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On mod p cohomology of the space X and mod p trace
formula for Hecke operators

By

Goro NISHIDA

1. Introduction

Let M,Z denote the set of 2 x 2 matricies over Z. The semigroup M,Z
acts on the 2-torus T2 as endomorphisms in the standard way. For any sub-
group I" of M,Z, we can define the semi-direct product I x T2 We denote
the classifying space B(I" x T?) by X,. Our main interest is in the case of
I'=SL,Z or congruent modular groups. In this case it is known [3] that there
is an isomorphism

H*"*'(X;;R) = H\(I'; H"(BT* R)),

where the right hand side is the cohomology of the group I" with the coefficient
module H2"(BT?;R). Then the Eichler-Shimura homomorphism turns out to be
a homomorphism

#: M, —’HZk_a(Xﬁ R),

where M, is the space of modular forms of weight k for I. Moreover it is
known [6] that we can define a Hecke operator T(n) on H*(X; M) for any
module M induced from a stable self map of X, and ¢ commutes with Hecke
operators. Now the theorem of Eichler and Shimura [7] asserts that ¢: S, =
HYI; H*~*(BT?; R)), where S, is the space of cusp forms of weight k and H}
means the parabolic cohomology of I Then it is also known [3] that

dimg H*73(X; R) = dimg Hy(I"; H* *(BT?*,R)) + v,

where v is the number of equivalent classes of cusps.

In this note we study H*(Xr; F,), which has richer structure; the action of
Steenrod algebra and the module structure over H®(X ; F,). We shall show
that H(X; F,) = F,[x, y]’, the ring of I-invariants. In the case of I'= SL,Z,
F,[x,y]" = F,[q,9,], degg=p+ 1 and degq, = p(p — 1). It is shown (Corol-
lary 3.3) that H*(X; F,)/qH*(X; F,) satisfies certain periodicity. Using this the
F,[4, q,]-module structure of H*(X; F,) is determined (Theorem 5.3). As a
corollary of those results, we give a formula on mod p value of the trace of
Hecke operators acting on cusp forms.
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2. Additive structure of H*(X; F,)

Let I" denote SL,Z or a congruent subgroup of SL,Z. Let d be a positive
integer such that for any I-module over Z[1/d], H'(I'; M) =0 for all i >2. It
is well known that there exists such an integer d and one can take d = 6 for
I'=SL,Z (see [6]). For a Z[1/d]-module M, the Serre spectral sequence for
the fibration

BT?* > X,=B(I' x T*)—> BI
collapses and we have a short exact sequence
0— HY(I'; HY(BT?; M)) » H"**(X s M) » H°(I'; H"*'(BT*; M)) - 0.

Let x and y be the standard basis of H?*(BT? Z). Then we have
H*(BT*; M) = Z[x, Y] ® M, and the above argument shows the following.

Lemma 2.1. There are isomorphisms
H>(Xp; M) = H(I; Z[x, y1,® M)
and
H>™ (X M) = HY(I Z[x, y], @ M),

where Z[x, y], denotes the module of homogeneous polynomials in x and y of
degree n.

Now let p be a prime such that (p,d)=1. Then @®H"(X; F,) =
HO(I"; F,[x, y]) = F,[x, y]" is the ring of Dickson invariants. The additive struc-
ture of H**(X; F,) is given as follows.

Theorem 2.2. ([3]) Let p be a prime such that (d,p)=1. Let v be the
number of equivalence classes of cusps of I. Then

dimFP H2"+1(Xr; Fp) = dimpp Fp[x, y]'f + dlmk S"+2 + v,
where S, ., is the space of cusp forms of weight n + 2.
Proof. Consider the short exact sequence
0— Z(P)[x’ J’] _F’ Z(P)[x’ y] 'E’ Fp[x3 y] -0

of Z,[I']-modules, where p is the reduction mod p. Then we have an exact
sequence

0 HO(I"; Z,)[x, y1) & HO(I'; Z,)[x, y]) = HO(I; F, [x, y])
5 HY(T; Z,[x, 1) D HU (s 2y [x, 1) S HU(T; F,[x, y]) > 0.

First we show that H°(I'; Z,)[x, y]) = 0. Since I" is a congruent modular group,
I’ > I'(N), the principal congruent modular group for some N. Hence I'sa =

1 N 1 0
(0 1) and I's f = <N 1). One can easily check that for any homogeneous
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polynomial f(x, y)e Q[x, y], af = f only if f = ax" for some aeQ and ff = f
only if f=by" for some be Q. Therefore H°(I'; Q[x, y]) =0 and so is for
H°(I'; Z,[x, y]). Now note that

rank (HI(I", Z(p)[xa y]n)/Tor) = dlmll HI(F; R[X, y]n) .
By the Eichler-Shimura isomorphism we have
dimR Hl(]"; R[xv y]n) = dlmR Sn+2 +v.

Then the theorem follows from the above exact sequence and Lemma 2.1.

3. A periodicity
In this section we suppose that I'=SL,Z and p>5. Since SL,Z>

—1
( 0 _(1)>’ we see that H'(SL,Z; Z[x, y],® A) = 0 for odd n and a Z,-module

A as shown in [7]. Let g=xy’—x?yeF,[x,y],+; and ¢, =x??"D 4
xR Pl g 4 xPTLY@T? 4 P D e Fo[x, y],,-1). For a matrix ae M,Z
we have a(g) = (det a)g and for a € M,Z such that det« # 0 mod p, we have
a(q;) = q;. It is well known that the ring of Dickson invariants is given by

Fp[x’ ,V]SLZZ = p[q’ ql] .

Let (g) be the ideal of F,[x, y] generated by g and let Q, = F[x, y]/(g). Then
Q, is a graded F,[M,Z]-module. If n<p, then Q, = F,[x,y],. If n>p+1,
then Q, has a basis [x"], [x""'y], ..., [x""P*'y?»~'] and [y"], where [f] means
the class of feF,[x,y] in Q,, and we have dim Q,=p + 1.

Now let ©° denote the reduced power operation. Note that p*: F,[x, y], =
H?*(BT?; F,) - F,[X, Y], 15p-1) = H*"**""D(BT%; F,) commutes with the action
of M,Z. The following lemma is obvious.

Lemma 3.1. p%q=gqq,, p°*'q=q" and pq=0if s#p, p+ 1.

By the lemma, one can define an induced F,[M,Z]-homomorphism
2% 00 = Quisp-1) -

If n>p+ 1, taking the basis [x"], ..., [x"?*'y?71] and [y"] in this order we
can identify Q, with F2*'. Then we have

Lemma 3.2. Suppose that n>p+ 1. Then

n
SOS = (S) X Qn - Qn+s(p—1)'

The proof is easy from the Cartan formula. Then we have the following
key observation.

Corollary 3.3. Suppose that n, m>p+1 and n=m mod (p —1). Then
0, =Q,, as F,[M,Z]-modules.
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Proof. By the above lemma, we see that the action of reduced powers on
Q, is similar to the case of H*(CP;F,). Then as shown in [1], we see that
there are integers k; and s; and chains of isomorphisms

uy U2
Qn_)Qk,_'ka_'“'_}Qm’

where u; = P or (pP¥) L

Next let r be a positive integer. We denote the graded algebra F,[x, y]/(q")
by QY. As for Q, =0, 0V is a graded F,[M,Z]-module, and by Lemma
3.1 we can define the reduced power

ps: Qinr) - Qﬁ:r-)i-s(p—l) .

Lemma 3.4. Let n and m be integers such that n > 2(p + 1) and m > 2(p + 1).
Then there is an isomorphism Q2 = Q@ as F,[SL,Z]-modules if i) n=m mod
p(p—1) or i) n=m mod p—1 and nm £ 0 mod p.

Proof. Note that dim Q¥ =2p+2 if n>2(p+ 1). It is clear that
q:: QP — quz'zp(p—l)

is a monomorphism of F,[SL,Z]-modules and hence an isomorphism if n >
2(p +1). This shows the case i). Since g'q = 0, we have a following commuta-
tive exact diagram of F[M,Z]-modules

0 —— Qpoy — Q&P —— 0, ——0

where p is the reduction homomorphism. Then by Lemma 3.2 and by the five
lemma we see that

PP >0,
is an isomorphism if n > 2(p + 1) and n # 0, 1 mod p. Suppose that n # 0 mod
p, then combining the q,-periodicity we see that Q®, Q2 _,, ..., Q& ,,-1) are

isomorphic to each other except Q%,,-;, such that n+ k(p —1)=0 mod p.
This completes the proof.

Remark. The isomorphism in the lemma is not an isomorphism of
F,[M;Z]-modules in general.

4. Computation of H°(SL,Z; Q,)

We regard F,[x, y], as a representation of SL,F, over F,. We write this
F,[SL,F,]-module F,[x, y], simply by V,. Glover [4] has shown the following.
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Theorem 4.1. i) V,, Vy, ..., V,_, is the set of all irreducible representation
of SL,F, over F

-
i) V,_, is projective.

iii) There are exact sequences of SL,F,-modules
0-V-V,-»V,,-0
and
0-V® Vi 2 Vv 2 Vi3 20
for 0<i<p-3.

Corollary 4.2. Let 0 <k <2p—2. Then V, contains the trivial representa-
tion as a composition factor if and only if k=0, p+1 or 2p —2. For k=0,
p+ 1 or 2p — 2, the multiplicity of the trivial factor is 1.

Now note that ¥, = Q, for k < p and there is a short exact sequence
0- Vk—p—li’ Vi= 0 —0

of F,[SL,F,]-modules for k > p + 1. Let a, be the class of x2?72 — xP~1yrP-1 4
y**7% in Q,,_,. One can easily check that a, is SL,F, (and hence SL,Z)-
invariant. Then by Corollary 3.3, we have SL,Z-invariant elements o, € Okp-1)
for k > 2.

Theorem 4.3. There is an isomorphism
H°(SL,Z; Q,) >~ F,{1, 05, 03,...} .

Proof. Note that there is no SL,Z-invariant in Q, for 0 < k <2p — 2 and
H°(SL,Z; Q,,_,) =~ F,{a,} by Corollary 4.2. Then the theorem follows from
Corollary 3.3.

Lemma 44. H°(SL,Z; Q%) ) =0.

Proof. Consider the following commutative exact diagram

q 2 P
0 —— Qp—3 I Q(Z()p—l) _— Q2(p—1) — 0

0 —— Qup-2y —— Qp-1) —5— Q3p-1y —— 0.

By Corollary 4.2, Q,_; and Q,,_,, do not have the trivial factor. In particular
we have H°(SL,Z;Q,_;) = H°(SL,Z; Q,,-,) = H°(SL,Z; Q2p-2/Im p') = 0.
From the exact sequence lof the group cohomology associated with the short
exact sequence 0 - Q,_, LN Q-2 — Cok p! -0, we see that

Wi: H'(SL,Z; Q,-3)— H'(SL,Z; Q200-2))
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is a monomorphism. Then we have the following commutative exact diagram

0—— HO(SL22§ Q(zz(;;—x)) — HO(SL2Z§ QZ(p—l)) — HI(SL2Z§ Qp—3)

IH I°H P

0—— HO(SL2Z; Q(az(i;—u) —L HO(SL2Z; Q3(p—1)) — Hl(SLzZ§ Q2(p—2)) .

Now the middle vertical arrow is an isomorphism by Corollary 3.3. Then the
left gl is an isomorphism by the five lemma. Now Q%),_,, = V,,-;, has no
SL,Z-invariant and hence H°(SL,Z; Q%) _,,) = 0.

Corollary 4.5. There are isomorphisms
Im [p,: H°(SL,Z; Q?) » HY(SL,Z; 0,)]
=~ Im [p,: H*(SL,Z; F,[x, y]) » H*(SL,Z; Q,)]

=F, {1, a,0,,...}.

Proof. Since p>5, we have 3(p—1)>2(p+1). Then by Lemma 34,
H°(SL,Z; QY _,)) = H°(SL,Z; 0%),_;)) =0 if s> 3 and s# 0 mod p. Now note
that a, = [g%], the class of ¢} in Q, and hence a, €Imp,. This completes
the proof.

Corollary 4.6. There is an isomorphism
H°(SL,Z; Q") = qH(SL,Z; Q,) ® F,[q,].
Proof. Consider the exact sequence
0— H°(SL,Z; 0,) % H(SL,Z; 0?) 53 H°(SL,Z; Q,) .

Then the corollary follows immediately from Corollary 4.5.

5. F,[q,q,]-module structure of H Y(SL,Z; F,[x, ¥])

Let ueF,[g,q,] be a Dickson invariant. Then u-:F,[x, y]1—=F,[x, y]
induces a homomorphism H'(SL,Z; F,[x, y]) > H'(SL,Z; F,[x, y]) and we see
that H'(SL,Z;F,[x,y]) is an F,[q, q,]-module. If we identify F,[q,9,]1=
H°(SL,Z;F,[x,y]) with H*(Xg,2;F,) and H'(SL,Z;F,[x,y]) with
H**(Xg,,2; F,) (Lemma 2.1), then it is easy to see that this module structure is
the same as one induced from the cup product.

Now let M, denote the graded F,[SL,Z]-module F,[x, yl/(g,q,) =
F,[x, y] ®F 4.4, Fp- BY Corollary 3.3, we easily see that M, =0 for k> pZ
Moreover it is known [5] that M, is a Poincaré duality module.

Lemma 5.1. H'(SL,Z;Q,) is F,[q,]-free.
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Proof. By Corollary 3.3 and Corollary 4.2, we see that the trivial factor in
Q, appears as a submodule. Consider the short exact sequence

0-0,30,5M,-0,
where p is the reduction. Then the above argument shows that p,:

H°(SL,Z;Q,)— H°(SL,Z; M,) is an epimorphism and hence we have an exact
sequence

0 - H(SL,Z; Q,) B H'(SL,Z: M) 5 M, - 0.
This shows H'(SL,Z; Q,) is F,[q,]-free.

Let T7 denote the subspace of H'(SL,Z;F,[x, y]) consisting of g-torsion
elements.

Lemma 5.2. i) Every g-torsion element is single torsion, i.e., if q*u=0 then
qu=0 for ue H'(SL,Z; F,[x, y]).
i) TI=F, if k=s(p—1)—2, s#0 mod p, and T =0 otherwise.

Proof. Consider the exact sequence
0-F,[x,y] 5F,[x,y150,-0
and the associated exact sequence
0— H°(SL,Z; F,[x, y]) > H°(SL,Z; F,[x, y]) % HOSL,Z; 0,)
5 H'(SL,Z; F,[x, y]) % H'(SL,Z; F,[x, y]) 53 H'(SL,Z; 0,) - 0.

Then by Theorem 4.3 and Corollary 4.5, T)=1Imd is spanned by d(x,),
k #0 mod p. This shows ii). Let ue H'(SL,Z; F,[x, y]) be such that g?u = 0.
Then u=6*(v) for some veH°SL,Z;Q?), where &%:H(SL,Z; Q®)—
H'(SL,Z; F,[x,y]) is the coboundary associated with the exact sequence
0-F,[x,y] 5F,[x,y]>Q® 0. By Corollary 46, H°(SL,Z; Q%)=
qH°(SL,Z; Q,) ® F,[q,]. If ve qgH°(SL,Z; Q,), say, v = qw, then 5?(v) = 5(w)
where & is the coboundary associated with 0— F,[x, y] > F,[x, y] 49,-0.
Hence qu = 0. This completes the proof.

Let now B, = p,(T)), where p,: H'(SL,Z; F,[x, y]) > H'(SL,Z; M,) is the
reduction homomorphism. Then we have

Theorem 5.3. There is an isomorphism of F,[q, q,]-modules
H'(SL,Z; F,[x, y]) = F,[q, 9,1 ® (H'(SL,Z; M,)/B,) ® F,[4, 9,1/(9) ® B, .

Proof. We take F,[q, q,]-indecomposable elements u,, ..., u, in T2 Adding
other F,[q, q,]-indecomposables v,, ..., v, in H'(SL,Z; F,[x, y]), we can take
a set S={u;,...,u,v,,...,0} such that p,:F,{S}>H'SL,Z;M,) is
isomorphism. We are sufficient to show that if there is a relation R =) fiu; +
Y 9;;=0, fi, g;€ F,[4, q,], then f, € qF,[q,q,] and g; =0 for all i, . We prove
this by induction on the degree of R. We suppose that there is no non-trivial
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relation R in H'(SL,Z; F,[x, y],) for k <n. This is obviously true for n = p.
Now let R=3 fu;+ Y g;v; be a relation in degree n. Let & and v; be the
classes of ; and v; in H'(SL,Z; Q,), respectively. By Lemma 5.1, {i3, ..., &, by,
.., U} is a basis of the free F,[q,]-module H'(SL,Z;Q,). Then R=Y fi; +
Zgjoj = 0 implies that f;, g;€ qF,[q, q,] for all i, j. Let g; = gh;, then we have
Y. ghv;=q Y hv;=0,ie, ) hyv;is a g-torsion. Then we have a relation Y hv; =
Y ku; for some k;. But by the assumption of the induction we have h; =0 and
hence g; = 0 for all j. This completes the proof.

For p=15, degq=6, degq, =20, p—1=4 and p> — 1 =24. We list the
dimension of H'(SL,Z; M,,).

k 02468 |10]12|14]16|18|20|22]24
dimH'SL,Z:M) [0 |1t |21 2| 1|2 1] 2] 1] 1
dim B, oltj{o|1|o|l 1] olo]ofl 1] o0fo0O

6. Mod p trace formula of Hecke operators

In this section we study the Hecke operators acting on H*(SL,Z; F,[x, y]).
Let A be a commutative algebra over Z[1/6]. Let V be an A[M,Z]-module
and let « € M,Z such that deta > 0. Then one can define a Hecke operator

T(a): H(SL,Z; V) - H(SL,Z; V)

for i =0 and 1, as follows (see [7]). Let SL,ZaSL,Z be the double coset, then
there is a splitting
SLZZOCSLZZ = I_[ SLZZOL,«

into finite disjoint sum of left cosets for some a;€ M,Z. For ue H*SL,Z; V),
we define

T@) =) ou.

It is easy to see that this gives a well defined class in H°(SL,Z; V).

Next let y e SL,Z, then by the above splitting we have «;y = y;a; for some
;€ SL,Z and some j. Let ue H'(SL,Z; V) and let c: SL,Z — V be a 1-cocycle
representing u. Then the function é: SL,Z — V defined by

&y) =Y &e(y), &= (det a)a?

is a l-cocycle and T(x)(u) is defined to be the cohomology class [¢].

It is clear that a Hecke operator is natural with respect to
A[M,Z]-homomorphisms. Let 0>V ->W U -0 be a exact sequence of
A[M,Z]-modules, then one can easily check that the connecting homomorphism

8: H°(SL,Z; U) —» H'(SL,Z; V)

commutes with Hecke operators.
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For the matrix o = <(1) 2), T(x) is denoted by T(n). When we need to

specify the module M on which T(n) acts, we write as T(n)|M. In the folowing
we fix a prime p > 5 and | denotes a prime different from p.

Lemma 6.1. For q, € H°(SL,Z,; F,[x, y]) we have
i) T(p)qi € qF,[x, y]
i) T()qi =1+ Dqi.

Proof. Let a = Then in the splitting SL,ZaSL,Z = [ [i-o SL,Z«;,

1 0

0 1)
I 0 1 .

we can take o = 0 1 and o; = 0 I for 1 <i<l (Here !l may be p). If

I#p, then deta;=1%#0 mod p and hence a;q} =q}. Then by definition,
T()q" = (I + 1)g?. This shows ii). For I=p, ayx =0, apy =y, a;x = x + iy and
o,y =0 in F,[x,y]. Then

T(p)q'l' —_ ypn(p-l) + (x + y)pn(p—l) 4+ 4 (x + (p _ l)y)pn(p-l) + xPnp-1)
We write this polynomial by f(x, y). Then f(x, ix) = 0 for any i € F, and hence

T(p)gi = x(x + y)...(x + (p — Dy)yg(x, y)
for some g(x,y). Since x(x + y)...(x + (p — 1)y)y = g, the lemma is proved.

Lemma 6.2. For o, € H(SL,Z; Qi,-1)), We have

) T(pa =0

i) T)oy, =+ o

Proof. By Corollary 3.3, we are sufficient to show the lemma for k = 2. But
the computation for «, is similar to qf.

Now let V, = @ V; be a graded K[M,Z]-module over a field K. We define
i>0
a power series in K[[t]]

H,(V,; n) = kZ‘o (Trace [T(n)|H'(SL,Z; V,)] — Trace [T(n)|H*(SL,Z; V,)])t**2 .

Here +2 in the exponent is added to adjust the degree with the weight of
modular forms.

Recall that g is not M,Z-invariant, in fact aq = (det «)q. Let D be the
1-dim representation of M,Z over F, defined by a(v) = (det a)v for a € M,Z and
ve D. Then we have an exact sequence

0—->Fp[X,y]®D—q>Fp[x,y]—p>Q*—>0
of F,[M,Z]-modules. The associated exact sequence
0— H°(SL,Z; F,[x, y] ® D) H°(SL,Z; F,[x, y]) % HO(SL,Z; 0.)
2 H'(SL,Z; F,[x, y] ® D) > H'(SL,Z; F,[x, y1) = H'(SL,Z; Q) > 0
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is compatible with Hecke operators. Hence we have
H(F,[x,y]® D;mt**! — H/(F,[x, yl;n) + H(Q,;n) =0.

As F,[SL,Z]-module, F,[x,y]® D = F,[x,y]. Therefore we can identify
H(SL,Z; F,[x, y]) with H'(SL,Z; F,[x, y] ® D) as modules. Let T(/); and T(}),
be Hecke operators acting on HY(SL,Z;F,[x,y]) and H'(SL,Z;F,[x, y]® D),
respectively. Then from the definition we easily have

Lemma 63. T(I), =IT(l); for any prime L
Now the above argument shows the following

Theorem 6.4. For any prime I, we have

1
H(F[x, y} ) = 5 5m HilQy: D)

_ ltp+l

Next we consider H,(R[x,y];]). Note that H'(SL,Z;R[x,y])=
H'(SL,Z;Z[x,y])® R and H°(SL,Z; R[x, y])=0. Hence we have

HR[x, yl; ) e Z[[1]].
Lemma 6.5. H,R[x, y];!)= H(F,[x, y]; 1) mod p.

Proof. Let T, be the subgroup of p-torsion elements in
H'(SL,Z;Z,)[x, y]). Then

Trace [T()|H' (SL,Z; R[x, y])] = Trace [T(I)|H'(SL,Z; Z,)[x, y1)/T,]
as above. By Theorem 2.2, we have an exact sequence
0 — H(SL,Z; F,[x, y]) > H'(SL,Z; Z,[x, y])
5 HYSL,Z; Z,[x, y]) % H'(SL,Z; F,[x,y])-0
commuting with Hecke operators. Then we have an exact sequence
0- HSL,Z;F,[x,y])> T, 5> T,»T,®@F,-0.
Taking generators of T, if necessary, we easily see that
Trace [T(1)|H°(SL,Z; F,[x, y],)] = Trace [T()| T, ® F,] .
Since H'(SL,Z; Z,)[x, y]) ® F, = H'(SL,Z: F,[x, y]) we have
Trace [T()|H'(SL,Z; Z,)[x, y1,)/T, ]
= Trace [T(l)|H'(SL,Z; F,[x, y1,)/T,] — Trace [T()|H*(SL,Z; F,[x, y1.)/T,] .
This completes the proof.

Now let S, be the space of cusp forms of weight k. Hecke operator T(l)
acts on S, as a complex linear map and one can define Trace [T(/)|S,] as a
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complex linear map. It is known [7] that using a suitable base of S,, T(!) is
represented by an integral matrix. Hence we can define

H(l) =Y Trace [T()|S]t* € Z[[t]].

Theorem 6.6. For any prime | we have

1
2Ht(l)5—tp;f H(Q,;1]) Z (1 4+ 1?*"He* mod p.

Proof. Recall that the Eichler-Shimura theorem [7] asserts that there is an
isomorphism for even integer k

Sk @ R{Ek} d HI(SL2Z; R[X, y]k_z)

of real vector spaces commuting with Hecke operators, where R{E,} is the
R-vector space spanned by the Eisenstein series E,. It is known [7] that
T()E, = (1 + I*"')E,. Note that the trace of T(/) on S, as a real linear map
is the twice of that as a complex linear map. Then the theorem follows from
Theorem 6.4 and Lemma 6.5.

Remark. Since H!(SL,Z;Q,) is periodic for k> p + 1 with period p —1,
H(Q,; 1) is determined from the coefficient of t* for k<2p. If one knows
Trace [T(1)|S,] for k <2p + 2, then using Theorem 6.6 one can compute the
mod p value of Trace [T(!)|S,] for all k. For example let p=35. We can com-
pute H,(Q,;p) as follows. In this case we have

2H/(p) = H/(Q,: p) + k; 12k,

Up to weight 14 there is only one cusp form 4 of weight 12. It is known that
T(5)4 =0 mod 5 and hence H,(5) =0 mod 5 up to degree 14. Then by the
periodicity we have

H(Q,:5) = — Z t**  mod 5.

and hence we have H,(5) =0 mod 5.
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