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Certain invariant sets of stochastic flows generated by
stochastic differential equations
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Introduction

First we consider the diffusion process {x,},», determined by the following
stochastic differential equation;

(M dx, = Y=y Vilx,) o dwh(0) + Vo(x)dt,  xo=x

where V,, V,, ..., V, are smooth vector fields on R? and w=(w!,...,w") is an
r-dimensional Wiener process. It seems to be a very natural and primitive prob-
lem to search for a subset E of R? as small as possible satisfying that x, € E
for all ¢t almost surely. In this paper, we will give an answer to it.

Let 0,,, ..., 6,, be the flows generated respectively by V;, ..., V,. Let E,
be the set of the points 6, , o~ o0, ,(x) where n is a positive integer, ky, ...,
k,e{0,...,r} and t,, ..., t,e(—00, +o0). Since Sussmann showed in [3] that
E, becomes a C®-submanifold of R?, we know at least that x, stays in E, for
a while. On the other hand, x, does not exit from E,, the closure of E, in R,
as a trivial consequence of Stroock and Varadhan’s result [2] considering the
support of the probability law of {x,},-o in the path space. In this paper, we
will show that x, does not exit from E, itself up to the explosion time. Indeed,
we will show under Lipschitz condition that the stochastic flow generated by
the equation (1) preserves all submanifolds of the type E,.

1. Statement of the result

Let V,, Vi, ..., V. be fixed smooth vector fields on R? and we assume that
Vo, ..., V, and Vo + Y i-, 0V, V, satisfy the global Lipschitz condition where

. ovy . .
0V, denotes the matrix < 6x‘;>' For any absolutely continuous function h =
(hg, hy, ..., h,) on (—o0, +00), we consider the ordinary differential equation

2 ¢ = Li=o Vil@)h*(t),  —o0 <t < +o0

and put ¢, = @, ,(x, h) where ¢, is the solution of (2) satisfying ¢, = x. Then,
for any fixed s, t and h, ¢, ,(h) = ¢, (-, h) is a difffomorphism on R‘.
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Let S be the set of all polygonal functions h = (h°,..., h") which move
parallel to one of the coordinate axes everytime. Then

(3) E, = {0o,1(x, h): he S} = {o,,(x,h):heS, —0 <s,t< 400}

where E_ is defined in Introduction. E, is the smallest set which contains x
and is invariant with respect to each of the flows generated respectively by V,,
..., V.. Especially, we note that yeE, implies E, = E,.

Let w(t) = (w!(t),..., w'(f)), —0 <t < +0c0 be an r-dimensional Wiener pro-
cess such that w(0) =0. Let ¢ (x), —00 <s, t < +00, x€ R? be a stochastic
flow of diffeomorphisms generated by the stochastic differential equation (1), i.e.
it is an R%valued ramdom field satisfying with probability 1 that

4) @,,,(x) is continuous with respect to (s, t, x),
(5 ¢, is a diffeomorphism on R? for any s, t€(—o0, +00),
(6) @ru° @5 =0s, foranys ¢ u,

and moreover, for any fixed s and x, ¢, = ¢, ,(x) satisfies that

t t
(7 =X+ Vi f Vi(@,) o dw*(u) + I Volp)du  as.
where, when s > t, we interpret the above stochastic integrals as backward inte-
grals. See [1] for the existence of the stochastic flow.
Our main result is as follows:

Theorem. It holds with probability 1 that, for any s, t and x, E, is an
invariant set of ¢;,.

The following corollary is an immediate consequence of it.

Corollary. Let {x,},5¢ be the solution of (1). Then x, € E, for all t € [0, +0)
almost surely.

Remark. We can easily extend above corollary to the case where the
Lipschitz condition is not satisfied. In this case, the solutions of the equations
(1) and (2) may explose. But we shall define E, analogously considering only
no-explosing solutions ¢;,(x, h) in (3). Then we can deduce from the above
corollary by truncation argument that the diffusion process x, stays in E, up to
the explosion time.

2. Proof of Theorem

This section is devoted to prove Theorem. First we study the form of the
set E,.

Lemma 1. For any x € R%, there exist a local coordinate f = (f',...,f%) on
some neighborhood U of x and some integer e, 0 < e < d such that
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(i) f'x)=-=f"x)=0,
(i) M={EeU:fe*' () == f%¢&) =0} is contained in E,,
(iiiy Vy, ..., V, are tangential to M at any point on M.

Proof. Fix any xe R%. Let (f, ..., f%) be a local coordinate on a neighbor-
hood U of some point X of E, such that fli® =-=f4%)=0 and M=
(e T: fer1(¢) =+ = f4¢) = 0} is contained in E, for some e, 0 <e<d. Itis
clear that there exists at least one such local coordinate because we permit e
to be 0. We can choose X and (l7; f L f 4) so that e, which is the dimension
of M, becomes maximum. Since %€ E,, there exists some heS such that
®0.1(x, ) = £ by (3). We put fi = fiog, (h) and U = ¢ (1) "*(0). Then they
satisfy (i) and (i) since M = {Ee U: fe*'(&) == f4(¢) =0} = @01 (N1 (M) =
¢1.0(N(M) < E,.

Next, we shall show (iii). Suppose that there exists a point p € M such that
Vi(p) is not tangential to M for some k. Then we define a map g from a
sufficiently small neighborhood of 0 in R°*! into R? by

gy' -y 0 =0T (1P + YL (D) + 150, 0)

where {6, —o0 <t < +oo} denotes the flow generated by V,. It is easy to see
g(0) = p. Noting that f~*(y' + f1(p),...,y* + f(p),0,...,0) lies in M, we see
that the image of g is contained in E,. Let T,(M) denote the tangent space to

. o9 og . . dg
M at p. Since (5?(0), e 6ye(0)> is a basis of T,(M) and E(O) = V,(p) does
.. og og og .
not lie in T,(M), we can see that 5{(0), e 5}?(0) and 5;(0) are linearly

independent so that g is nondegenerate at 0. So we can find some local coordi-
nate f; = (fil,..., f{) on some neighborhood U, of p such that

filgt, ...y ) =04 ..., ¥510,...,0)

by the rank theorem. It is clear that fi(p) =0. Since M, = {£e U,: ff**(¢) =
-+ = f#(&) = 0} is contained in the image of g, it is contained in E,. But this
contradicts with the maximality of e. So V,, ..., V, are tangential to M and
this completes the proof. [

Remark. Lemma 1 is also covered by a result of Sussmann [3] that E,
becomes a C®-submanifold of R? by a suitable differentiable structure.

We know from Lemma 1 that, for any fixed x and s, it holds almost surely
that ¢, (x) stays in E_ if ¢ is close enough to s. Indeed, ¢ ,(x) stays in M until
it exit from U by (iii) in Lemma 1. The next lemma states that the exceptional
set does not depend on x and s.

Lemma 2. It holds almost surely that, for any x and s, there exists some
positive number ¢ such that |t — s| < ¢ implies ¢, (x) € E,.
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Proof. Let h,=h,w), n=1, 2, ... be an polygonal approximation of the
process (t, w!,...,w"). Then ¢,,(x, h,) converges to ¢, ,(x) in probability in the
topology of local uniform convergence with respect to (s, t, x) (see [1]). By
choosing a good subsequence, we may suppose that the above local uniform
convergence holds almost surely. Particularly, it holds almost surely that, for
arbitrary x and s, ¢, ,(x, h,) converges to ¢, ,(x) uniformly with respect to ¢t on
any finite intervals. That implies the assertion of Lemma 2. Indeed, suppose
that ¢, ,(x, h,) converges to ¢, ,(x) uniformly with respect to t on any finite
intervals. Let U be the coordinate neighborhood of x introduced in Lemma 1
and K be a compact neighborhood of x contained in U. Then, since the sequence
{@s..(x, h,)},=1.2,... is equicontinuous with respect to ¢, there exists an ¢ > 0 such
that |t — 5| < ¢ implies that ¢, ,(x, h,) € K for all n. Therefore, if |t — 5| < ¢, then
@;..(x, h,)e MNK for all n where M is defined in Lemma 1. Since MNK is
compact and ¢, ,(x, h,) converges to ¢, (x), we see ¢, ,(x)e MNK c E, if |t — 5]
<& It completes the proof. [

Before deducing the assertion of Theorem, we shall prepare the following
set-theoretical fact.

Lemma 3. Let the map y:(—o0, +0) x (—00, +00) x R? - R? satisfy the
following conditions (i) and (ii);

() Y, s(x) =x and Y, (Y (X)) = Y, (x) for any s, t, u and x.

(ii) For any s and x, there exists an ¢ >0 such that |t —s| <¢ implies
s, (x) € E,.
Then y, (x)e E, for any s, t and x.

Proof. Let us fix any s and x. Put A = {te(—o0, +0): Y, ,(x)e E,}. Tt
suffices to show A = (—o0, +0).

First we shall show that A is an open set in (—o0, +00). Suppose t € A. By
the assumption (ii), we can choose ¢ > 0 such that |u — t| < & implies ¥, (Y, ,(x)) €
E, - By the assumption (i), the left-hand side is equal to Y, ,(x). Moreover
t€ A means that Y ,(x) € E, or equivalently E,_ ., = E,. Therefore |u —t| <e
implies ¥ ,(x) € E, which means that u e A. That shows that A is an open set.

Next we shall show that A is an open set. Suppose t € A°. By the same
argument as above, there exists an ¢ > 0 such that |u —t| < ¢ implies VY, ,(x) €
E, . Since E.NE, ., =4¢, |u—t|<e implies ue A" That shows that A is
an open set.

Since Y, (x) = x, s belongs to A so that A is non-empty. Therefore A =
(—o0, +00). The proof is completed. []

Proof of Theorem. The assertion of Theorem is clear noting that ¢ (x)
satisfies the assumption of Lemma 3 almost surely by (6) and Lemma 2. O
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