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The main scalar of two-dimensional Finsler spaces
with special metric

By

Makoto MATSUMOTO

Some geometrical meanings of the main scalar of two-dimensional Finsler space
have been given in a previous paper [2]. The purpose of the present paper is to con-
sider the main scalar of Finsler spaces with some special metric in relation to the
indicatrix.

The main scalar vanishes identically if and only if the space is Riemannian and, in
consequence, the value of the scalar may be regarded as expressing the degree of
Finslerian slippage from a Riemannian space. It is only reasonable to think that a
Finsler space with non-zero constant main scalar may be of some natural shape in a
sense, because the degree of slippage is not equal to zero but stable all over the space.

After the classification theorem of two-dimensional Berwald spaces with 1-form
metric is shown in §1, we shall be concerned with Finsler spaces with non-zero con-
stant main scalar in §2. It is, however, a real surprise to observe that the indicatrix
of such a space is all not an usual oval but quite abnormal curve.

Conversely we deal with a Finsler metric defined by a quite normal indicatrix in
§4. Then we meet with a little strange circumstances that the main scalar has the
upper limit 3/4/%2. The final section is devoted to Wrona’s metric, the indicatrix of
which may be regarded as a limit of that treated in §4, and the number 3/4/2 ap-
pears again.

The author is indebted to Professor Dr. Tsutomu Okada for his kind drawing
figures.

§1. Berwald spaces with one-form metric

We shall be concerned with an n-dimensional Finsler space F*=(M", L) with 1-
form metric L=L(a*) ([5], [6]), where a*=a%(x)y*, a=1, ---, n, are n linearly inde-
pendent differential 1-forms on a differentiable n-manifold M™ and L(a®) is a (1)p-
homogeneous function [3] of n variables a®*. We denote by Cl=(";,, I')};, C;*:) the
1-form Cartan connection [4]: The linear connection (I";,(x)) is the 1-form linear con-
nection [5] defined by I'j',=ajid,a$ where the matrix (a}) is the inverse of (a%), and
Cy, is the well-known C-tensor. The Finsler connection C1 has the (h)h-torsion

T:Tjiw=I/#—T,';. The T vanishes if and only if all the ¢* are gradient vector
fields.
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Let CI'=(F},, F'; C;y) be the Cartan connection of the F*. Then the difference
tensor D;f,=F;,—I'j*, of CI' from C1 [5] is given by

(1.1) Dijr=—Asss+Ci"jA 1 +Ci v Ari—Ci v Ay y,
where Dijk=gjrl),~rk, Tijkzgerirk and
2Ai50=T s —Tses+Trij;,  Ayy=Aei;j—Ci jA0r0.

Now we shall deal with the Berwald connection BI'=(G,',, G;, 0) of the F»,
Since the nonlinear connection (G';)=(G,';) coincides with (F,*;) of CI’, we have
G'y=I¢;+Dy'; and 2G' =G, =1+ D,'. From (1.1) we get Dojp=—Aj, and Dy;o=T jo,.
Therefore we have

(1.2) 2G'=TV+Tl  (Tin=g"T:s),
from which we have
(1.3) Gt =T—(To' y=3;T4)/2,
Gia=I3 e —(T s —0:0;T0)/2.
The equation (1.2) leads us to

Proposition 1. A geodesic of a Finsler space with 1-form metric is given by the
differential equations

d*xt/d s+ AL (x)+ T ju(x, dx/ds)H(dx?/ds)dx*/ds)=0.

According to Berwald’s original definition, a Finsler space is called a Berwald
space (affinely connected space), if the Berwald connection BI is linear, that is, G,
are functions of position x* alone. Then (1.3) leads us to

Theorem 1. A Finsler space with 1-form meiric is a Berwald space, if and only if
0:0;T are functions of position x* alone, that is, T'y are quadratic forms of y’.

In a previous paper [5] we showed the condition for the F" to be a Berwald space,
that is, C;'x,,=0 in CI'. Here we shall show another proof of the condition.
First we have in CI’

Chz'jlk:akchij_érchtj(rork+D0rk)_@(hij){Crij(rhrk+Dhrk)} ’

where S5 denotes the cyclic permutation of A, 7, ; and summation. Since Cpyj;,=0
in C1 [5, Proposition 3], we have

Chins=—0-Cri;Ds" s —Gnin{CrisDn"s} .
According to the definition of the wv-covariant derivative C,;;|, in CI" [3], we have
Crine=—Cnrijl 1 Dot =S nip{Cris(Dn" x+Cn"sDo* )} .
Therefore (1.1) and the identity Ch4l.=Cyy,|x» lead us to

1.4) Crii=Ci 11 Ars +Snin{Ci" (Anr s+ Cr*rAsr —C 21 Asn)}
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Transvecting (1.4) by y* we get
(1.5) Crino=Ci"lnAre+Gnin{Ci" jAnro} .

Consequently we have

Theorem 2. A Finsler space with 1-form metric is

(1) a Berwald space if and only if we have

CislnAr i+ win{Ci (Anr i+ CrlrAsr—Cty Asn)} =0,
(2) a Landsberg space if and only if we have
Ci"slnAro+Bwin{Ci"3An o} =0.

In the remainder of this section we shall restrict our discussion to a two-dimen-

sional Finsler space F? with 1-form metric. In the paper [5] we have already Theorem

4: If the F? is a Landsberg space, then it is a Berwald space. Here we shall in-
vestigate this fact in detail.

For this purpose we shall refer to the Berwald frame ([, m) [3] of the F?. The
equation [3, (28.2)] gives

(1.6) 3,[‘:m’m,/L, 3,li:mimf/L,
dmi=—+Imymy/L,  dmi=—U;—Img)my/ L,

where the [ is the main scalar. Then we get

%)) 0 slimy—Lm)=IUms—Lmdm,/ L .

We first deal with the (h)h-torsion tensor T';%, of Cl. From [3, Proposition 28.2]
it follows that T;!, can be written in the form

(1.8) Tji,,=(Tlli+T2mi)(ljm,,—lkmf),

with two scalars T, and 7T,. It should be remarked that the components T, are
functions of position x* alone. It then follows from (1.6) and (1.7) that 0,7, =0 is
given in terms of T, and T, by

(1.9) OnT\A+UT,—TImy/L=0,  wTo+Tyma/L=0.
Next, from (1.8) we have
Asgr=Umy—Im)(T il +Tom,),
Ay=LT m;+ L(T,—IT )mgm;,
From LC;;,=Immm, we have
CivArn=Imm{T\l,+H(T,—IT )m,},
Anre+Cr’rAsr —C 2y App=Unm, — 1, mp){T L +(To—IT)m; } .
Further [3, (28.19)] gives
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Cirjlhz[(l;zm'—Il’)mim,mh—lm"@chij){lhmtm,}]/LZ,
CijlnAre=L1.ampmm;— IS nip {nmemy} YT\l +(Te— 1T )my} /L .

Consequently we obtain from (1.4) and (1.5)

(1.10) Cripie=1ampmn{T L +(To—IT)m} /L,
(1.11) Criso=1,.Timymm;.

Then the equation (1.11) shows that the F*? is a Landsberg space if and only if
(1) T,=0 or (2) [.,=0. In the former case we have also T,=0 from (1.9), so that T';';
vanishes identically. In the latter case we have [=1I(x) because of I,,=0 obviously.
Since the main scalar I of the F? is a function of variables a® from [5, Proposition 5]
or (2.1), we get 0;/=0=(d1/0a*)a?% and 0[/da*=0, so the I becomes constant. In any

case we have Cyy;,=0 from (1.10), that is, the F? is a Berwald space.
Summarizing the above we have

Theorem 3. A two-dimensional Finsler space with 1-form metric is a Landsberg
space, if and only if it is a Berwald space. The Berwald spaces are divided into two
classes as follows :

(1) It is a T-Minkowski space, i.e., T ,=0.

(2) [ts main scalar is constant.

§2. The indicatrix of Finsler spaces with constant main scalar

The main scalar [ of a two-dimensional Finsler space with 1-form metric was
studied in the paper [5] and given by the equations

@.1) P=4F"(Fpaa)’/ 2FFaa—(Fa)’}?,  a=lor 2,

where F=L%/2 and the subscript a stands for partial derivative by a®.
We shall show more direct proof of (2.1) than that in the paper [5]. First we have
gii=F.pa%af, gYV=F*faiah, Cip=F.pra%abal/2,

where (F?#) is the inverse matrix of (F,z). Then we have C;=C,;,g’*=F,a%/2 where
E,=F,5Ffr. From LC;=Im; we get [*=2FC,C;,g"=FE.EgF*#/2. 1f we put f=
Fi1 Fy—(F15)?, then we have E,=(Fa Fpo—2F, 13 Fis+ FassF11)/f. From the homogeneity
we have

Fopia'+Frpa?=0, Faa'+Fna®=F,, Fa'+Fa*=2F.

These identities lead us easily to E,=2FF,,,/f(a%®? and E,={2FF,,,/f(a%®*}(—a'/a?.
Then we have

I*=F{(E,\)*Foa—2E E,Fio+(E,) F\\} /2f
= {2F(Fi0)*/ f3(a@®)'HF1(a') +2F 0" a*+ Fyy(a®)'}
=4F(F)*/ f(a®)°.
Finally the equations F,,a'+ F..a*=F,, a=1, 2, give a*=(F,F,—F;F))/f, and the
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equations Fja'+F,a?=F, and Fa'+Fa*=2F give a*={2FF,,—(F)*} /(F..F,—F,F).
Then we get (a®)?={2FF,,—(F,)*}/f and (2.1) in case of a=1. Similarly we get (2.1)
in case of a=2.

Now Theorem 3 picks up our interest in two-dimensional Finsler spaces with con-
stant main scalar. ‘The fundamental metric functions of such spaces were found by
Berwald in 1927 [3, Theorem 28.4] by making use of the Landsberg angle. His result
shows that the metrics are all 1-form metrics. On account of this recognition, in the
previous paper [5], those metrics were again derived by straightforward integration
of the differential equations (2.1) with constant [ and, in consequence, we got

(2.2) I*<4: 2F=(a®+p%exp{2] Arctan(B/a)}, J=I/vV4-1?,
(2.2,) I1*=4: 2F=a’exp(IB/a),
(2.2) I*>4: 2F=a''B', J=I1/+/I1*—4,

where @ and B are arbitrary, linearly independent 1-forms.

From the definition LC;;,=1Immnm, of the main scalar [ of a two-dimensional
Finsler space F? it follows that the I vanishes identically if and only if F? is a Rieman-
nian space, and hence it may be regarded as the degree of Finslerian slippage from a
Riemannian space. Certain geometrical meanings of the J are shown in the paper [2].
For instance, if we denote by R(#) the radius vector of the osculating indicatrix I, as
a function of the Landsberg angle #, we have gE?(R—l)/ﬁszlo/S where I, is the value
of the I at the osculating point y(6=0) of J, with the indicatrix. Then, can we
naturally imagine that the indicatrix of F? with constant main scalar has some normal
shape?

Then we shall describe the indicatrices of spaces with the metric given by (2.2).
Since a and B are arbitrary, linearly independent linear forms in y' and y?, we may
describe them in (x, y)-plane as putting a=x and f=y. It is remarked that the [ may
be supposed to be positive.

We first deal with the metric (2.2,). The indicatrix C, is given by the equation
(x*+y*e*’*=1 where u=Arctan(y/x). Referring to the polar coordinates (p, @) defined
by x=pcos¢, y=p sin ¢, the principal value u has the value u=¢ 0=¢<n/2), u=¢—=x

(m/2<9<37/2), u=¢p—2x (3n/2<$p=2x). Thus, in the polar coordinates is C, given by
p=e’? 05¢<n/2), p=e '™ (z/2<¢<3rn/2),
C,:
l p=e ¥ 3r/2<p<2r).

The indicatrix C, is described in Fig. 1, where 0OA=0C=1, OB,= lim p=e 77/

¢->7r/2—0
OBz=¢ lir/r21+op=e"”/2, OD,=0B, and 0D,=0B, Then we observe that OB,-OB,=1
and llmo1 OBl=ll'rr01 OB,=1. Therefore this C, may be regarded as the deformation of

the unit circle O-ABCD (I=0) by separation of B into B, and B, and of D into D,
and D, as the [ increases from zero.

In Fig. 1 the main scalar [ is to be taken as /=0.3, and Fig. 2 shows C, for /=1.
Consequently the indicatrix has two escarpments at the y-axis and their height in-
creases with the 7.
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Fig. 1 Fig. 2

Secondly we deal with the metric (2.2,). The indicatrix C, is given by the equa-
tion x%e%¥/*=1, that is, y=—xlog|x|. Fig. 3 shows this C,, where 0A=0C=1 and
C, is tangent to the y-axis at the origin O. It is observed that C, is just the limit of
C, of Fig. 2 as the I tends to 2 infinitly: Both B, and D, converge to O while B,
and D, diverge to the points at infinity.

1B

0.51

C O[\A

o 1 1 2
—05

—-11D

—1.54
Fig. 3

Finally we consider the indicatrix C, of the metric (2.2;). The equation of C; is
simply written as the form y?**=x? (p=J—1). When the [ increases from 2 to +co,
p decreases from +o to 0. This C, is, however, quite complicated. For instance,
C, for p=1 is in the first and third quadrates alone, while C, for p=2 consists of
two parabolas going through all the quadrates.

Consequently the indicatrix of space with constant main scalar is not an usual oval
in either case and it should be concluded that spaces with constant main scalar are
very strange spaces, contrary to our conjecture.
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§3. The main scalar of 2-dimensional Finsler space with («, 8)-metric

We shall consider a two-dimensional Finsler space F? with (a«, 8)-metric. « is a
Riemannian metric (a®=a;}(x)y'y’) and B is a differential 1-form (B8=b,(x)y?). The
fundamental function L of the F? is a positively homogeneous function in (a, 8) of
degree one.

The main scalar [ of the F? has been studied in the paper [1], but we referred to
the isothermal coordinates with respect to the a for convenience sake. Here we shall
give it in arbitrary coordinate system.

Let g and a be the determinants g=det(g;;) and a=det(a,;) respectively. Then
we have equations in §30 of [3] as follows:

3.1 g=aT, T:P(f)‘*'/)obz"‘lb—1/9)4‘(7)0?—2_]931)(“2172'"52)’
.’D:Fl/a» P0=F22, '/7—1=F12/a,
po=(Fn—F/a)/a®, b*=ab;b;,

(3.2)

where the subscripts | and 2 of F stand for d/da and 0/08 respectively. The T in
(3.1) may be written in the form

3.3) T=2FF1/(13+{Fqua—(sz)z}(bz—ﬂz/a’2)-

It is noted here that by virtue of Fa+F,,f=F, and F,a+ F,,f=F, the term F,,Fp,—
(Fi»)* in (3.3) may be written also as

3.4 F\ Fo—(Fp)= {ZFFH'_(Fl)z}/ﬁZZ {ZFFzz—(Fz)Z} /a’.

Now we get (")fgza(;ifT:a(T,)',»/a+T2h,~)=aT2/)i, where T,=0T/0a. T,=aT/dp
and p;=b,—(B/a®)Y;, Yi=a;;y’. Referring to the Berwald frame (/, m), we have
pil*=0, so there is a scalar p satisfying p,=pm,. The p can be found on account of
(my, my)=+/g (=% 1') [3, §28]:

h—(B/e®)Y . =—py*v/g/L,  b—(B/a®)Y,=py'v/g/L,

from which we get p=L(Y,b,—Y,b,)/a*+/ g. Then the well-known equation [3, (24.1)7:
C,=0,g/2g leads us to C;=(T.p/2T)m,, that is, I=LT,p/2T. Consequently we have

(3.5) [: FTz()/"bg—)/—zbl)/az'\/Ta '\/E.
Example. (1) The main scalar of the Randers metric L=a+f is given by

3.6) I1=3(Y 1b,—Y :0,)/2+ aala+B) .

(2) The (a, B)-metric L=a*/B is called the Kropina metric and L=a™*'/f™ (m=0,
—1) is called the generalized m-Kropina metric. For the generalized one we have the
main scalar as

3.7 I={—m(m+1)2m+1)b*a®+2m(m*—1)8%} (V 1b,—Y ,b,)/
{mm4b2a®—m>—1)2}* @ .
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§4. The main scalar of the circular-Randers space

In reverse to the discussion in §2 we shall be concerned with a two-dimensional
Minkowski space with the metric defined by one of the most simple indicatrix and study
the behavior of its main scalar.

In an euclidean (x, y)-plane the indicatrix at the origin O is taken as a circle A
with the radius a, the center A of which has the coordinates (—b, 0), (b<<a). This
circle A is given by the equation (x+b)*+y*=a® (Fig. 4) and [3, Example 16.4] shows
that the fundamental function L is given by (x/L+b)®* +(y/L)*=a?, that is, L=bx/c?
++/(ax/c)+y*/c where c=+/a’—b*. Therefore, if we put

4.1) a’={(ax/c)+y*}/c®,  B=bx/c?,

the metric is a Randers metric L=a+p [3, Example 16.1]. We shall call this metric
the circular-Randers metric.
Then we can apply the equation (3.6) to this metric and obtain

4.2) I=3by/2acva(a+B),

where the minus sign is omitted.
Now we put b=acose, c=a sine, and, for convenience sake, we refer to the co-
ordinates (p, ¢) defined by ax/c=pcos¢, y=psing. Then we have

4.3) I=(3/2)cose- f(), f(@)=sin@d/~1+cosecos¢ .
The graph of this function I(¢) is shown in Fig. 5.

)
J\l 1 /e=5°
2 e=30°
e=bH5°
1.5 e=80°
X I
0.5
01 -
05 1 15 2 25 3
Fig. 4 Fig. 5

We shall consider the maximum I(¢), of the I(¢). The value ¢=¢, giving the
maximum is easily found as

4.4) tang,=—+/2sine/(1—sine) .

We now refer to the usual polar coordinates (7, #) defined by x=rcosf, y=rsin 6.
Then we have the relation tanf=(a/c)tan¢ and the =40, corresponding to ¢g=¢, is
given by

4.5) tan(0,—m/2)=+/sin e(1—sine)/2 .



Two-dimensional Finsler spaces 897

We get the maximum value /(¢), as follows:
(4.6) I(e)o=(3/v2)v1—sine .

Consequently the maximum [, of the main scalar of the circular-Randers metrics does
not reach 3/ 2.

§5. The main scalar of the Finsler spaces with Wrona’s metric

We shall consider the lbl_{l;l (or lsil?) of the circular-Randers metric. In this case the
indicatrix at a point O (Fig. 4) becomes a circle through O and the metric may be
regarded as that of the tangent Minkowski space of a two-dimensional Finsler space
with the metric which was introduced by Wrona [7] in an euclidean plane.

Wrona’s metric is defined as follows [3, Example 16.3]: Let O be a fixed point
of the plane (Fig. 6). The indicatrix at a point P consists of two circles which are
tangent at P to the straight line OP and have the diameter equal to the length OP.
Then Wrona’s norm of a segment PQ is defined as PQ/OH, where the straight line
OH is perpendicular to PQ. From PR=OH it is seen that Wrona’s norm of PR is
equal to the unit, so that R is on the indicatrix at P.

y

-0

Fig. 6

We refer to the orthonormal coordinates (x, y) such that P is the origin and the
two circles are given by (x+a)*+y*=a®. Then the fundamental function L is given
by (x/L+a)*+(y/L)*=a® that is,

(5.1) L=(x>+y%/2ax,

where we treat the circle of the right side only.
Therefore Wrona's metric is a kind of Kropina metric L=a?/8 where a’=x2+ y?
and B=2ax. Then (3.7) gives its main scalar I as

(5.2) 1=3y/vV2(x*+y?) .

In the usual polar coordinates (r, ) we have I=(3/+/2)sin @ and, in consequence, the
upper limit of this I is again equal to 3/ 2.
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