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§ 1. Introduction

L et A  = ,F(H ) b e  the  se t o f bounded Fredholm operators o n  a  separable
(complex) Hilbert space H  o f infinite dimension. F  i s  a  classifying space for
the  complex K-group. A  subset . A  o f  A consisting o f  selfadjoint operators
has three components:

(1-1) = U U A  .

(<As _ ) consists o f essentially positive (negative) operators and  A  c o n s is ts  of
o th e r s . A , are contractible and A , is  a  classifying space for K - '-group ([AS]).
Especially we have

(1-2) 7E0 , )  z

A n  isomorphism o f  (1-2) is  g iven  b y , so  called , the  spec tra l f low . It is
defined a s  th e  num ber o f eigenvalues (with directions) th a t change signs when
the parameter of a loop in  A , goes around ([APS1, 2]). This definition is more
clarified by considering a  subspace P(co) of A, which has the  same homotopy
type w ith  th e  w hole  space  A , a n d  h as  a  spectrally nice property i n  a  sense
([BW1]):

(1-3) (00) = {A G fr* : =  1 , the essential spectra aess(A)
of A are ju s t  { — 1, 1} and  other spectra a(A)\o-,„(A)
are  the finite number of eigenvalues} .

L et 1: [0, 1] —> f(co) be  a  continuous loop, then the graph o f the  spectrum
o f  1 can be param etrized through a  finite m onotone sequence o f  continuous
functions:

(1-4) .11: [0, 1] [— 1, 1] j = 1, , N ,

(N  is  the maximal number of the eigenvalues e a(1(t))\o- e s s (1(t))
with multiplicities of the  operator 1(t) (0 t 1))
—1 < 2,(t) • • • 4 (t) 1
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and we regard as

—1 = • • • = 2- 1 (t) = 2 0(t) AN-Fi(t) = 4 + 2 (t) = • • • = 1 ,

because + 1 are eigenvalues with infinite multiplicities.
Since 14(0)} 1 = 12,(1)} 1 , there exists a unique integer s e Z (Isl N ) such

that

(1-5) 2k+s(0) = ilk(1) for any k e Z .

This integer s is the spectral flow of the given loop 1, and is invariant for the
homotopy class of 1. Spectral flows appear in various contexts ([At], [B], [BW1],
[B W 3], [D W 1], [D W 2], [F], [O F], [T], [V W ], [Y ] etc.).

The B ott periodicity theorem for complex K-groups says that the spectral
flow  and the Fredholm  index are equivalent a s  topological invariants through
the suspension or the desuspension. However it seem s fo r  u s  tha t the re  are
analytic difficulties in  dealing with the spectral flows arising from the family of
differential operators with different domains o f  definitions, especially, since we
need continuous loops of bounded operators in  a  fixed Hilbert space to define
the spectral flow.

Our purpose here is to give a non-trivial example of the spectral flow arising
from  a variation of non-local elliptic boundary conditions imposed o n  a  fixed
elliptic differential operator and its spectral flow formula in terms of intersection
numbers between certain singular cycles. O ur situation was already suggested
in [B] and [BW 3].

N ow  w e can  regard th a t  th e  isomorphism sf: n i (A K) Z  defined  by  the
spectral flow gives us a cohomology class [sf] e 11 1 (i * , Z). O n the other hand,
let 01° be the subset of consisting of the operators with non-zero kernels. Then
accord ing  to  th e  definition of the spectral flow , it m ay  b e  reg a rd ed  as the
intersection num ber o f  th e  se t .2 ' w ith  th e  loop  in  th e  space O b v i o u s l y
this interpretation may not be rigorous. However,

(1) if  th e  loop is contained in  a  c e rta in  closed oriented m anifold M  (of
finite dimension), continuously embedded in with a n  embedding

(1-6)

and  moreover
(2) if the set y - 1 ( )  represents the Poincaré dual of the cohomology class

7*([sf ])e I -11 (M, Z), then the spectral flow for the loop coming from M might
be equal to  the intersection number of the cycle y- 1 (.1°) w ith the loop.

Here we say that a  subset S  of a m anifold M  represents a  homology class,
if there exists a  closed m anifold Y  and a sm ooth m ap T : Y  M  satisfying,

(a) r(Y) = S
(b) T  is one to  one on an open dense subset Y, of Y, with the open dense

im age  t(y ) in  S.
(c) rank (O p  =  dim  Y for p E
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Then with a  smooth triangulation of Y, S  can be seen a s  a  singular cycle
whose homology class is the image of the fundamental class [Y ] under the map r.

Rem ark 1.1. Even if  w e have  a  m ap y: M  ,A ,„ it is  no t so  c lea r to  be
able to find such a  m anifold  Y  and a  m ap r  for y -

1 ( ).

In  this paper we will give an  embedding of the unitary group y: U(N) — >
for each N  satisfying all the  above conditions (1), (2) and give a spectral flow
formula in terms of intersection numbers (Theorem 4.2). F o r  that purpose we
will identify th e  space o f  unitary matrices w ith  a  c e r ta in  space of non-local
elliptic boundary conditions. T he loops of Fredholm  operators, then, a re  ob-
tained as realizations of an elliptic differential operator by varying such boundary
conditions.

In  § 2 , w e introduce th e  space o f  boundary conditions (see [BW 3]) and
construct the  m ap y: U(N) — ■ A .  In  §3 , we prove the continuity of the m ap y
and give a spectral flow formula, which is analogous to the formula in [BW 3]. In
§ 4 , w e  show  th a t  th e  s e t  y - '(1 ° )  represents the  P oincaré  d u a l o f  y *([sf ])e
111 (U(N), Z ) and  consequently we have a spectral flow formula in terms of the
intersection number (Theorem 4.2). Also we note a relation of the spectral flow
with the Maslov index as a special case of the theorem 4.2 (Theorem 4.5). Finally
in §5, we remark how we can obtain a  loop in  fr*  from two invertible differential
operators with a  same principal symbol and show a spectral flow formula, for
th e  c a se  o f  ordinary differential operators, i n  te rm s of intersection numbers
through monodromy matrices.

§ 2. A  space of elliptic boundary conditions

I n  th is  section w e construct a  continuous map y: lim U(N) = U(co)
 — p

For this purpose, we introduce a certain space of non-local elliptic boundary con-
ditions (so called, generalized Atiyah-Patodi-Singer boundary conditions ([BW3],
[DW1])) and identify it with the unitary group U (N ). Then the map y is defined
as the realizations of an elliptic differential operator by imposing such boundary
conditions.

L e t A  b e  a  symmetric, first order elliptic differential operator o n  a  closed
manifold Y. A  is  ac ting  on  a  smooth Hermitian vector bundle E .  We denote
by L 2 (Y, E) the Hilbert space of L 2 -sections of E  with the inner product (•, •),.
W e assume tha t there  ex ists a  unitary bundle isomorphism G  o f E  satisfying
following conditons (2-1) — (2-3):

(2-1) G2 = — Id

(2- 2) G  A = — A 0 G

(2- 3) dim Ker A fl Ker (G —  — 1) = dim Ker A CI Ker (G +  — 1 ) .

Here G is regarded a s  a  unitary operator on L 2 ( Y, E), and is denoted with
the same symbol.
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Remark 2.1. O n  any 4k-dim  manifold w ith  the signature zero w e  have
always such a n  opera to r. S ee  a lso  [BW3] a n d  [Y ] fo r  such examples of the
pair A  and  G . If Ker A  0, then the condition (2-3) is automatically satisfied.

L e t Ê  b e  th e  p u ll back  o f  th e  vector bundle E  t o  th e  product manifold
X  = [0, 1] x Y  via the projection X  —■ Y, and  b y  (0, i/i)x  t h e  inner product for
sections 0, ik e nx, t):

(2-4) (0, 0x =  
f o  

00> 0(t, ')/y dt

N ow  le t B  be  the  elliptic differential operator

(2-5) B  G ( ta + A)at
acting on the vector bundle Ê .  We would like to define a  m ap y = yN : U(N) —>
..0.;(L 2 (X , Ê)) fo r each N  b y  selfadjoint realizations o f  B .  N ote  here  tha t the
actions of G  a n d  A  o n  nx, t) are  naturally defined, so we denote them with
the  same symbols for the  sake of simplicity.

B y  the conditions (2-1) a n d  (2-2), th e  operator B  is formally symmetric,
namely, for any sm ooth 0, e nx\ax, t) with compact supports,

(2- 6) MO, tOx = 10, BO(.

Again owing to the conditions (2-1) (2 -3 )  we can choose a n  orthonormal
basis {0„

} n = ± 1 ,  ± 2 ,  + 3 , . . .  of L 2( Y , E) such that

(2-7) On is  a  smooth eigensection of A  with the eigenvalue A ,,

n= +1, +2, +3, ... ,

(2-8) 0 < < • • • < < • • • , A = —A, , n = 1, 2, 3, ... ,

(2-9) GOn — 0—n 5 GO—n 5 n 1, 2, 3, ....

L et V (N) be a  subspace of L 2 (Y , E) spanned by {0 „ },, , ,  +2 ....... ±N  with com-
plex coefficients, and M , the set of N-dim subspaces L  o f  V (N) satisfying

(2-10) L 1G L (orthogonal) .

F o r  each L e  N ,  w e denote by itz, the orthogonal projection operator in
L 2 (Y, E) onto  the  subspace:

(2-11)L +  E  Co_ ,
ri 151+1

and also denote by 7E+  the orthogonal projection operator in  L 2 (Y , E) onto  the
subspace

(2-12) E Cok
k

These n ,  and n + are  pseudo-differential operators of order zero.
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Now let yi (i = 0, 1) be the restriction operator from the first order L 2 -Sobolev
space 14/1(X, Ê) o n  X  to L 2 (Yi , 4 1), where yi { i }  x  Y  Y ,  Ê , .  i  = 0, 1,
and let DL  b e  the  subspace o f  W1(X, Ê) such that

(2-13) DL = {0 e W 1 : n+  0 yo (0) = 7EL 0  Yi() = 0} .

L et BL  denote the  operator B  with the  domain DL ,  then we have

Proposition 2.1. For each L E B L  is selfadjoint and has compact resolvent
operators.

This proposition is proved by constructing a  parametrix fo r  BL . Such a
parametrix is obtained by patching parametrices near boundaries Yi ( i = 0, 1)
and an interior o n e . A  parametrix near boundary {0} x Y is constructed in the
same way a s  [APS1, Proposition 2.5], a n d  a n  interior one  is obtained by the
standard  w ay. To construct a  parametrix near the  boundary {1} x Y, we need
a  slight modification from that cited above. Now we describe just it in  the
following lemma 2.2 (see [APS1, Proposition 2.5 and Proposition 2.12] for the
full details of the  proof of our proposition 2.1).

L et Cf,,,,,p ([0, co) x  Y, Ê) be th e  space o f smooth sections u  o f  th e  bundle
Ê  over [0, co) x  Y  such that each u  vanishes fo r  sufficiently large t »  1 , and
fo r each L E N , C '( [0 , co) x  Y, Ê ; 1 — 7tL )(Cfo „,p ([0, co) x  Y, Ê; 1 — EL )) b e  the
space of smooth sections u e C"([0, co) x  Y, f)(u e CL. p ([0, co) x  Y, i")) satisfying
(1 —  L) ° Yo(u) =

Lemma 2.2. Let A be the operator as above and let L e aN be f ixed. Then
there is an operator QL

(2-14) QL: C l i p ( [0, cc) x  Y, P)-+ C '([0 , co) x  Y, f ; 1 — irL )

such that

( i )  (41 + A ) QL g = g for g e Cct . p ([0, co) x  Y,
at

(ii) QL (—
O t  

+ A) f  -= f for f  e CL„,p ([0, oo) x Y, Ê; 1

(iii) QL  ex tends to a continuous map from Sobolev spaces V W ' to  It, for
all integers 1 = 1 , 2 , 3 , ....

(The parametrix  near the boundary {1} x  Y for the operator BL  is obtained easily
from this QL ).

Pro o f . Let 0,, 02 ,  . . . ,  ON be an orthonormal basis of L  and put 0_, = G(Gk )
(k = 1, 2, ..., N ) .  L et A(8„) -= a i „ O i ,  then A(0_„) = a i 3 O _ . i ,  where the
constan t m atrix (ask ) is symmetric. W e ex p a n d  g e Cfo m p ([0, co) x  Y, t - ) c
L 2 ([0, co)) (5- L 2 (Y, E) (tensor product of Hilbert spaces) by the orthonormal basis
{4}11,1 N+1U{Ok}ikispi:

(2-15) g(t, y) =  E g , ( 0 ( y )  +  E g(t)O(y)
iki> N

— Irv)



+
v ,N

—  L  a k fi i — gkdt i=1

df
dt 

(2-17)

266 Kenro Furutani and Nobukazu Otsuki

N o w  w e  w an t to  so lv e  th e  equation /3/1  = g. T his is  done  by  so lv ing  the
following equations:

df, ,
(2-16) —

d t  
+ Ao k — gk > N 5

g-k
k = 1, N .

Solutions of these equations are  given by

(2-18) f,(t) = e - 4  ̀(i f es4 g„(s)ds — C,) Ik > N,
and

                      

(2-19) = exp (— t(a,))

  

exp (s(a,))
Jo

ds —

          

CN

                                           

(2-20) = exp (t(a,)) Jo
exp ( —s(a,)) ds —

              

with suitable constants IC k l ,. N ow  if we take

(2-21) Ck = 0 for k > 1
CO

(2-22) Ck = es'kgk (s)ds for k < — N,
and

"c_ i

(2-23)
s . C_N

= exp (— s(a,)) ds ,

then for g E  C l n p ( [0 , CO) X  Y, Ê)

(2-24) (420 )(t, .37)  =  E  fk (t)ok(y)+ E  Sk(ook(y)
ikl›N

converges in C"-topology and satisfies (i), (ii) and (iii) (for details see [APS1,
Proposition 2.5]).

Thus we have constructed the parametrix of 11,, which implies that B , has
compact resolvent operators. The selfadjointness of B, is proved by noting the
following fact: if we denote by Dt,

Dj = tO e W i (X, P): (1 — n+) ° Yo(0) = 0 —  n  °  1 ( 0 )  =  °I
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(athen G(DL ) = Dt, which is the  domain o f  —

a t  
+ A  . They complete the proof

of the proposition 2.1.
Now we identify the space M N w ith  the unitary group U(N) by the following

w ay . L e t UG(N) be a  subgroup of the unitary group U(2N) on V(N) such that

(2- 25) UG(N)= { If  eU (2 N ):U  oG =  G o  Ul

and U (N )  be  a  subgroup o f  UG (N ), each o f which preserves the  subspace L+

(=the subspace of V(N) spanned by 141;1=1). Then U ° (N ) acts on AIN transitively
and the stationary subgroup at L,,is U ( N ) .  So w e have the isomorphism:

(2-26) u°(N )/U1(N )

through the  m ap  UG(N) D U  U(L + ) e MN.
Every elem ent U e UG (N )  is expressed in  th e  following form (2-28) with

respect to  the  orthonormal basis ft//14 1=1 o f  V(N):

(2-27)
= Ok — N/ - 1 0-k)

v /2 (

0-k = 1

2

(4  +

U  -k ) =  Ej=1

1 < k < N ,

1 < k < N ,

(2-28)
[goo =  Ej=1

0
Especially with this basis, every element U e U ( )  

w ithU (N )  is of the f o r m  U
0

U
U e U (N ).  So let a  = ŒN: U (N) —> MN be  the  isomorphism defined by

(2- 29)Œ N :  U (N ) z MN

U =
( I d  0 )

( L + )U

= th e  subspace o f  V(N ) spanned by { E  u,k 0;  + tfr
- k

y  .

i=1 k=1

In  th e  obvious way we can see

(2-30) asN M N + 1 U (N ) U (N  +  1)

and have the commutative diagram:

U(N)

(2-31)
1

U (N  +  1 ) "+ ' • IN +1  •
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Let /3 = /3„,: 2,,, —> A(L 2 (X, Ê)) be defined by Mgt) = BL, 0 .\/1 + B2 -
1 1 -31, then,

finally the m ap y: lim  U(N ) = U(co) —> A(L 2 (X , f)) is defined by

(2-32) Y(U) = fi(Ba(u))
for U a  U(oo). The proposition 2.1 implies that each operator y(U) is a  bounded
selfadjoint Fredholm operator in  L2 (X, Ê). We will prove the following theorem
in  the  next section.

Theorem 2.3. (i) The map y: U(co)—> ,0, is continuous and one to one.
(ii) the map y induces the following isomorphism fo r each N:

(2- 33) Y*: ir1(U(N))'4" 1 i(f r* ) .

We have the first spectral flow formula as a corollary of the above theorem.

Theorem 2.4. For each loop I: [0, 1] — > U(N ) the spectral flow sf{y 0 l}  is
given by

sf {y 0 / }  = f det*({c/0]) ,
i

where [dB] is the generator of Fl i (U(1), Z).

Proo f . T h e  p roo f is  ob ta ined  by  no ting  tha t th e  m a p  det: U(N) -4 U(1)
induces the isomorphism det*: 1-11 (U(1), Z) ''_' ii i (U(N), Z).

Remark 2.2. From  the proposition 2.1 our operators BL  a re  in  th e  space
ce,„ th e  space o f  selfadjoint operators w ith com pact resolvent operators and
infinite numbers of both positive and negative eigenvalues. Operators i n  ,i, have
different domains of definitions and necessarily are not bounded. W e transform
them  to operators in  A :

(2- 34) (e a  T —  T 0 (.\ /1 + T 2 )-
1 e  A K .

Here arises a problem : Although finite numbers of eigenvalues themselves change
continuously under a  fairly week perturbation of operators in  ce*  (= with respect
to  the topology of i *  defined by the generalized convergence (see [K])), we need
th e  continuity o f  th e  above transformation (with a  suitable topology of
because the spectral flow has the meaning just for continuous loops in  A, as a
topological invarian t. W e can show this only o n  th e  subspace U(co) w ith the
usual topology regarding a s  a  subspace o f  i )  i n  t h e  above w a y . T h is  i s  a
reason why we d o  not consider the whole space of boundary conditions defined
in  [BW3].

Rem ark 2.3. O u r  boundary conditions are rewritten a s  follow s: L e t E ,
b e  th e  subbundle o f  E  consisting of ±/— 1 eigenspaces o f  G, a n d  le t P  be
the  operator P: F(E„) —> F(E_) defined by ikk i—> 0 _, (k  = 1, 2, 3, ...). H ere {i/Jk }
({t// _k }) i s  t h e  orthonormal basis  o f  L 2 (Y, E+ )(L 2 (Y, E_)) defined i n  (2-27).
Then P  is  a  unitary pseudo-differential operator, since P  is  the composition of
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operators:
inclusion projection

(2- 35) F(E) F(E) — >  1 1 E 4  .

Let U = (u u ) E U(N ) and define the operator Tu  on  L 2 (Y, E + )  by

Tu(tfrk) = k  > N

(2-36)
TOM = 1 < k < N  .

J=1

Then P o Tu  is also pseudo-differential and u n ita ry . Let cp. = 9 + + 9  E
L2(Y, E), 9 +  e L 2 (Y, E ± ), then we have, for f  E W 1 (X, Ê), f  e D OE( _u -l ) if and only if

(2-37) P(Y01.f = Y o ( f ) - andP o  Tu((Yi f )+) = Y (f)--

Boundary conditions of this form were treated in  [R].

§ 3. Proof of Theorem 2.3

In this section we prove the theorem 2.3. First we show (i) of the theorem
2.3. To prove the continuity of the m ap y it is enough to  show the map

LIG (N)—■

U U(L + )i— Bu ( , +) 0 (1 + B (L . ))  112u ( , + )

is continuous for each N , since the projection U ° (N) i s  an open map-
p ing . H ere  L+  i s  the subspace in  V (N) spanned by {

Let B+ d eno te  the operator BL ., and  denote by D+ th e  domain Di„  o f  BL ,,
then

Proposition 3.1. For any  L the operator 11.
2, is unitarily  equivalent to

13+  modulo bounded selfadjoint operators.

Pro o f . L e t  U E U G (N )  b e  a  unita ry  transformation of V (N ) such that
U(L + ) = L , and take a  smooth curve fu5 }0 , 5 , 1 i n  UG (N ) satisfying

(3- 1) u0 = Id , u1 = U ,

a n d  w e  regard t h a t  fo r  e a c h  t E [0 , 1 ]  u , a c ts  o n  V(N)±  a s  t h e  identity
transformation.

Now by making use of this curve we define a  unitary operator CI on L 2 (X ,
by

(3-2) (C0)(t, y) = u 1(0(t, y)) , for 0 G L2(X, t),

and a  bounded operator d r/  on L 2 (X , t )  by

(3- 3) (dr/0)(t, y) = du1/dt(0(t, y)) ,4  e L 2 (X, Ê) .
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Then for each k > 0 the operators û and dû are also continuous as operators
from the Sobolev space W k (X, Ê) t o  Wk (X, -E), and  we have

(3- 4) û(D+) = DL ,a n d

(3- 5) (0 - 1  0  /3„, 0  C/0)(t, y) = (/3 )(t, y) + (G 0  0 - 1  0  dû)(0(t, y))

+ (G 0  (ui
- 1 0  A 0  14, — A))0(t, y) , e D+ .

The last term of the right hand side of (3-5) is of the form Id 0 {finite rank opera-
tor} o n  L 2 (X, f) =  L 2 (0, 1) 0 L 2 (Y, E). Hence we have shown the proposition.

Proof  o f  (i) o f  the  theorem 2.3. The injectivity of the m ap y  is shown by
noting the  facts: (1) th e  function 111— 2(1 + 22)-112 is strictly increasing, and (2)
the  uniqueness of the spectral measure for a selfadj oint operator.

Now let V e UG (N) be fixed, and be a  neighborhood of V in  UG (N), which
will be taken so small that each U e w ill s a t is fy  the following inequalities: Let
take a family of smooth curves lu(t, U ) } 0 < < 1

u(0, U )  Id , u(1, U) = U

1114(t, V) — u(t, 011 —

d d
—
d t

u(t, V) — —
d t

u(t, U) —

Here the  norms of N  x N  matrices should be suitably taken, and the constant
C, >  0  is independent o f U E W . The family of such curves {u(t, U)}„ E , can  be
taken by , for example, considering a  tubular neighborhood o f  a  fixed smooth
curve joining I d  a n d  V. T h e  neighborhood all m ay depend o n  this tubular
neighborhood.

By making use of these curves we define unitary operators û  and bounded
operators dC1 on L 2 (X , f) as the same way as in the proof of the proposition 3.1.

Then we have

(3-9)

Let denote

(3-10)

where

(3-11)

{

m 17 — ejm_mv— um
IIV- 1  — 0 - '11 -11V — U L

d17  — dC111 ._. C11V — u .

1 0  B U ( L )  0  U = B, + Cu  5

(CØ)(t, Y) = (G u(t,
d  

u(t, U))4)((, Y)dt

+ G 0 (u(t, U) - 1  0 A 0  u(t, U) — A)0(t, y) .

in  UG (N) for each U e 11 satisfying

(3-6)

(3-7)

(3-8)
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Now we estimate the norm of the difference of operators (as an operator on
L2(X , t))

(3-12) Bv(L*)(1 + Bk4)-112 Buu, 0 (1 + 1313( L0) - 1 1 2

as follows: First we rewrite this difference (3-12)

=  -17 (B+ + Cv )[1 + (B+ +  C ) 2 ]_ 2 1-1 _ CI (B+ + Cu )[1 + (B+ +  C ) 2 ]

(3-13) = (i7  — (7)(B+ + C„)[1 + (B+ + C )2] -
1 / 2 p ' - 1

(3-14) + (1(Cy  — Cu )[1 + (B+ +  C ) 2 ] - 1 / 2 4 7  1

(3-15) + II(B +  +  Cu)1[1 +  (B+ + Cy)
2

]
- 1 / 2

[ 1 +  (B+ + Cu) 2 ] - 112 1
(3-16) +  II(B+ +  C u )[ 1 + (B+ + Cu )21- 1-12 (17 - 1 —

1 '2 U 1

f7 - 1

Owing to (3-6) — (3-9) we can get easily the following inequalities:

(3-17) SUPUe dll 03+ C  II C2 with some C2 > 0,

(3-18) 11CV Cu 1113,_,L2 C 3 1 1 V with some C3 > 0 .

Hence also

(3-19) Ilcv - cu 4 2 ,1.2c 3 l l v  -  UM

for any U G W . Here D+ h a s  the norm as a  subspace o f 14/1 (X , f), and  II
denotes the norm  of operators from D+ t o  L2 (X, Ê), and  so  on.

If we have the following inequality

(3-20) II [1 + (B+ + Cy)2]-112 — [1 + (B+ + Cu) 2 ] - 1 1 2  L 2 ,D ,

C411V U  , Ueolt, with some C4 > 0 ,

then also the following is clear

(3-21) s u P u . 11E1 + (B+ + Cu )2 V 12 11L2 ,D , < +00 .

H ence by (3-13) ( 3 - 2 1 )  w e see  th e  m a p  y: U(cc) .0 '",„ is continuous, which
proves (i) o f the  theorem 2.3, a n d  we have the m ap 4: n ,(U (N )) rt i (.,%) for
each N.

Proof of (3-20). First note that D+ is closed as a subspace of W1 (X, f). By
the selfadjointness of B+ + Cu  ( o r  b y  th e  e x is te n c e  o f  a  parametrix for the
operator B+ ) and  the  inequality (3-18) there exists a  constant C, >  0  such that
for any u e D+ a n d  U e

(3-22) C5(11(B+ + Cu )(u)11 + dull)

where Mu ll ,  i s  th e  first o rder Sobolev norm  o f  U E W l (X, P )  a n d  'lu ll is  the
L2 -norm . N ow  w e have
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(3-23) [1 + (B+ +  Cy) 2
]

- 1 1 2  -  [1  +  (B+ + Cu )2 ] -
112

1
= 

2 n i  
J

r  
(1 + .1) -

1/2 { [/1. —  (B+ + Cv) 2 ] -
1 — CA — (13+ + Cu )2 ] -

1 }chl

1
= 

2 n i  

f
r  

(1 + 1) - 1 / 2 P  -  (B+ + Cv) 21- 1 [BACv + Cu)

+ (Cv — C )B+ + C,3 — Cl][A  —  (B+ +  C ) 2 ] - 1 c1A ,

the path 1-' is taken suitably with larg AI = 00 , 0 < 00 < '7  for 121 » 1.
2

Note that

II CA —  (B+ + Cu) 2 1-
1 111,2,LÇ = 0( ) i-1/2)

uniformly with respect to  U e ali on the line larg AI = 00 , 1/1.1»  1 , because from
(3-21)

II CA —  (B+ + Cu) 2 ] - 1  ull 1

< C5(11(1 3 + + C )([2
 —  (B+ + Cu) 2 ] - 1 14 )11 + II[2

 —  (B+ + Cu) 2 ] 14 1I)

< C5(II(B+ + Cu — NA ([A  —  (B+ + Cu) 2 ] - 1 1 4 )11

+ j/ill[A — (B+ +  C a r  ull) + 0 (1AI - 1 )114

< C6 I ' 12 dull .
Hence by substituting (3- 24) into (3- 23), the left term of (3- 20)

1
< C, f 1(1 + A)

1
- 1 1 2 1  II(B+ + Cv) 2(B + + C u ) 2 II la l

F NA/1.1 NAAI

< C8 11V — U II .

Proof of  (ii) of  the theorem 2.3. Next we determine the spectral flow of the
loop fr3.-- • +Ju n ", )1-n/2<05702 corresponding to the generator of n i (.4 1), where

(cos 0  — sin 0) 
e  U

G
( 1 ) , — n / 2  0  _ .._  n / 2  ,(3-25) 1(0) = 

sin 0 cos 0

and here L + is the subspace of V(1) spanned by 01 . 1(0) acts on L2 (Y, E) as follows:
1
(0)(0.) = On ,

(3-26) 1(0)(0_ ) = cos 0 0_1 + sin 0 01 ,

Inl 2 ,

/(0)( ) = —sin 0 0_, + cos 0 01 .

To determine the spectral flow of {/11(0)(L , ) }, we solve the eigenvalue problem

(3-27) 13/(6)(L)f = 2f,A e R ,  f e  1 4 / 1. ,

where

(3-24)



(3-30) -p(t)
dt

2

dt = f_
e't

f ( t ,  y)0(y)dy

a
y)

2 f  1

dydt • 0(Y)12dydt < + co .
0 Y

2
dt
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with boundary conditions

(3-28) n+ o yo (f ) = 0

(3-29) lrnon+)° Y i(f) = 0 .

We want to determine eigenvalues which are across zero when the parameter 0
m oves from  — i/2 to n / 2 .  Let f  e W 1 (X, f )  satisfy (3-27), then f  is smooth on
X \0X  = (0, 1) x Y. H e n c e  w e  s e e  th a t  fo r  any sm ooth q e F ( E )  th e  function
p(t) = (f(t, -), O(•)), has the L 2 -derivative on [0, 1], because o f the  inequality:

Consequently, if we decompose the eigensection f  of (3-27) with conditions (3-28)
and (3-29) into

(3-31) f  =  fo +  f c c , f0  L 2 ( 0 , 1) (5 V( 1) foo E L2(0, 1) 6 V(1)-'-,

then both f o a n d  f x,  a re  in  Do n o . Moreover we have

(3-32)

since

(3-33) Bi o n + ) ( f0 ) e L 2 (0, 1) 6 V (1 ) a n d  Bion,)(fo) E L2(0, 1) -6 V(1)±

If f o 0  0 ,  then  A  should  be constant when th e  param eter m oves. So w e can
assume f o,  =  0 .  N ow  the  problem we want to solve is reduced to the following:

G ( —

a t 
+ A )(a(t) i + b(t)1) A (a(t) 1 + b ( t ) 0 1 ) , o r

0

(3-34)
b'(t) + A i b(t) = Aa(t) ,

—a'(t) + ). 1 a(t) = ).b(t),

(3-35) b(0) = 0 , —a(l) sin 0 + b(1) cos 6 = 0 .

If Ai  = 0, then we can easily solve them with solutions for —7r/2 < O < n/2,

fa(t) = c cos A t,b ( t )  =  c  sin A t  (c 0) ,
tA = 0 + , n =0 ,  ± 1 ,  +  2 ,  . . . .

Hence we have

(3-37) Sf {1-3
1(6)(1-01 - 7 r1 2 5 0 5 n1 2  =  

1
 •

Next assume Ai  0 0, namely the operator A is invertible. Then we see that

Bi ( 0 ) ( L ) f  = O , f e DI(0)(L4

B
I(0 )(1-01f01 = /

1/0 BIONL+0001 afoo

(3-36)
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has th e  only non-zero solution f(t, y) = ce'1t ,(y ), w hen 0 = 0 , an d  fo r  other
TC

0 < B and 0 < 0, the  operator B,( , ) (L .0  is invertible.

General solutions of (3-34) with (3-35) for 121 < A, are  given by

(

a(t)) 
=  e x p  t  

(2, —  a(0))
b(t) A — A A  0  )

-= [cosh lit Id + 
sinh fit (a i

it

Here A  and  0  satisfy the relation

—A y l(a(0)
—A i ) _R  0  )

sin 0
sinh

(3-38)
cos 0 

cosh it +  1 sinh
fi

where it = — A'. H ence by the continuity of the sim ple eigenvalue under
the variation of the parameter 0, we can see that the solution curve j. = 2 (0) of
(3-38) through 2(0) = 0 changes the sign at 0 = 0 from  — to + ,  when 0 changes
sign from  — to + .  Consequently in  this case we also have

(3-39) =  1 •
Hence they complete the  proof of the theorem 2.3, (ii).

§ 4 .  Poincaré dual of y*([sf])

In  th is section w e show  the following theorem and  its corollary (Theorem
4.2) which gives the second spectral flow form ula in term s of the intersection
number cited in the introduction.

Theorem 4.1. L et y = yN  be considered on U(N) f o r a f ix ed N.
(i) y- 1 (ff) = 1U e U(N): oi(U)n L, {0}} = 1U e U(N): det (U — 1) = 01.
(ii) (2 ') can be seen as  a codim-one singular cy cle in the sense (a), (b)

and (c) of the introduction, and its hom ology  class is the Poincaré dual of  the
cohomology class det* ([d0]) e 1-1 1(U(N), Z).

P ro o f . Let L E aN  and assum e tha t for some f  e DL ,  f  0,

(4-1) /3,(f ) = 0 .

If we expand f  as follows;

(4 -2 ) Pt, Y) =  E ( f i t ,  • ) ,  ( P k ) y Q , ( y )  + E (f(t, Q  Q  (v) fk  Y  k  _ — + f o p

1k1>N

then both f N  and f so a re  in  DL . Since (f(O, ), 49k)y = 0, k > 0, and ( f(1, (Pk)r =
0, k < — N, we have f o, =  0 , and f  is  of the following form:

(4-3) f (t, = E ake 4`(Pk(Y)
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with (a _ 1 , ,  a _ N )0  (0, 0, ..., 0). By considering the  boundary condition

L 1 f(1 , •) (orthogonal)

0  0  G ( f ( 1 , • )) = a-keAk9k G .

So, if L = a(U), U  e U(N), then 0  0  D v=i  ck gok E L fl L + ,  if  and  only if
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(4-4) E CkOk is  a n  eigenvector o f U  w ith the eigenvalue 1
k=1

which showes (i).
From (i), the proof of (ii) is given by the diagonalization of unitary matrices.

We now sketch the construction of the manifold Y and a m ap t :  Y  U(N) satis-
fying the conditions (a), (b) a n d  (c) in  th e  in tro d u c tio n . L e t Ui  =  {U e U(N):
det (U — I) 01 and

U(N) x  T N - 1  U ( N ) ,

(4-5)
2 2

U ,

' 1 0

U u - 1

0 AN

where 2 E C, Ail =  1 .  Then Im  =  U t , and descends to T: (U(N)/T N ) x  T N - 1

U1 . Next, let SN_I b e  the (N — 1) symmetric group and  identify it with a  sub-
group §N_i o f  U(N):

1 0 6 ,7 6 0 0 ,(4-6) 5 N-1 — 16- e U(N):
( ) , ( "  

U(N — 1), o- e S N _1 1
(5,)

Then S„,_, acts o n  (U(N)/TN ) x  T N - 1  in  th e  following way:

5N-i x (U(N)/TN) x  T N - 1  (U(N)/TN) x  T N - 1

(4-7) a; [U],
22

[UCY- 1 ],
0

0 AN,

This action is free and commutes with the map T. Also, since the action of
a e  SN_ i  o n  U(N)/TN , [U]i—[UCI- - 1 ] ,  preserves and reverses the orientation ac-
cording to  the  signature  of the  perm utation  a , the  ac tion  (4-7) preserves the
orien ta tion . T he resulting quotient manifold ((U(N)/T N ) x  T N - 1 )/SN _ 1 and  the
map

(4-8) t :  ((U(N)/T N ) X  T IV-1 )/Sry- U l
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are  those required in  the  in troduction. L et y . =  ((U(N)/T N ) x g)/SN _,, where

    

1E T ' :  Ai 0  1  and  Ai 0  A;  f o r  i 0  j

   

0
(4-9) g  =

     

0 N

   

th en  Yr i s  open dense in Y, t  i s  a  o n e  to  one immersion on and x( Y,.) is
open dense in U 1 . Namely the conditions (a), (b) and (c) in the introduction
are satisfied by this closed orientable manifold Y = ((U(N)/T N ) x T N - 1 )/SN _ 1 , the
m ap t  and the open dense submanifold Y,..

N ow  le t I be a  loop

0

in  U(N), w here 0< < ir, i l b  fo r i j ,  and2 j =  0 . T hen  th is loop
is  a  generator o f n , (U (N ))  H i (U(N), Z) Z  a n d  intersects transversally with
U , just once a t  the point

(4-11)

1

0

ei "2

e -r(Y,.)

     

Hence we can say that y- 1 ( )  represents a  generator of (N 2 — 1)-dim homology
group o f U (N ).  The orientation of Y  is taken so a s  to  b e  compatible with the

equality  fdet*  [dB] =  1. T hese  com plete  the  proof o f the  theorem 4.1.

Theorem 4 .2 .  For a loop 1 in U(N) the spectral f low  of the loop 1y 0 /1 is
equal to the intersection number of y - i (Y )  with 1 in U(N).

Finally we explain a  re la tion  w ith  the  M aslov  index . L e t V R (N )  b e  the
R-vector space  spanned  by  {Ok }iki , N , then  V R (N ) has a symplectic structure

co(x, y) = (x, Gy)  for x, y e VR (N ) .  The inner product ( • , • ) y ,  CO and the almost
complex structure G o n  VR (N ) are compatible. W e regard VR (N ) a s  a  complex
vector space by means  o f  this alm ost com plex structure G  a n d  denote it by
I7R (N): for z = a + —  lb  e  C  and x  E 17R (N ) z • x =  ax + bG(x). Then {A } ,  is
an orthonormal basis o f  PR (N ) over C.

L et A (N ) denote th e  space o f all Lagrangian subspaces of the symplectic
vector space VR (N ) .  L et A e A(N), then  the complexification A 0  C  =  j N (2) are
in  .4 N and also we have a commutative diagram of embeddings:

(4-10) 1(0) =
ei"

(0 27E)
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A (N) JN

(4-12) j.
A(N + 1)

   

'IN+1

By considering the  fact that j i : A(1) L.' MI , w e have

Proposition 4.3. All embeddings of (4- 12) induce isomorphisms of their funda-
mental groups.

I f  we identify A (N ) U (N )/ 0 (N ) through th e  a c tio n  o n  A (N ) o f  unitary
transformations of 1f7R (N ) by U(A) fo r  A E A (N ) (0 (N ) is  the  stationary sub-
group of Ao  e A(N), the Lagrangian subspace spanned by 10,1 1 ), the map j  = j N

is written in the form:

Proposition 4.4.

(4-13) iN IURA  = a (C U ),

where U = (ui k ) = (a.* + — M A )  e  U(N) and U(20 ) = Lagrangian subspace spanned
by 1E7=1 aikehi + E7=1bikO-S=1.

From  this proposition w e have I I  = j o  ( a )*  o  d e t*  (PO D  coincides with
the M aslov class of A(N) (=Keller - Maslov -  Arnold characteristic class). Conse-
quently we have

Theorem 4.5. Let 1: [0, 1] A (N ) be a  continuous loop, then the spectral
flow of the family {iii " c } is equal to the Maslov index of the loop 1:

(4-14) sf { l m® c } = f

Now we reinterpret this in  terms of intersection numbers.

Proposition 4.6.

(4- 15) alTi l o jN (A(N)) = {U e U(N): U = `U}

=  { e  U(N): U = V' V with some V e U(N)}

= {U e U(N): U can be diagonalizable by an orthogonal matrix}

From  the theorem 4.1 we have

Proposition 4.7.

(4-16) .61 0 ocN  0 y,,71 ( ) =  { A e A(N): n Ao o {o}}

(A0: subspace spanned by {(1)k} 1)

This set (y occ - 1  0 j ) - 1 ( )  is called the M aslov cycle and is know n as the
Poincaré dual of the Maslov class ([A r], [D u]). This also can be shown in the
following way by making use of the theorem 4.1 and above propositions 4.3 — 4.6.



278 K enro Furutani and Nobukazu Otsuki

Since the conjugation action of 0(N ) o n  U(N ) leaves the image of OEN-
1 0 j N

(= {U e U(N): U = 1 U})  invariant, we have,

Proposition 4.8. Let W  =((0(N)/Z") x  T ') /  S N _ be the submanifold of Y =
((U(N)/T N ) x  T ') /  S N t h e  map p = ti w  and the open dense submanifold 14; =

W  o f  W , then these are required ones in the introduction to say that the
subset (4 - 16) can be seen as a singular cycle in A(N).

By considering the intersection of p(W ) w ith  th e  loop  (4-10) we see that
the  subset (4-16) represents the  generator o f  1-1( ( N 2„ ) / 2 ) _ ,(A (N ), Z) Z .  Hence
we have

Corollary 4.9. Let 1: [0, 1] — > A (N ) be a continuous loop, then

sf  f ilnnocl equals to the intersection number of the subset (4- 16) with the
loop I.

§ 5 .  Another spectral flow formula defined by ordinary differential equations

I n  th is  section w e  show  a spectral flow  form ula for ordinary differential
operators w ith periodic zeroth order term s. Before going to state the formula
w e rem ark a  general problem  concerning how non-trivial spectral flow may
arise. L e t  M  be  a  closed manifold, E  a  Hermitian vector bundle over M  and
D  a  first order elliptic symmetric differential operator acting on the sections
o f  E .  W e  assume th a t  D  has infinite numbers o f b o th  positive and negative
eigenvalues. L et S (E) denote the  space o f  Hermitian bundle maps o f  E .  We
denote by A the operator on L 2 (M, E) defined by A e S(E) fo r  simplicity. N o w
let DA =  D + A  and  y: S(E)—> .3%;(L 2 (M , E)) be

(5 - 1) A l — > DA . \ +  ( D A )2 )- 1  = 13A  .

Let I: I = [0, 1] S(E) be a  smooth loop, then the spectral flow of the loop
of operators ,B i(t ),o < ts  are zero, since S(E) is a  vector space. However assume
tha t for A  and  B e S (E) there exists a  unitary bundle map g: E  E  such that

(5-2) g  1 0 DA 0 g = DB ,

namely D A  and  DB  a r e  unitarily equivalent by th e  operator g. Then taking a
path joinning g and  Id  in  the  group of all unitary transformations of L,(M, E)
w e can m ake th e  path fib-  (1-5m+sBlo<s<1 in to  a  lo o p .  I n  [B W 1] the spectral
flow formula for such loops are  p ro v ed . In  this case the unitary map g  plays
an im portant role in the formula.

There is another way of making a  loop from a  path  
{ A1 - 0A+sB}0<s<1 under

the assumptions that both DA and DB  a re  invertible. In  this case, since the space
has trivial homotopy groups (see Lemma 5.1), we can join /3A  a n d  BB  by

a  path in \ .2° and denote by 1(A, B) a  resulting loop . O f course  such loops
a re  a ll hom otopic. It w ill no t be  so  c lear to  determ ine the spectral flow for
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this loop in  terms of A, B  and D .  In  [Y ] for 3-dim M  this case is  trea ted . He
gives a spectral flow formula in term s o f  th e  Maslov in d e x  a n d  ap p ly  it to
calculations of Floer homology groups.

Lemma 5.1.

(5-3)7 k ( f r * \ . 1 ' )  =  0 k  = 0, 1, 2, ....

P ro o f . Let =  {A e  f r* : a(A ) then  H,1 el then

U , f r g , 22 E l •

H ence it is enough to show nk (A ) = 0 for any E > 0.
Let e > 0 be fixed and take a continuous function f (s, t): I x  R  R  such that

7 (0, t) = t,
f (s, t) = t for 1, 0  <s < 1,
f (s, 1 for 1, 0  <  s < 1,

1
f(1, t) = 0

—1

E < t,

e/2,
t < —

Let J = e  f r* : J 2  = Id} , then  w e have for E > o, is  a  deformation retract
of J , since le t G: I x  freb e  s u c h  t h a t  G(s, A) = ff(s, t)d.E; 4 ,  w here {E} is
the spectral measure o f A, then  G is continuous (see [AS]) and

(5- 5)
G(s, J) = J for J e J, O <  s < 1,

1G(1, A) e J and  G(0, A ) = A for A  e frc .

N ow  w e prove  tha t J  is contractible. S ince U = U(H) th e  group o f  all
unitary transformations in the Hilbert space H acts on J  transitively, it is enough
to  show  the existance of a  local sec tion  s: J  U . N o w  w e  f ix  a  J0  E  J  and
identify J  U/U o , where U 0 =  {stationary subgroup of J0 }. Let n i  denote the
projection operator in  H  on to  the  subspaces HI

+  = {x e H: Jx  = ± x }  f o r  J e J
and denote by q10 = 1./ E J: -  <  11. Then a section s on /10 is given by

s(J)= ((n°e , + 7 t .127d) + ICJ °  ) * ) - 1 1 2+  i r J c7ci  ) .

By calculating s(J)(x ± ) for each element x + E HJ,  separately, we have s(J)Jo s(J)* =
J .  Hence U0 —> U J  is a principal fiber bundle with the contractible fiber and
to ta l space (Kuiper's theorem), so does the  space J .  Consequently we showed
the lemma.

Finally we give a spectral flow formula in the second situation for ordinary
differential operators with periodic coefficients in terms of intersection numbers.

Let Ye, be the space of N  x N  Hermitian matrices and A c CŒ(S 1 , Yt°N). A =
A (t) is also regarded a s  a  periodic Y  -valued C  function on  R  with the period

(5-4)
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d
2n

1
. W e denote by DA  =    +  A ( t )  an  ordinary differential operator acting

o n  C 0 (S 1 ) CN , a n d  BA  = DA (. \ /1 + e .A,(L2 (S1 ) 0  C N ). L et 0 A (t ) be  the
fundamental matrix solution of DA with the initial condition 0 A (0) = Id:

(5-6)

I i  d
i d t -

(1),(t) + A(t)0(t) = 0 , t E R,

0A(0) = Id .

The m atrix 0A (27c) is called the monodromy matrix for D A . We always consider
th a t  th e  fundamental solution m atrix  has the initial value Id , a n d  denote by
m(A) the corresponding monodromy matrix. Here we list fundamental properties
of 0A (t), m(A) and  related quantities (see [H ] for these properties):

(5-7) 0A(t) is unitary, for any t e R .

(5-8) Let SA e .re, be such that m(A) = exp (2niSA ), and put

U(t, SA ) = 0A (t) exp ( — itSA ), then

U(t, SA )  is unitary and  periodic with the  period 27E

(5-9) U(t, S A )' 0  DA o  U (t, SA) = D_BA .

(5-10) DA is invertible in  L2 (5 1 ) ® C" if and  only if

det (m(A) — Id) 0 0, tha t is, m (A) U ,

= {U e U(N): det (U — 1) = 0} .

N ow  w e  assume th a t  b o th  D A  a n d  D B  fo r  A , B e CNS 1, YeN )  a re  inver-
tible o n  L2 (S1 ) 0  C I' ,  an d  fo r  such a  p a ir  w e denote  by 1(A, B) a  loop  made
from the pathfio-sm+selo <s<1 by joinning /5, and A  w ith  a  continuous path
in  k ; \  .  Also we denote by  B) a  loop  i n  U (N ) m ade from  th e  path
{m((1 — s)A + sB)} 0 , , , 1 by  jo inn ing  m(B) and m(A) w ith a  curve in U (N)\U 1 .
Note here that U(N)\U, is diffeomorphic to an affine space through the Cayley
transformation.

Then

Theorem 5.2. A ssume that both D A  and DB  a re  invertible, then

sf {i(A, B)} = the intersection number o f  U, w ith the loop B) .

Pro o f . First w e note th a t it  is  possible to  m ake the  loop { U(t, SA )} 0 < i < 2 ,,
i n  U(N ) to  be  hom otop ic  to  the constant map, by exchanging SA , a n d  from
now o n  we assume that { U(t, SA )} is hom otopic to the  identity, and denote by
{ UT , S A )}0 < t< 2 n ,0 < s< 1  a  C -hom otopy  such that

U° (t, SA ) = Id 0 < t < 2n ,

(5- 11) U' (t, SA ) =  U(t, SA ) 0 <  t < 2n ,

Us(0, SA ) =  Id 0 < s < 1 .
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Then we have tha t the  two paths

{m(( 1 — s)A + sB)} o and {m((1 — s)SA  +  sSB)}o <s<i

are homotopic (note that m(A) = m(SA), m(B) = m(SB)), since in  C (S 1 , "6)
paths {(1 — s)A + sSA } and

T
1
U s ( t  S

A 
—

d  

Us(t, SA ) + SA)-1A(t)Us(t, SA)}dt

two

are homotopic and

d
m ( 1 UT, SA ) sU (t, SA ) + Us(t, SA ) ' A (t) Us(t, SA ) )

\/ —1

m(A) for 0 <  s < 1 .

S o  th e  loop {m((1 — s)A + o<sstsSA )1 is  con trac tib le . A lso  th e  sa m e s  hold, 
f o r  t h e  c a s e  o f  B .  H e n c e  th e  in te rsec tio n  num bers o f  U ,  w ith  paths
{m((1 — s)A + sB)} o , , , ,  and {m((1 — s)SA  +  sS 0 <$51 a re  equal. Again, since
BA and I3sA can be joined by a  path consisting of a unitarily equivalent operators

where

1 d
s = Us(t, SA ) - 1

 d t

Us(t SA ) + Us(t, SA ) - 1 A(t)Us(t, SA ) .

Hence the spectral flows of the loop 1(A, B) and T(SA , SB ) are equal. Consequently
the proof is reduced to that of the constant coefficient cases.

L e t V (and W) E  U(N) be such that

   

W*SB W =
11 1 o

  

(5-12) V*SA V =
0

then  risA  a n d  /3 " s A v  ( a ls o  iisB  a n d  A 4, 4 , 0  are  jo in ed  b y  a  p a th  o f  unitary
equivalent operators e \  . So

sf {T(SA , S5 )}  = sf {l(V*SA V, W * SBW)} .

Here note tha t the assumption that DA (DB ) is invertible is equivalent to say that
Ai Z ( t t i Z ) .  The spectral flow fo r the  loop  i(V*SA  V, W*SB W ) a re  calculated
explicitly by solving the equation:

/ 1d
+ s)Ak + s l i d )  = 2 (P

Namely we have for 2  = As -== (1 — s)2* + sk (m od Z), a simple eigenfunction

(5-13) (P(t) = eitÀ - ( 1 - 0 2 . - .Aot
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Summing up, for A, 1u e R \ Z put

#{n e Z: n E 12)}
(5- 14) N(2, 14) =

—#{ n e Z: n e A)}
if ,
if It < i . ,

then

sf{r(V*SA V, W*S„W)} =

w hich is equal to the intersection number o f  U , with the  loop

th( V*SA V, W* SB W) = rh(SA , SB ) = fh(A, B) .

They complete the  proof o f the  theorem 5.2.

Remark 5.1. L e t A  a n d  B  be zero th  order selfadjoint pseudo-differential
operators o n  L 2 (S1 ) C ,  and assum e th a t  b o th  —id/dt + A  a n d  —id/dt + B
are  invertible. Then still w e have  a  loop  I(A , B) in  .9%(L2 (S1 ) C N ) from  the
path  { — id/dt + (1 — s)A + s13} 0 , s , 1 ,  however we do  not know  how  the spectral
flow of this loop is characterized by A  and B.
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