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Introduction

L et S be  a  non-singular projective surface defined over an algebraically closed field
of characteristic  z e ro , H  an am ple line bundle o n  S and  E  a  locally free  sheaf o n  S
o f r a n k  2 .  E  is said to be H-sem i-stable if  fo r  any  sub-sheaf L  o f  E  o f  rank  one,
the  following inequality holds.

(c,(E). H )(c,(L)• H )<

F.A . Bogom olov [2] and D . G ieseker [6] proved that if  E  is H-semi-stable, then

(ci(E)) 4(c2(E)) .

L et X  be  the  associated projective bundle of E , L  th e  tautological line bundle of
X  and f :  X.—).,S t h e  natural p ro jec tion . T h en , c i (E ) and c 2 (E ) a re  determined coho-
mologically by th e  following equations :

J
 (1, 2 • f*(x))=(f*(c,(E))• L • f*(x)) fo r  all x EH 2 (S, Q)

(L' — f*(c i (E))• L 2 L • f*(c 2 (E)))=-0 .

F u rth e rm o re , it  is  e a sy  to  see  th a t th e  condition o f  t h e  semi-stability is equivalent
to  that

( L  f * (c(E))f  * ( H ) )  > 0

fo r all f-dom inant subvariety P  o f  X (see  R em ark  (2 .20 )). T h e  above  notions are
easily translated into the  case  of a  polarized fiber space, that is, a surjective morphism
f :  X—>S o f  non-singular projective varieties and  an  f-am ple  line bunle L  o n  X  (see
S ec tion  2 ). W ith  th is  notation, we shall prove a  generalized  inequality of Bogomolov-
G ieseker's type in th is paper (see  T heorem  (3 .1) a n d  Theorem  (5 .7)). O u r  P roof is
based  o n  M iy ao k a 's  p ro o f of Bogomolov-Gieseker's inequality  [13]. F irst, w e  sha ll
prove the  generalized inequality of Bogomolov-Gieseker's type under a  strong assump-
tion (Theorem  (3.1)). In  th is  s ta g e , w e  sh a ll n o t  re s tr ic t  o u rse lv e s  to  th e  c a se  o f
dim  f=1. N ext, w e shall prove M um ford-M ehta-Ram anathan's ty p e  theorem , that is,
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a  theorem about restriction of semi-stable fibration t o  ample curves (Proposition (5.2)
and Theorem (5.4)). U p to now , w e cannot prove Mumford-Mehta-Ramanathan's type
theorem  w ithou t re s tr ic tio n  o f  dim f = 1 .  Main reason fo r  th is  is  th a t the existence
o f Zariski decomposition o n  a  h igher d im ensional varie ty  o r  w eaker theo rem  (cf.
Lemma (5.5)) is  no t estab lished . F o r exam ple, Harder-Narasimhan filtration o f  vector
bundle is closely related to Zariski decomposition (see [17, § 4, Examples (II)]).

T h e  a u th o r  w o u ld  lik e  to  express h is hearty  thanks to  P rof. N . Nakayama for
suggesting the notion of Chern classes and semi-stability o f  polarized fiber spaces. He
also w ishes to  thank Prof. M . Maruyama fo r his helpful advises.

1. Notation and Conventions

(1 .1 ) L et K  be an  algebraically closed field. W e shall fix this field K  throughout
th is  p a p e r .  W ith o u t an y  s ta tem en ts  o r  com m ents, every algebraic schem e w ill be
defined over K.

(1 .2 ) L et X  be an  algebraic schem e. W e denote the free abelian group generated
by i-dimensional sub-varieties o f  X  by  Z i (X ),  w h o se  e le m e n t is  c a lle d  i-cycle. The
g ro u p  o f  i-cycles m odulo rational equivalence o n  X  is denoted by  A (X ) .  W e set
Z,(X) 0 = Z i (X )0Q  and A i (X) Q =A i (X )0 Q .  For a zero-cycle a=-- Epnpf), the degree of
a, denoted by (a ), is defined by (a )=- Epnp. Let f :  a  morphism o f  algebraic
sch em es. T h e  push-forward and pull-back o f algebraic cycles are  denoted by f *  and
f *  respectively if  they a re  defined. These sym bols m ight be confused w ith sym bols
of direct im ages and pull-backs o f sh e a v e s . B ut w e think that reader can distinguish
them  in  their c o n te x t . Details o f push-forward, pull-back and intersection product of
algebraic cycles w ill be found in  Fulton's book [4].

(1 .3 ) L et X  be a  complete algebraic scheme over a  fie ld  k , w h ich  is  n o t neces-
sa rily  a lg eb ra ica lly  c lo sed . W e  s e t  Div(X)= {C artier d iv isors on  X I and Div(X) Q =
Div(X)0Q, whose element is called a  Q-Cartier divisor. If  X  is locally factorial, then
Div(X)=Zahn x _,(X) and Pic(X)=Adinix-i(X). L et D  be a n  elem ent o f  Div(X) Q . D  is
said nef if  (D• C )O  fo r a ll in tegral curve C on  X .  D is called pseudo-effective if there
are effective Q-Cartier diVisors D„ such  that D  is  th e  lim it  o f  t h e  sequence {D „ } in
the  vector space (Div(X)/--)(3R, w h e r e  i s  the  numerical equivalence.

(1 .4 ) Let f :  X—>Y be a  morphism o f a lgebraic  schem es. Let T  b e  a  subvariety
of X .  W e say that  i s  f-dominant if the im age of by  f  is  Y .  Assume th a t f  is
p ro p e r . L e t L  be a  C artie r divisor on X .  W e call L  is f-nef i f  f o r  every complete
irreducible curve C on X  w ith  f (C ) being a  po in t, (L • C )0 .

(1 .5 ) W e denote by Z> o  the  se t o f positive  in teg e rs . L et S be a  projectiVe varie-
ty  w ith  a  very  ample divisor H .  L et s be a positive in teger w ith  1_<_s<dimS. For

••• m8)c(Z>0) 8 , w e set

S(H, in) =- {(x, n,, • • •  ,  D s ) e-Sxim,HIX.••XlmsillixED; fo r  all I
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Let on , : S(H , m)--> I mi l l  x • •• x I m ,H I be  th e  n a tu ra l projection, w hose general fibers
a r e  s-times com plete intersection varie ties  by  e lem en ts o f  Im1H I , • ••  , m s li I . T h e
generic fiber o f  qn,  is denoted by S(H,

(1 .6 ) L et r  be  a  rea l n u m b er. W e  s e t  Fri=min f n EZ  I r< n } ,  w hich is called the
rounding-up o f  r.

2 .  Chern classes and semi-stability for polarized fiber spaces

First, w e introduce th e  n o t io n  o f  a  p o la r iz e d  f ib e r  sp a c e . O u r  terminology is
slightly different from usual sense, that is, w e  d o  no t assume that fibers a re  connected.

Definition (2 .1 ) L et X  be a n  equi-dimensional algebraic schem e an d  S  a  variety.
A  morphism f :  X — >S is called a  f iber space if  f  is proper and  every irreducible com-
ponent o f X  is mapped surjectively to  S .  L et L  be a  C artier divisor on  X .  The pair
(X /S , L )  is said  a  pre-polarized f iber space. L et X ,  b e  th e  generic  fiber o f  f  and  r
the relative dim ension of f .  W e se t deg(X/S, L )=(L r) 172 ,  which is called a degree of
the pre-polarized f iber space (X IS, L ) . d e g ( X /S , L )  is also determ ined by the formula
f * (L r) , d eg (X /S , L )  [ S ] .  I f  L  is  am ple on X „, L  is said  a  weak polarization of the
fiber space f :  X --->S . Moreover, i f  L  is f-ample, the pair (X /S , L )  is called a polariied
fiber space.

For a  weak polarized fiber space, we define Chem  classes as elements of algebraic
cycles w ith  Q-coefficients, w hich  is an  analogy o f  Chern classes of vector bundle (see
Remark (2.4)).

Definition (2 .2 ) Let f :  X — >5 be a  fiber space from a n  equi-dimensional algebraic
schem e X  t o  a  non-singular varie ty  S  w ith  a  w eak polarization L .  L et r  b e  the
relative dimension of f  an d  d  the dim ension of S .  F irs t, w e  s e t  co(X /S , L )= 1  as an
elem ent o f  A d (S)Q. Inductive ly , w e define  c k (X I S ,  L )  A d _k (S) Q (k  =1 , 2. ••• , d ) as
follows.

1
c ,(X /S , L )= 

 d e g ( X / S ,  L )  
f*(L r+1),

—1
( f *(L r  + 2 ) -  ci(X  / L)- f  *(L r + 1 ))C2(X IS, L ) =  

d e g ( X / S ,  L )

( 1)k-1 k -i
c k (X /S , L ) ,  E

deg(X/S, L )  i0  (-1 )i ci (X /S, L)• f * ( L r + k - i ) ,=

•
i)d -1 d- 1

cd (X /S , (-1 ) ic i(X /S , L ) • f * (Lr+d - i).deg(X /S , L )

c k (X /S , L )  is  sa id  k -th  C hern class of the weak polarized fiber space (X /S , L ).

Remark (2 .3 ) B y the definition of C hem  classes, it is easy to see that
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deg(X/S, L)kc k (X/S, L)EA d _k (S ).

Remark (2 .4 )  L et S  be a  d-dimensional non-singular variety an d  E  a  locally free
sheaf on  S o f rank  r + 1 .  L et X  be  th e  associated projective bundle  o f  E ,  t h a t  is,
Proj(0)7= 0 Sym i(E)), L  th e  tautological line bundle of X and f :  X - 6  the natural projec-
t io n .  T h en , the re  is  th e  identity

L ' — f * (c i (E a r  + • • • + ( - 1 ) " i f  *(cr+i(E))=0

Multiplying L k - ' ,  w e have

Lr+ k — f * (ei(E ))L r +  k  - 1 +• •• +(-1) k f* ( c  k - i (E ) )L ' + 1 -1 -(-1 )V * (c k (E))Lr +.•• .

T hus, tak ing  the  push-forward o f th e  above identity, w e get

f  *(L r + k ) —  i (E ) f *CU. + k - 1 )--E • • • + ( -1 ) "  c  - 1 (E ) f  *(1, ' " ) + ( - 1)k c k (E)=0

This show s th a t c k (X /S , L )= c k (E).

Cohomologically, Chern classes of a  weak polarized fiber space a re  determined by
equations in  the  following proposition.

Proposition (2 .5 )  W ith notation as in Definition (2.2), w e assume that X  and  S  are
complete and the characteristic of  the def ining f ield is  z e ro .  W e consider co h om o lo g ica l
equations (Eq k ) (k= 1, 2 , ••• , d ) w ith respect to  c i H " (S , Q).

(Eqk) ( -1 ) t ( f* ( c i ) •  L r + k - i  • f* (x ))= 0 f o r all x e l l 2 ( d - k ) ( S ,  Q )

i=0

W e set

d
V=-{(c o , ••• , c d ) E11 0(5 , Q ) X••• X  /1  2d (S, Q ) 

fry } satisf ies the above
equations (Eq k ) (k=1, •-• , d )  •

T hen, dim 0 l7= 1 and the c o h o m o lo g i ca l  class of  ( c o (X/S, L), •-• , c d (X /S, L )) is an element
of  V .

P ro o f .  (Eq k )  is equivalent to th e  equation :

(Eq'k) (-1)k-1 /14(-1)i(f*(es)• f * (x ))
=(C k  • x )  fo r  all x EI-12 " - 0 ) (S , Q ) .

deg(X/S, L)

H ere, w e  assume th a t w e  have already got co , c 1 , ••• , c k _i . Then,

El_i( - 1)V*(ci)- L ' + ' •  f*(x)) 
deg(X/S, L)

defines an  element o f HomQ (11 2 " - " (S , Q ), Q ). Since th e  pairing

H21 ( s , (4) x  H2(d-k)(s ,Q

is non-degenerate, we have the unique element c k EH 2 k(S, Q ) satisfying (Eq' k ) ,  which
proves th e  first assertion.

F o r  x  1--/2(0-k)(s, cs,/) us ing t h e  projection form ula o f  a lgebraic  cyc les (c f. [4,
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Proposition 8.3]),
( _ 1 ) k - 1

(c k (X/S, L)•x)-= deg(X/S, L) ( (

 k-1
( - 1)i ci(X/S, L )•f * (LT + k - i ) ) • X )

j= 0

( 1 )k -1 f ( k 2 1 (
1)' f*(c,(X/S, I/ ) .  f

*
( X ) ) ,

deg(X /S, L) i=o

w hich is nothing more than (Eq'k)•

R em ark  (2 .6 ) In  the  case  w here the  characteristic p  i s  p o s it iv e , if  we consider
the étable cohomology over Q i (i p ) ,  w e obtain th e  sam e results in Proposition (2.5).

W h e n  w e  c h a n g e  a  polarization o f  a  f ib e r  sp ace , th e  first Chern class o f  this
changes as follows.

Proposition (2 .7 )  W ith notation as in Definition (2.2), le t D  be a divisor on S and
k a  positiv e integer. Then,

(1) c,(XIS, L+P(D))==ci(X/S, L)+(r+1)D.
(2) ci (XIS, kL)=kc,(X/S, L).

P ro o f . T h e  first assertion is easily derived from  the follow ing observation.

f * ((L -F  f* (D ))')=  f * (Lr + 1 +(r+1)f*(D )Lr ±  •  • • )

= f * (L '')± (r  + 1 ) deg(X /S, L)D .

The second is alm ost triv ia l because

f * ((k k"' f * (Lr+ 1) ,

deg(X/S, kL)=kr cleg(X/S, L). LI

The following proposition is one  of key steps to prove Theorem (5.4).

Proposition (2 .8 )  Let f : X — C  be  a fiber space of a non-singular projective variety
X  to  a  non-singular projective curve C with an f-ample divisor L  and the relative di-
mension r. Then, L—(f*(c,(X/C, L))/r+1) is pseudo-effective.

Pro o f . S e t L=L— (f*(c,(X/C , L ))/r+1). L e t  F  b e  a  g en e ra l f ib e r o f  f ,  s  an
a rb itra ry  positive  ra tiona l num ber a n d  d  a positive in teger such  tha t d(r.+EF) is  a
divisor, w hich m eans that every coefficient of d(L-keF) i s  a n  in teger. C onsider the
Leray spectral sequence

 /-P+)(X, O x (nd(L-FE,F)))•EV=IP(C, 12.) f * 0 x (n F s F)))

Since (L I-eF ) is  f-am ple , w e  have

/2.'f„O1 (nd(L±EF)))=0 f o r  j > 0  and  n>0.
Thus, w e get

//(X, O x (nd(E±sF)))--- 0 f o r  i> 1  a n d  n>0.
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because d im C = 1. Hence,

h°(X, 0 x(nd(L-f-sF))) 1(X, O x (nd(L-I-EF)))>0

fo r sufficiently large in teger n , because

((L+EFY  +')=- (Lr -")+s(r+1 )(L ' F)

=(I., — f* (c i (X/S, L))Lr)-1-6(r+1) deg(X/S, L)

= (f *(L r +1 )—  ci(X /S, L)f*(1/))+e(r+1)deg(X/S, L )

=deg(X/S, L)(c,(X/S, L)—c,(X/S, L))+E(r+l)deg(X/S, L)

=6(r+1) deg(X/S, L)

>0 .

Therefore, L +EF is linearly equivalent to an effective Q-divisor. Thus, T--=1im" 0(E±
eF) is  pseudo-effective. 171

W e shall show  some examples of calculations o f  t h e  f ir s t  Chern c la s se s . These
calculations a re  based on th e  following lemmas.

Lemma (2.9) Let f : b e  a  surjective, f iat, projectiv e and generically  smooth
morphism of  non-singular v arieties w ith dim f= 1  and f *0  x=08 . Then, we have

f *(Klis)-= — 12e 1(R1 f *0 x)— f *(c 2(Q :vs )) •

M oreover, if  R I f * 0 1,- is  torsion free in codzmension one, then

— c,(R 1f*Ox)=c1(f*(oxis).

P ro o f .  L et d  b e  t h e  dim ension o f  S .  A pplying Grothendieck's Riemann-Roch
theorem (c f . [4 , Theorem  15.2]) to  f ,  w e have

(2.9.1) f *(td(T x)f * (td(T s) - ')) .= f *(td(T a•td(T 5) - 1

=((ch(f *Ox)—ch(R'f*Ox))•td(Ts))• td(T s) - 1

=ch(0s)—ch(R 1 f *0 x) •

Since f  is generically sm ooth, we obtain the  exact sequence

0 f*(Qk) —> Q . - - > ‘2,4/s —> 0,

which implies that

td(T x)f*(td(Ts) - 1 )=. td(fhis)_ l  •

A n eary calculation show s that

1 1
td(.(21, 8 ) - ' =1— —

2
c1(fhis)H- 

1
-

2
(c1(QI/s)2 +e2(Q1/s))+(terms of h igher codimension).

Hence, considering th e  A d _ , (S )Q - p a r t  o f  (2.9.1), w e get
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f *(u(ci(f2 kis) 2 + c2(Q11,3)))= — ci(R 1 *0 x)

w hich asserts the  first p a r t o f  our lemma.
By GrothendiecK's duality theorem (c f. [7 ]) , w e  have

R i*(ox is [1 ]=R • , `(amc5 (R•f*Ox, Os),

which produces the spectral sequence

 E i+ J= R "i'lf *wx/s •Os)

S in c e  E P = 0  if  i< 0  o r j* O , — 1 , Hence, we obtain

,g-Comos (R i f *Ox, 0s)=f *coxis •

T hus, w e  have the second assertion of the lemma.

Lemma (2 .1 0 ) W ith notation as in Lemma (2.9), assume that there is a Zariski open
set U  of  S  such that c o d im (S \U )2  and f - 1 ( x )  i s  a  reduced curv e w ith only  normal
crossings f o r ev ery  x E U .  L e t I ' be a reduced and irreducible divisor on S  and R  be
the discrete valuation ring  associated with P .  We denote by  C r  th e  n u m b er o f  singu-
larities o f  th e  special fiber of  X R . W e set 4 f = E ro . r r .  Then, we have f*(c2(at-Is))
=,!I f .

P ro o f . S et 21u = ix E x u l f  is  no t sm ooth  a t x} , w hich  is a  closed set of X i '. L e t
3 be a  closure of 4 u  i n  X .  Shrinking U  s lig h tly , w e  m a y  assum e  th a t  ,21u  is  n o n -
singular and f u (4u ) r e d  is also non-singular. H ere w e can keep the condition codim(S\U)

T h en , w e  have the  following exact sequence :

— ›  p l u m - - > coxu/u0021u — > 0,

which shows th a t c2(Q1u 1u)=-21u. Therefore , w e have c2(Q x/s)=3± z, w here z  is  ( d -
1)-cycle whose support is  in  f - '(S \ U ). T hus, w e get

f *(c2(, 2 11 s))= f *(2+ z)= f *(3)- f

Example (2 .11 ) Let f :  X—>S b e  a  co n ic  bu n d le  o v e r a  non-singular projective
variety S .  T h en , by Lemma (2.9) and Lemma (2.10), we get

—4 fc i (X/S, —K115)= 2  •

Example (2 .1 2 ) Let f :  X - 6  be a  fiber space o f  non-singular projective varieties
with connected fibers and  F  a  general fiber o f  f .  A ssum e tha t d im (F )= 1 , th e  genus
o f  F is  g rea te r than  o r  equal to  2 , f  is generically sm ooth and  th a t th e re  is  an open
se t U  o f S such that codim (S \U ).2 and f - ' (x )  is reduced  a n d  has only  node singu-
larities fo r every  x c U .  T h e n , by Lemma (2.9) and  Lemma (2.10), we have

12 det(f *cox/3) - 4 fc i (X/S, Kxis)= 2 (g (F )-1 )
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N ext, w e introduce the notion of semi-stability of polarized fiber spaces.

Definition (2 .13) W ith notation as in Definition (2.2), assum e t h a t  X  a n d  S  are
projective. Let H  be an ample divisor on S .  W e say the weak polarization L  of the
fiber space f :  X - 6  is  H-semi-stable if for any f-dominant irreducible subvariety I ' of
X  w ith  the relative dimension s, we have

( ( L f * ( c l (X/S, L)))s+i r . f *(H ) d _ i ) , 0 .
r+ 1

For sim plicity, w e say the weak polarized fiber space (X/S, L) is  H-semi-stable if the
weak polarization L  is  H-semi-stable.

The following proposition shows th a t th e  above sem i-stability  o f  polarized fiber
sp a c e s  is  one of analogies of the semi-stability of vector bundles (see Remark (2.20)
for more details).

Proposition (2 .14) W ith notation as in Definition (2.13), the following are equivalent.
(1) The weak polarized fiber space (X/S, L) is H-semi-stable.
(2) For any  f-dominant irreducible subvariety I ' of  X  w ith the relative dimension s,

(c i (X/S, L)•Hd - 1 ) (c 1(1/S, L)•Hd - ')
•r+1 s+1

P ro o f . Let r  b e  a n  f-dominant irreducible subvariety o f  X  w ith  the relative
dimension s. Using the projection formula of algebraic cycles, w e get

f*(c,r(X± /i S, L)) y+1 . p . f * ( H ) d - ,)

= ((Ls+ 1

 s + 1
f*(ci(X/S, L))L s +•••)•r. f * ( H ) " )

-=((LI r)1+1 r+1
s+1 

 f*(c,(X/S, 14)(1,1r)s-1-•••)•f*(H) d - ' )

--= ((f * ((L  r ) 3 +1 )—deg(P /S,L) s
r

+
+

1
1  ci (X/S, L))• H d - ' )

= ( s + 1 ) d e g ( 1 7 S ,  L )

( ( c i ( r/ S , L )• H ') (c,(X/S, L)•Hd - ' ) ) .

s+1 r+1

This proves our proposition.

Later, w e need the following proposition.

Proposition (2 .15) W ith notation as in Definition (2.13), if  L  is f-nef and the weak
polarization L of  f  is H-semi-stable, then we obtain that f o r any  t-dimensional subvariety
r o f  X,

( (L f * ( c ir(X+ /1S, L )) y
- d + 1

,r .
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P ro o f . C learly, w e m ay assume th a t H  is  ve ry  ample. If F  is f-dom inant, the
proposition is obvious by the definition of sem i-stability. Set 4=--- f ( F ) .  If codim

d o es n o t in te rsec t w ith  a general complete intersection curve by m em bers o f  HI •
Hence, in th is  case,

f*(ci(X /S , L)) y _ d + , . r . f * ( H ) d  i )  0 .

r+1

N ext, w e assume th a t  c o d im  4 = 1 . Let C  b e  a  general com plete intersection curve
b y  m em b ers  o f  I .  Then, ZIn C  consists of points, say, ix1, ••• , x ,  w h e r e  r =
( 4 .C ) .  Since

( L  f*(c i (X /S, L ))\
)r+1 

is  nef for each i ,  by [9, Chapter ILI, § 2, Theorem  1] w e have

( ( L f * ( c ,( X /S , L ) )
r + 1

y - d + 1  _ d
• F. f* (H )

The following is a numerical characterization of semi-stability over a curve.

Proposition (2 .1 6 ) W ith nota tion  a s in  Definition (2.13), a ssum e that S  is  a  curve
and L  is f -n e f .  T hen , the following a r e  equivalent.

(1) T he weak polarized fiber space (X/S, L) is H-semi-stable.

f*(c( 2 )  L /S , L )) 
i s  n e f .r+1

P ro o f . B y Proposition (2.15), (1) im p lie s  (2 ). W e  assu m e  (2 ). Let F  b e  an f -
dom inant irreducible subvariety o f X  w ith  the relative dimension s. Then, by [9,
Chapter III, § 2, Theorem 1], w e have

( ( L f*(c,(X /S, L ))).+1
r+1

w hich proves this proposition.

The above proposition leads us to  a stronger notion of semi-stability.

Definition (2.17) W ith  notation as in D efinition (2.2), assume t h a t  X  and S  are
projective and that dim S_•,2. W e  use the notation in (1 .5 ) . Let H  b e  a very  ample
divisor on S  and A a nef Cartier divisor on X .  W e say the w eak polarization L  of
the fiber space f :  X - -S  is  A -strongly H-semi-stable if for any positive rational number
s , th e re  is  an element n i of (Z >0 ) '  such that

f*(c i (X /S, L)) 
d- eAr+1

f  - 1 ( xo f  - 1(X  {)

is  nef on the fiber space X x s S(H, m ),, over the generic  com plete  intersection curve
S(H, m),2. In the case w h e re  A  is num erically  trivial, w e say for sim plicity  that L
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is  strongly  H-semi-stable. Moreover, fo r convenience, we say th e  weak polarized fiber
space (X/S, L) is A -strongly H-semistable i f  L  is A-strongly H-semi-stable.

F irs t, w e  m ust show  th a t  the  strong semi-stability is really stronger than the usual
semi-stability.

Proposition (2 .1 8 ) W ith notation as in Definition (2.17), if the w eak  polarization L
of the f iber space  f :  X - -* S  is A -strongly  11-sem i-stable, then f o r  an y  t-dimensional
subvariety of X,

( ( L f * ( c ,( X /S ,   L ) )  \t-d+I

r+ 1
. f*(1-1)d-1)>0

In particular, L  is  H-semi-stable.

P ro o f .  F irst, w e  need  th e  following lemma.

Lemma (2 .1 9 ) Let X  be a com plete algebraic schem e ov er a field k and  L  a line
bundle on X .  Let k be the algebraic closure o f k. Then, w e have the following.

(1) L  is  nef on X  if and only  i f  L k  is  nef on X 5 .

(2) L  is am ple on X  if and only  i f  L k  is  am ple  on X 5.

P ro o f .  Suppose L  is  nef on  X .  L et C b e  a n  irreduc ib le  cu rve  on  X k .  T ak e  a
finite extension field k ' o f  k su ch  th a t C  is defined over k ' .  L et 7r: X k , X  b e  the
canonical morphism o f  k-scheme. Then, b y  [4 , Proposition 2.5 (c) and  Example 6.2.9].

(L k • C)=(7r*(L)• C) --=(L • 7*(C))---0 ,

which show s 'only  if ' p a r t  o f  (1).
Assume L k  is  n e f o n  C 5 .  L e t C be a n  irreducible curve o n  X .  Then,

(L • C)=(L k • C

T hus w e  h a v e  'if ' p a r t o f  (1).
N ext, w e  assume th a t  L  is  ample on X .  T a k e  a  p o s it iv e  in te g e r  n i  su ch  th a t

i s  v e r y  a m p le . T h e n , it is obvious tha t L T "' is a lso  very  ample on  X .  T h i s
show s 'only if ' p a r t  o f  (2).

Finally , w e suppose th a t  L k  is  am ple on X 5 .  L et F b e  a  co h eren t shea f o n  X .
T o  show  th a t  L  is  am ple on X , it is  su ffic ien t to  see  tha t Hi(X, L° 11 0 F )= 0  fo r  suf-
ficiently la rg e  n  a n d  i > 0  b y  th e  cohomological criterion o f  am pleness. S ince  L k  is
ample on X 5 ,  fo r sufficiently la rge  n and i >0,

Hi(Xk,

By the base change theorem , w e have

L I"® o x F)=INX, 1. 8 "(3F)O kk,

which show s 'i f '  p a rt o f  (2).

L et us s ta r t  th e  proof of Proposition (2.18). L et s  be a  positive  rational number.
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T hen , there  is  a n  element m o f (Z >0 ) ' - '  such that

f*(c,(X/S,  L))
+EAr+1

is  nef on X x s S(II, m )„ . H ence, by [9, Chapter Ill, § 2, Theorem 1] and Lemma (2.19),
w e get

( ( L  f  * ( l a  S , L))
r+1 +6.11

) t - d + 1 . r

Thus, we obtain

( (L  f* ( c ,(X  /   S, L))
r+1

t - d + 1
- FEA) • l ' • f * (H) d -1 ) =0

which im plies our proposition because e is arbitrary.

R em ark (2.20) L e t  S  b e  a  d-dimensional non-singular projective varie ty , H an
ample divisor o n  S and  E  a  vector bundle on X  o f  rank  r+ 1 . Let X be the associated
projective bundle, L  the  tautological line bundle o f X  and f :  X - 6  th e  canonical pro-
jection. A ccording to  Mumford, E  is  //-semi-stable if  fo r  a n y  quotient Q o f  E  with
rank s+1,

( c ,( E ) • / / '')   <  (c1(Q)•// a - 1 )
r+1 s+1

By Remark (2.4) and Proposition (2.14), i t  is  e a s y  to  s e e  th a t  i f  (X/S, L) is  H-semi-
s tab le  i n  o u r  se n se , th e n  E  i s  H-semi-stable i n  t h e  sense  o f  Mumford. Next we
observe th a t Mumford's semistability o f E  im plies our sem i-stability o f  (X/S, L) i f  S
is defined over a field of characteristic z e r o .  B y  [12, Theorem  1.6], f o r  sufficiently
large integer m, th e re  is  a  complete intersection curve  C b y  m l l  s u c h  th a t  E I r  is
sem i-stable . H ence by [13, Theorem  3.1],

f*(c i (E)) 
r+1 f1(C)

i s  nef. T h u s, (X/S, L) is i l -semi-stable. I f  t h e  c h a ra c te r is tic  is  positive , Mumford's
semi-stability does not imply our semi-stability (see Remark (2.25)).

W e give more examples.

Example (2.21) Let f :  X—*S be an  elliptic fiber bundle o f  non-singular projective
varieties, L  an  f-ample divisor on  X  and H  an  am ple  d iv iso r  o n  S .  W e  w ill  show
th a t (X/S, L) is strongly  H -sem i-stable . For this purpose, w e m ay assume th a t dimS
= 1 .  I n  th is  c a se , th e re  is  a n  etale covering such that 7r: SxE—a, w here E  is  an
elliptic curve. S i n c e  L—(f*(c,(X/S, L)) 12 ) i s  pseudo-effective b y  Proposition (2.8),
x*(L — (f*(ci(X/S, L))/2)) is a lso  pseudo-effective. Hence, z*(L— (f*(c i (X/S, L))12)) is
nef because the pseudo-effective cone is equal to  th e  n e f  cone on S x E .  H ence, L -
(f*(ci(X/S, L))12) is  nef, w hich proves (X/S, L) is  H-semi-stable.
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Example (2.22) Let Z, be  the blowing-up of P 2 a t  a point of P 2 and f :
the natural induced morphism. Let (a: be the blowing-up at general eight points
o f  X , .  W e  set g = f • p .  Then, it  is  e a sy  to  se e  th a t  — K s is  nef and g-ample and
th a t ((—K3)2 )= 0 .  Hence, (S/P', —Ks )  is  0 p1(1)-semi-stable. But (X 1/P 1 , —Ky i ) is not
Opi(1)-semi-stable.

Example (2.23) Y . F u jim o to  ra ised  the fo llo w in g  ex am p le . Here, w e  assume
char(K)* 2. Let X  be an Enriques surface, th a t  is, a non-singular projective surface
w ith  Hi(X, 0 1 )=H 2 (X, O ) = 0  and c4 2 -.'0 x . B y [1, Theorem  17.5], th e r e  is  a mor-
phism f :  s u c h  t h a t  the generic fiber of f  is elliptic. Let F be a general fiber
of f .  Due t o  [1, Proposition 17.6], w e have an irreducible curve G  such  that (G • F)
=2 and (G2) 0. If G  is  a (-2)-curve, X  is  c a lle d  s p e c ia l. In the m oduli space of
Enriques surfaces, general Enriques surfaces are not special. C onsidering the polarized
fiber space (X / Pi, G ), w e get

(2.23.1) (X / Pl, G) is  sem i-stable if  and only  i f  X  is not special.

P ro o f .  F irst, w e  assume th a t X  is  sp e c ia l. Then,

( G  f * ( c 1 ( X
 IG ) )  G ) =- (G ( G 2 )  F • G )= - -- -1 .
2 2(G • F)

Hence, (X/P 1, G) is  no t semi-stable. N ext, w e suppose th a t X  is  n o t sp e c ia l. In this
case, (G2 )=0, which implies c1(X1 Pt, Hence (X/P', G )  i s  semi-stable because
G is  nef.

In the case w here X  is not special, one can  prove that the nef cone  is equal to
the pseudo-effective c o n e .  T o  show th is , it  is  su ff ic ien t to  see  th a t (C 2 ) 0 for any
irreducible curve C on A . B y  the adjunction formula, w e have (C 2 )_.0 or (C 2 )= -2 .
If (C 2 )= -2 ,  th en  C is  a sm o o th  ra tio n a l c u rv e . B y  [3 ], X  h a s  no smooth rational
curve. Hence, we get (C 2 ) _ 0 .  T hus, for any polarization L , (X / P ', L ) is  semi-stable
because L—(f*(ci(X1P 1 , L))12) is  pseudo-effective b y  Proposition (2.8)

N ext, w e m ake a rem ark about the moduli of semi-stably polarized fiber spaces.

Remark (2.24) Here, w e assume char(K)=0. Let C be  a non-singular projective
curve and E  a vector bundle on C of rank  r + 1 .  Let f :  P (E )--4C  be  the associated
projective bundle and F the generic fiber of f .  W e can easily see that

( n -Fr\
X(0 F(h))=

r  )

n+r
X(0,(E)(n)) -= deg(ci(E))( )+ (lœ g(C ))( n + r )

r  1

Hence, fixing polynomials X(O F (n ) )  and X(Op(c)(n)) is  e q u iv a le n t  to  fixing invariants

g(C), r and deg(c,(E)). W e set polynomials



Semi-stably polarized fiber spaces 855

n+r (nd-r\
P(n)=- ( 1 2 + r )  a n d  Q (n )=4 )±(1—g(C))

r r+1 r  )

Then, the moduli space of sem i-stable vector bundles E  o v e r  C  w ith  deg(c,(E))=d
a n d  rank(E )= r+ 1 is  e q u a l  to  the  moduli space of semi-stable fiber spaces (P(E)/C,
0 p (F)(1)) over C w ith  X(OF(n))=P(n) and X(Op (g)(n))-=Q(n).

N ext, w e consider more general cases. Let f :  X—+C be  a  fiber space  o f  a  non-
singu lar projective v a r ie ty  X  t o  a  non-singular projective curve C w ith  dimf =r, L
an f-ample divisor on X  and F a  general fiber of f .  Since

+deg(c,(X/C, L)), ( L T ' )  
deg(X/C, L)'

X(0 F (nL )) and X(e x (nL)) determine deg(c,(X/C, L )) and the relative dimension r  of f .
Set

a=max{nEZ1n< deg(c,(X/C , L ))) .

r+1

which depends only on deg(c,(X/C, L))/r+1 T h e n , it is  easily  ch eck ed  th a t L—aF
is  ample if (X/C, L) is  semi-stable and that

X(0 x (n(L — a F)))=X(0 x(n L))— a nX(0 F(n L)) •

Let P(n ) and Q(n) be polynom ials. The above observation and Matsusaka's big theo-
rem  (cf. [10]) show us th a t  the fam ily  of sem i-stable fiber spaces (X/C, L) o v e r  C
w ith  X(0 F (n L)).= P(n) and X(0 x (n L))=Q(n) is  bounded . But w e don 't know  at present
the existence of the moduli space of this family.

F inally , w e w ant to  d iscuss about openness o f  a  fam ily  o f  semi-stably polarized
fiber spaces.

Remark (2 .25 ) L e t S  b e  a  non-singular projective v a r ie ty  w ith  an am ple line
bundle H, T an  algebraic scheme, f :  X - 6 X T  a  morphism o f  algebraic schemes and
_C an f-ample line bundle on X .  Let p :  SxT—+T be the natural projection. Assume
th a t p • f  : .X'—+T is  fla t and  t h a t  f o r  e v e ry  tET, (1,/SXt, _C ) i s  a  polarized fiber
sp a c e . W ith  th is  notation, th e re  is  a  natural question w hether the set of points t T
su c h  th a t  ( 1/SXt, _Et )  is 11-semi-stable is open. In  the  case of vector bundles, this
was proved in  [11] if the  characteristic of the d efin in g  fie ld  is  ze ro . (If  the  charac-
te r is t ic  is  positive, o u r d e fin itio n  o f  sem i-stability  is stronger than usual Mumford
se n se . H ence, w e can not apply [11] to  our question e v e n  if w e co n sid e r  th e  pro-
jec tiv e  b u n d le  a ris in g  fro m  a  v e c to r  b u n d le . For more details, see the example of
th is  R em ark .) B u t in our general situation, w e know  a  litt le  a b o u t th is . F irs t one is

(2.25.1) (Valuative specialization) In the case where T  is a spectrum of  a discrete
valuation rin g , i f  (..T/SxT, ..C) is  n o t  H-semi-stable a t  th e  generic point o f  T , then
(X /S X T , 1 ')  i s  not H-semi-stable at the special point of  T .
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Proof  o f  Valuative specializ ation. L et 22 be t h e  generic  p o in t  a n d  o  th e  special
point of T .  Since (aV S >0 ), so i s  n o t  H-semi-stable, th e re  is  an f , 2-dominant sub-
varie ty  F  such  that

f* (c i (X /S X T ...C )) t - d + 1

(G r ) • r •  f*(11)a l  <0
r+1

w here r=dim f ,  d=dim S  and  t=dim F .  T ake  a  subvariety F ' of a ' such that F ,:=F .
Since F '  is fia t over T ,  w e have

(Gt. f*(ci(2e/sxT, ..f))\t-d+ ,

F o' • f * ( 1 1 ) ' )  <o,
r+1

which shows (awsxo, so ) is  n o t H-semi-stable b y  Proposition (2.15).

In  the case w here dimS=1, w e have the following.

(2.25.2) A ssum e that dimS=1, T  is irreducible and  that (X/SXT, ..E) is semi-stable
a t  th e  generic  p o in t  o f  T .  T h e n ,  th ere  a re  countably m any  dense Zariski open sets
{ in } n = 1 , 2 , . . •  o f  T  such that i f  xErVn°=11.1. „, then (X/SxT, ..C ) is semi-stable a t  x.

P ro o f .  B y th e  numerical characterization of semi-stability (Proposition (2.16)), it
is sufficient to show  the following.

(2.25.3) Let f :  X—>S be a projective and surjective morphism of  an algebraic scheme
X to an algebraic variety  S  and  L  a line bundle on X .  I f  L  is  nef  on the generic f iber

o f  f ,  there are  countably m any  dense Zariski open sets {LI „I „-i,2.... such that i f  sE
U,,, L  is  nef  on X ,.

P ro o f .  L et A  be an  f-ample line bundle o n  X .  T ake  a positive in teger n .  Since
L  i s  nef on  X , 2 n L - P A  i s  am p le  o n  X i, by L em m a (2.19) a n d  [9, Chapter IV, § 2,
Theorem  1 ] .  H ence, there is a  dense Zariski open set U „ su ch  th a t i f  s e U „ ,n L ± A
is  ample on X , .  T h u s, if  sEr U„, n L ± A  is  ample on  X , fo r  a ll n, which implies
th a t L  is  nef on X ,.

Finally , w e give a  negative example to the above question in positive characteristic.
F ir s t  o f  a l l ,  w e  n o te  th e  following fac t, w hich is easily proved if  w e  re fe r  to  [13,
Proof o f  Theorem  3.1].

(2.25.4) L et C be a  non-singnlar projective curve over a n  algebraically  closed field
o f  positiv e  characteristic  and E  a  vector bundle o n  C . L e t  X  be the projective bundle
o f  E , L  the tautological line bundle o f  X  and f :  X--->C th e  natural p ro jec tio n . L e t F
be the Frobenius morphism over C . T h e n , th e  follow ing are  equivalent.

(1) (X/C, L) is  sem i-stable in our sense.
(2) (F 3 )* (E ) is  sem i-stable in the sense of  Mumford f o r a l l  n. O.

B y [5 ], fo r  each prim e p and  integer g>1, there is a non-singular projective curve
C  o f genus g  in  characteristic p an d  a  sequence o f vector bundles {E.} n=1.2, so that
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(1) E n  i s  o f rank  2 and  of degree 0,
(2) E „ is  sem i-stable in the sense o f  Mumfonl,
(3) F*(E n )  is isom orphic to E n ..., and
(4) F*(E,) is  no t sem i-stable in the sense o f Mumford.

W e can take a quasi-projective scheme T  an d  a  vector bundle e o f  r a n k  2  o n  C x T
s u c h  th a t  f o r  a l l  semi-stable vector bundle E  o n  C  w ith  rank  2 and degree 0, there
is  a  po in t t T  su ch  th a t E  is isomorphic to e t .  L et a '  b e  th e  p ro jec tiv e  bundle  of
e, the  tautological line bundle of a n d  f :  X -->C xT the natural projection. We set

un=ite-TI(F 71 )*(e1) is  sem i-stable in the sense o f  MumforcLk

w hich is open b y  [1 1 ].  Clearly, U n _,, U n . B ut the  above sequence {E n } show s that
U„.4.1 U „ .  H ence , nnUn i s  n o t  o p e n .  O n  th e  o th e r  h a n d , b y  (2.25.4), fo r  tE T ,
(X t /C X t, S t )  is  semi-stable in o u r  s e n se  i f  a n d  o n ly  i f  te rl„U n . T h ere fo re , the
openness o f  a  family o f  semi-stably polarized fiber spaces does not hold in this example.

3 .  Inequality o f  Bogomolov-Gieseker's type

In  th is  section, w e shall prove a  generalized Bogomolov-Gieseker's inequality for
a  fiber space w ith a  strongly stable polarization.

Theorem (3.1) Let f :  X.—>S be a f iber space over a d-dimensional non-singular pro-
jectiv e v ariety  w ith dimf and d im S .2 . Let L be an f-ample Cartier divisor on X , A  a
nef  Cartier div isor on X  and  H  a v ery  ample div isor on S . A ssum e the polarized f iber
space (X /S , L ) is A -strongly  H-sem i-stable. Then, w e have the following inequality .

r(cT(X /S, L)•Hd - 2 ).<2(r+1)(c,(X /S , L ).Hd
- 2 ).

P ro o f .  Replacing L  by  a  m ultip le  of L ,  w e m ay assum e th a t c,(X /S , L)/r+1 is
represented by a  divisor M  o n  S  using formulae in Proposition (2.7). Moreover, adding
some ample d iv isor to  A , w e m ay assume th a t  A  is  am ple and th a t  f o r  a n y  positive
rational num ber 6, th e re  is  a n  element m=--(ttli, ••• , o f  (Z>,) d - '  such that

f * (c ia/S , L))L— +sAr+1

is  ample on X x s S(H, m),, b y  Proposition (2.19) a n d  [9, Chapter IV, § 2, Theorem  1].
W e  f ix  s  a n d  m  fo r  a  m o m e n t. L e t t  be a  positive in teger such  tha t ts  is integer.
L et H I , ••• , H d - i  be general m em bers o f  1mi ll I •• • , ma-11-1 I r e s p e c t iv e ly .  S e t  T =
11,n•••nf i d _i a n d  C , H ,nH 2 •••n H d - i . Then,

( L  f * (c ,(X /S ,  L )) + E A )i
r+ 1 I c_ 1 (c)

is  a m p le . W e  s e t  L =L — f *(111),W =f '(T ) and  V = f - '(C).

V c W c X

C c T c S
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Claim (3.1.1) There are positive integers T, and T 2  such that

H°(W , ow (n(L—T 1P (H ))))=- 0  and H A W, O1 (n (L+T 2f*(H ))))=0

for all suff iciently  large integer n.

Since ((f.+6,4.)' •f*(H) d )>O, there is a positive integer T , such that

((L —T i f*(H))•(L-FsA )T • f*(1 -1)d - ') < 0

Hence, H°(W, Ow (n(L—T 1f* (H ))))= 0  b y  th e  same argum ent as in  the proof of Pro-
position (2 .18 ). Because of f-ampleness o f L , there is a positive integer T 2 such that
L -FT 2f * (H ) is am ple . Thus the second assertion i s  a n  immediate consequence of
Serre's vanishing theorem.

Claim (3 .1 .2 ) //'(W , Ow (nL))=0 f o r i >2 and n>0.

Since Ri f *Ow(nL)=-0 for i> 0  and n> 0 by f-ampleness o f L ,  th e  Leary spactral
sequence

-=Hi(T , f  * Ow (n 11" W  , Ow (nL ))

is degenerate. Thus /N W , o w (nL))=H i (T , f * Ow (n L )).  Therefore we have our claim
because dimT = 2.

Claim (3.1.3)

11°(I 4 7 O w (n tL ) ) l f = F 1 1 6 i - 1 ( r t 1 ) ( L T + 1 - i

(nt)T
5 E M 2 ind _1(T ,+1)( I • A  • f* (H )' - ') 1 \

(r+1)!
+  

(r+1)!

f o r sufficiently large integer n.

The short exact sequence

0 Ow(ntr,—(k +1)V) --> O w (ntr, — kV) Ov(ntL— kV) 0

gives rise to a  left-exact sequence

0 ---> H°(W, Ow (n tL— (k+1)V ))---› 11°(W, Ow (nti— kV ))----> 1- 1°(V , O v (nti: — kV)),

which provides us with an  inequality

h°(W , Ow(ntL— kV)) —h°(W , Ow (ntr,—(k-1-1)V))-5W(V , Ov(ntL— kV)).

Taking the summation from k= 0 to k=rnfTi/mil —1 of the above inequality, we have

nnitT1,10)5_ r n t r i/ m 1 1 -1  0

(V, ov(ntL — kV))hle(W , Ow(ntL))-11"(147 , o w (nt1,-

n tT 1
1

h°(V  Ov(htL)) •mi

Since rntTi/mil . ntTi/mi, by Claim (3.1.1) we obtain
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(3.1.4) h°(W , Ow (n tL ))5  
n t ( T 1 + 1 )

h°(V , Ov(nt(L-1-€A)))m,

for sufficiently large n .  On one hand, since EH-EA is  ample on V ,

h°(V , Ov (nt(E+sA)))=X (V  , Ov(nt(L+€11)))

((E - I- EA) r + l )v (i.c ‘r + ii )  +(low er terms)
(r+ 1)!

((L -1-sA )r+i•
 f * ( 1 1 ) d - 1 )

—1711—md-, (nt) + 1  + (low e r  terms)
(r+1)!

((L-F6A )" 1 . f*(H)d - 1 )4-
(n t)" '(r+1)!

for sufficiently large n .  On the other hand, w e have

(Er -"• f * (H ) d - 1 )=--- ((L r  -  L r  • f*(c,(X /S , L ))+ •). f*(H)d - ')

=((f *(L r  + 1 ) -  f * (Lr)• c,(X /S, Hd-')

=deg(X /S, L)((c,(X /S, L)— c,(X /S, H d - ')

= 0.
Hence, we get

(3.1.5) /0(V , Ov(nt(r +sA)))
E rLy E t-i(rp)(Lr+ i-i.A ,.f*(H )d-1) 4 4

1)! (nt)"1-(r+

for sufficiently large n .  Thus, by (3.1.4) and (3.1.5), we have Claim (3.1.3).

Claim (3.1.6)

h2 (W , Ow(ntL)) A i f*(11)d-i) ± \
5.sm2.-md_1(T2+1) (nt)r+2( r + 1 ) ! ( r+ 1 ) !)

for suf f iciently  large  integer n.

The proof of Claim (3.1.6) is almost the same as that of Claim (3 .1 .3 ). But details
are slightly different. By the same argument as in Claim (3.1.2), we see

H i(V  , ov (nt(L +Iz V ))=0 i>1 an d  n »0  .

Hence, the short exact sequence

0 -->Ow (ntL 4-kV ) — >ow (ntL +(k +1)V )— >O v (ntL -F(k +1)V )--> 0

gives rise to a  right-exact sequence

111(V , o v (ntr,+(lz-1-1)V))—> H 2 (W , Ow (ntL + kV)) H 2 (W , Ow(ntE+(lz +1)V)) 0,

which shows an inequality
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h2 (W , Ow (ntr,+ kV)) - 10(W Oiv(ntr,+(k+1)V))<=h'(V , Ov(ntr.±(k+ 1 )17 )) •

Taking the  summation from k to  k =1- ntT 2/m i l —1 of the above inequality, we have

r ntT „ rn tr,na i i-1
h2 (W , 0,v(ntr,))-11 2(W  O w (ntE +1- --nT i —IV )) kEo h'(V , Ov(ntr, ±(k+ 1 )17 )) •

S in ce  [ntT2/m11 n t T 2 / m i ,  C laim  (3 .1 .1 ) im plies H 2 (W, Ow ( n t r ,  rntT 2/m i l V)) = O.
L et F  be a  general member o f  I (k +1)V I v  .  Clearly, F  i s  a  sum  o f  general fibers of
f  l y .  Hence, considering the  exac t sequence

0 —> O v (ntL) —> O v (nt L +(k +1)V) ---> r (ntL) — > 0,

we have

11.1(17 O v (ntE))_h'(V , Ov(ntr.+(k + 1 )V)) •

Thus w e get

h 2 ( w ,  0,4,(ntr,
ntT2i

111(V , Ov (ntL))
I  mi

nt(T 2 +1)
h'(V , Ov(ntE))

mi

nt(T 2 +1) (h°(17 , Ov (ntE))—X(V Ov(n11)) )mi

nt(T 2 +1)
(h°(V , O v (nt(L s A)))—X(V , Ov(ntL)))m,

fo r sufficiently large in teger n .  F ina lly  no ting  tha t the  degree o f  X(V, (n tE )) with
respect to  n  is  r  at m ost, w e conclude our C laim  by (3.1.5).

Let us continue the proof of Theorem  ( 3 .1 ) .  B y C laim  (3 .1 .3 ) a n d  C laim  (3.1.6),
w e have

(L r  + 2  f* (In d  -2 ) (E, +2) i r

(r+ 2 )! m2.••md-,-(r+2)!

. O x  (n tL ))
= inn "

m2•••md-,•(nt)' + '

h°(W , Ow(ntr-))+ h 2 (W , Ow(ntL))lim sup
m2•••ms-1•(nt)T +2

• f*(11) d - ')1 \
•

s(T,-FT 2+ 2 )( + 
( r + 1 ) !(r+1 )!

Since s  is  a rb itra ry , w e  g e t ( Lr+2 • f * (H) d  - 2 ) _ < 0 .  O n the o ther hand, since

f ( L  r  +2) 
deg(X /S, 

L) =c7(X/S, L)—c 2(X/S, L),

we get
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( L r + 2  • f*(H)d - 2 )

r+2 
( ( L r  + 2 L ' f * ( c i ( X / S ,  L ) ) + r + 2  L r.f *(c ,(X IS , L )) 2 +•.•)•f *( 1 1 )4 - 2 )

r+1 2(r+1)

r+2 r+2 
= ((.1. *(1-, r + 2 ) r + 1   f * (L r+i)c,(X /S , L )+ 20 +1) f  * ( L r ) c 7 ( X / S '  L ) ) . H " )

=deg(X/S, L ) ( (  
f *( 1-" 2) r + 2  

deg(X/S, L) 2(r+1) cT(X /S, L))•H d -2 )

=deg(X/S, L)
( 2 ( r r + 1 )

c 2 (X / S  L ) .
 d

f l  - 2 _c,(X /S , L ). H ) .

T h is  completes th e  proof o f  Theorem  (3.1).

A n  immediate corollary o f  Theorem  (3.1) fo r dim f =0 i s  th e  following.

Corollary (3 .2 )  L e t f  be a generically  f inite .f iber space over a  non-singular
projectiv e  surf ace  S . L et L  be an f -am ple Cartier div isor on  S ' and  H  an ample divisor
on S . A ssum e that (S '/S , L ) is  H -sem i-stable. T hen, (S '/S , L ) is strongly  H-semi-stable.
In particular, (c 2(S '/S , L))>_0.

P ro o f .  L et ..S e d = E S , be th e  irreducible decomposition o f  t h e  reduced structure
S r' e d  o f  S ' and  f , :  S t - 6  th e  induced m orphism . B y Bertini's theorem, fo r sufficiently
large integer in, m H 1  contains a n  member s u c h  t h a t  r i = f Tv )  a re  irreducible for
all i. T o  se e  th a t L— f*(c i (S 7S , L )) is  nef on  f - i(T ) ,  it is sufficient to prove that

(L—  f*(c,(S '/S , L ))•

T h e  deEnition o f semi-stability implies that

(L — f*(c,(S '/S , L ))-P,) , (L œ  f*(c,(S Y S , L )).S i •f*(m H))_( ).

Hence, we have our corollary.

T h e  Ilodge index theorem is derived from our inequality.

Corollary (3.3) (Hodge index theorem ) L et S  be a non-singular projective surface
and NS(S) the Neron-Severi group o f  S .  T hen, the signature of  the intersection pairing
on N S (S )0Q  is  (1 , p -1 ) , w h ere  p  is  the rank  o f  NS(S).

P ro o f .  Since the intersection pairing on  NS(S)0Q is non-degenerate, the signature
o f  t h i s  m ust have  type  (a, h)  w i th  a + b = p .  H ence, w e can take a  basis x„ ••• , x p

NS(S)0Q such that
(1) x ,  is  ample,
(2) (x 1 -x j )= 0  fo r  i * j ,
(3) (4 ) > 0  fo r  i=1, ••• , a  and
(4) (x )< 0  fo r j=a+1 , •-•  , p .

Therefore, our corollary is deduced directly from  the  following.
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Lemma (3.4) L et S  be  a  non-singular projective surface. Let H be an ample divisor
on S  and D  a div isor such that (H. D)=0. Then, (D 2)50.

P ro o f . Let S , and S , be two copies of S .  We set S'=SITS 2 . Let f : b e
the natural morphism. We define L  as follow.

ID  on S,

0 on

Then, it is easy to see that c,(S '/S , L )-=(D/2) and (c2 (S1S, L))=— (D 2 )/4. S in c e

(L— f*(c 1(S7S , L )). f* ( 11 ))5 1 =(1, —  f*(c,(S'IS, L)) . f*(H))8 2
, 0

(S '/S , L ) is H-semi-stable. Hence, by Corollary (3.2), we get

(c,(S '/S , —(D2) > 0 .4 — El

4. Well's lemma for flat fiber spaces

Let f : X — >S be a flat fiber space of non-singular projective varieties with f* O x = es
and H  a  v e ry  ample divisor o n  S .  Let s  be a positive integer w ith 1.„<s<dimS and
m=(m„ ••• , m ,) an  element o f (Z > o )'. We use the notation in (1.5). Set S„,=S(H, m),

m ), and 7' 77,=  I X •••X Im8 H1. Let p . :  s m , s  and am : S —>T„, be the
natural projections. Set X .=X x s S n i a n d  (X .),=X  X s(S .) 72 . Furthermore, we set the
induced morphisms as follows.

X  <
 P m  

X„,<

f  P.
f  771 T m

(fm)

S '  (S m ) ,/

q

g m _=qn,• f m , 2 .= p m • r m , ;
1-

M
=- .5

 •  7 7 1 .  •

It is easy to see that  S m  is non-singular and pm  is  sm o o th . W ith  th is  notation, we
will prove the following lemma in this section.

Lemma (4.1) (Well's lemma) I f  dimS2, f  is generically  sm ooth and m0 >:3 for
all then the homomorphism

: Pic(X) ---> Pic((X,,),)

is isomorphic.

P ro o f . First, we need :

Sublemma (4.1.1) A ssu m e  s=1 . If  w e  set A „,=ix T , , I g '( x )  is not integral} ,
then codimA,„ 2.
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P ro o f .  Let E  be a  reduced effective divisor on S such that f  is smooth over S\E.
Let r  b e  a  reduced a n d  irreducible divisor such that P E .  Let f - '(P ) = Z a i E i  b e
the irreducible decomposition of f - i(r )  and r  th e  generic  point of P.  F la t n e s s  o f  f
shows th a t f (E , )= T .  Hence, f - 1 ( r )n E ,* 0  for a ll i. T hus, f - i ( r )  must be reduced
and irreducible because f - i(r) is smooth and connected . This proves that

A m  { x ET  m lq 1 (x ) is  n o t integral}U Ix E T .la (x ). .E 1

S ince  irt I 3 ,  d u e  t o  [12, 2.1.3 iii)], codim{xET.16,-,i(x ) is  n o t  integral} 2, w h ich
asserts our corollary.

Next W e need :

Sublemma (4.1.2) Pic(X,,) , g(Pic(X))egt(Pic(T.)).

P ro o f .  L et L  be a  line bundle on X . .  Since f i ' ( x )  is  a  product o f  hyperplanes
in the projective spaces I ITO  I  fo r x E X , th e re  is  a  line bundle M , on T m  such  tha t
LOH,t(MV) is  trivial for all fibers of 15 . .  H e n c e ,  LOgt(M 1')--45(M 2 )  for some line
bundle 112 on X , w hich protres th a t  Pic(X .) is spanned by g(P ic(X )) and gt(P ic(T .)).

Next, we assume that 0.7cm =-fit(Mi)®g4(M2) for som e M i EPic(X) and M ,EPic(T.).
Then, g ( M 2 ) - 1(X) i s  trivial for a ll x E X . H e n c e , M , m ust b e  tr iv ia l b y  the same
reason as ab o v e . T h ere fo re , w e  have /1//i

- Ox because (15nt)*0x.:=0x.

Now let us s ta r t  the proof of Lemma (4.1).

(4.1.3) (The surjectivity of ) L et L  be a  line bundle on ( X . ) , .  Since any line
bundle on X .  can be represented by a  div isor, there  is  a  line  bundle  L ' on X .  such
th a t i l ( L ' ) = L .  By Sublemma (4.1.2), we have M,EPic(X) and M ,E Pic(T .) such that
L' -:15t(A/1)®gt(M2). Then,

L  g t  L

(4.1.4) (The injectivity of a') L e t  L  b e  a  line  bund le  on X  such  that A'711(L)--
0 ( 1

. ) ,7 . F irs t, w e  assume s = 1 .  Since f i t (L )  i s  triv ia l o n  th e  generic fiber of H .,
using the upper semi-continuity of cohomology, the set

{x G T  h ° (g 1 (x), fit(L))>O, h ° ( g 77,'(x), 15(L - 1 )) >O1

is  eq u a l to  T m . N o t i n g  th e  f a c t  (c f . [1 6 , p  5 4 , Proof of Corollary 6 ] )  th a t  for a
proper in teg ra l a lgeb ra ic  schem e V  o v e r  a  f ie ld  a n d  a  lin e  b u n d le  M  o n  V ,  if
h°(V• /14)>0 a n d  h°(V , M - ') >O, then w e  g e t  f o r fo r  x G
T „,\ A m . T hus, if  w e se t M=((g„,) * (A (L ))) -  ,  then  15I (L )  is isomorphic to g (M )  on
X ,,A a (A .) (see  [16, p 54, Proof of Corollary 6 ] ) .  Since s=1, q m , is  flat. Hence, g ,,,
is also flat. By Sublemma (4.1.1) and flatness of c o d im (a (2 4 .) )2 , which implies
j3 I(L )-g t (M ) because M  is  a  line  bundle . T hus, w e com plete  the  proof of (4.1.4) in
the case w here s=1.

For s> 1 , w e proceed by induction on s. For this purpose, note the following fact
(c f. [12, Lemma 2.1.2]).
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(4.1.5) L et h :  V - -Z  be a  proper flat morphism o f irreducible varieties such that
a ll fib ers a r e  integral. L e t  M  b e  a  line bundle o n  V .  T h e n , th e  following are
equivalent :

(1) M  is  triv ia l on  the  generic fiber o f  h.
(2) M  is  trivial on all geometric fibers of h over a non-empty Zariski open set of Z .
(3) M  is  triv ia l on  a ll th e  geometric fibers o f  h.
(4) There is a  line bundle R  o n  Z  such that M '-'-' h*(R).

Let be a  general member o f  lm1H 1 . T h e n , b y  t h e  hypothesis of induction,
f 1 ( P )  is  t r iv ia l .  Hence, L  m ust be trivial using injectivity of the  case  s=1.

5. R estric tion  of sem i-stable  fiber spaces to curves

This section is  deVoted to  proving Mumford-Mehta-Ramanathan's ty p e  theorem.
Throughout this section, w e use the notation in  .§ 4 freely and assum e that th e  chara-
cteristic of th e  ground field K  is zero.

Definition (5 .1 ) L e t d  be a positive integer w ith d 2. L et X-->S be a  f la t an d
surjective morphism from a  (d+1)-dimensional non-singular projective variety X  to a
d-dimensional nonsingular variety S  with f * Ox=-- O s . L et L  be an  f-ample divisor on
X and H  a  very ample divisor o n  S .  F or mE(Z > o )d - ',  w e set

L, H)

f* (c ,(X IS , L )) i0, i f  L— s  nef on
2

min{deg(J—(S.),)
J  is  an  irreducible curve o n  (X . ) ,  with
( L _  f * (ci(X IS, 1 ) ) . j ) <O.,  otherwise.

2 (x.)72

W e say (X IS , L )  is  H-bounded if v„,(X/S, L, H)} mecz>0 1 is bounded.

We divide polarized fiber spaces into two cases.
(1) (X/S, L) is H-bounded.
(2) (X IS , L )  is not 11-bounded.
F irst, w e treat the  case  (2).

Proposition (5 .2 ) W ith notation as in Definition (5.1), if  (X/S, L) is not H-bounded,
then (X/S, L) is  f*(H)-strongly H-semi-stable.

P ro o f .  We need th e  following Lemma.

Lemma (5 .3 ) Let f :  V --*C  be  a surjective morphism o f  a  non-singular projective
surface V to a non-singular curve C  w ith all f ibers connected. Let F be a general f iber
o f  f  a n d  L  a  div isor on V such that (L • F )> 0 .  Assume th at L— K , c
fo r any  f-dominant reduced and irreducible curve LI,

(L —  (L 2 ) F
—(ZI•F)(L2)

2( /1,• F) 2(2(J• F)+(/, • P))•

is nef. Then,
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In  Particular, i f  (1, 2 )._. ,

(L 2 )(L F  t i ) .   — ( L 2 )  

2(L • F) — 4 •

P ro o f .  T h e  essential idea to  get our inequality  is found in  [ 1 8 ] .  Let e: 3->Z1 be
the  normalization o f  J . T h e n  b y  H u rw itz  formula,

(L-FLI• 4 ) , - - ( ( L — K v i c ) + ( K r i c - F 4 ) •  4)

(K v icd-J• 4)

(Kv—f*(Kc)+4•4)

=deg(K4)—(f * (Kc)•

deg(K2)—deg(t* f * (Kc))

W e se t  a = (L + 4 •4 ). Thanks to H odge index theorem (cf. Corollary (3.3)),

(L 2 ) (L • F) (L • 4)
(F •  L ) (F 2 ) (F • 4 ) 0,
(4 - L ) (J• F ) (4 2 )

w hich im plies

Thus, we obtain

Hence, we have

2(a—(4 2 ))(d• F)(L • F)—(L • F) 2 (42 )—(4. F) 2 (1, 2 ) 0 .

(42) 
2a(4 • F)(L • F)—(4 • F) 2 (L 2 ) 

(L • F)(2(4 • F)+(L • F)) •

(L 2 )( L 2 ) ( F •  4)(L
2( L • F) F  4 ) =  a  — ( 4 2 ) 2 ( L  •  F )

a(1— 2(4 • F) ) + —(4 • F)(1, 2 )__ 2(4 • F)+(L • F) 2(2(4• F)-F(L • F))

—(4 • F)(L 2 ) >
— 2(2(d• F)-F(L • F)) •

L et us go  back to  th e  proof of Proposition (5 .2 ) .  Adding som e multiple of f*(H ),
multiplying L  and using Proposition (2 .7 ), w e m ay assume t h a t  L  a n d  L—K ,8  a r e
a m p le . L e t  s  b e  a  p o sitiv e  ra tiona l num ber. T ake  a n  element m=(m i , ••• , ma i )  of
(Z > 0 ) 4 - 1  such  tha t

4
+evn(X/S, L, H)(11d) 5 >0.

Note th a t  th e  num erica l criterion  o f  ampleness o n  a  p ro jec tiv e  su rface  w orks w ell
even over a  non-closed field (see the  argum ent of the proof o f  Lemma (2 .1 9 )) . Hence,
to  show that

(L2 • f*(H) 4 - 1 )
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L)) L —  +sf * (H )2

is  ample on (X „,),, it is sufficient to see that

f*(c i (X /S, L))  + s f * ( H ) . 4 > 0
2

for a ( f m ) -clominant irreducible curve A on (X„,),7 such  tha t

( L  f * ( c i (X2 / S ,  L ) )  4 ) <0.
/ ( x,„) ,7

By Lemma (5.3), we get

( L  f  *(c,(X /S, L))  + E f * ( H ) . 4
2 )(x7.0,7

( V ) c x
)  

 4-6(f * (1/)•4)(x ,),,4

= m 1  • m d  (  
(L 2 . f *(H) d - ')

" -i +s  deg(4—qS )(H a) s )
4

>-
(

7121•••md- 1
(L 2 . f*(H)a -1 )

+su m (X /S , L ,H )(H d) s )
4

>0. El

N ex t, w e  trea t the case (1), th a t  is, (X /S , L )  is  H -bounded , w hich  is  sim ila r to
classical vector bundle situation. W e use Mumford-Mehta-Ramanathan's method [12].

Theorem (5 .4 )  W ith notation as in Definition (5 .1), i f  (X /S , L )  is H-bounded and
H-semi-stable and f  is generically  sm ooth, then (X /S , L ) is strongly  H-semi-stable.

P ro o f .  F irs t of all, w e prepare som e notions. Let M  b e  a subset of An
element m=(m i , , 174) of M  is called a minimal element of M  if  fo r  a l l  x =(x ,,  ••• ,
x )  o f M , w e have x 1 m ,(i=1, ••• , s). For x E Z >„, w e set

M (x )= {(x 2, , x s)e (Z > 0 )' 1 1(x, x2. , x 8) E M I .

Inductively, we define a notion of recursive inf initeness o f  M  as fo llo w s . In the case
s = 1 , M  is sa id  to  be  recursively  infin ite  if M  has infinitely  m any elem ents. In the
case s> 1 , M  is said to be recursively infinite if the set

{ x EZ N IM (x ) is recursively infinite}

has infinitely many elements.
For a recursively infinite subset M  of (Z > 0 ) 8 ,  w e have

(5 .4 .1 )  (1 )  Let M =-M ,U•••UM k be a partition of M .  Then, one of M i , ••• , M k
is also recursively infinite.

( 2 )  Let m=(m„ ••• , m 3)  be an element of M .  Then, the set
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1(x1, ••• , x s )E M I for all il

is also recursively infinite.

Proof  o f (5 .4 .1 ) If  s=1, (1) and (2) are trivial.

F o r  s > 1 ,  w e  p ro c e e d  b y  induction on s. S e t T =  ix EZ> 0 1M (x ) is recursively
infinite}. F o r  t T, one  o f M,(t), ••• , M k ( t )  must be recursively infinite  by the hypo-
thesis of induction. H ence, there is an  infinite subset T ' of T  and j  such  tha t M i (x)
is recursively infinite fo r x E T ', w hich com pletes the proof of (1).

For the proof of (2), w e  se t W--= {xEZ> 0 1x. m, and M (x ) is recursively infinite} .
F o r  x EW , M /(x) is  re c u rs iv e ly  in f in ite  b y  th e  hypothesis of induction. Hence, we
have (2).

Let us s ta r t  the proof of Theorm  (5.4). We fix a sequence (a 1, •-• , ad_ 1) of positive
in te g e rs . For m=(m i , ••• , m d-1)E(Z>0)', w e  se t a(m )=.(ar', ce7!1-1).

W e w ill p rove that L—f*(c,(X/S, L))/2 is  nef on  (X a ( m ) ) ,  fo r  some mE(Z> o )d - i.
H ere, w e assume th a t  L — f*(ci(X/S, L))/2 is  n o t nef on ( X 0 , 0 0 ) , 2  f o r  all mE(Z>o) d - '•
Since L  is  f-am ple , the re  is  an  integer t such that

f * (c l( ' /S , L)) + tf* (H ),
2

say  A , is  am ple . F or m -= (m i, • • , m d - i ) ( Z > o ) d - i ,  w e  define  a m  a s  follows.

D  is  an effective divisor on ( X a c n i , ) , ,  such  tha t

( L
f*(c,(X /S , L )) 

D ) <O.2

Let D . be an effective divisor on (X a ( , ) , 2 s u c h  th a t  

(X  a ( r a ) ) ,2

(ADm)(y„ ( „,,),)f * ( c , ( X / S ,  L ) )  D . )
ut

= a n d  (L—  <0.2 ( X a ( n 2 ) ) . y )

C laim  (5 .4 .2) D in , is irreducible and reduced.

Assume tha t the re  are non-zero effective divisors E l a n d  E , on (Xacno),, such that
D m =-E 1H-E2 . Then,

( L  f * ( c , ( X 2/S , L )) 
I <0

 ( X a ( m , ) ) ,2

for an i. Since A  is  ample,

(A•Dm)(x e“,„),>(A•E2)Gr a ( n „ ), ,

which contradicts to the  minimality o f a n ,.
By Lemma (4.1), we can find a  d iv iso r o n  f).„, o n  X  s u c h  t h a t  4 7„) (r)„,)--, D„,.

Then,
(A•D.)(x,(7„)),7=ar"-andri(A• D m .f*(J-I)d_1) ,

r(A•D) ( x a ( m ) ) ,7
m„, d - 1 1.
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w hich asserts u m  i s  an integer.

C laim  (5.4.3) u„, is bounded.

Let .4, be an irreducible and reduced curve on (X, (7,0 ) ,  such that

va ( „) (X /S , L , 11 )=-deg(474—>(Sa(n))) a n d  (L—   f*(cI(X /S , L)) 4 . ) <O.2 ( X  a (m ))7 ,

Then, we get

ari•-•a md-al- 1

=tv a ( m ) (X /S , L , H)(Hd) s ,

which implies our Claim (5.4.3).
Hence, by (1) of Lemma (5.4.1), we have a recursively infinite subset .1/ of (Z > 0 )a -1

su c h  th a t  u m  i s  constant for every I n E M . Moreover, by (2) of Lemma (5.4.1), we
may assume th a t M  has the minimal element in0=- -- ( m 0  1 ,  • • •  m o , a -D•

Claim  (5.4.4) For all m EM , ( „,o ) (b„,) is linearly  equiv alent to an effective divisor.

Let m =(in„ ••• , m a _i ) b e  an element of M .  B y the upper semi-continuity of the
dimensions of cohomology groups, w e have

li°(g ) (x ) , O x (b ))# 0 for all X  ET a (m )

and the re  is  a dense Zariski open set U„, of T a ( m 0 ) su ch  th a t

le(g e ) (t), O x (f )„,))-1=dim  ; t (7 ,,o ) (6.)1 for a l l  t U m .

Setting k m =a ri --l e t  t i , ••• b e  k m,-d istinct general m em bers of
U ( K ) .  Set V i =g -A m o ) (t j ). Since E j

j 'fi V j  i s  a fiber of g a ( „,) ,  we obtain

H°( V i, O1(f ).)) 0 .i=i

Thus, considering the injective homomorphism :
k n,

° Avi ( b .)

w e see  tha t for some j ,  / / ° (17 ,, O x (b .))# 0 . H ence  w e ge t our C la im  (5 .4 .4 ) because
V j  i s  a fiber of g a ( m o  o v e r  a point of U m .

Since (A •:6 .,•f * (11 )d-1 )= 0 .„ "  and (L — (f*(c1(X /S, L))/2)-13m•f * (1-1 ) 1)<O , b y  the
sam e argument as in C laim  (5 .4 .2), 4 0 ) (b n ,) is linearly equivalent to an irreducible
and reduced curve 4 such that

(5.4.5) (L f*(ci(X /S , L ))< 0  .
2 /cra(ntoo,
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O n  th e  o th e r  h a n d , b y  Proposition (2.8), (L — (f * (c i(x /S , L))/2))1(x,r ( „i 0 ) ),, is pseudo-
e ffec tive . (Note th a t in  th e  p roo f o f P roposition  (2.8), i t  i s  n o t  e s s e n t ia l  th a t  the
defining fie ld  is a lgebra ica lly  c losed .) T o  see  tha t there  a re  finitely many irreducible
curves w ith th e  property (5.4.5), w e need the  following lemma.

Lemma (5.5) L e t S  be a  non-singular projectiv e surf ace o v er a  f ield k , w hich is
not necessarily  algebraically  closed. L e t D  be a pseudo-effective div isor o n  S . T hen , the
num ber o f  integral curv es C w ith (D. C)<0 is f inite.

P ro o f .  L et k be th e  a lgebraic  c losure  o f  k  a n d  C  a  curve o n  S .  T hen , since
(D • C)x =(D • C) x  w e  m a y  assum e th a t  k  is a lgebra ica lly  c losed . In  th is case, this
lemma is a n  immediate consequence of Zariski decomposition o f  D  o r th e  first step to
prove the existence of Zariski decomposition o n  a  su r fa c e  (c f . [14, Lemma 3.6], [15]
and  [17]).

T h u s, w e  have  a  recursively infinite  subset M ' o f  M  s u c h  th a t  . . ',
( 7
,

0 )
(/ ) . )  are

linearly equivalent to each other fo r  all T h e r e f o r e ,  b y  L e m m a  (4.1), D. are
linearly equivalent to each other fo r a ll m E M '. W e take a  divisor D  on X  such that
fo r a ll mEM/, 17)„,.-s-, D .  H ere w e need th e  following lemma.

Lemma (5.6) (Enriques-Severi-Zariski's lemma for flat fiber spaces) Let f : X --->
S  be  a su rjec tiv e  and  f lat m orphism  o f  non-singular projective varieties w ith dim S2.
L et F be a  ref lex ive sheaf  o n  X  an d  H  a v ery  am ple div isor o n  S .  T h e n ,  th e re  is  a
positive integer n o such that for all n n,, and  a general m em ber T  o f  in H  I , the natural
homomorphism

H o a, Ho(f-i(T ),

is surjective.

Proof. S e t  G= f  * (F) -  a n d  d=d im S . First, w e prove th e  following claim.

Claim (5.6.1) T here is a  positive integer n o such  that H '(S , G (8)0 ,s (— nH))=0 f or
all n n,.

By Grothendieck duality  (cf. [8, PH , Theorem  7.7]), w e have

(1-11(S, GOOs(— nH))) -  '==Extg - '(GOOs(— nH), ws(01)) •

Since H  is  ample, th e re  is  a  positive integer n o su c h  th a t fo r  all n n 0 , P and  9,

HP(S, exigo s (G, 0s)Ow (nH))=0.

Hence, considering the spectral sequence

HP(S, ext g
o s (G, 0s)0(0(nH)) ExtV(G , cos(nH)),

we obtain

Ex tk - '(G, w s (n H ))-2:11°(S, extg,V(G, 0 s )Ow (nH)).

O n the o ther hand, since G  is reflexive and d 2 , w e  ge t
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depth x G., 2 fo r all x E S ,

w hich im plies that exe (G, o s)= 0 .  T h is  proves our claim.
S in ce  f  * ( F )  i s  to r s io n  f r e e , t h e r e  i s  a  Z a r is k i  o p e n  s e t  U  o f  S  such  tha t

codim s ( S \ U ) 2  and f  * (F)i u is  loca lly  f re e . N o te  th e  following facts.

(5 .6 .2 ) L e t V  be a  non-singular variety and  Q  a  coherent sheaf on V.
(i) Q  is reflexive if  and  only i f  Q  is  lo c a lly  a  se c o n d  sy z y g y  sheaf (cf. [12,

Lemma 3.1]).
(ii) L e t  W  b e  a  Z a r isk i o p e n  se t o f  V  with codim v (V \W) 2  and i: W -- /  the

inc lusion  m ap . If  Q  is reflexive, then i* (i*(Q))=Q (cf. [19]).

F o r  n no,  take  a  general m em ber T  o f  Intl I such that
(1) T  and f  - '(T ) a re  non-singular,
(2) codimT (T \ T n U ) 2 ,
(3) I?' f  * (F)00s(— T)— J?' f  * (F)  is  injective and
(4) G IT  and  F i j-i(T ) are  reflexive.
T h en , w e  h a v e  that codim x (X \f '(U ))_> .2  by  fla tness o f  f  and  the  restric tion

homomorphism

TI V  - 1 (T ), F I f -i(n ) — > 11"(f - I ( T n u ) ,  F. f - i ( n )

is  injective b y  torsion freeness o f  F  f -i ( n . Hence, in  o rder to  show  that

H°(X , F) H °(f -'(T ), F f -1 (n)

is  surjective, it is sufficient to see that

11°(f -1(u) , F) ,  Ho ,  — 1 (T  nU), F f -i(n)

is  su r jtc tiv e . B y  (3), taking the direct image of the exact sequence :

0 FOox(—f*(T)) — > FF i  f-i(T) — >
w e have

f *(F)Oes(—T) — > f *(F) — > f * (F f - i(n ) — > 0 •

This show s th a t f *(F)17, -=ff *(F I r-i(r)). Therefore, the surjectivity of

R V - 1 (U), F) H°(f - 1 (T  nU), Fi  f - 1 (n )

is equivalent to the surjectivity of

H°(U, f * (F)) 110(T flU , f *(F)Ir) •

O n the other hand, by Claim (5.6.1), 11°(S, G)--J1°(T, r)  is  surjective, which asserts
that

H °(U , f * (F)) R . ( T n u ,  f  * (F)1

is  surjective because G is reflexive and f  * (F)1 u -----Gl u .  Thus, we have our lemma. El

Let us continue the proof of Theorem (5.4). Using Lemma (5 .6 ) inductively and
the property of the recursively infinite subset M', th e re  is  a n  element m=(mi, •••, md-1)



Semi-stably Polarized fiber spaces 871

o f M ' such  that fo r  general members H i o f  I art H 1(i=1, • •• , d - 1 ) ,  t h e  natural homo-
morphism

1-1*(0A-(D))--> 1 1 ° (0 f - ICU i n  n1 I d- i ) ( D ) )

i s  s u r je c t iv e . O n  th e  o th e r  h a n d , H 0 ( 0 f - i i n i , , , i l d _ 0 ( D ) ) * 0 .  H e n c e ,  D  is linearly
equivalent to an effective d iv isor. T herefore , (L —(f*(c i (X /S , L))/2)• D f*( 1 1 ))< 0  con-
tradicts to  Proposition (2.15). Thus, w e com plete th e  proof of Theorem  (5.4).

H ere, w e  s ta te  the  m ain  theorem o f  th is  paper, w h ic h  is  a n  immediate corollary
o f Theorem  (3.1), Proposition (5.2) and Theorem  (5.4).

Theorem (5.7) A ssume that the characteristic of  the ground f ield K  is z ero. L et d
be a positive integer w ith d _ 2 .  Let f :  b e  a f lat morphism of a (d+1)-dimensional
non-singular projective v ariety  X  to  a  d-dimensional non-singular projective variety  S
with f * Ox = -0 s . L et L  b e  an  f-ample div isor o n  X  an d  H  an  am ple div isor on S.
Assume that the Polarized f iber space (X/S, L) is  H-semi-stable. Then, we have the fol-
lowing inequality o f  Bogomolov-Gieseker's type.

(0(X/S, L).11a - 2 ).<_4(c,(X/S, L)•Hd - 2 ).

6 .  Semi-stably polarized fiber space over a  non-closed field

L et k  be a field, which is not necessarily algebraically closed, and  k the  algebraic
closure o f  k. E very  defin ition  o f  §2  is w ell-defined i n  t h e  ca tegory  o f  algebraic
schemes over k.

L et X  be a n  equi-dimensional projective scheme over k, S a non-singular projective
varie ty  w ith  am ple divisor H  and f :  X - 6  a  f ib e r  sp a c e . L e t L  be a  C artier divisor
on X  and  A  a nef C artier divisor on  X .  A ssum e tha t L  gives a  weak polarization on
f :  X— *S. T h en , w e  have

Proposition (6.1) The notation as abov e . If  S  is geometrically irreducible, then
(1) (X/S, L) is  H-semi-stable if  and only  if  (X / S ,  Lk) is Hi-semi-stable.
(2) (X IS , L )  is A -strongly  H-semi-stable if  and  only  if  ( X IS , L k )  is  Ak-strongly

Hk-semistable.

P ro o f . F ir s t  w e  n o te  ci(XaSk, Lk)=-ci(X/S, L)O k re, which is easily checked by
[4, Example 6.2.9]. Hence, (2) is obvious by Lemma (2.19). T h e  proof o f (1) is very
easy if  w e  re fe r  to  th e  proof o f  Lemma (2.19).

H ence, w e have the  following generalization.

Theorem (6.2) Theorem (3.1), Proposition (5.2), Theorem (5.4) an d  Theorem (5.7)
hold in the category of  algebraic schemes over a  field k if  S is geometrically irreducible.



872 Atsushz Moriwaki

DEPARTMENT OF MATHEMATICS

KYOTO UNIVERSITY

E-MAIL: MORIWAKI@KURIMS.KYOTO-U.AC.JP

References

[ 1 ] W . B a r th , C . P e te rs , A . V a n  d e  V e n , C om pact Com plex S urfaces, Ergebnisse d e r  Mathe-
m atik u n d  ihrer Grenzgebiete, 3. Folge•Band 4, Springer-Verlag, 1984.

[ 2 ] F . A . Bogomolov, Holomorphic tensors a n d  v e c to r  b u n d le s  o n  p ro je c t iv e  v a r ie t ie s , Math.
USSR-Izv., 13 (1978), 499-555.

[ 3 ] F . R . C o ssec , O n  th e  P ic a rd  G roup o f  Enriques S urfaces, M ath . A n n ., 271 (1985), 577-600.
[ 4 ] W . F u l to n ,  In tersection T h e o r y , Ergebnisse d e r  M athematik u n d  H ire r  Grenzgebiete, 3.

Folge•Band 2, Springer-Verlag, 1984.
[  5  ]  D . G ieseker, S ta b le  v e c to r  b u n d le s  a n d  th e  Frobenius morphism, A n n . S c ien t. Ec. Norm.

S u p ., 6  (1973) 95-101.
[ 6  ]  D . G ieseker, O n a  theorem  of Bogornolov on Chern classes of stable  bundles. A m er. J. Math.,

101 (1979), 79-85.
[  7  ]  R . H a r tsh o rn e , R e s id u e s  a n d  D u a lity , L e c tu re  N o te s  in  M athem atics 20, Springer-Verlag,

1966.
[ 8 ] R . H artsh o rn e , A lg eb ra ic  G eo m e try , GTM 52, Springer-Verlag, 1977.
[ 9 ] S . K le im a n , T o w a rd  a  num erica l theory  o f  am pleness, A nn . o f  M a th ., 84 (1966), 293-344.

D . L ieberm an, D . M um ford, M atsusaka's b ig  th e o re m , P ro c e e d in g s  o f  th e  S y m p o s iu m  in
P u re  M athem atics, 29 (1975), 513-530, A. M. S.

[11] M . M aruyam a, O penness o f  a  fa m ily  o f  to rs io n  f r e e  sh e a v e s , J . M ath . K yoto  U n iv ., 16
(1976), 627-637.

[12] V . Mehta, A . R am anathan , Sem i-stable sheaves on  p ro jec tive  va rie tie s  and their restriction
to  c u rv e s , M ath . A n n ., 258 (1982), 213-224.

[13] Y . M iyao ka , T h e  Chern C lasses a n d  Kodaira D im e n s io n  o f  a  M in im al V arie ty , A dvanced
S tudies in  P u re  M athematics 10, 1987, Algebraic Geom etry, Sendai, 1985, 449-476, Kinokuniya.

[14] M . Miyanishi, Non-complete A lg eb ra ic  S u r fa c e s , L e c tu re  N o te s  in  M athem atics N o. 857,
Springer-Verlag, 1981.

[15] A . M o riw ak i, Semi-ampleness o f  th e  N um erically E ffe c tiv e  P a r t  o f  Z arisk i Decomposition,
II, A lgebra ic  G eom etry  and C om m utative A lgebra  in  H onor o f  Masayoshi NAGATA, 1988,
289-311, Kinokuniya.

[16] D . M um ford, A belian  V arie ties, O xford  U niv . P ress , O xfo rd , 1970.
[17] N . N a k a y a m a , Zariski-decomposition Problem  for Pseudo-effective D iv iso rs , H okkaido Uni-

versity  T echn ica l R epo rt se r ie s  in  M athem atics, Series N o. 16, 1990, 189-217.
[ 1 8 [  A . N . P arS in , A lgebra ic  curves over func tion  fields I ,  M ath. USSR-Izv., 2 (1968), 1145-1170.
[ 1 9 ]  J . ? .  S e rre , P ro lo n g em en t d e  fa isceau x  ana ly tic  coherents, A n n .  I n s t .  F o u r ie r , 16  (1966),

363-373.


