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Introduction

Let S be a non-singular projective surface defined over an algebraically closed field
of characteristic zero, H an ample line bundle on S and E a locally free sheaf on S
of rank 2. E is said to be H-semi-stable if for any sub-sheaf L of E of rank one,
the following inequality holds.

(cl(L)'H)é———(C‘(g)'H) .

F.A. Bogomolov [2] and D. Gieseker [6] proved that if E is H-semi-stable, then
(HEN=4(ci(E)).

Let X be the associated projective bundle of E, L the tautological line bundle of
X and f: X—S the natural projection. Then, ¢,(E) and ¢,(E) are determined coho-
mologically by the following equations:

{ (LE f*(x)=(f*(c(E))-L- f*(x))  for all x=H¥S, Q)
(L= f*(c\(E))- L*4 L - f*(co(E))=0.

Furthermore, it is easy to see that the condition of the semi-stability is equivalent
to that

(L— f*(czl(E)) -P.f*(H)) >0

for all f-dominant subvariety I" of X (see Remark (2.20)). The above notions are
easily translated into the case of a polarized fiber space, that is, a surjective morphism
f: X—>S of non-singular projective varieties and an f-ample line bunle L on X (see
Section 2). With this notation, we shall prove a generalized inequality of Bogomolov-
Gieseker’s type in this paper (see Theorem (3.1) and Theorem (5.7)). Our Proof is
based on Miyaoka’s proof of Bogomolov-Gieseker’s inequality [13]. First, we shall
prove the generalized inequality of Bogomolov-Gieseker’s type under a strong assump-
tion (Theorem (3.1)). In this stage, we shall not restrict ourselves to the case of
dim f=1. Next, we shall prove Mumford-Mehta-Ramanathan’s type theorem, that is,
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a theorem about restriction of semi-stable fibration to ample curves (Proposition (5.2)
and Theorem (5.4)). Up to now, we cannot prove Mumford-Mehta-Ramanathan’s type
theorem without restriction of dim f=1. Main reason for this is that the existence
of Zariski decomposition on a higher dimensional variety or weaker theorem (cf.
Lemma (5.5)) is not established. For example, Harder-Narasimhan filtration of vector
bundle is closely related to Zariski decomposition (see [17, §4, Examples (ID)]).

The author would like to express his hearty thanks to Prof. N. Nakayama for
suggesting the notion of Chern classes and semi-stability of polarized fiber spaces. He
also wishes to thank Prof. M. Maruyama for his helpful advises.

1. Notation and Conventions

(1.1) Let K be an algebraically closed field. We shall fix this field K throughout
this paper. Without any statements or comments, every algebraic scheme will be
defined over K.

(1.2) Let X be an algebraic scheme. We denote the free abelian group generated
by i-dimensional sub-varieties of X by Z,X), whose element is called i-cycle. The
group of i-cycles modulo rational equivalence on X is denoted by A;(X). We set
Z(X)q=Z(X)Q®Q and A;(X)eq=A(X)RQ. For a zero-cycle a=>pnpl, the degree of
a, denoted by (a), is defined by (a)=3pnp. Let f: X—)} a morphism of algebraic
schemes. The push-forward and pull-back of algebraic cycles are denoted by f4 and
f* respectively if they are defined. These symbols might be confused with symbols
of direct images and pull-backs of sheaves. But we think that reader can distinguish
them in their context. Details of push-forward, pull-back and intersection product of
algebraic cycles will be found in Fulton's book [4].

(1.3) Let X be a complete algebraic scheme over a field %, which is not neces-
sarily algebraically closed. We set Div(X)={Cartier divisors on X} and Div(X),=
Div(X)®Q, whose element is called a Q-Cartier divisor. 1f X is locally factorial, then
Div(X)=Z gimx-1(X) and Pic(X)=Agimx-(X). Let D be an element of Div(X)e. D is
said nef if (D-C)=0 for all integral curve C on X. D is called pseudo-effective if there
are effective Q-Cartier divisors D, such that D is the limit of the sequence {D,} in
the vector space (Div(X)/=)®QR, where = is the numerical equivalence.

(1.4) Let f: X—Y be a morphism of algebraic schemes. Let I be a subvariety
of X. We say that I" is f-dominant if the image of I by f is Y. Assume that f is
proper. Let L be a Cartier divisor on X. We call L is f-nef if for every complete
irreducible curve C on X with f(C) being a point, (L-C)=0.

(1.5) We denote by Zs, the set of positive integers. Let S be a projective varie-
ty with a very ample divisor /. Let s be a positive integer with 1<s<dimS. For
m=(my, ---, my) E(Z>,)", we set

SH, my={(x, D, -, D)eSx |mH| XX |m||x&D; for all 1=/<s.}.
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Let gn: S(H, m)—|mH|Xx---X |msH| be the natural projection, whose general fibers
are s-times complete intersection varieties by elements of |m,H|, -, |mH|. The
generic fiber of ¢, is denoted by S(H, m),.

(1.6) Let r be a real number. We set [*1=min{neZ|r<n}, which is called the
rounding-up of r.

2. Chern classes and semi-stability for polarized fiber spaces

First, we introduce the notion of a polarized fiber space. Our terminology is
slightly different from usual sense, that is, we do not assume that fibers are connected.

Definition (2.1) Let X be an equi-dimensional algebraic scheme and S a variety.
A morphism f: X—S is called a fiber space if f is proper and every irreducible com-
ponent of X is mapped surjectively to S. Let L be a Cartier divisor on X. The pair
(X/S, L) is said a pre-polarized fiber space. Let X, be the generic fiber of f and r
the relative dimension of f. We set deg(X/S, L)=(L’)X,]. which is called a degree of
the pre-polarized fiber space (X/S, L). deg(X/S, L) is also determined by the formula
fx(L7)=deg(X/S, L) [S]. If L is ample on X,, L is said a weak polarization of the
fiber space f: X—S. Moreover, if L is f-ample, the pair (X/S, L) is called a polarized
fiber space.

For a weak polarized fiber space, we define Chern classes as elements of algebraic
cycles with @Q-coefficients, which is an analogy of Chern classes of vector bundle (see
Remark (2.4)).

Definition (2.2) Let f: X—S be a fiber space from an equi-dimensional algebraic
scheme X to a non-singular variety S with a weak polarization L. Let » be the
relative dimension of f and d the dimension of S. First, we set ¢,(X/S, L)=1 as an
element of A4(S)y. Inductively, we define ¢, (X/S. L)€ Ay_x(S)o(k=1,2, ---, d) as
follows.

_ 1 ra1
c(X/S, [‘)“Fg(x'ﬁ,_];) Fx(LTHY,

-1 42y _ . T4l
co(X/S, L):m(f*(L Y—c(X/S, L) fo(L7*)),

(-1

k-1 )

c(X/S, L)=m igu (—1)ic(X/S, L)+ fo(L7**-7),
(D ey

ca(X/S, L)= D (=1 X/S, L) f(LT+%).

deg(X/S, L) i=
c(X/S, L) is said k-th Chern class of the weak polarized fiber space (X/S, L).

Remark (2.3) By the definition of Chern classes, it is easy to see that
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deg(X/S, L)k cw(X/S, L)eAa_x(S).

Remark (2.4) Let S be a d-dimensional non-singular variety and E a locally free
sheaf on S of rank +1. Let X be the associated projective bundle of E, that is,
Proj(@®%., Sym*(E)), L the tautological line bundle of X and f: X—S the natural projec-
tion., Then, there is the identity

L= (e (E)L+- (=1 f¥(cr n(£)=0.
Multiplying L*-', we have
LTk —fXe(ENLTH* 7 (= 1)F 2 fXep o EN LT (= 1)F f*(ew(EN L7 +--=0.
Thus, taking the push-forward of the above identity, we get
o LTR) = (E) fal LT 4 (=1 lep oy (E) f (LT )+ (=D er(E)=0.
This shows that ¢,(X/S, L)=c.(F).

Cohomologically, Chern classes of a weak polarized fiber space are determined by
equations in the following proposition.

Proposition (2.5) With notation as in Definition (2.2), we assume that X and S are
complete and the characteristic of the defining field is zero. We consider cohomological
equations (Eqy) (k=1, 2, ---, d) with respect to c,€H*(S, Q).

(Eqs) é(—l)i(f*(ci)-L””'i~f*(X))=0 for all xel*=H(S, Q)

We set

{¢i} i=o....a satisfies the above }

V:{(co, L e)EHYS, Q)X x H?4(S, Q) cqnatioms. (Baw) (=1, - . d)

Then, dim,V =1 and the cohomological class of (co(X/S, L), -+, ca(X/S, L)) is an element
of V.

Proof. (Eq;) is equivalent to the equation :

(quk) (__l)k_l Eg;b(—l)i(f*(ct)-Lr+k-i.f*(x)) =(cy-x) for all erz(d—k)(S’ Q)

deg(X/S, L)
Here, we assume that we have already got ¢,, ¢,, -, ¢x-,. Then,
1y DHBCD R L7470 f4()
deg(X/S, L)

defines an element of Homgy(H??-#(S, Q), Q). Since the pairing
H2((S, Q)X H* %S, Q) — Q

is non-degenerate, we have the unique element c,H?**(S, Q) satisfying (Eq’,). which
proves the first assertion.
For xeH2@-b(S ), using the projection formula of algebraic cycles (cf. [4,
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Proposition 8.3]),
_ (DR
deg(X/S, L)

:ﬁ% ((::(—-l)if*(ci(X/S, LY))- LT+k-i).f*(x))'

(ex(X/S, L)-x)= (Z=1reqxss, Dy fulLr++-5)-x)

which is nothing more than (Eq’:). d

Remark (2.6) In the case where the characteristic p is positive, if we consider
the étable cohomology over @,(/# p), we obtain the same results in Proposition (2.5).

When we change a polarization of a fiber space, the first Chern class of this
changes as follows.

Proposition (2.7) With notation as in Definition (2.2), let D be a divisor on S and
k a positive integer. Then,

1) e(X/S, L+ fHD)=c(X/S, L)++1)D.

2) ¢(X/S, kL)=ke,(X/S, L).

Proof. The first assertion is easily derived from the following observation.
Fl(LA DN ) =f(L +(r+DfXD)LT+-)
=f«(L"*)+(r+1)deg(X/S, L)D.
The second is almost trivial because
Fa((RL) )=k fo(LT*Y),
deg(X/S, kL)=Fk" deg(X/S, L). O

The following proposition is one of key steps to prove Theorem (5.4).

Proposition (2.8) Let f: X—C be a fiber space of a non-singular projective variety
X to a non-singular projective curve C with an f-ample divisor L. and the relative di-
mension v. Then, L—(f*(c,(X/C, L))/r+1) is pseudo-effective.

Proof. Set L=L—(f*(c,(X/C, L))/r+1). Let F be a general fiber of f, € an
arbitrary positive rational number and d a positive integer such that d(L+¢F) is a
divisor, which means that every coefficient of d(L+¢F) is an integer. Consider the
Leray spectral sequence

EY=H'(C, RIfs0x(nd(L+eF))) == H*/(X, Ox(nd(L+eF))).
Since (L+¢F) is f-ample, we have

Rif0x(nd(L4+eF))=0 for ;>0 and n>0.
Thus, we get

HY{X, Ox(nd(L+eF))=0 for 7>1 and n>0.
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because dimC=1. Hence,
h(X, Ox(nd(L+eF))ZX(X, Ox(nd(L+eF))>0
for sufficiently large integer n, because
(L4eF)y*)=(L"*)4e(r+1)(L"-F)

=(L* = f*(eu(X/S, L)L) +e(r+1) deg(X/S, L)
=(fo(LT*)=c(X/S, L)f«(L))+e(r+1)deg(X/S, L)
=deg(X/S, L)(c(X/S, L)—c\(X/S, L))+e(r+1)deg(X/S, L)
=¢e(r+1)deg(X/S, L)
>0.

Therefore, L+¢F is linearly equivalent to an effective @-divisor. Thus, L=lim.,,(L +
¢F) is pseudo-effective. O

We shall show some examples of calculations of the first Chern classes. These
calculations are based on the following lemmas.

Lemma (2.9) Let f: X—S be a surjectie, flat, projective and generically smooth
morphism of non-singular varieties with dim f=1 and f©Ox=0s. Then, we have

fx(K315)=—12¢,(R' f 40 x)— fs(co(R}5)) .
Moreover, 1f R'f4«Oyx is torsion free in codunension one, then

—ci(R' fsO0x)=c,(fxwx/s) .

Proof. Let d be the dimension of S. Applying Grothendieck’s Riemann-Roch
theorem (cf. [4, Theorem 15.2]) to f, we have

(2.9.1) Faltd(T ) FHd(T $)™ )= f(td(T x))- td(T's)™*
=((ch(fxOx)—ch(R'f40x))-td(T's))- td(T's)™"
=ch(@s)—ch(R'f+«Ox).

Since f is generically smooth, we obtain the exact sequence

0 —> f¥R}) — Qf —> ks — 0,
which implies that
td(T x) f*¥(td(T's)™")=td(Lx5)™" .

An eary calculation shows that
td(Q.{'/s)“=l—%cl(Q,’ws)-l-11—2(61(9,{%)2+62(Q}(/s))+(terms of higher codimension).

Hence, considering the A,;-,(S)e-part of (2.9.1), we get
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F o350 Qs e @rsN )= e R fu00),

which asserts the first part of our lemma.
By Grothendieck’s duality theorem (cf. [7]), we have

R fswxs[1]=R Homes(R* f4Ox, Os),
which produces the spectral sequence
Eé'j=8xtéS(R'jf*Ox, OS) _— Ei+j_—_Rt+j+1f*wX/S R
Since E}’=0 if /<0 or j#0, —1, EX'=FE%"'. Hence, we obtain
Homog(R' f+O0x, Os)=fxwx1s .

Thus, we have the second assertion of the lemma. O

Lemma (2.10) With notation as in Lemma (2.9), assume that there is a Zariski open
set U of S such that codim(S\U)=2 and f~'(x) is a reduced curve with only normal
crossings for every xe&U. Let I' be a reduced and irreducible divisor on S and R be
the discrete valuation ring associated with I'. We denote by or the number of singu-

larities of the special fiber of Xp. We set 4;,=rorl’. Then, we have fi(c)(R%s))
:Af.

Proof. Set dy={xeXy|f is not smooth at x}, which is a closed set of X,. Let
4 be a closure of dy in X. Shrinking U slightly, we may assume that 4y is non-
singular and fy(dy)req is also non-singular. Here we can keep the condition codim(S\U)
=2. Then, we have the following exact sequence:

0 — Qiyw —> Oxyv —> Oxyw®0Oz, —> 0,

which shows that cz(QXU,U)zflu. Therefore, we have c,(2y,s)=4+z, where z is (d—
1)-cycle whose support is in f~'(S\U). Thus, we get

f*(cz(Q.{'/.s)):f*(J+2):f*(2)=Af . O

Example (2.11) Let f: X—S be a conic bundle over a non-singular projective
variety S. Then, by Lemma (2.9) and Lemma (2.10), we get

_Af

c(X/S, —Kx15)= 9

Example (2.12) Let f: X—S be a fiber space of non-singular projective varieties
with connected fibers and F a general fiber of f. Assume that dim(F)=1, the genus
of F is greater than or equal to 2, f is generically smooth and that there is an open
set U of S such that codim(S\U)=2 and f~'(x) is reduced and has only node singu-
larities for every x&U. Then, by Lemma (2.9) and Lemma (2.10), we have

c(X/S, Kxis)= "12 de;éé(*;))ﬁi))—df
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Next, we introduce the notion of semi-stability of polarized fiber spaces.

Definition (2.13) With notation as in Definition (2.2), assume that X and S are
projective. Let H be an ample divisor on S. We say the weak polarization L of the
fiber space f: X—S is H-semi-stable if for any f-dominant irreducible subvariety I of
X with the relative dimension s, we have

He(X/S, L)) s+ st L \d—1
(1= " DY ey,
For simplicity, we say the weak polarized fiber space (X/S, L) is H-semi-stable if the
weak polarization L is H-semi-stable.

The following proposition shows that the above semi-stability of polarized fiber
spaces is one of analogies of the semi-stability of vector bundles (see Remark (2.20)
for more details).

Proposition (2.14) With notation as in Definition (2.13), the following are equivalent.
(1) The weak polarized fiber space (X/S, L) is H-semi-stable.
(2) For any f-dominant srreducible subvariety I of X with the relative dimension s,

(ex(X/S, L)-H*™) _ (eI'/S, L)-H ™)
r+1 = s+1 )

Proof. Let I' be an f-dominant irreducible subvariety of X with the relative
dimension s. Using the projection formula of algebraic cycles, we get

(G S MRAVAUN)

8+1 s+l s d-1
=((Lrr = XS, LYLe ) T f3(H))
(L1 =S PRSI - £ )
(L1 —desT/S, 1) ST ei(x/s, L)1)
- * | I g s 4 7’+1 1 ’
_ (ex(I’/S, L)-H® ")  (el(X/S, L)-H¢™)
=(s+1)deg(I"/S, L)( o i ).
This proves our proposition. O

Later, we need the following proposition.

Proposition (2.15) With notation as in Definition (2.13), if L is f-nef and the weak
polarization L of fis H-semi-stable, then we obtain that for any t-dimensional subvariety
I of X,

((L— :f*(icé)i_/lw‘ t_d“,[’.f*(H)d'l);O-
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Proof. Clearly, we may assume that H is very ample. If I’ is f-dominant, the
proposition is obvious by the definition of semi-stability. Set d=f(I"). If codim 4=2,
4 does not intersect with a general complete intersection curve by members of |H|.
Hence, in this case,

((L_ fHe(X/S, L))

)z—dn' ['.f*(H)d-l>=0 .

r+1
Next, we assume that codim 4=1. Let C be a general complete intersection curve
by members of |H|. Then, 4NC consists of points, say, {x,, ---, x,}, where r=
(4-C). Since

is nef for each 7, by [9, Chapter 1, §2, Theorem 1] we have

(( p— f¥elX/S, L)

R ]

The following is a numerical characterization of semi-stability over a curve.

Proposition (2.16) With notation as in Definition (2.13), assume that S is a curve
and L is f-nef. Then, the following are equivalent.
(1) The weak polarized fiber space (X/S, L) is H-semi-stable.

fHedX/S, L) is

@ L= r+1

nef.

Proof. By Proposition (2.15), (1) implies (2). We assume (2). Let I' be an f-
dominant irreducible subvariety of X with the relative dimension s. Then, by [9,
Chapter II, §2, Theorem 1], we have

((L—- _f*(m%/ii ,L,&)“l. [')go ,

which proves this proposition. a

The above proposition leads us to a stronger notion of semi-stability.

Definition (2.17) With notation as in Definition (2.2), assume that X and S are
projective and that dim S=2. We use the notation in (1.5). Let H be a very ample
divisor on S and A a nef Cartier divisor on X. We say the weak polarization L of
the fiber space f: X—S is A-strongly H-semi-stable if for any positive rational number
¢, there is an element m of (Z5,)%"! such that

L SHedX/S, L)

| +eA

is nef on the fiber space XX sS(H, m), over the generic complete intersection curve
S(H, m),. In the case where .1 is numerically trivial, we say for simplicity that L



852 Atsushi Moriwaki

is strongly H-semi-stable. Moreover, for convenience, we say the weak polarized fiber
space (X/S, L) is A-strongly H-semistable if L is A-strongly H-semi-stable.

First, we must show that the strong semi-stability is really stronger than the usual
semi-stability.

Proposition (2.18) With notation as in Dejfinition (2.17), if the weak polarization L
of the fiber space f: X—S is A-strongly H-semi-stable, then for any t-dimensional
subvariety I’ of X,

(( 1 fHaX/S, L)

2 )L—d+l‘[1‘f*(H)d—l>gO,

In particular, L is H-semi-stable.
Proof. First, we need the following lemma.

Lemma (2.19) Let X be a complete algebraic scheme over a field k and L a line
bundle on X. Let k be the aigebraic closure of k. Then, we have the following.

(1) L is nef on X if and only if L; is nef on X;.

(2) L is ample on X if and only if Li is ample on X;.

Proof. Suppose L is nef on X. Let C be an irreducible curve on X;. Take a
finite extension field £’ of % such that C is defined over k’. Let n: X, — X be the
canonical morphism of k-scheme. Then, by [4, Proposition 2.5(c) and Example 6.2.9],

(Li-O)=(@@*(L)- O)=(L-7+(C))20,

which shows ‘only if’ part of (1).
Assume L; is nef on C;. Let C be an irreducible curve on X. Then,

(L-C)=(L;z-Cs)=0.

Thus we have ‘if’ part of (1).

Next, we assume that L is ample on X. Take a positive integer m such that
L®™ is very ample. Then, it is obvious that L%" is also very ample on X;. This
shows ‘only if’ part of (2).

Finally, we suppose that L; is ample on X;. Let F be a coherent sheaf on X.
To show that L is ample on X, it is sufficient to see that Hi(X, L®*®F)=0 for suf-
ficiently large n and ;>0 by the cohomological criterion of ampleness. Since L; is
ample on X;, for sufficiently large n and >0,

Hi(Xz L3"QoyF)=0.
By the base change theorem, we have
Hi(X3;, L8 Qo F)=H'(X, L' QF)Rk,

which shows ‘if’ part of (2). O

Let us start the proof of Proposition (2.18). Let ¢ be a positive rational number.
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Then, there is an element m of (Z>,)¢"! such that

_ [HeX/S, L))
r+1

is nef on XxsS(H, m),. Uence, by [9, Chapter ll, §2, Theorem 1] and Lemma (2.19),

we get
t-d+1
V), 20
XxSS(II.m)77

((L f*(cl(X/S L))

Thus, we obtain

_l*(cl(,)g/s’_l’)) fmas * d-1
(e N
which implies our proposition because ¢ is arbitrary. O

Remark (2.20) Let S be a d-dimensional non-singular projective variety, /I an
ample divisor on S and E a vector bundle on X of rank r+1. Let X be the associated
projective bundle, L the tautological line bundle of X and f: X—S the canonical pro-
jection. According to Mumford, E is /l-semi-stable if for any quotient @ of E with
rank s+1,

(c(E)-H* ) < (e(Q)-H)
r+l1 = s+1 ’

By Remark (2.4) and Proposition (2.14), it is easy to see that if (X/S, L) is H-semi-
stable in our sense, then E is H-semi-stable in the sense of Mumford. Next we
observe that Mumford’s semistability of E implies our semi-stability of (X/S, L) if S
is defined over a field of characteristic zero. By [12, Theorem 1.6], for sufficiently
large integer m, there is a complete intersection curve C by |mH | such that E|¢ is
semi-stable. Hence by [13, Theorem 3.1],

_ fHelB))
r+1 7-1¢C»

is nef. Thus, (X/S, L) is H-semi-stable. If the characteristic is positive, Mumford’s
semi-stability does not imply our semi-stability (see Remark (2.25)).

We give more examples.

Example (2.21) Let f: X—S be an elliptic fiber bundle of non-singular projective
varieties, L an f-ample divisor on X and H an ample divisor on S. We will show
that (X/S, L) is strongly H-semi-stable. For this purpose, we may assume that dimS
=]1. In this case, there is an etale covering such that =: SXE—X, where E is an
elliptic curve. Since L—(f*(c,(X/S, L))/2) is pseudo-effective by Proposition (2.8),
a*(L—(f*(c(X/S, L))/2)) is also pseudo-effective. Hence, m*(L —(f*(c,(X/S, L))/2)) is
nef because the pseudo-effective cone is equal to the nef cone on SXE. Hence, L—
(f*(c(X/S, L))/2) is nef, which proves (X/S, L) is H-semi-stable.
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Example (2.22) Let Y, be the blowing-up of P? at a point of P? and f: Y ,—»P*
the natural induced morphism. Let p: S—2, be the blowing-up at general eight points
of ¥,. We set g=f-p. Then, it is easy to see that —Ks is nef and g-ample and
that ((—Ks)*)=0. Hence, (S/P', —Ks) is Opi(1)-semi-stable. But (X,/P', —Kjy)) is not
©p'(1)-semi-stable.

Example (2.23) Y. Fujimoto raised the following example. Here, we assume
char(K)#2. Let X be an Enriques surface, that is, a non-singular projective surface
with HY(X, 0x)=H¥X, 0x)=0 and 0%*=0x. By [1, Theorem 17.5], there is a mor-
phism f: X—P*' such that the generic fiber of f is elliptic. Let F be a general fiber
of f. Due to [1, Proposition 17.6], we have an irreducible curve G such that (G-F)
=2 and (G»)<0. If G is a (-2)-curve, X is called special. In the moduli space of
Enriques surfaces, general Enriques surfaces are not special. Considering the polarized
fiber space (X/P!, G), we get

(2.23.1) (X/P', G) is semi-stable if and only if X is not special.

Proof. First, we assume that X is special. Then,

(6 LI O) 6y (- @)

Hence, (X/P!, G) is not semi-stable. Next, we suppose that X is not special. In this
case, (G*=0, which implies ¢,(X/P', G)=0. Hence (X/P!, G) is semi-stable because
G is nef. 0

In the case where X is not special, one can prove that the nef cone is equal to
the pseudo-effective cone. To show this, it is sufficient to see that (C*)=0 for any
irreducible curve C on X. By the adjunction formula, we have (C?)=0 or (C*)=-—2.
If (C*)=—2, then C is a smooth rational curve. By [3], X has no smooth rational
curve. Hence, we get (C?)=0. Thus, for any polarization L, (X/P', L) is semi-stable
because L—(f*(c,(X/P*, L))/2) is pseudo-effective by Proposition (2.8)

Next, we make a remark about the moduli of semi-stably polarized fiber spaces.

Remark (2.24) Here, we assume char(K)=0. Let C be a non-singular projective
curve and E a vector bundle on C of rank r+1. Let f: P(E)—»C be the associated
projective bundle and F the generic fiber of f. We can easily see that

n—+r
X(Op(n))=( )

r

n+r n+4r
X(O,,w;(n)):deg(cl(E))( )+(l~—g(C))( )
r+1 r

Hence, fixing polynomials X(©#(n)) and X(O.u)(n)) is equivalent to fixing invariants
g(C), r and deg(c,(E)). We set polynomials
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+r n+r n+tr
) and Q(n)=d( )+(1—g(C))( )
r+1 r

r

n
P(n)=(

Then, the moduli space of semi-stable vector bundles E over C with deg(c,(E))=d
and rank(E)=r-+1 is equal to the moduli space of semi-stable fiber spaces (P(E)/C,
Opiy(1)) over C with X(Or(n))=P(n) and X(Opw(n))=Q(n).

Next, we consider more general cases. Let f: X—C be a fiber space of a non-
singular projective variety X to a non-singular projective curve C with dimf=v, L
an f-ample divisor on X and F a general fiber of f. Since

(L1'+l)

deg(e,(X/C, L)= deg(X/C. 1)’

XOr(nL)) and X(©x(nL)) determine deg(c,(X/C, L)) and the relative dimension » of f.
Set

deg(e,(X/C, L»}

a=max{neZ|n< sy |

which depends only on deg(c,(X/C, L))/r+1. Then, it is easily checked that L—aF
is ample if (X/C, L) is semi-stable and that

X©x(n(L—aF))=X0x(nL)—anX(©r(nL)).

Let P(n) and Q(n) be polynomials. ‘The above observation and Matsusaka’s big theo-
rem (cf. [10]) show us that the family of semi-stable fiber spaces (X/C, L) over C
with X(©r(nL))=P(n) and X(©x(nL))=Q(n) is bounded. But we don’t know at present
the existence of the moduli space of this family.

Finally, we want to discuss about openness of a family of semi-stably polarized
fiber spaces.

Remark (2.25) Let S be a non-singular projective variety with an ample line
bundle H, T an algebraic scheme, f: £—SXT a morphism of algebraic schemes and
L an f-ample line bundle on X. Let p: SXT—T be the natural projection. Assume
that p.f: X¥—T is flat and that for every teT, (X,/SXt, .L,) is a polarized fiber
space. With this notation, there is a natural question whether the set of points t€T
such that (%¢,/SXxt, .£,) is H-semi-stable is open. In the case of vector bundles, this
was proved in [11] if the characteristic of the defining field is zero. (If the charac-
teristic is positive, our definition of semi-stability is stronger than usual Mumford
sense. Hence, we can not apply [11] to our question even if we consider the pro-
jective bundle arising from a vector bundle. For more details, see the example of
this Remark.) But in our general situation, we know a little about this. First one is

(2.25.1) (Valuative specialization) [n the case where T is a spectrum of a discrete
valuation ring, if (X/SXT, L) is not H-semi-stable at the generic point of T, then
(2/SXT, L) is not H-semi-stable at the special point of T.
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Proof of Valuative specialization. Let 5 be the generic point and o the special
point of T. Since (X,/SX9, L,) is not H-semi-stable, there is an f,-dominant sub-
variety /" such that

(- f*(c'(xr/i?T' DN "), <0,

where r=dim f, d=dim S and ¢t=dim I". Take a subvariety /" of & such that I'/=1".
Since /'’ is flat over T, we have

((.C__f*(cl(i?é’/SXT, L))

r+1 )l-d+l,F(;-f*(1{)d_l>xo<0’

which shows (¥,/SXo, .L,) is not H-semi-stable by Proposition (2.15). O
In the case where dimS=1, we have the following.

(2.25.2) Assume that dimS=1, T s irreducible and that (/SXT, .L) is semi-stable
at the generic point of T. Then, there are countably many dense Zariski open sets
{Untn=r.s.. of T such that if xeNg=U,, then (X/SXT. .L) is semi-stable at x.

Proof. By the numerical characterization of semi-stability (Proposition (2.16)), it
is sufficient to show the following.

(2.25.3) Let f: X—>S be a projective and surjective morphism of an algebraic scheme
X to an algebraic variety S and L a line bundle on X. If L 1s nef on the generic fiber
X, of f, there are countably many dense Zariski open sets {U,} - .. such that if s
N U, L ois nef on X;.

Proof. Let A be an f-ample line bundle on X. Take a positive integer n. Since
L is nef on X,, nL+A is ample on X, by Lemma (2.19) and [9, Chapter IV, § 2,
Theorem 1]. Hence, there is a dense Zariski open set U, such that if s€U,, nL+A
is ample on X;. Thus, if seN5-,U,. nL+A is ample on X; for all n, which implies
that L is nef on X;. O

Finally, we give a negative example to the above question in positive characteristic.
First of all, we note the following fact, which is easily proved if we refer to [13,
Proof of Theorem 3.1].

(2.25.4) Let C be a non-singnlar projective curve over an algebraically closed field
of positive characteristic and E a vector bundle on C. Let X be the projective bundle
of E, L the tautological line bundle of X and f: X—C the natural projection. Let F
be the Frobenius morphism over C. Then, the following are equivalent. ’

(1) (X/C, L) is semi-stable in our sense.

(2) (F™*(E) is semi-stable in the sense of Mumford for all n=0.

By [5], for each prime p and integer g>1, there is a non-singular projective curve
C of genus g in characteristic p and a sequence of vector bundles {E,} .- ... so that
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(1) E, is of rank 2 and of degree 0,

(2) E, is semi-stable in the sense of Mumford,

(3) F*(E,) is isomorphic to E,_, and

(4) F*(E)) is not semi-stable in the sense of Mumford.
We can take a quasi-projective scheme T and a vector bundle &€ of rank 2 on CXT
such that for all semi-stable vector bundle E on C with rank 2 and degree 0, there
is a point ¢tT such that E is isomorphic to &,. Let X be the projective bundle of
&, .L the tautological line bundle of ¥ and f: X—CXT the natural projection. We set

U,={teT|(F")*&,) is semi-stable in the sense of Mumford.},

which is open by [11]. Clearly, U,,,SU,. But the above sequence {E,} shows that
U,.#U,. Hence, N, U, is not open. On the other hand, by (2.25.4), for teT,
(¥,/CXt, .L,) is semi-stable in our sense if and only if teN,U,. Therefore, the
openness of a family of semi-stably polarized fiber spaces does not hold in this example.

3. Inequality of Bogomolov-Gieseker’s type

In this section, we shall prove a generalized Bogomolov-Gieseker’s inequality for
a fiber space with a strongly stable polarization.

Theorem (3.1) Let f: X—S bea fiber space over a d-dimensional non-singular pro-
jective variety with dimf=r and dimS=2. Let L be an f-ample Cartier divisor on X, A a
nef Cartier dwisor on X and H a very ample divisor on S. Assume the polarized fiber
space (X/S, L) is A-strongly H-semi-stable. Then, we have the following inequality.

r(ci(X/S, L)-H*)<2(r+1)(co(X/S, L)-H¢=?).

Proof. Replacing L by a multiple of L, we may assume that ¢,(X/S, L)/r+1 is
represented by a divisor M on S using formulae in Proposition (2.7). Moreover, adding
some ample divisor to A, we may assume that A is ample and that for any positive
rational number ¢, there is an element m=(m,, .-, my_,) of (Z>,)%"' such that

L IS, Ly

P +eA

is ample on XXsS(H, m), by Proposition (2.19) and [9, Chapter IV, §2, Theorem 1].
We fix ¢ and m for a moment. Let ¢ be a positive integer such that t¢ is integer.
Let H,, ---, H;_, be general members of |mH|, ---, |[mq_,H | respectively. Set T'=
H,N---NH,_, and C=H,NH,--NH,_,. Then,

fX(ei(X/S, L))
(1= 7550 T ) L,

is ample. We set L=L—f*M), W=f-'(T) and V=,-1(C).

vcwcX

ool
ccrtcsS
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Claim (3.1.1) There are positive integers T, and T, such that
HW, ow(n(L—T,f*H))=0 and H*W, Ow(n(L+T.f*(H)))=0

for all sufficiently large integer n.

Since ((L4¢A)" - f*(H)*)>0, there is a positive integer T, such that
(L—T. f*H)-(L+eA)T - f¥(H)*")<0.

Hence, H'W, Ow(n(L—T,f*(H))))=0 by the same argument as in the proof of Pro-
position (2.18). Because of f-ampleness of L, there is a positive integer T, such that
L+T,f*(H) is ample. Thus the second assertion is an immediate consequence of
Serre’s vanishing theorem.

Claim (3.1.2) Hi{(W, Ow(nL)=0 tor i>2 and n>0.

Since Rif4Ow(nL)=0 for i>0 and n>0 by f-ampleness of L, the Leary spactral
sequence
Y=HYT, R'f4Ow(nL)) == H*W, Ow(nL))

is degenerate. Thus (W, Ow(nL)=HYT, f+Ow(nL)). Therefore we have our claim
because dim7T =2.

Claim (3.1.3)

hw, Ow(n@)_
(nt)r+2

E{:llei—l(rz—l)(zr+l—i'Ai,f*(f—l)d—l)_l 1 )

<emy e md-n(T1+1)( G+D! T+

for sufficiently large integer n.

The short exact sequence
0 —> Ow(ntL—(k+1)V) —> Ow(ntL—kV) —> Oy(ntL—kV) —> 0
gives rise to a left-exact sequence
0 —> HW, Ow(niL—(k+1)V)) —> H'W, Ow(ntL —kV)) —> HY(V, Oy(ntL—kV)),
which provides us with an inequality
RW, Ow(ntL —kV)—hW, Ow(ntL—(k+DVNSA'V, Oy(ntL—kV)).

Taking the summation from £=0 to k=[ntT,/m,1—1 of the above inequality, we have

_ _ rntTy/myl-1 _
h(W, Ow(ntL)—h" (W, Ow(ntL— RAZEY V)= l}"_,‘l h'(V, Op(ntL—EkV?))
m, k=0

< [—’%1 RV, Oy(ntL)).

Since [ntT,/m,1=ntT,/m,, by Claim (3.1.1) we obtain
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h(V, Oy(nt(L+eA))

(3.1.4) RO, ow(ntz))gﬂm—”L—l)

for sufficiently large n. On one hand, since L+¢A is ample on V,

h(V, Ov(nl( L+ A=AV, Op(nt(L+eA)))

_ (L4eA) Yy
T (D!

(L+eA) = f¥(H)Y

(n1)"*'4+(lower terms)

=My Mgy D1 (nt)y"*'+(lower terms)
(L4eA)y - f*H) D4e
=MmyMgoy r+1D)1 (nt)

for sufficiently large n. On the other hand, we have
(Lt fH)E ) =((L7* = L7+ fXeu(X/S, L)+-)- f¥H)*™)
=((f( L™= f&(L7)-ei(X/S, L))-H*™Y)
=deg(X/S, L)(e\(X/S, L)—e(X/S, L))-H*™)

=0.
Hence, we get
(3.1.5) WV, Op(nt(L+eA))
S et PNLT AL ) 4

Semy Mgy (nt)r*!

(r+1)!
for sufficiently large n. Thus, by (3.1.4) and (3.1.5), we have Claim (3.1.3).

Claim (3.1.6)

h*W, Ow(ntL)) ) JHe (T PNLT AL fR(H )Y 1
(et <emy- 7nd-l(T2+1)< ’ D! (r+1) !>

for sufficiently large integer n.

The proof of Claim (3.1.6) is almost the same as that of Claim (3.1.3). But details
are slightly different. By the same argument as in Claim (3.1.2), we see

HY(V, 0y(n(L+FV)=0 i>1 and n30.
Hence, the short exact sequence
0 — Ow(ntL+kV) —> Oy(ntL+(k+1)V) —> Ov(ntL+(k+1)V) —> 0
gives rise to a right-exact sequence
H\V, Oy(ntL+(k+1)V)) = HXW, Ow(ntL+kV)) — HW, Ow(ntL+(k+1)V)) -0,

which shows an inequality
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hW, Ow(ntL+EV)—h2 W, OwntL+(k+DVNS WYV, Op(ntL+(E+1V)).

Taking the summation from k=0 to k=[ntT,/m,1—1 of the above inequality, we have
TntTe/my1-1

nEW, Ow(ntL_))—hZ(W. ow(nt[+[ "‘-ﬁ1v))g S ANV, Ov(ntL+(E+1V)).

m,

Since [ntT./m,| = ntTy/m,, Claim (3.1.1) implies H2W, Ow(ntL +ntT/m1V))=0.
Let F be a general member of |(£4+1)V|,|. Clearly, F is a sum of general fibers of
flv. Hence, considering the exact sequence

0 — Op(ntLl) —> Op(ntL+(k4+1)V) —> Op(ntl) —> 0,

we have
WV, Op(ntL)=h'(V, Ov(ntL+(k+1DV)).

Thus we get

WW, Ow(nt L)< [ ";Zﬂ WV, Op(ntL))
gﬂ(z;liﬂl WV, ov(ntL))
:_’?’—(;““l(/w(v, Ov(nt L) =XV, Oy(ntL)
< MMTED oy opnt(L+e AN UV, OvntLY)

m,

for sufficiently large integer n. Finally noting that the degree of X(V, Oy(ntL)) with
respect to n is » at most, we conclude our Claim by (3.1.5).

Let us continue the proof of Theorem (3.1). By Claim (3.1.3) and Claim (3.1.6),
we have

‘(,er'f*(H)d_z)i_ (L)

(r+2)! T omgemgoy-(r+2)!

o XUXm, Ox,(ntL))
—LIPBQ My Mg_,-(nt) 2

h*W, Ow(ntL))+h*W, Ow(ntL))

o
:hr}liup My g - (nl)"*?

SR PN LT AN fRH )Y 1
és(Tl-!-Tz-l-Z)( (411 +(r+1)!)'

Since ¢ is arbitrary, we get (L7*2. f¥(H)*-2)<0. On the other hand, since

a_% =cX/S, L)—cu(X/S, L),

we get
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(Er+2,f*(H)d—2)

r+2
2(r+1)

— TH2)__ 7’+2 r+1 7’+2
= (L= T AL eX/S, Dt 5

= (L= T2 L e/, Ly

r+1 L7 f*(cy(X/S, L))2+...).f*(H)d-2>

F(L7)eAX/S, L)). H d-z)

fo(L7H)  r42
deg(X/S. L) 2(r+1)

=deg(X/S, L)(( CH(X/S, L)1)

v

—deg(X/S, L)(-zm

¢X(X/S, L)-H%2—cy(X/S, L)~HH).
This completes the proof of Theorem (3.1). O
An immediate corollary of Theorem (3.1) for dimf=0 is the following.

Corollary (3.2) Let f: S’—S be a generically finite fiber space over a non-singular
projective surface S. Let L be an f-ample Cartier divisor on S’ and H an ample divisor
on S. Assume that (S'/S, L) is H-semi-stable. Then, (S’/S, L) is strongly H-semi-stable.
In particular, (cx(S’/S, L))=0.

Proof. Let Sieq=2S; be the irreducible decomposition of the reduced structure
Sleq of S’ and f;: S,—S the induced morphism. By Bertini’s theorem, for sufficiently
large integer m, |mH | contains an member /" such that /';=f37'(I") are irreducible for
all 7. To see that L— f*(c,(S’/S, L)) is nef on f~(I'), it is sufficient to prove that

(L—f*(ei(S'/S, L))-I')=0.
The definition of semi-stability implies that
(L—f*(ci(S'/S, L)-T')=(L—f*(c\(S’/S, L))-Si f*¥(mH))=0.

Hence, we have our corollary. O
The Hodge index theorem is derived from our inequality.

Corollary (3.3) (Hodge index theorem) Let S be a non-singular projective surface
and NS(S) the Neron-Severi group of S. Then, the signature of the intersection pairing
on NS(S)QQ is (1, p—1), where p is the rank of NS(S).

Proof. Since the intersection pairing on NS(S)Q® is non-degenerate, the signature
of this must have type (a, b) with a+b=p. Hence, we can take a basis x,, -, x,
NS(S)®Q such that

(1) x, is ample,

2) (x;-x;)=0 for i+,

3) (x>0 for i=1, -+, a and

4) (x5)<0 for j=a+1, -, p.
Therefore, our corollary is deduced directly from the following.
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Lemma (3.4) Let S be a non-singular projective surface. Let H be an ample divisor
on S and D a divisor such that (H-D)=0. Then, (D?*)<0.

Proof. Let S, and S, be two copies of S. We set S’=S,J1S,. Let f: S"—S be
the natural morphism. We define L as follow.

D on S,
L:{
0 onS,.
Then, it is easy to see that ¢,(S’/S, L)=(D/2) and (¢c,(S’/S, L))=—(D?)/4. Since
(L—f*(c:(S’/S, L)) f*(H))s,=(L—f*(c(S’/S, L)) f*(H))s,=0,
(S’/S, L) is H-semi-stable. Hence, by Corollary (3.2), we get

(exs'/S, Ly="L"

=0. O

4. Weil’s lemma for flat fiber spaces

Let f: X—S be a flat fiber space of non-singular projective varieties with f4+©0x=0s
and H a very ample divisor on S. Let s be a positive integer with 1<s<dimS and
m=(m,, -+, my) an element of (Z>,)*. We use the notation in (1.5). Set S,=S(H, m),
(Sw)p=S(H, m), and Tpn=|mH|X X |mH|. Let pn: Sn—S and gn: Sx—>Tnx be the
natural projections. Set X,=XXsSn and (Xn),=XXs(Sn),. Furthermore, we set the
induced morphisms as follows.

Pm Tm
X Xn (Xn)y
A PR [
S Sn (Sm)y
| 4
T

gm:(Im'fnh An=DPm Tm, zm—_—ﬁm'%'m'

It is easy to see that S, is non-singular and p, is smooth. With this notation, we
will prove the following lemma in this section.

Lemma (4.1) (Weil’s lemma) If dimS=2, f is generically smooth and m;=3 for
all 1<i<s, then the homomorphism

% ¢ Pic(X) — Pic((Xn)y)

is isomorphic.
Proof. First, we need:

Sublemma (4.1.1) Assume s=1. If we set Apn={x&T.,|gx(x) is not integral},
then codimA,,=2.
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Proof. Let E be a reduced effective divisor on S such that f is smooth over S\E.
Let I’ be a reduced and irreducible divisor such that '€ E. Let f~(I")=Xa;E; be
the irreducible decomposition of f~!(I") and 7y the generic point of /'. Flatness of f
shows that f(E;)=I". Hence, f'()NE;#@ for all ;. Thus, f~'(I") must be reduced
and irreducible because f-!(y) is smooth and connected. This proves that

AnS{x €T »|gni(x) is not integral} U {x T | (x)S E}

Since m,=3, due to [12, 2.1.3 iii)], codim{x&T,|gz'(x) is not integral} =2, which
asserts our corollary. O

Next We need:
Sublemma (4.1.2) Pic(Xn)=7pX(Pic(X))PgLPic(T ).

Proof. Let L be a line bundle on X,. Since pz'(x) is a product of hyperplanes
in the projective spaces |m,H| for xX, there is a line bundle M, on T, such that
LRgk(MTY) is trivial for all fibers of f,. Hence, LQgi(M71")=p%(M,) for some line
bundle M, on X, which proves that Pic(X,) is spanned by pX(Pic(X)) and gk(Pic(T »)).

Next, we assume that O = ph(M,)Qgx(M,) for some M,&Pic(X) and M,ePic(T ).
Then, g,’;(Mz)l%l(,) is trivial for all x&X. Hence, M, must be trivial by the same
reason as above. Therefore, we have M,=0y because (§n)xOx,=0x. 0

Now let us start the proof of Lemma (4.1).

(4.1.3) (The surjectivity of i%) Let L be a line bundle on (Xn),. Since any line
bundle on X, can be represented by a divisor, there is a line bundle L’ on X, such
that #¥(L’)=L. By Sublemma (4.1.2), we have M,&Pic(X) and M,=Pic(T ) such that
L'=pi(M)Qgx(M,). Then,

DM )=FR(L' Qgh(M7 )=h(L)=L

(4.1.4) (The injectivity of 1) Let L be a line bundle on X such that i%(L)=
Ox > First, we assume s=1. Since p%(L) is trivial on the generic fiber of g,
using the upper semi-continuity of cohomology, the set

{xeTnlh*(gn'(x), PRLN>0,  Agn!(x), PR(L)>0}

is equal to T,. Noting the fact (cf. [16, p 54, Proof of Corollary 6]) that for a
proper integral algebraic scheme V over a field and a line bundle M on V, if
h°(V, M)>0 and A°(V, M-')>0, then M=0,, we get ﬁ,ﬁ(L)lg;Ll(,):—:O,;;(,, for xe
Ta\An. Thus, if we set M=((gn)«(PE(L)))"", then p%(L) is isomorphic to gX(M) on
Xn\gn'(An) (see [16, p 54, Proof of Corollary 6]). Since s=1, ¢, is flat. Hence, gn.
is also flat. By Sublemma (4.1.1) and flatness of g,, codim(gn'(An))=2, which implies
PE(L)= gk(M) because M is a line bundle. Thus, we complete the proof of (4.1.4) in
the case where s=1.

For s>1, we proceed by induction on s. For this purpose, note the following fact
(cf. [12, Lemma 2.1.2]).
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(4.1.5) Let h: V—Z be a proper flat morphism of irreducible varieties such that
all fibers are integral. Let M be a line bundle on V. Then, the following are
equivalent :

(1) M is trivial on the generic fiber of /.

(2) M is trivial on all geometric fibers of i over a non-empty Zariski open set of Z.

(3) M is trivial on all the geometric fibers of h.

(4) There is a line bundle R on Z such that M =h*(R).

Let I’ be a general member of |[m,/1|. Then, by the hypothesis of induction,
L|s-1cpy is trivial. Hence, L must be trivial using injectivity of the case s=1. O

5. Restriction of semi-stable fiber spaces to curves

This section is devoted to proving Mumford-Mehta-Ramanathan’s type theorem.
Throughout this section, we use the notation in §4 freely and assume that the chara-
cteristic of the ground field K is zero.

Definition (5.1) Let d be a positive integer with d=2. Let X—S be a flat and
surjective morphism from a (d+1)-dimensional non-singular projective variety X to a
d-dimensional nonsingular variety S with f.©0x=0s. Let L be an f-ample divisor on
X and H a very ample divisor on S. For m&(Z5,)?¢"!, we set

vm(X/S, L, H)

*
0, if L— —'f(—c'(Xzﬁ’ »IfDAis nef on (Xn),,

= 4 is an irreducible curve on (Xn), with
1 min{deg(dﬁ(sm),,)l(ll_ fHe(X/S, 1;))7‘40 <0. } otherwise.
2 Xm)y

We say (X/S, L) is H-bounded if {v,.(X/S, L, H)} newzspe-1 is bounded.

We divide polarized fiber spaces into two cases.
(1) (X/S, L) is H-bounded.

(2) (X/S, L) is not H-bounded.

First, we treat the case (2).

Proposition (5.2) With notation as in Definition (5.1), if (X/S, L) is not H-bounded,
then (X/S, L) is f*(H)-strongly H-semi-stable.

Proof. We need the following Lemma.

Lemma (5.3) Let f: V—C be a surjective morphism of a non-singular projective
surface V to a non-singular curve C with all fibers connected. Let I be a general fiber
of f and L a divisor on V such that (L-F)>0. Assume that L—Kyc is nef. Then,
for any f-dominant reduced and irreducible curve 4,

—(4-F)(L?)
(4-F)+(L-F)"

(L?)
(z- AL F) F-4)z 22
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In particular, if (L*)z0,

L2 — L2
(L—ZA((IT)F-)F./Og (4).

Proof. The essential idea to get our inequality is found in [18]. Let ¢: 4—4 be
the normalization of 4. Then by Hurwitz formula,

(L+4-H=(L—Kyic)+(Kye+4)-4)
=(Kyio+4-4)
=(Ky—f*(Ke)+4-4)
=deg(K4)—(f*(K¢)-4)
=deg(Kj)—deg(c* f*(Kc))

0.

v

We set a=(L+4-4). Thanks to Hodge index theorem (cf. Corollary (3.3)),
(L® (L-F) (L-4)

(F-L) (F?) (F-4)
4-L) 4-F) (4%

.2_-Oy

which implies
2(a— ()4 F)L-F)—(L-Fy4*)—(4- F*(L*)=0.
Thus, we obtain

2a(4-F)L-F)—(4-F?(L?

W= = Ped-H+I-F)

Hence, we have

( _ @y F‘A)Z(l——(d'& (LA(F-4)

AL F) L-F)
_ 24-F) —(4-F)LY
2a(1 24 - FY+(L-F) )+ 22d-F)+(L-F))
—(4-F)(L? O
=20d- P+

Let us go back to the proof of Proposition (5.2). Adding some multiple of f*(H),
multiplying L and using Proposition (2.7), we may assume that L and L —Ky,s are
ample. Let ¢ be a positive rational number. Take an element m=(m,, -+, mq_,) of
(Zs)%~' such that

_(_“;}r_tl(ﬁ)_‘i—_])_+5ym(X/S. L. H)H %s>0.

Note that the numerical criterion of ampleness on a projective surface works well
even over a non-closed field (see the argument of the proof of Lemma (2.19)). Hence,
to show that
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L— _fj(C;_(Xz/_S,ﬂ +ef*(H)

is ample on (Xn),, it is sufficient to see that

(L_&K);/E’Ll+ef*(y).4> >0

(Xm)ﬂ

for a (f n),-dominant irreducible curve 4 on (Xn), such that

(L_ fj(C_l(XZ/,S,WL)) -A) <0.
(Xm,)q
By Lemma (5.3), we get
f¥(eiX/S, L))
(L— 5 +ef*(H)-A)(Xm)7]
L2

2 Exwn o(puit)- Dr,,

myeeomgy(— TSI 4 g p0H 4s)

2myemg(—E LI e s, L, HH )

>0. : O

Next, we treat the case (1), that is, (X/S, L) is H-bounded, which is similar to
classical vector bundle situation. We use Mumford-Mehta-Ramanathan’s method [12].

Theorem (5.4) With notation as in Definition (5.1), if (X/S, L) is H-bounded and
H-semi-stable and f is generically smooth, then (X/S, L) 1s strongly H-semi-stable.

Proof. First of all, we prepare some notions. Let M be a subset of (Z5,)*. An
element m=(m,, ---, m,) of M is called a minimal element of M if for all x=(x,, -,
x;) of M, we have x;,=2m;(i=1, ---, s). For x&Zs,, we set

M(x)=A{(xs, -, X)E(Z5)'" ' |(x, %o: -+, x)EM} .

Inductively, we define a notion of recursive infiniteness of M as follows. In the case
s=1, M is said to be recursively infinite if M has infinitely many elements. In the
case s>1, M is said to be recursively infinite if the set

{xeZ>,] M(x) is recursively infinite}
has infinitely many elements.

For a recursively infinite subset M of (Zs,)*, we have

(5.4.1) (1) Let M=M,U---\UM, be a partition of M. Then, one of M, .-, M,
is also recursively infinite.
(2) Let m=(my, ---, m,;) be an element of M. Then, the set
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M'={(x,, -, x)eM|x;zm; for all 7}
is also recursively infinite.
Proof of (6.4.1) If s=1, (1) and (2) are trivial.

For s>1, we proceed by induction on s. Set T={x&Z5,|M(x) is recursively
infinite}. For t<T, one of M,(t), ---, M,(t) must be recursively infinite by the hypo-
thesis of induction. Hence, there is an infinite subset 7’ of T and j such that Mj(x)
is recursively infinite for x&T’, which completes the proof of (1).

For the proof of (2), we set W={x&Zs,|x=m, and M(x) is recursively infinite}.
For xeW, M’(x) is recursively infinite by the hypothesis of induction. Hence, we
have (2).

Let us start the proof of Theorm (5.4). We fix a sequence (a,, -, a@4-;) of positive
integers. For m=(m,, -+, mg_))E(Z>o)*"", we set a(m)=(a1, ---, agy™M).

We will prove that L—f*(c,(X/S, L))/2 is nef on (Xacm)), for some me(Zs,)* .
Here, we assume that L—f*(c,(X/S, L))/2 is not nef on (Xsmy), for all me(Z5,)%".
Since L is f-ample, there is an integer ¢ such that

_ SHe(X/S, L))
2

L +tf*(H),

say A, is ample. For m=(0m,, -+, mq_) (L)%}, we define g, as follows.

(A-D) D is an effective divisor on (Xq(my), such that
gn=min {2 Eamy \( PR ACCIRDN <0 3
X g(m) )

Mmi...
ay ag— 2 .

Let D, be an effective divisor on (X4cm)), such that

(A Da)x amyy f¥eX/S, L))
Op= a;"l...a;”f_il‘l and (L— 2 .Dm>(,l'a(m))v<0.

Claim (5.4.2) D, is irreducible and reduced.

Assume that there are non-zero effective divisors E, and E, on (Xam), such that
Dn,=E,+E,. Then,

(L-L2e/s. 1)

2 t><X,.<m>> <0

7

for an 7. Since A is ample,
(A D) aimyy> (A EDx gemy

which contradicts to the minimality of o¢,,.
By Lemma (4.1), we can find a divisor on [,, on X such that sy Dm)~D .
Then,

7’

(A-Dm)ix qempn=alrag (A Doy fH(H)2Y),
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which asserts ¢, is an integer.
Claim (5.4.3) ¢, s bounded.

Let 4, be an irreducible and reduced curve on (Xacmy), such that

*
vaen(X/S, L Hy=deg(n(Sucm)y) and (L—LOELID gy o,
a(m)dy

Then, we get

< (A'dm)(xa(,,l))r/

Mg—
ainl...ad_‘il 1

Af*(H) - 4)x aqm 7

my... -1
al l...ad_]

:t"'a(m)(X/Sy L’ H)(H d)S )

Tm

which implies our Claim (5.4.3).

Hence, by (1) of Lemma (5.4.1), we have a recursively infinite subset M of (Z5)¢"!
such that ¢, is constant for every meM. Moreover, by (2) of Lemma (5.4.1), we
may assume that‘ M has the minimal element my=(mq ;, ==+, My a-1)-

Claim (5.4.4) For all meM, Zﬁ(mo)(ﬁm) is linearly equivalent to an effective divisor.
Let m=(m,, ---, mq_;) be an element of M. By the upper semi-continuity of the
dimensions of cohomology groups, we have
H(gatmy(x), Ox(Dn)#0  for all x&Tqcm
and there is a dense Zariski open set U, of T4, such that
h(gatmp®). Ox(Dm)—1=dim|Tcnyy(Dn)|  for all teUn,.
Setting kn=af-mo1.qgd i7" 41 et f,, .-, 1, be kyp-distinct general members of
Un(K). Set Vy=gzmy(t;). Since SUmV, is a fiber of gacm), We obtain
km ~
H(Z Vs 0x(Dn))#0.
j=1
Thus, considering the injective homomorphism :
~ km ~
OE;Z"iVj(Dm) —> "GleVj(Dm);

we see that for some j, H°(V;, Ox(Dn)#0. Hence we get our Claim (5.4.4) because
V;is a fiber of gacm, OVer a point of U.,,.

Since (A-ﬁm-f"‘(]%l)"-‘)—_—a,,,0 and (L—(f*(c.(X/S, L)/2)-Dn- f*(H)4-1)<0, by the
same argument as in Claim (5.4.2), Zi‘(mo,(ﬁm) is linearly equivalent to an irreducible
and reduced curve 4 such that

(L LS. 1)

2 )(xa(m0>>,7<0.

(5.4.5)



Semi-stably polarized fiber spaces 869

On the other hand, by Proposition (2.8), (L—(f*(c.(X/S, L))/2)|cx yemopn 1S Pseudo-
effective. (Note that in the proof of Proposition (2.8), it is not essential that the
defining field is algebraically closed.) To see that there are finitely many irreducible
curves with the property (5.4.5), we need the following lemma.

Lemma (5.5) Let S be a non-singular projective surface over a field k, which is
not necessarily algebraically closed. Let D be a pseudo-effective divisor on S. Then, the
number of integral curves C with (D-C)<O0 is finite.

Proof. Let kb be the algebraic closure of 2 and C a curve on S. Then, since
(D-C)x=(D-C)x,, we may assume that k is algebraically closed. In this case, this
lemma is an immediate consequence of Zariski decomposition of D or the first step to
prove the existence of Zariski decomposition on a surface (cf. [14, Lemma 3.6], [15]
and [17]). O

Thus, we have a recursively infinite subset M’ of M such that i;‘:(mo)(ﬁm) are
linearly equivalent to each other for all meM’. Therefore, by Lemma (4.1), 5,,, are
linearly equivalent to each other for all meM’. We take a divisor D on X such that
for all meM’, D,~D. Here we need the following lemma.

Lemma (5.6) (Enriques-Severi-Zariski’s lemma for flat fiber spaces) Let f: X—
S be a surjective and flat morphism of non-singular projective varieties with dimS=2.
Let F be a reflexive sheaf on X and H a very ample divisor on S. Then, there is a
positwe integer n, such that for all n=n, and a general member T of |nH |, the natural
homomor phism
HY(X, F)—> H(f"XT), Fls-1a»)

is surjective.
Proof. Set G=f4«(F)"~ and d=dimS. First, we prove the following claim.

Claim (5.6.1) There is a posilive integer n, such that H'(S, GROs(—nH))=0 for
all n=n,.

By Grothendieck duality (cf. [8, §liI, Theorem 7.7]), we have

(HXS, GROs(—nH))" =Ext$(CROs(—nH), ws)=Ext§ (G, ws(nH)).
Since H is ample, there is a positive integer n, such that for all n=n,, p#0 and ¢,
H?(S, exiby(G, 0s)Qu(nH ))=0.
Hence, considering the spectral sequence
HP(S, &xths(G, 05)Qw(nH)) = Ext& 4G, ws(nH)),

we obtain
Ext¢~(G, ws(nH)=H(S, &x5'(G, 0s)Quw(nH)).

On the other hand, since G is reflexive and d=2, we get
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depth, G, =2 for all x&S,

which implies that €xt§5'(G, @s)=0. This proves our claim.
Since f4«(F) is torsion free, there is a Zariski open set U of S such that
codimg(S\U)=2 and f«(F)|y is locally free. Note the following facts.

(5.6.2) Let V be a non-singular variety and ¢ a coherent sheaf on V.
(i) Q@ is reflexive if and only if Q is locally a second syzygy sheaf (cf. [12,
Lemma 3.17).

(ii) Let W be a Zariski open set of V with codimy(V\W)=2 and i: W—V the
inclusion map. If Q is reflexive, then i (¢*(Q)=Q (cf. [19]).

For n=n,, take a general member T of |nH | such that

(1) T and f-YT) are non-singular,

(2) codimp(T\TNU)=2,

B) R'f«(F)YR0s(—T)—R'f«(F) is injective and

4) Glr and Fl; -1, are reflexive.

Then, we have that codimg(X\f~'(U))=2 by flatness of f and the restriction
homomorphism

H(f~X(T), Fl-105) —> H'(f"(TNAU), Flg-1a5)
is injective by torsion freeness of F|,-i1¢r;. Hence, in order to show that
HYX, F) —> H(f(T), Fls-115)
is surjective, it is sufficient to see that
HO(f(U), F) —> H(f(TNU), Fls-115)
is surjtctive. By (3), taking the direct image of the exact sequence:

0— FROx(—f¥T)) — F—> Fliaiay —> 0,
we have

0 —> f(F)QOs(—T) —> fu(F) —> fu(Fls-10) —> 0.
This shows that f+(F)|r=f«(F|,;-1a). Therefore, the surjectivity of
H(f-'\U), F) —> H(f"(TNU), Fls-11)
is equivalent to the surjectivity of
HU, f«(F))—> H(TNU, f«(F)lr).

On the other hand, by Claim (5.6.1), H%(S, G)-»HYT, G|r) is surjective, which asserts
that

HYU, f«(F))— H(TNU, f+(F)|r)
is surjective because G is reflexive and f«(F)|y=Gly. Thus, we have our lemma. [

Let us continue the proof of Theorem (5.4). Using Lemma (5.6) inductively and
the property of the recursively infinite subset M’, there is an element m=(m,, -+, m4_,)
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of M’ such that for general members H; of |a®™iH|(i=1, ---, d—1), the natural homo-
morphism

H(©x(D)) — HO(OJ-I(ll,nmr\lld_l)([)))

is surjective. On the other hand, H°O;-innuy-p(D)#0. Hence, D is linearly
equivalent to an effective divisor. Therefore, (L—(f*(c,(X/S, L))/2)-D-f*(H))<0 con-
tradicts to Proposition (2.15). Thus, we complete the proof of Theorem (5.4). O

Here, we state the main theorem of this paper, which is an immediate corollary
of Theorem (3.1), Proposition (5.2) and Theorem (5.4).

Theorem (5.7) Assume that the characteristic of the ground field K is zero. Let d
be a positive integer with d=2. Let f: X—S be a flat morphism of a (d+1)-dimensional
non-singular projective variety X to a d-dimensional non-singular projective variety S
with f4Ox=0s. Let L be an f-ample divisor on X and H an ample divisor on S.
Assume that the polarized fiber space (X/S, L) is H-semi-stable. Then, we have the fol-
lowing inequality of Bogomolov-Gieseker's type.

(c%(X/S, L)-H®2)<Z4(co(X/S, L) -He-2y,

6. Semi-stably polarized fiber space over a non-closed field

Let k be a field, which is not necessarily algebraically closed, and % the algebraic
closure of k. Every definition of §2 is well-defined in the category of algebraic
schemes over k.

Let X be an equi-dimensional projective scheme over k£, S a non-singular projective
variety with ample divisor H and f: X—S a fiber space. Let L be a Cartier divisor
on X and A a nef Cartier divisor on X. Assume that L gives a weak polarization on
f: X—>S. Then, we have

Proposition (6.1) The notation as above. [f S is geometrically irreducible, then

(1) (X/S, L) is H-semi-stable if and only if (Xg/Si, Ls) is Hg-semi-stable.

(2) (X/S, L) is A-strongly H-semi-stable if and only if (Xz/Si, Li) is Aj-strongly
H ;-semistable.

Proof. First we note ci(Xi/Si, Li)=ci(X/S, LYQ:k, which is easily checked by
[4, Example 6.2.9]. Hence, (2) is obvious by Lemma (2.19). The proof of (1) is very
easy if we refer to the proof of Lemma (2.19). O

Hence, we have the following generalization.

Theorem (6.2) Theorem (3.1), Proposition (5.2), Theorem (5.4) and Theorem (5.7)
hold in the category of algebraic schemes over a field k if S is geometrically irreducible.
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