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Some remarks on inertial manifolds

By

Hirokazu NINOMIYA

1. Introduction

A recently developed theory of inertial manifolds reveals that the asymptotic be-
havior of solutions to some classes of semilinear evolution equations is controlled by
a finite-dimensional system. More precisely such equations admit a finite-dimensional
invariant manifold which attracts every solution exponentially (we call it inertial
manifold) and the ordinary differential equation reduced on the manifold determines the
asymptotic behavior of the original equation. For example it is known that there exists
an inertial manifold for a reaction-diffusion equation and Kuramoto-Sivashinsky equa-
tion under some condition (see C. Foias, B. Nicolaenko, G.R. Sell and R. Temam [7],
C. Foias, G.R. Sell and R. Temam [8], J. Mallet-Paret and G.R. Sell [12] and R.
Temam [157).

Although there are many works for the existence of the inertial manifold, it seems
that three basic techniques work in them: Hadamard method (or the graph trans-
formation method, see [12] and P. Constantin, C. Foias, B. Nicolaenko and R. Temam
[3]), Lyapunov-Perron method (based on the variation of constants formula, see S.N.
Chow and K. Lu [1] and [7], [8], [15]) and the elliptic regularization method (see A.
Debussche [4] and so on). Our aim of this paper is to charactrize Lyapunov-Perron
method from the point of dynamics of the semiflow (generated by solutions). Usually
the technique to find a fixed point of some operator (which comes from the variation
of constants formula) is called Lyapunov-Perron method; this fixed point in a suitable
function space whose graph gives the inertial manifold. However in the classical
adaptation of the Lyapunov-Perron method, it seems to be difficult to relate it to some
property of the semiflow explicitly. C. Foias, G.R. Sell and R. Temam used in [8]
some property of the flow namely squeezing property (or cone property) for the proof
of the existence of the manifold. Through their researches we will use the squeezing
property more effectively for the above purpose than in the related works including
[8]. Since the squeezing property is charactrized in terms of differential inequalities,
we hardly use the variation of constants formula in the proof. Furthermore we can
also make clear a geometrical meaning of the exponential tracking in the squeezing
property and prove it shortly.

We will also prove the regularity of the inertial manifold (C*-manifold). Here we
will show that the inertial manifold is a limit of a family of approximate inertial
manifolds of Galerkin approximate equations in C!-topology. This will be discussed
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in §4. In §5 we investigate how the inertial manifold varies when the nonlinear term
is perturbed. Roughly speaking the difference of inertial manifolds is estimated by
size of the perturbed term.

2. Main Results

Let H be a separable Hilbert space and denote its inner product and its norm by

(+, -) and |-| respectively. We consider the equation in H
du
— +Au+R(t, u)=0,

@.1) dt (
u(ty)=1u,.

We assume the following:
Al: A is a positive selfajoint operator and A~! is compact.
It has eigenvalues 4; and eigenfunctions w; satisfying

Aws=2wy,
OKUS 1S -0

A2: There is a ¥ (0=<7=<1/2) such that there are constants K,, K, and K, such
that for every ¢, h in R and u, v in D(A7),

IR, W <K, ,
2.2) IR, w)—R(, v)| SK | AT(u—0)],
[R(t+h, w)—R({E, W) <K, |hl,

where A7 and D(A") denote the fractional power of A and its domain respectively.
A3: There exists an integer N>0 satisfying

2.3) Aver— Ay > KAWL+ .

Remark 2.1. The equation (2.1) has a unique solution u(t) in C([t,, o); D(A)N
Lioo([ty, 00): D(A)) for every t,€R and u,=D(A") under Al and A2. Then we can
define a semiflow

S(t, ) : u(ly)= D(AT) — u(t)e D(A") for t=t,.
Under the above assumptions, we can obtain three theorems below.

Theorem 2.2. Under Al, A2 and A3, there exists an manifold M, for each teR
which satisfies the following :
(1) Lipschitz property :
There exists a Lipschitz function ®(-, -) from RXPyD(AT) into (I—Py)D(A") such
that for each t in R,
M,=graph @(t, -),

where Py is a projection operator onto the space spanned by w,, ws, ws, -+, Wx.
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(ii) Invariant property:
Mg:S(t, to)Mto for t, to in R.

(iii) Exponential tracking :
For any solution u(t)=5(t, t,)u,, there exists a v,&M,  such that

| AT(S(t+to, to)uy—S(t4t,, t)ve) | <cre™ (t=0),

where ¢, and v are positive constants independent of t and t,.

Remark 2.3. We call the manifold M= {M,} _wcice inertial manifold for (2.1). If
the nonlinear term R is periodic with respect to ¢, then @ is also periodic. For an
autonomous equation (2.1), @ is independent of time ¢. Then H=M, for any {.

The constant v is any number between v, and v, which are defined in (3.2) and ¢,
is given by (3.23) in §3.

Theorem 2.4. [n addition to A2 and A3, assume that R(t, u) has a Fréchet deriva-
tive D, R which belongs to C*(RXD(A"); L(D(A"); H)). Then M, is a C’-manifold.

Next we will consider the perturbed equation of (2.1)

4V 4 ARt v)=0,
(2.6) dt

v(t)=v, ,
where we assume that R(¢, u) satisfies Al, A2 and A3 as R(f, u) does. Under Al, A2
and A3, we have Lipschitz functions @, & whose graphs represent inertial manifolds
for (2.1) and (2.6) respectively. Let us consider the equation on the manifold,

ap
2.7 ] di
Po)=paEPyD(AT),

+Ap+PR(t, p+P(t, p))=0,

dp
(2.8) dt

p(t,,)——‘ Do E PyD(A").

+Ap+PR(, p+8(t, p)=0,

We denote a solution of (2.7) (resp. (2.8)) by p.(2, to, por) (resp. pu(t, t,, Do2)). Let us
introduce the next equation.

2.9 Aver—Ay— K1+ DAy 0 — K1+ DAy=0.

It is easily checked that (2.9) has two solutions, say /,, [,({,>/,>0). We assume
A4: There exists a constant K, satisfying

(2.10) R, w)—R(t, u)| <K 7t for any teR, usD(AT),

where 7 is some number satisfying
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(2.11) 0=9<Ay+1—K\(1+11)A 41

Theorem 2.5. Let the equations (2.1) and (2.6) satisfy Al-A4. Let @, & be the
mapping representing the inertial manifolds for (2.1) and (2.6) respectively. Then for
any teR, pePD(AY),

|AY(D(t, p)—B(t, p))| ScoKoe 7,

where ¢, is a positive constant independent of t, p. Moreover, if
(2.12) A K (LA <Ay — KA+,

then for every solution of (2.6) there exists a solution of (2.1) which approaches it ex-
ponentially. That is the following sense: For t,€R, pn.PD(A"), there exists poE
PyD(AT) such that for all t in R,

(2.13) [AT(pi(2, by, Dor)—Pall, Lo, Do)l ScaKie ¢,

where ¢y is a positive constant independent of t, t, and pos.

Remark 2.6. In particular, when =0, we have the estimate:

A, p)—B(t, p)I<c, sup |R(t, u)—R(t, w)l.

teR, uep(ah

The above Theorem 2.5 will be proved in §5 where the constants ¢, and ¢, are given
by (56.3) and (5.7).

Remark 2.7. The squeezing property is first introduced by C. Foias, G.R. Sell
and R. Temam [8]. In this paper, this property is modified and the condition for the
existence of the manifold is improved by its modification. In addition this modification
makes us to treat the regularity and the perturbation of the manifold easily. S.N.
Chow and K. Lu proved the existence of C'-manifold and the exponential attractivity
by estimating an integral equation. Their gap condition is rather restrictive. On the
other hand, P. Constantin, C. Foias, B. Nicolaenko and R. Temam [3] and M. Miklav¢ié¢
[13] proved the existence of the manifold with the better gap condition than that of
this paper. But they did not make mention of the regularity and the perturbation.

3. Proof of the existence of an inertial manifold

We simply write P=Py, Q=I—Py, Preparatory to a proof of Theorem 2.2, we
will prove an elementary lemma below.

Lemma 3.1. If A3 in §2 is satisfied, then there exist positive constants | and 6
such that

3.1 { K Q40 DA <Ava— K07 1),

0<o<1.

Proof. We can see from the inequality of A3 that there exists a positive constant
| satisfying
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Ava—Av—K Q4+ 0 —K(14+DA%>0.
It is clear that we can take 0<#<1 satisfying
Avei—Ay—K /(0 1D — Ki(1+07' DAy >0. [ |

Set

vi=Av+K.14+67D)i%,
3.2)

”2:2N+\—K1(0-1+1-1)17;v+1 .
We introduce a complete metric space:
F={q)eC°((—x, t,]; QD(AN);

e 7K,
1—r

(3.3 lATq(t)| <

T—1 Llo-t
AviertomH

[AT(g(t4+h)—q()| S B, | h|e*¢o-  for all t<t+h<ty)
with the metric:
d g, ¢:)= ?2;1.:,’ | AT(q,(t) —ga()) | e*t= 10> |

where v is any number such that v,<v<v,. The positive constant B, will be deter-
mined later. Fix any ¢, in R, p,&PD(A"). We define a map T,,,, on & in the fol-
lowing way. For ¢(f)e %, consider the equation

(3.4) (%”*A“PRG, p+a(t)=0,

p(to):Po .

This finite-dimensional equation has a unique solution p(t)=p(t, t,, po, q) for all t<t,.
Using the solution p(f), we define the following mapping:

(3.5) Tipr @O = _e-*¢-2QR(s, p(s)+q(s)ds .

Hereafter we often write T(g)(f) without its subscripts ¢, and p,. Since the function
R(t, p()+q(®) is Lipschitz, (3.5) is equivalent to

(3.6 LT+ AT@+QR(, p-+e) =0
(see D. Henry [10]).

Proposition 3.2. For all t,€R and p,=PD(A"), T.,,, is a contraction mapping
from F into <.

Before the proof of Proposition 3.2, we give definitions of several sets and three
key lemmas. Define II, C;, 2(B) and 2'(B) as follows:
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Ci={w, 2)eR?; z=2lw=0(c1l),

I IT={(w, z)€R?; w=0, z=0},
]
l Q(B):{(w, 2ER?; 221w=0, zg———B}(cﬂ),

3.7
1—8
' (B)={(w, 2)€R?; z=lw=0, z=0B}(cII).

In the next three lemmas, it is assumed that the functions w(t), z(¢) are non negative
and belong to C°((—oo, t,], RINC'((—, t,), R).

Lemma 3.3. Assume that two functions w(t), z(t) satisfy the following differential
inequalities:

5 S wtz Gt K=Kz in 11,
(3.8) L4
5Z}zz§“'(XNH_KJ’)'VH)ZZ‘}‘]{!'U'HWZ in Cl'

If (w(t), z(t,)=C, for some t,(<t,), then (w(t), z(t))C, for any t<t, and the following
estimate holds:

3.9) 0Zz(H) Zz(ty)e vt for 1,<t<t, .
Moreover if z(t) is bounded in (—oo, t,], then
(3.10) 02z S lw)Slerto-Dw(t,)  for all t<t,.
Lemma 3.4. Assume that two functions w(t), z(1) satisfy the following differential
inequalities :

w2 —Un+ KAy —v)w*— K, Aywz— K, Ay Bw in I,
3.11)
22— Ay — KAy —v)22+ K2 o wz+ K 2Bz in Q(B),

o= o
SRS

where B is a positive constant. If there exists t,(<i,) such that
(w(t), z(t)ER(B),

then (w(t), z)=2(B) for any t<t, and

(3.12) 0=z(t)=Sz(t)e 24t for t,<t<t,

where v, is as in (3.2). Furthermore if z(t) is bounded in (—oo, t,] and w(ty)<
6B/(1—0)l, then

[/ 6
(3.13) Oéw(t)émB, ng(t)émB for all t<t,.

Lemma 3.5. Assume that two functions w(t), z(t) satisfy
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W= —An+ KAy —)w— K JwBw  in 11,
(3.14)

Sl &in

22— Ay V)8 + K Ay wz+ K Ay Bz in QI(B)'
and that z(t) is bounded in (—oo, 1,] and w(t,)<O0!"*B. Then z()<0B for all t<t,.

Remark 3.6. These lemmas will be applied to the difference of solutions u(t), v(¢)
to the equation (2.1) or equations specified later. For example,

w®)=[ATPu®)—v@®)|, z)=1ATQu®—v(D),

or
wt)=e" AP —v@®)l,  z2B)=e " ATQu®)—v@®)].

z z=lw z z=lw
| o
C, 0 | )
By
1_0 ’,"'\-;
R
T > W - 1 w
(0] (0]
0 B
(1-60)
Fig. 1. Squeezing Property. Fig. 2. Modified Squeezing Property.

If the flow for those equations satisfies the condition of Lemmas 3.3, we call the
flow has squeezing property (or cone property). We also call the flow has modified
squeezing property if the flow satisfies that of Lemma 3.4 or Lemma 3.5.

Proof of Lemma 3.3. If (w, 2)&C,, then (3.8) yields

3 @) S =y — KA+~ K1+ DS
This inequality implies the invariance of the cone {(w, z)&R?; 0<z<Iw} (see Fig. 1).
Therefore it is seen as above that if (w(¢), z({,))eC,, then (w(?), z(¢))eC, for any
t<t,. In this region, the following inequality holds:

1d
?d_tzz§“‘(2N+1—K1(1+l-1)2;v+1)32 .

Thus we get a desired inequality (3.9).

We will next prove the latter part of this lemma. If there exists ¢,(<¢,) such that
(w(t,), 2(t,)) in C,, then by letting t,—>—oo in (3.9) we get z(t)=0 and w()=0 for any
t<t,. In such a case, the inequality z'(t)glw(t) also holds for all ¢t<¢,. Consequently
z()Zlw(t) for any t<t,. Then the first inequality of (3.8) yields

1d

5 d—thz —@Av+ KA1+ Dw 2 —vw’.
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Integrating above inequality, we have that (w(?), z(¢)) satisfies inequality (3.10) for any
t<t,. ]

Proof of Lemma 3.4. Let (w, z) be in 2(B). Since z=0B/(1—6) holds, we may
replace B by (f—*—1)z in (3.11). Then we have

% (%(zz—lzwz)g—(vz—vl)zz-i-v(zz—lzwz) ,
(3.15) 14
2 d_izzg_(l’z—”)z2 .

In view of the flow on the boundary 8R(B), these inequalities imply the invariance of

\Q(B)={(w, HER?; 0<zslw or 0sz< 2B} (see Fig.2).

If (w(t), z(t,))=(B), then its invariance says that (w(?), z(t)) belongs to £2(B) for t<t,.
It follows from the second inequality of (3.15) that
2(D) Sz(ty)e e i-t) for any t,<t<t,.

Next, we prove the latter part of this lemma. If there exists f,(=t) such that
(w(ty), 2(t,))E2(B), we obtain

z(t) Sz(ty)e~ et for any t,(<1)).

Since z(!) is bounded, we have z(¢,)=0 by letting f,——co. This contradicts the hy-
pothesis (w(t,), z(t,))2(B). Thus we can say that

either 0=Zz(H)<lw(t),

7
or Z(t)gl—_gB

In the set

i}
2., _
{(w, 2)eR?; 0<z<!w and w= =y B},

we see from (3.11) that

> E Wty — K140 D0

This inequality means if w(t,)<6#B/(1—6)!, then wt)<6B/(1—6) for all t<t,. Con-

sequently, we obtain

0
Oéz(t)él—_—a"B. n

Proof of Lemma 3.5. We can prove this lemma in the same manner as in Lemma

3.4, so we omit it.

Proof of Proposition 3.2. First we will prove that T maps & into . We will
use the following lemma in order to estimate the bounds of T(g).
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Lemma 3.7. For any <0,

et for —rinn.=St<0,
[((AQYe™ 2| pom < ;
e ¥+ for t<—7AR%: .

If 0<r<1,

[ icare

Proof. See R. Temam [15]. [
The next immediately follows from Lemma 3.7:
AT | Are4-0Q oy Kods

_TK
T A

Set d,p=pt+h)—p(®), 4.qg=T(g)t+h)—T(q)#). Those satisfy the next equations;

=

& 4up+ Adup+ PRUH I, pl+h)+a(t+h)—PRE, pO+e)=0,

é‘—tdtq+A4Lq+QR<t+h, P(t+h)+qt+R)—QR({, pH)+q(t)=0.

Taking the scalar product between above equations and A¥4,p, A*4.q respectively
and using Poincaré inequality yield

14
o g AT bz —an | Adip?
— K21 A4 |+ (B oot 2 ) 4 dip
(3.16) L4 ’
5 oI Ad gt A
+ K| AT dup | +(Biertomo+ 2 )|h|)|Ar+'/24 gl.

Put w(l)=e*t-| A74,p|, z()=e*"*~*0| A7d,q|. Then the first inequality of (3.16) is

(3.17) ;;tw2>(v Ay — K A)w? —Kl(B + )|h|
On the other hand from the second of (3.16) we have
1d
3.18) 5 @S X2+K,2§v+‘{2(w+(B +22 )|h|)

X:ev(t—lo)|A7+l/2Atq|.
Let 2{ be 2(B,) with B,=0(B,+K,/K))|h| i.e.,

Q;:{(w, 2)ER?; z21w>0, 0(3 + & )|h|}
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Recall (3.1). In 2{, we have

e I | AT+, q| 2 ANE e | ATd g |
=K AGHHO 17Nz

= Ko (w+(Bit )lhl)

The right hand side of (3.18) decreases as X increases if

Xz Kawti(w +(B+K2)|11)

2
This fact and the inequality |A7*'24,q| =A¥2,|A7d,q| yield
(.19 LGP Kzt Kd(Bit 1) k12 i 9.
1

We must show
w(t,—h) <61 (B B )]hl
If it is valid, then we get
20=0(B.+ K”)lm for t<t,—h
by applying Lemma 3.5 to (3.17) and (3.19). We can estimate as follows:
w(t,a—h)=e™*"| A7(po— p(t,—h))I
S e (147 (po—e " pal +]° AT 1010 PR(s, pg)lds))
S@w|ATpo |+ KoaW) [ R

Thus take B, satisfying

0K,
(1-0)K/’
and we obtain that T, ,, maps from & into itself.
Finally we will prove that T is a contraction map. Let ¢, and ¢, be in ¥. Put

4,p=0(@, to, po, g)— D, to, Po, o), deg=T 1, p,(@)D—T 1y 5,(g2)() which satisfy the fol-
lowing inequalities :

(3.20) Blgmax{ | AT po| + Ko/wv)ﬁ"l}

;;iit“‘l’é’qpl2> An| AT dop | — K Z(L AT dop | + | AT(q —g2) DI AT g |,
; jt|z4’4qq|2< [ AT+ 4oq |*+ K WA AT dop | + 1 AT(gi—q2) D ATV dog |

Set wo(t)y=e* ¢t | ATdyp|, zo(H)=e* "' | AT4,q| and
Q.= {(w, 2)€R?; z=lw=0, 220d.(q:, ¢.)}-

By using Lemma 3.5 and w({,)=0, we can prove similarly as in the above that z ()<
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0d.(q1, g2). |

Applying the contraction mapping theorem, we can find a fixed point in ¢ which
we denote by q(f, &, p.). We also denote a unique solution of the next equation by

p(tv tOy pO)»

oo Lo+ AD+PRE, patt, o, p)=0,

pt)=po .

Proposition 3.8. (¢, t, po) and q(t, t, po) are locally Lipschitz with respect to 1,
and po.

Proof. Set
we(H)y=e* | AT(p(t, to, po+E)—p(, Lo, P,
z:()=e* =" | AT(g(t, to, po+8)—q(t, Lo, Po)|.

Two functions we, 2, satisfy

%(%wég(y—lN—Kllfv)wé—lf.lxweze in I ,
5 o AS Ay Kl ) K weze in Ci

It follows from the boundedness of z(f) and the squeezing property that z(t)<lw(?)
<I|A’€| for all t<t,, which proves Lipschitz continuity with respect to p,. As for
Lipschitz continuity with respect to t,, we can prove the following similarly :

et | AT(g(t, ty, po)—q(t, to— N, b))
<1e* 0 [ AT(p(t, to, Do)— P&, to—h, Do)
<le=*| AT(p(o—h, 1o, Po)— Po)l (by using Lemma 3.3)
SIAn| AT pol +Kodi) 11| for t<t+h<t,. u

We will show that this fixed point ¢(¢, ¢, p,) is represented by a graph from
PD(A") into QD(A").

Lemma 3.9. q(t,, t,, po)=q(ty, to, p1) for t,<t, where p,=p(ly, ty, Do)-

Proof. Put dp=1p(, t,, po)—p{, t, p1), dg=q(t, t,, po)—q(t, t,, p:). The squeezing
property shows that |A74q|<I|A’dp|. This lemma follows from substituting ¢=t,
into 4p, 4dq i.e.,

|AT((](tu to, Po)_Q(tl, ty, P.))I SIUA (P, o, Po)—P(tx, ty, ﬁx))lzo . L

Set
O, p)=q(t, t, p).
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Lemma 3.9 implies that

¢(t1 .b(t’ tO) po))=9(t, to: po) .

Therefore it turns out that p(¢, &, po), q(t, t, po) are solutions of

Lo+ Ap+ PR, p0, p)=0,

(3.22) p(to)=po ,
L0+ AgHQR(, p+0G, p)=0.
We can easily check that
0K,
|AT(@(@t+h, p) =D, b)) é(_f—_ﬁm [hl,

[A/(D(@, p)—D(, p)) | L A(Pi— Do)l

Here we used Lemma 3.3, 3.4 and (3.21).
Now consider the exponential attractivity. Let u(f) be any solution of (1.1) with
the initial value u,. Define

Dy, uy=1{p+0@, p)ED(AT); | A(Qu(t)—D(t, p))| 2l AT(Pu(t)—p)I}.

u(to)

1"’ Ly

Dy u,

lwt
PD(A")
Fig. 3. Exponential Tracking.
This set is not empty because Pu(t)+®(t, Pu(t))€D, ., On the other hand, the
semiflow is invertible on the inertial manifold. Setting S(1,, t,)=S(t,, lz)lytz, we have
S, t)St,, 1)=8(,, t)  for any 1, t, t;=R.

We set K,.,,‘,:Pg(to, D, ., for t=t,. By applying the squeezing property in Lemma
3.3 to the difference of two solutions, we get

8, t)Dy vyC D1y, for ty<t<t,.

Thus K., +,C K, 0, S Kiy u, for {,5t =8, (see Fig. 3). Itis obvious that K, ., is a closed
bounded set with finite dimension. Set K, ,=M\.,K;, ., which is a nonempty compact
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set. We can choose an element p, in K,. Take the solution »(f) on the manifold as
(=S5, to)po+P(ts, PNE K., 4,

=p(t, to, Po)+DP(, p(t, to, po)) -
Because of the definition of K .,
[ATQ(u(t) —v(t)| 2| ATP(u(®)—v(1))|  for any t=t,,

| ATQ(u(t)—v(t) | < | ATQ(ut,)—v(t) |e=*¢~ (by the squeezing property)
g(IATQuo]+K¢,%Z’ﬁ;}l)g“‘(‘-lo).

Thus we can conclude
| AT(u(®)—v() | Scre™t0
where

-7
(3.23) c,=(1+1-2)1/2(|Ar(1—PN)uo|+Kole—_r ml). »

4. Regularity of an inertial manifold
Consider the Galerkin approximate equation
4.1) Lt A+ PyR(, wi)=0,

where M=N-+1. We can construct an inertial manifold for this approximate equation
(4.1) with the same dimension N. Define the subspace of &,

Fu={au(hE C'(— 0, t,1; PyQD(AT);

r
[ATgu (D] = el_iolfvllle”(‘ﬂ'“ ,

| A (qu(t+h)—qu®)| < B, h|e*®0- for all t<t+h gto}
where B, satisfies (3.20). Let gy(f) be in F,. Consider the next equation
d
EPM'FAPM +PR(, pu+qu(®)=0,

pu(te)=po .

We define a mapping on &, using a solution p,(t)=pu(t, t,, ps, qu) of above equation
as follows:

4.2) Tu(gu)®=—{_e"**DPyQR(s, pu(s)+au(s)ds .

We can check similarly as in §3 that T is a contraction mapping. We denote the
fixed point of Ty by gu(t, t, Ds). Let pu(t, &, po) be a unique solution of the follow-
ing equation :
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4.3) %”*AHPQ(L p4qult, to, po))=0,

p(to):l)o-

We claim that the sequences {pu}uzv+i, {gu}u.v+ are Cauchy sequences in & (uni-
formly in p,). Indeed since PyT |q,=T4,

dq, gu)= sup e ot | AT ()()—T (g )(D)]
=d(T(q), T(gu))+ sup 2=t | AT (qar))— Ty (ga )]
<0d.q, qx)+ Sup et ATQ T (qu)B) ]

Thus we get
4g, 00 g 39 49| AQuT ()0
@9 S o sup e ] e tOQURG, pulstax(Nds|
= fl\oa (Asg+1—v) ! (by Lemma 3.7).
We will estimate |A7(py—p)|. From (3.21) and (4.3), we can see that
1d

5 VA=) 2 = (o KR A — )~ K | Aqu— )] | A — )

holds. Multiplying the above inequality by e*¢“-‘ and using (4.4), we deduce

21&
:9 (4l1+1_V)r !

(4.5) e oA (py —p)| <L

This and (4.4) implies that our claim is valid.

Next we will show that the existence of Fréchet derivatives D, pxy(i, t, po) and
Dp,qu(t, t, po). Differentiate (4.1) with respect to the initial deta p, and decompose
it as follows:

LouE+ Apub+PDURG, putandoué+ou§)=0,

(4' 6) pﬂl(t()r tOv po)ézs ’
l %UMeJFAo'ME'i'PMDuR(t; Putau)onb+048)=0,

where py()=D, pu, ox()=Dp,gu. We observe that this formal proceeding is justified
below. Let G, be

(o€ C (=00, 1] ; L(PyD(AN; (I—Pi)QDAN); | ATay |op<2le*ts=5),
where |- |,, denotes the operator norm, that is, for any Le.L(D(A"); H),

[ L]op= sup | Lul.

ueph . 14Tu <1
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For any oy<=%u, let pué=pu(l, t,, po)é be a solution of
d
a—tPME-FA.OMf'*—PDuR(t, Putqu)oué+anb)=0,

pM(tOr tO; po)ézé .

This solution py& is linear in &, We define the operator
'T'M(GM)E——-—St_we"“"”PMQDuR(S, pu(S)+au(sHoné+auélds,
Using Lemma 3.5, we have
e | AT (g )E| SULATE| for any oxEFy,
e~ | AN(Ty(ow, JE—T ulon )91 <0 sup e~ | Aoy §— 0w £)1,

for any v in the interval (v, v,) and o, 1Gx, :EFy .

Therefore there exists a fixed point oué=Tu(ax)é satisfying

dittfué"}‘/lo'mf“'PnQDuR(t, p)l"'qu)(PME’{’UME):O .

Hence the equation (4.6) is justified.
We will show continuity of py, oy with respect to p,.

Lemma 4.1. Assume that f(¢, p) belongs to CRXPD(A"); H). Fix any p, in
PD(AY). For any >0, there exists a positive 0 such that

sup @02 DR, f(E pot PN —DuR(, f(t, p))lop=e

tsty
for all p=PD(A") satisfying |ATp| <é.
Proof. Set t.=t,—(2/(v—v,)) log 2K,¢, which is less than ¢, if ¢ is sufficiently small.
We obtain
sup et DR, f(t, pot D) —DuR(E, f(E, pod)lop

SzKie(l«—‘.,)(ls—Lo)/ZSe .

On the other hand, the mapping

(t, p) —> @70 DUR(E, f(t, pot PN —DuR(E, f(2, po))lop

is uniformly continuous in the interval [t., {,]X {pePD(A"); |A"p|<1}. Thus we can
find a positive number & such that for any p satisfying |A"p| <0,

sup eV D R(t, f(t, po+pN—DuR(, f(E, D))lop=c. [ ]

teststy

Lemma 4.2. The solutions pu(t, to, Do), ou(t, to, po) of (4.6) are continuous with
respect to p,= PD(AT).
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Proof. Set
wt)y=e* 7' | A"(py (2, to, potp)s—pu(t, to, pOEI,

z()=e* | Al(an(t, t, potp)E—an(t, to, po)6)I.
Those functions w(t), z(1) satisfy the following inequalities :

%%w’g—ZNwZ—KJ?v(w+z)w—K,,2§szw in 17,

%%ﬂg—zlv+lz2+1<le~+l<w+z>z+1<,zr~+lez in Q(By).

where
UEDIATE] ) emdt= | DLR(E, it oy Dot pi)+4(Es for Dot D)

1 tsty

B,=
—DuR(, p(t, to, Po)+q(, 1, Po))'op .
Applying Lemma 3.4 to the above inequalities and using Lemma 4.1, we conclude the

proof. [ ]

Next we will prove that py, ox converge. Put M=M’'=N+1. We set

w(t)=e" 0| A(py(t, to, p)E—pu'(t, to, PIEI,
Z()=e " A(ax(t, b, p)E—au (L, to, Po)E].

We can easily check that these satisfy

iwzg——vaz—K,Xi,(w-i-z)w—K,,I{vBaw in 11,

dt

ditzzg—Z‘V,,,zz—}-K,]{M(w+z)z+K12§,HBaz in 2(Bs),
where
=(l—+l>ﬂsup eI D R(E, pu(t, by, Do) +qu(t, to, Do)

1 tsty

_DuR(tr Pae (2, Lo, Po)+(]M’(ty to, ﬁo))lop .

B,

Lemma 3.4 implies that
w(t)é(l_Le)lBs, z(t)gl—g—yBa.
If B, tends to 0 as M, M’—oco, we can get that py, g4 converge compact uniformly
in p,. Indeed, if not, there exist ¢, t(<t,), M; and po, such that
) D DR, pa (L, Loy Do)+ (L, oy Do)
= —DR(t;, Dty to, o) +0(ts, bo, Do )lop2e -

This inequality shows that ¢; (=1, 2, ---) is bounded. We may assume that ; converges
to t* and p,; converges to p¥ by taking a subsequence of {t;}, if necessary. There

exists ¢’ such that
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“.7 IDuR(ts, pu (s, to, Pos)+qu (L1, to, Dos))
—DuR(1y, p(ts, to, pes)+q(tis to, Dos))lop=6’ .
Let M;—c in (4.4). We can get by using (4.4) and (4.5)
Pty to, Poi)+qu (Es, bo, Pog) —> p(E*, b, pE)+q(t*, o, DY),
Py, t, Do) +q(ly, b, Pog) —> D(E*, 1o, PT) +q(t*, to, DT).

Considering the above fact and the continuity of D,R implies that the left side of
(4.7) must tend to zero, which is a contradiction. Thus py(¢, t,, po) and ey, t,, Do)
have their limits p(Z, ¢, p,) and (¢, ¢, p,) respectively.

Next we will show that py and o, are derivative of py, g) respectively. Set
w)=e* "t | ATpy (2, t, Pot+sE)—pu(t, t,, po)_SPM(ty to, Do),
Z(t)=ev“_t°)|Ar0M(1, lo, Po+5§)_(lM(l‘, to, l’o)_SUM(t, to, po)El.

These satisfy

d%wzg—ZNw’—K,EV(w+z)w—K,Z{vB4w in IT,

%Zzé—2N+122+K127[’V+1(w+2)Z+K12];VB4Z in 9(34),

where we let B, be

HDIASE] qup gemma-ton(' | DLR(, Eputt to Pt sO+autt, o, pots)

1 tsty

+(A=0(pxu(t, ts, po)+au(t, ts, pIN—DuR(, pu(E, to, po)+qu(t, to, po))lopdl.

Here we used a mean value formula for any continuously differentiable function f,

F)— ) ={ Do fQut+1+O0)dLu—v).

Lemma 3.5 implies that w()<6B./(1—0), z2()<6B,/(1—6). We can also get B,=
o(|s|) compact uniformly in p, as s—0. We conclude that p,, ¢ have Fréchlet deri-
vatives by using the fact that py, gy is continuous with respect to p,. Hence we
get the following lemma:

Lemma 4.3. py(t, b, Do), gu(t, to, po) have Fréchlet derivatives in p,.
By the mean value formula, we have

Pu(t, to, Pot+sE—put, 1, po)=S:PM(t, lo, pot+sGE)s&dl,

ault, to, Po+sO)—qult, to, p)={ out, to, potsTO)sEdC .

Letting M—oo, we have the following equalities:
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DL, o, Dot DLL, bo, D)= (8, fo, Dot STE)SEAL
(4.8)

ot to, o3 —a(t, 1o, D=, 1o, portsCE)sEAL .
Hence we deduce from the contivity of p, ¢ in p, and (4.8)
| AP, to, Dot-sO) =D, to, D)= (s to, DSE)]
<[ 147t 1, potsTO—ptt, 1, psEIdC

=o(|sl),

|Ar((](t; t07 po+s$)_4(t, tOy po)_g(ty tO’ po)s$)|

=o(|sl).

Thus we have proved that p(¢, t,, p,) and q(¢, ¢, p,) have Fréchlet derivatives.

5. Proof of Theorem 2.5
First, we note that we can choose /, # and v satisfying
Av+EK (40D Sv=SAy . — K671 +17Y),
0<o<1,
VESE

Recall that p,(¢, ¢, po), Po(t, t, po) are the solutions to (2.7) and (2.8) respectively.
For simplicity of our notations, we set

piO=p:(, Ly, Do),  Do(D=Dps(t, b, Do),
G.1) aM=0@, 1), =8, put)),

pO=p:O— D). gO=q:()—qu(1).
Then we get the following equations by (2.7) and (2.8):

%+AP+PR(1, PO, p)—PRAL. pot B(t, p2))=0,

dq

ap HAGEQRE, pi+ D, p)—QR(L, pot B2, p)=0.

Therefore putting

(5.2) w)y=e" | ATP(@)], z({l)=e 0] ATg(2)] for any t<4,
and using the same arguement in § 3, we have

dithg—RNwZ—K,Z{v(w+z)w—K,15,Bsw in 17,
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d%fg—zN+,z2+K,zx+,<w+z>z+K,zx+,Bsz in Q(By),

where B;=(K,/K,)e-7. Using Lemma 3.5 yields
0K,
<L "% ,-qt
z(t)=(l 0)1(,e nto for any 1<t .

Particularly when we put t=t, we get
[AT(D(t,, Po)_ﬁ(to, P ScoKsem 7t
where
8
T (1-0)K,

(see (5.1) and (5.2)). Let us prove the last part of Theorem 2.5. The condition (2.12)
assure that we can find [, 8 satisfying v, <7<y, where v,, v, are as in (3.2). We put

(5.3) Cy

pi(t; t)=p.@, L, Da(t0) (=1, 2).
Then we can easily check that
ld
2 dt
PO=p:(t; ) —pi(t; 1),

Thus for 1<t <1,

[ATD 1Pz —@An+K (I+DA AT IPZ —vi |ATP|*

(5.4) [AT(pi(t; 1) —pa(t: ) | STAT(Pa(t)— Pty ) @170,
On the other hand we estimate the difference of the solutions of (2.7) and (2.8). Con-
sidering A4, we see that p(t)=p,()—p.(t; t,) satisfies

1 ~ . .
—5%IA’P|2+(XN+K1(1+1)%)|A’P|22—Kse"",%|1471’l-
Through the observation of the flow of

W(t)=et| ATH()|
and the fact w(t,)=0, we have

/) K,

Lone 0 Ky

wit) < =07 K, for any 1<t,.
Hence

~ 0K
(5.5) [ATH(t)] g—(—l_—o)al—[e—le'”‘l for any t,<t,.
Substituting (5.5) to (5.4) yields
6.6) 1A 1= pults 1) S gt for 11,5t

1

It is shown that p,(¢; 1,) converges compact uniformly when ¢, tends to infinity. The
limit function p,(t)=lim,...p.(¢;t:) is also the solution of (2.7). By letting t,=t and
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t,—oo in (5.6), we obtain
[ AT(pa(t)— p1(1)) | ScsKge 7t ,

where

(5.7 Cs='(l—_%')m(=%2—) . ]

6. Example

Consider the next example, Kuramoto-Sivashinsky equation,

ou  0*'u  0°u Ou .
3t_+-a?+5;§-|-ua—x_0 in —co<x< oo, >0,

6.1) u(0, x)=uy,(x) in —co<<x< o0,
u(t, x+ L)=u(t, x) in —co<x< o0, >0,
u(t, —x)=u(t, x) in —co<x<Co0, t>0.
Let H be

{ue L2(~%, %) u(x)z—u(—x)}.

This equation has an absorbing set 4, that is, a compabt set which attracts solutions
in a finite time. Especially,

.‘BC{uEH; uEH2(—%, é—), |ul < po, |uxl§px},

where constants p,, o, depend only on L (see B. Nicolaenko, B. Scheuer and R.
Temam [14] and its refelences)
Po=0(L%?),

0,:=0(L"?).
We define
Aou:(PNou)I;p y

/4u:uxx.rz+uzz—Aou ’
ari | Uzl
R(u)—so(z—po)so —z—pT>(uu;—Aou),
where N,=[L/2z] ([-] is denoted by Gauss’ symbol) and ¢ is a smooth function
satisfying |¢’| =<3 and
1 if x<1,

w

px)=) o it xz .

Then we can easily check that

[R(u)—RW)| SciL*|u—v|+cs L*| A (u—v)|
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(see P. Constantin, C. Foias, B. Nicolaenko and R. Temam [3] and [7]). It is easily
shown that the condition Al and A2 are satisfied. We can find some number N
satisfying

Avar—An—4c L —2¢, L3(AN4,+ 244 >0

because Ay=O0(N*), Ax+1i—An=O0(N?®). Since R(-) is C!', we can construct the C'-
inertial manifold.
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