constant k e(0, 1] such that f o r any ire M y r (.61),
the following is valid:

11S

P ro o f. W e can extend ve to  a  qc hom eom orphism  of t by  the rule

w"(z)=1/w0(1/2).

It is w ell know n that w (z) converges to  z  uniformly o n  each compact set in C
as II P. II 0 (see [1], for example). Since l e  is conformal in Yr o  =  o- - 1 (A r 0 ) for
1teM y ,to (A) 1 a n d  Y r i

+  is relatively compact inS %  converges to 0 uniformly
ona s in  particular II S.. II Y,t, converges to  0  as ll /11,0  --0 0. n

F or each 8e (0, r 1 )  we choose a  T = r e Möb such that T(11) = {x —  x ER}
U lool and r(z17) A.

Construction 1  (Gehring type).

We set Ai = A i(e)= A\ U y ((c o-) - 1 (ya )).
ye F

Construction 2  (Flinn type).

We set A ;. = A ;(e)= A\ U y((to Vm(E„,))).
yc F

W e note  that (r ,  a) ( y a ) Y  + , tha t (r  o r) ' (U ,T  V m (E,,,))= +  a n d  that
(y(Y + )),,,,- is  a disjoint family. Therefore zl j is a  r-invarian t simply connected
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domain contained in  A  for j  = 1, 2; furthermore z1 is a  Jo rdan  dom ain . If  we
let Fi : A —) A ; b e  a R iem ann mapping function and  se t Gi =F i 'F F i  which is
a  subgroup o f M ob acting discontinuously o n  A  i.e ., a  Fuchsian group acting
on  A , then SF, e S(G ,) and  SF 2 EJ(G2 ).

Now we state a  lemma which guarantees that G. i s  qc equivalent to F.

Lemma 4 . L et k e(0 ,1] be as in  Lemma 3. For sufficiently small E e (0, r1),
there ex ists a  qc mapping h i  o f  A ; = A (c) onto A  w ith the following properties
for j =  1, 2.

(1) 11 z(h)< k  w here p(hi )  is the Beltrami coeff icient of  hi ,
(2) hi  is conform al in  A; n Yro

+ ,
(3) hi oy = y  hi  f o r all y E F.

Because the qc mapping f i = hi . Fi : A —) A  deforms Gi  in to  F , we have the
following

Corollary. G . is qc equivalent to F.

Lemma 4 is obtained in  a n  obvious way by the following

Lemma 5 . F o r suf f iciently  sm all E e (0, r,), th e re  e x is ts  a  q c  mapping
H i : cr(Yi ') —) A + w ith  the following properties for j  = 1, 2.

(1) Ilit(H1)11  < k  where p(H 1)  is the Beltrami coeff icient of  H i ,
(2) H i  is conform al in  o- (17

.1)n 4.+0 ,
(3) H i = identity on 0A + \[—  1,1],

where Y J = Y I(E)= Y n  "i (e).

Proof  o f  lemma 5. L et H ( , ) : 0- (17;(0)n Ar+ —■ A r+0 b e  the  conformal mapping
which fixes three points ro , ro i, ro . N oting that A rt\ A t

+ c  o - (171(v)), we find

that H( 0 1 \
-,17- can be extended to a conformal mapping H(E) in  { z  e < z  <

by the reflection principle. Let 0,: (0, —) (0, 7r) be the mapping defined by the
rule r0 e ° ) =1 7 ( r o ew) for all 0 e (0, pr), then 0, is a smooth mapping such that

e; (e) = Hic)(roe)I.

Now we set

H ( c ) (ren = re i"
± (1

-
t ) ( 9 (0 ) )

for r e[ro , 1], 0 e(0, m),

where r = t + (1 — t)ro , then this extended  H (C) has the properties (2) and (3 ). On
the other hand, clearly 1-1(,) (z) converges to  z  uniformly o n  each compact set in
C* = C \ {0} a s  e — 0, hence e,(0), (me) uniformly converges to  0 , 1 a s  e — > 0,
respectively. Therefore the explicit expression

re(r0,1],
{

(r — ro)(e;( 0 ) — 1) — (c),(0)— 0)ri
11,1(11 w)(ren 20 —l = ro)+(r — 1 .

0 )(0;(0)—  1) + (0,(0)—  0)ri
O, r e (0, ro)
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shows t h a t  1,0 1 ( o )
0  as e —> 0, so  for sufficiently small v e r 1 ) , Hi = H ( , ) :

(3- (Yi ') —> A +  h a s  the properties (1), (2) and (3). El

Henceforth we fix a n  e e(0, r 1 ) for which Lemma 4  holds.

§ 4 .  Deformations by partially conformal qc mappings

In this section we present a  method to construct the family of group-invariant
domains which includes desired one.

Let M (A , F) be  the  space of Beltrami coefficients for F  with support in A
i.e., the subset of L ( A )  consisting of a ll p e L ( A )  w ith  1111 11. < I and

(poy)• y' /y' = ;I for a ll y e F.

Set gy = w"(z1) for p e M (A , F ) . If F "  denotes the  Fuchsian group w"F(w12) - 1

acting on A, then gy is a  F"-invariant simply connected domain whose boundary
is homeomorphic to  the zli"s. We take a Riemann mapping function FT: A  -+gy
and  se t Gy = (FD - 1 F " F ï  and  (py = 47 . Since F "  acts discontinuously o n  27,
Gy acts also discontinuously on  A , hence Gy is  a  Fuchsian group . A nd  clearly
cpleS (G;) a n d  cpo leJ(G ). Because the  logarithmic spiral ya i s  a  quasiarc, the
general qc mapping w" may unfasten the removed spirals, thus we must restrict
Beltrami coefficients p  to be considered on a certain  class o f M (A , F). In  this
article we only consider

M y r,o (A , F), = M y r,o (A )„nM(A , F)

= {p e M (4, F): p = 0  o n  IZ  and< k } .

Since w" is conformal in  17,..4" for p e M y r, (A, F),„ it is expected that the  spirals
are  bu t slightly deformed by w " . In fact, we have the following result for this
class which is proved in  the  rest of this paper.

Theorem 2. L et k  be as in  Lemma 3. F o r p e M ,c (A , F),„ we have

e  S (G )\J,

e J(GD\T .

Theorem 2 and  Lemma 4  prove Theorem I.

Proof of Theorem 1. Let hi  b e  a s  in  Lemma 4. W e set

{1-1(h), on
on LI

where p(hi )  is  the Beltrami coefficient of hi  a n d  s e t  .9:i =  w "i(A ;). Notice that
p i e M y r,-0 (.61, F)k . Since hi  and  w".1 1,:i have the same Beltrami coefficient, w , :
A —> g; is  a Riemann mapping function of Therefore we can take w"i o h i 1

as F p .  By definition, Gy,  = h i  0  (w ,,J) - 0 , 0 hi-  _ =  F .  By virture of
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Theorem 2, (1)11 e S(T)\J, cp'p e J (FA T , hence Theorem 1 is proved.

Remark. The family ((,91) e ,,,,y M i l k  
is  ample in a certain sense. We now

explain this in the following. W e °recall that Fi : A - > A i is  a Riemann mapping
function of zri  and  Gi = F i

- 1 TF t  i s  a Fuchsian group acting on A .  In  this
p a ra g ra p h  w e  assume t h a t  r  is non-e lem entary  and ch o o se  Fi  s o  t h a t
1, j , -  1 e A (Gi ) = t'\S-2(Gi ). Let F Î : M(A, F )  M(4, G i ) b e  the pullback of
Beltrami coefficients b y  Ft ,  namely Fik(g) is  the Beltrami coefficient of the qc
mapping vt,'̀  o F i  for geM(A, I ) .  Since w F ; (1-') and e .  F  have the same Beltrami
coefficient, w e can choose 14,14 o F i , .(wF 1 4 °) - 1 : A  g l  as the Riemann mapping
function Fr, then we have Gy =  w o G 1(wF.700) -

Generally, fo r  veM(A,G i ) the group isom orphism  g  w  V  g 1 (g G i )

determines an element of the reduced Teichmiiller space P ( G )  o f  G . (see, for
example, Earle [4 ], [5 ], N a g  [1 0 ]).  Let th is  point in T # ( G )  be  denoted  by
V (v ) .  It turns out tha t V(M K (A, Gi )k) is a neighborhood of 0#(0) in T#(G i ) for
any ke (0, 1] and any measurable set K c A  such that p(K) is relatively compact
in the double Q (G )/G i  w here  p: Q(G i ) -÷ S2(G1)1G1 i s  the canonical projection.
(For example, combine [11, Corollay 2] with [ 4 ] .  This fact was pointed out to
the author by H. Ohtake.)

On the o th e r  h a n d  F7 (M,,,,o (zI, F)k) = Gi)k and p(F1- 1 (17,0 ) )  is
relatively compact in Q (G )/G , hence 0 4 (F7(M y 4 (A, f ) k) )  is  a neighborhood of
V (0 ).  In  other w ords, qc deformations Gi - )G7(gi- wF ; (1.̀ 1g(wF ) ' )  for pt e
M y r,(A, r),, cover a neighborhood of the identity mapping Gi - +Gi  in  T#(Gi ).

T h e  a b o v e  p ro o f  o f  T heorem  1 shows v ir tu a lly  th a t th e re  e x is ts  an
isomorphism Gi - > r  which belongs to V (F i*(M +(A , F)k)).

§5. Proof of Theorem 2

Proof  of  the f irst p art: (MO 7  By the same argument in [6] or [8], it is
sufficient to prove the following

Claim 1. There exists a  constant (5 > 0 with the following property . If  f  is
conformal in .91

11 with 11Sf 6 ,  t h e n  f(g 1 ) is not a Jordan domain.

Proof  o f  Claim 1. W e set 6= 6,12 where (5, is as in Lemma 1. Suppose
t h a t  f  is c o n f o r m a l  in with I „II s (5. S e t g = f o e . - D

= cr)- 1 (00 for j =  1, 2 and w, = (r  a r  1 (0). Since

Sg MD1 = Sfow.11(tea)  i(o,) S111g,-,‘ + MS w A lly , Oi,

Lemma 1 implies that

lim  f (w) = lim  f (w ).
fizaw — ' wo

Thus f ( )
 is  n o t  a Jordan domain.

Proof  of  the second p art: (p' O T . Sim ilarly  it is sufficient to  prove the
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following

Claim 2 .  There exists a constant 6 > 0 w ith the follow ing property . If  f  is
conformal in 3"1 w ith 11,3 1112'1 6, then f ( " ) is no t a  quasidisk.

Proof  of  Claim  2. W e set (5 = (52 /2 where 62  i s  a s  in  Lemma 2 . Suppose
that f  is conformal in i '21 w i t h  Sf  1602

, ( 5 .  Further suppose that f ( )
 i s  a

Jo rdan  dom ain . W e  sh a ll show  th a t  Of( )  i s  n o t  a  quasicircle. S e t g =
f  vim (to 0) - 1 1,2 . Since 11 5,11,2 S f  S w A  Y r+, 

6 2 and g(D 2 ) is a Jordan
domain, Lemma 2 produces tha t (3) is not a  quasiarc. Hence 8f ( ) is  n o t a
quasicircle because  (fl) f (3'1) .
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