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On the coordinate-free description of
the conformal blocks

By

Yoshifumi TsucHIMOTO

Introduction

Recent study of conformal field theory has provided new insights and tech-
niques concerning the moduli space of stable curves. Among them is an extensive
study on an interplay between the representation theory of infinite-dimensional
Lie algebras and the theory of vector bundles on the moduli space of stable
curves. The basic idea is easy. Consider the moduli space of framed stable
curves (stable curves with coordinates). While it is clear that the Lie algebra
of infinitesimal change of coordinates acts on this moduli space, interesting point
is that even singular change of coordinates acts on this moduli space. The effect
of singular coordinate change is to deform the shape of curves. Thus the Lie
algebra of infinitesimal changes of coordinates, possibly with singularities, serves
as a Lie algebra of infinitesimal symmetry of the moduli space. The algebra
plays an important role in the conformal field theory. In certain circumstances,
however, the universal central extension of the algebra, called the Virasoro Lie
algebra, is more convenient to use. It gives a symmetry of the determinant line
bundle on the moduli space. It is also possible to consider the algebra of
infinitesimal change of trivialization, possibly with singularities, as an algebra of
infinitesimal symmetry of the moduli space of framed vector bundles. The central
extension of this algebra is called an affine Lie algebra. Similar to the theory
of vector bundles on a symmetric space, an interplay of Lie algebra representation
and vector bundles on the moduli space thus arises.

Following this idea, Tsuchiya, Ueno, and Yamada [TUY] constructed vector
bundles, called sheaves of vacua, over base schemes of local universal families
of framed stable curves. They further showed that there is a projective connection
on each such vector bundle. But we may ask what kind of a role the use of
coordinates plays. We want a coordinate-free description of the theory to study
the mechanism of this procedure deeper. In fact, it is proved in [TUY] that
the choice of coordinate is unessential, but it is not at all clear a priori. In
this paper we give a simple and coordinate-free description of the construction
given there, and clarify the nature of the theory. In the way we deal with the
notion of normal ordering, which is used in the construction of the projective
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connection, by the effective use of explicit representation of the Atiyah algebra
of a determinant bundle, developed by Beilinson and Schechtman [BS].

As a result, we construct the sheaf of vacua on a base space of family of
pointed stable curves, without the presence of coordinates, and we describe the
infinitesimal symmetry of this sheaf by the infinitesimal symmetry of determinant
line and the cotangent space of marked points.

Let us explain the content of this paper more precisely.

We first discuss the linear algebra of the ring C((t)) of formal Laurent power
series. In differential geometric approach, a loop algebra is an algebra of func-
tions on a circle with values in a Lie algebra. In stead of using a circle, we
use here the “infinitesimal circle”, or the formal scheme Spf C((t)), an object
whose ring of functions consists of formal Laurent power series. The difference
between the usual circle and the infinitesimal one comes from the difference of
the topology used to complete the ring of regular functions C() on C\{0},
namely, the C®-topology on S! = {ze C;|z| = 1} and the r-adic filtration topol-
ogy. But the difference is not so serious. All we do in this paper is to take
a topological base and express the traces of operators by using them, just as in
the differential-geometric case [SW]. Thus the result of this paper may well
hold in the differential-geometric case also, with a slight modifications concerning
the topology. The advantage of our approach is that we can use a strong tool
of the formal Cech cohomology [BS], and that it gives an algebraic construction
of the theory. The latter suggests that we may remove the restriction of the
ground field being C. Technical tools concerning the special kind of topological
bases of the topological vector space C((t)) are summed up in section 0. They
are defined so that matrices we have to take determinants are essentially upper
triangular ones (cf. [KNTY], [SW].)

In section 1 we define, for each family X — S of proper Gorenstein curves
with marked points Q,, ..., Q,, a sheaf of affine Lie algebras and develop an
“infinitesimal” analogue of representation theory of affine Lie algebras. We also
introduce in this section the sheaf of covacua ¥; on S attached to the family,
introduced in [TUY]. Not so much is known about this sheaf, but it has a
few nice properties, such as the behavior under the normalization of the curves
(factorization property), and the existence of a natural projective connection.
(There is a deep relation between these two properties. See [Segal].)

We next mention the definition and the symmetry of the determinant line
bundle. It is surprising that the notion of the determinant line bundle of a
complex of sheaves defined in algebraic geometry is well suited to the description
of what is called an “infinite determinant”.

The infinitesimal symmetry, or the Atiyah algebra, of the determinant line
bundle det Rn, Oy, is studied by Beilingson and Shechtmann ([BS]). In section
3, we extend their result to make it applicable for a family of curves with
singularities. Preliminary remarks about the Atiyah algebras are summarized in
section 2. There we also describe the weight algebra which describes the symme-
try of cotangent bundles along the marked points Q;.
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Finally, the projective connection on the sheaf of covacua is introduced in
section 4. The essential part of this construction is to give the Sugawara form
in a coordinate-free manner using the Virasoro algebra defined in section 3.

The goal of this paper is to prove the following.

Theorem 4.2. A central extension of the tangent bundle obtained by composing
the algebra of infinitesimal symmetries of the determinant line bundle and that of
the relative cotangent bundles of the curve along the divisors Q; acts on the sheaf
of covacua.

Thus we find an explicit relation of the projective connection on ¥, and
the symmetry of the determinant line bundle. (Here J is the sheaf of tangent
vectors on S whose corresponding deformations of fibers preserves singularity.
See (0.1).)

The reader may see that our definition of the projective connection is much
more simpler than that of the original definition in [TUY], done after a lengthy
induction argument and complicated coordinate-dependent formulae. Our defini-
tion is suitable for calculation and may be useful for the further study of the
sheaf of covacua. We hope our result will help understanding the relation be-
tween this theory and the theory of geometric quantization of moduli space of
stable bundles, developed, for example in [Hitchin].

The author is grateful to Professor Kenji Ueno for giving him good ad-
vice. He also thanks Dr. Satoshi Naito for discussions.

§0. Preliminaries

0.0. Basic settings. Throughout this paper, n: X - S denotes a proper
Gorenstein morphism of schemes over C with integral fibers of dimension one
(that is, a family of proper algebraic curves, possibly with singularities.) The
assumption of n to be Gorenstein implies that it is flat and that the relative
dualizing sheaf wys for = on X exists and is invertible. (See [Ha].) We assume
that S is smooth over C. In particular, the tangent sheaf I of S is Os-flat. Let
g:;:S = X(ie[1,n]) be n mutually disjoint sections of n, and Q; = image q;. We
assume that 7 is smooth on some neighbourhood of each Q,. Denote the formal
neighbourhood of Q; by U;, and that of the divisor D = U, 10; by U:U =
\Jiz, Ui Denote the open set X\suppD by X, U=UNX. Note that X is
affine over S.

0.1. Subsheaves of tangent sheaves. We begin with explaining some nota-
tions. Consider an exact sequence

0—>./X,s—->./x 7z*./s

The map dr is surjective on U because n is smooth around U. We pull the
above sequence back by the inclusion n7'Jg < n*Jy (recall that Jy is Os-flat.),
and we obtain an exact sequence

dn
0 Tys—>Tx 1 ' Ts.
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The sheaf 7y , is the sheaf of germs of tangent vector fields whose horizontal
components are constant along the fibers of = [BS]. We define furthermore the
subsheaf Iy , p of Iy, as

Tx.xp = {1€ Ty .t preserves D} .

The sections of Jy , p are those of Jy , which are tangential to D.
For later use, we define subsheaves J5, Iy ,, and Iy , p, of T, Tx ,, and
Ix..p Tespectively as follows.

Is = n,(Image (Iy = n*T5)) c n n*Ts = T
Txn=dn (7' T5)
‘o/-},n,D = g},nng.x.n,D

Roughly speaking, J3 is the sheaf of tangent vectors on S whose corre-
sponding deformation of the fiber of n (given by the Kodaira-Spencer theory)
preserves the singularity. As an example, consider a local universal desingulariza-
tion X —» S of a curve X, at an ordinary double point P. Namely, dim S = 1,
and there exists a divisor F on X, a neighbourhood V of F, a coordinate s on
S, x, ye I(V, 0y) with xy = s satisfying,

X\F = (X,\P) x S (diffeomorphic)
V —— {X,Y, 2)|XY=2Z}cA®
s — Al

Then Jys is generated by s(9/ds) over CUs.
Note that we have exact sequences

O_’FX/S(_D)_’g},n,D—’n_lg-S,—’O )
Oﬂﬂ_x,sag',},n—»n_l.ﬂaO.

0.2. Linear algebra of formal power series and residues. For any closed
point s, €S, we can choose a neighbourhood S, of s, such that there exists a
formal coordinate t; € I'(Sy, 7, 0y,) around each Q; (We always assume that
t,(0;) = 0.) The choice of these coordinates enables us to trivialize sheaves such
as

1,0y = @ Os((t))

T Wys = @ Os((t;))dt; .

We equip these sheaves with the #j-adic topology.
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We have a canonical residue pairing between the above two sheaves, which
makes them topological duals.

(&ln) déf; Res, —o &i(t)ni(t:)
£ = (1) € myomys 69 Os((t))dr,

n = (ni(ty)) € 1, Oy = ea O4((t1)

Using residues, we may define various operators on 7n,0y and n,wy;s as

follows. Consider the product U x5 U over S and denote by 4 the diagonal.

Each section F(t,, t,) of (m x 7:),.‘(p’§w(*d)|,~,XS,])déf lek (m x m), (P (+kd)|y. ) de-

fines the following operators on m,0; and m, ys.
((Reso A )ilt) = Y. Res, o Fy(ti, ) fw;) ,
J

(Res® Aw)i(t) = Y, Res, _o Filw;, t)o(u;) ,
J

def

((Res 4 7)f)i(t;)) = Res,, -, Filts, u;) f(wy),

((Res? Aw)(t;) = Res,,—, Fulu;, t) o) ,
(Res, /< Res, 7 + Res, 7,
(Res! )% Res® ¥ + Res? F

Where fen, 0y, wen,wys, Fj=Flyxu, - eLC
Note that Res, (#), Res4(#) are differential operators.
These operators satisfy the following adjoint relations.

(|Resg (Af) = (Res' (Aw!f)
(| Res; (Af) = (Res® (Aol f)
(@|Res 4 (Af) = (—Res” (Aol f)
The following lemma is important for our later arguments.
Lemma 0.2.1. For each F, there exists an integer p such that
Ker (Res, (7)) = 7, (0y(—pD)),
Image (Res, (/) = 7, (Oy(+pD)).
A similar property holds for Res® and Res'.

0.3. Two ways of expansion. It is worthwhile to give an explanation for
these operators in the following way. For the sake of simplicity, in this subsec-

tion we consider the case S = Spec C, and n =1 and fix some formal coordinate
t of U.
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Put

= { Z ak_lzkwld

a,; € C, there exists an integer N such that}
k,leZ

a,, =0 for all k, | satisfying k + I < N

It is regarded as an algebra of operators on the vector space C((t)) as follows.

(Res e.f)(1) = Res,—o e(t, u)f(u)  (e€d, feC((1).

Each element 7(z, w) of (n x 7),(piwys(*4)|yxy) admits two ways of expan-
sion, corresponding to the cases |z| > |w| and |z| < |w|. We thus have two ways
of regarding F as an element of & which we denote by I, ., and I, For
example,

dw

zZ— W k

27 T wkdw |

M8

Tig)> i
0

Lai<pn —; ;

In these terms, Res, and Res; is expressed as
Res, 7= Res I, (2, W)
Resl i" = RCS I|z|<|w|f(z, W)

We may regard (m x 7),(pfwys(*4))|y.p) as a subalgebra of & by means of
Lz oy O Lig <y

Lzis pwps Lzj<pwit (0 X 1) (PR 0x)s(*xA)) g g) & &

This may be useful for construction of element of (7 x 7),(pFwys(*4))ly )
by giving some element of & (This is not misleading, because if I, % =
I;)<\wiT2, then we see #; and F, are regular on 4, and then we have actually

fL="r)

0.4. The notion of frames. Taking a sufficiently small affine open subscheme
S; = Spec B; of S such that we have a formal coordinate t; along each Q; on
n1(S;). Note that

IS n,0p) = (‘B;;x Bl((tj)) .

We equip this vector space with a @¢;B,((t;))-adic topology.

We introduce the following notions concerning special bases of n,0; and
its subsheaves.

L. A local frame of n,0y (resp. m, Oy, resp. n,0p) defined over S, is a family
{f*},cm of elements of I'(S,; m,Op) (resp. I'(S;; n, O), resp. I'(Sy; m, Op)) satisfying
the following conditions.

(1) The index set M is an ordered set isomorphic to (Z, >) (resp. (—N, >),

resp. (N, >)).
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(2) {f*"},em is a topological base. Namely, every element f of I'(S; m,Oy)
(resp. I°(Sy; m, Oy), resp. I'(Sy; m,0y)) is expressed uniquely as a conver-
gent linear combination of {f*},., with coefficients in I'(S;; Os):

f=X af*.

neM

(3) f*—=0 as u— +oo.

Note that the topology of I'(S;; n,0x) is discrete. A frame of I(S,; n,0x)
is thus the same as a basis of this vector space.

IL. A triple ({e*},cm> {&"}vens {n*}eex) Of local frames of the three sheaves
7,0y, m,0%, n,0y (respectively) is said to be consistent if the matrix expressing
{¢"}, {n*} by a linear combination of {e*} is “essentially upper triangular” one.
More precisely, it is consistent if there exists pu, € M, voe N, u, € M, k, € K such
that the following conditions are satisfied.

Ho < Uy »
#N,,, <00, #K,,, <0, #M,,,"M_, )< +o0,
M_,,=Ng,, M,, =K, and using this identification, we have
&” = e* + finite linear combination of {e*},., (if v =)
n"* = e* + convergent linear combination of {e*'}, ., (if pu < )
Where we denote
Ny, ={veN;v=>v}, K., ={keKik<k}, ..., etc,

and # denotes the number of elements of a set.

III. A local frame {e*}, ) of 7,0y is said to be good if it consists of a
disjoint union of a local frame of n, 0y and a local frame of 7,0y and a finite
number of functions. In precise, it is good if there exists a partition of M

M>N, K, NNK = {0},
M= NuUK UM {0},
M <N <0<K', #M' < 400,
where we denote N' = N\{0}, K'= K\{0},

such that {e'},.y, {€“}ccx is a subset (necessarily a frame) of =, 0y, m,0,,
respectively.

Note that e° is necessarily an invertible element of B,, which we assme to
be 1 in the following. The triple of frames ({e*}, s, {€'},cn, {€"}xck) defined
by a good local frame is said to be very consistent.

Now we have the following fundamental

Claim 0.4.1. If the base scheme S is Noetherian, then for any closed point
Xo € Sy, there always exists a consistent triple of local frames ({€*},.\, {€"}
{n"}«cx) defined on some affine open neighbourhood of x.

veN>
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Indeed, define {e*},.p, {#*}cex in the following way.
M =17 x[1,n] with the lexicographic order,
K = {(k,i)e M|k > 0},

(k, i) — tk.
e |Uj = t] 5ij

for (k,i)e M,
pd = e for (k,i)e K .

{¢'},cy may be chosen in the following way. The base change theorem
implies that there is an integer k, such that for all pairs (k,i) with k <k,
ie[1,n], there is a function f®? regular over X, with a form

(%) f = ae®? 4 higher order terms, aeI(Sy; Os), a(xq) #0.

We choose such functions for finite such pairs: (k, i) e {ko — 1, ko} x [1, n].
Shrinking S, if necessary, we may assume that all the leading coefficients of f*?
are 1. Taking appropriate product of them, we have a family {¢*?}, ., of
functions of the form (x) defined on a common open neighbourhood of x,. These
functions, together with finite number of some extra functions (added to span
the lower order functions), gives a required frame.

Similarly, we can show the following

Claim 0.4.2. If the base scheme S is Noetherian, then for any closed point
Xo € S,, there always exists a good frame {e*} of m,0; defined on some affine
open neighbourhood of x,.

0.5. The notion of dual frames. We define the notion of a local frame of
m,Wys in the same way as above. Note that n,0y and 7wy, are the dual
topological vector space of each other by virtue of the residue pairing.

Definition 0.5.1. The frames {f*},.p of 7,0y (resp. m, 0Oy, resp. n,0y) and
{fituem Oof Moy (resp. m wys/T,Wyys, Tesp. T, Wy s/MyWOy;s) are said to be dual
to each other if relations

(filfHy=6* (for all p, ve M)
hold.
It is easy to prove the following:

Lemma 0.5.2. For any local frame of n,0y (resp. n,0Ox, resp. n,0y), there
exists a unique local frame of m,wys (resp. M Wy s/MyWy s, TESP. Ty Wyys/ Ty Wy;s)
dual to it.

Furthermore, we see from the residue theorem, that a dual of a very consis-
tent triple of local frames is also very consistent, and the dual of a good frame
of n,0p is also good, if we define these notions for wys in a similar manner
as in the preceding subsection.
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§1. Non-twisted affine Lie algebras and their representations

In this section, we define a sheaf of non-twisted affine Lie algebras g' on S
associated to a finite-dimensional simple Lie algebra §, and construct sheaves of
its highest weight representations .#,, %;,. This can be done by rewriting the
constructions in [Kac], Chapter 7, in the language of sheaves, with paying atten-
tion to coordinate-freeness. The ‘sheaf of covacua’ is then defined by posing a
‘gauge’ condition’ on %,.

1.1. Non-twisted affine Lie algebra g. The realization of non-twisted affine
Lie algebras using explicit formula for the cocycle, is easily extended to the sheaf

version as follows. We fix a finite dimensional simple Lie algebra § and a
non-degenerate symmetric invariant bilinear form ( , ) on it.

Definition 1.1.1. We define a sheaf §' of Lie algebras over Og by introducing
a (Os-linear) bracket on the Og-module

g =§®cm,0y® Osc¢

as
(1) ¢ is a central element of g
2 X®£LYQgl=[X,Y]®fg+(X,Y)dflg)c (X,Y€eS,f, gen,0Op)
Where (|) is the canonical pairing introduced in 0.2.

We sometimes denote the element X ® f of ¢' as X[f]. In this notation,
the commutation relation (2) above is rewritten as

(2) [XLf], Y[g11 = [X, YI[fg] + (X, Y)(df]g)c

The sheaf § ®¢ 7,0y of §-valued functions defined on U will be denoted as
§®m,0y. It has a canonical structure of Lie algebra obtained by the pointwise
commutator. Our algebra g’ is a central extension of § ® m,0y.

Remark 1.1.2 §®n,0,, §® n,0; are Lie subalgebras of g. Note that
for any element ¢ of § ® 7,0y, its value £(Q;) along Q; is well-defined §-valued
function on S. Namely, it is the pull back of the function ¢ by the section
Q;. Similary, the value of the section of § ® n,0; along each sections of n
has also meaning and is also a §-valued function on S.

Next let us consider a triangular decomposition of g. We fix a Cartan
subalgebra b of § and a triangular decomposition § = #, @f)@ﬁ_ of §.

We define the subalgebras n,, p,, 3, b of g’ as follows

n, ={{e§®n,0y1¢(Q) € 1ty ®c O for all i}
Py = {(€3®M,0EQ) e, +H)®c O for all i}

6:=P++(OSC

b = b ®c 7y (T~ Os)lg) + Osc = @ (h ®c 05) ® Oe
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Note that f, = n, @h. The notion corresponding to n_ can not be defined
in a coordinate free manner. But the existence of these subalgebras in the above
definition is enough for construction of highest weight representations.

1.2. The representations .#,, %,, and the sheaf of covacua ¥,. Put
Pe={AMA=(ho A=(n.... ) e®Y), ceC}.

Each A€ P is regarded as an element of (p))* = Hom(Py, Og) as follows.
A¢) = Zl A(Q))  (epy);  AM)=c

where we regard each A; as an element of (f) @ )" by extending it trivially on n,.
We introduce the Verma module.

Construction-Definition 1.2.1. For A€ P, we introduce the following ;-
module structure on Og and denote it as (0);.

Ef=ME)f  (Eehy, fely).

Then, the sheaf #, of Verma modules with the highest weight A is defined by an
induced module

M, =U(g) ®u(§:) (Os); »
where U(-) denotes the universal enveloping algebra.

We denote the section of ., corresponding to the section 1€ (0); (the
highest weight vector) by |4).
By the use of formal coordinates {t;}/-; on U, ¢’ may by trivialized as

g = (-=B1 § ®c 0s((t;)) ® Osc .

With the help of a triangular decomposition of g’ derived by using these trivializa-
tions, we obtain a trivialization of ;:

My =M; Q¢ U

where M, in the formula above is the usual Verma module, that is, the Verma
module in the case S =SpecC. In particular, .#, is a quasi-coherent -
module.

Next we define the ‘smallest’ highest weight module %,. To do that, we
first deal with the way how sheaves of tangent vectors act on g. Recall the
definition of Jy , (section 0.1). We have the following

Lemma 122. n, 9y , acts on g by the action determined as follows.
(1) 1. X®N=XQ.f) tenTy,. Xe§ fen,Op)
(2 t.(g9) =(@n(r).9) ¢ (g€ ls)

Corollary 1.2.3. 7,7y . acts on U(g') as a derivation.
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Lemma 124. The subalgebra n,Jy . p of n,Ty. . preserves ps. Further-
more, for any element & of §, and an element t of n,Jy . p, the following formula
holds.

.6 — ) = 7.8 — Ar.0).

Therefore, we can define the action of n,Jy . p on M, as follows

(PI)) = . P4

Using the trivialization of .#,, the same argument as in [Kac], proposition
9.3, gives the following:

Proposition 1.2.5. .#, has a unique, maximal n,(Jy;s(—D))-invariant g'-
submodule M.

Definition 1.2.6. %, = 4,/ M#;

Definition 1.2.7. We define the sheaf of covacua associated to a weight A to
be the sheaf

Vi=Z/3®n, 0, .
We refer to (8 ® n,0x)<%, as the gauge condition.

Note that our ¥, has no apparent symmetries. Namely, no Lie algebra
(such as §, g, ...) acts on this sheaf Og-linearly in a canonical way. But it
carries geometric information about X, encoded by the gauge condition.

§2. A quick review on an Atiyah algebra

2.1. The Atiyah algebra of a line bundle. In this and the next subsections,
we forget about our general assumption (section 0.0) and review the general
theory of Atiyah algebras. See [BS] for more details.

Let &# be a locally free sheaf of rank one on a scheme S over C. The
Atiyah algebra of & is, by definition, the sheaf of first order differential operators
on %.

g = DIiff, .

It has a natural structure of Lie algebra, and is an extension of Z5 by 0s.

Symb,

005> Ay —> T5—0
We refer the above sequence as the fundamental sequence of g.

2.2. The definition of Atiyah algebra. Keeping the preceding subsection in
mind, we define the general notion of Atiyah algebra (more precisely, Os-Atiyah
algebra in the sense of [BS]) as a Lie algebra &/ with a fixed extension sequence
(which we call fundamental),

(1) 050,35 4% 7,50
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We have two operations on Atiyah algebras, namely, summation and scalar
multiplication.
The sum of two Atiyah algebras &/, 4 is defined by

A+ B = (A x5, B){(ix(f) —ia(f))f€0s}.

Its fundamental sequence is given by iy, 5 = (iy, 0) = (0,ig) and py.g = py =
Pa#-

It is clear that the sum of Atiyah algebras of line bundles %, #, is iso-
morphic to (hence we may identify with) the Atiyah algebra of the tensor product
I R F,.

Next we define the scalar multiple of an Atiyah algebra.

Let 1€ C and &/ be an Atiyah algebra. The A-multiple of .« is defined by

If 2 # 0, it coincides with the Lie algebra 7, equipped with another funda-
mental sequence

At
00— o4 3 750
For A=0, the O-multiplie of & is just a direct sum O5s@® J5 with the
standard fundamental sequence.
It is easy to see that with these summation and scalar multiplication, the
category of Atiyah algebras forms a “C-vector space in category” [BS].

2.3. Action of an Atiyah algebra on a vector bundle. Let ¥~ be a locally
free sheaf of finite rank (a vector bundle) over S, and &/ an Atiyah algebra with
the fundamental sequence given by (1).

We say we have an action of o/ on ¥ if the following conditions are satisfied.

(1) each section a of o/ acts on ¥~ as a first order differential operator @(x)

(2) the principal symbol of @(a) coincides with p(a) ® idy-.

() P(y(1) =1

It is easy to prove the following

Claim 2.3.1. Given a vector bundle ¥, the following data are equivalent.
(1) An action of of on ¥ for some Atiyah algebra .
(2) An action of the tangent bundle I (flat connection) on projective bundle
P(¥).
We call these data a projective connection on V.

It is worth noting the following fact ([BS]).

Claim 2.3.2. Given an action of an Atiyah algebra &/ on a V., we can
determine the first Chern class of ¥ solely in terms of .

This holds because we can consider a connection on ¥  and its curvature
purely in terms of .
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2.4. The scalar multiple of an Atiyah algebra of a line bundle. We explain
the notion of scalar multiple in the case when & is the Atiyah algebra of a
line bundle %.

If A is a positive integer, As/5 is regarded as the Atiyah algebra of the A-th
tensor power #®* In fact, a local section t of /5 acts on F®* by

T5,® " ®s5,)=7505Q ®s,+5;, X175, " ®s, +" +
5:®5,@ " ®1.s,.

And under this action, iy (1) acts on F®* by A-multiple.

The same argument shows that if 1 is a negative integer, A&/5 is identified
with the Atiyah algebra of (F®Y)* and 0&/s is clearly the Atiyah algebra of
Oy = F©°.

For general A, take a local generating section s of # and consider the
formal A-th power s* of s. A section t of & acts on fs* (f € Os) by

(%) = (Symb, (2).f + A(z.5)/9)f)s* .

The above formula suggests that the algebra of infinitesimal symmetry of
the formal A-th power #®* is well-defined and identified with A</z, although
F®* jtself is not a well-defined object. We may thus deal with Ae/y as if #®*
exists and it is the Atiyah algebra of this “line bundle”.

2.5. The weight algebras /., ., #/z. Return to our original settings (sec-
tion 0.0). We have sections g; of n. Since n is assumed to be smooth on some
neighbourhood of Q; = Image g;, the dualizing sheaf wy;s is identified with the
sheaf of relative Kiahler differentials there. For later use we introduce here the
weight algebra, a linear combination of the Atiyah algebra of line bundles gfwy;s.

There is a surjection (in the usual sheaf theoretic sense) of n,Jy, . p onto
sy, Indeed, there is an action of m,Jy, . p on gf(wys) determined by the
action (Lie derivative) of n, 7y, , p on m,wy,s. Namely, the action of a section
1y, of m, Ty, .p ON a section gfw of gfwys is given by the following.

ty,.(gf @) = gqF (Lie(ty,).0) .

In terms of local coordinate t; of U, it is expressed as a first order differential
operator.
ac(s)

© 0 0
(kZ:O a(s)tf ! a, + b(s) g) (c(s)grdt;) = b(s)qu' dt; + ao(s)c(s)qrde; .

Put “symbolically”
F = Q=1 g (wxs) ™.

Here 4,, is arbitrary complex number, but later in section 4.2, we will set it to
be the value of the Casimir operator of § on the irreducible highest weight
module V, of § with highest weight 4.

We thus have a surjection 7,9y, p— &, in other words, n,Jy ,p acts
on #. We refer the Atiyah algebra o5 = ) (—4,,), as the weight algebra.

.
i Ox/s
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§3. The Atiyah algebra of the determinant line bundle

The determinant line bundle, defined by Grothendieck [SGA] (see also
[KM]), may easily be described by the use of the notion of semi-infinite-forms
([KNTY], [SW]). We review it and describe in these terms the structure of
the Atiyah algebra of the determinant line bundle. The construction of the
explicit representation of the Atiyah algebra is essentially due to Beilinson and
Schechtman [BS]. We modify their approach to make it applicable to the case
in which 7 is not necessarily smooth. Actually, our construction gives a slightly
restricted Atiyah algebra, written & g,,0,, defined by Symb;'(J¥). (See section
0.1 for the definition of J3.) For the sake of brevity, we introduce the elements
of the algebras in a rather ad-hoc manner. See [BS], especially section 2.8, for
more sophisticated and natural approach using the language of derived categories.

3.1. The determinant line bundles det Rn, Oy and det Rn, wy;s. Using a con-
sistent triple of local frames (see section 0.2), we may present a locally generating
section of the determinant line bundle det Rn, 0y = det [n, 0y ® 1,0y — 7, 0y]
defined on S§,, written symbolically as

-1
(+2) (ne)e(nr)efn ol
veN ke K neM

The dual of the det Rzm, 0y is expressed by another determinant line bundle,
det R wys, by the Serre duality. It is isomorphic to

T, Wps  TyWWyp
det[n*wg/s_’ * ‘/ * U/S:I.
MyeWyxs  TyWys

Using the dual frames, the section of det Rm, wy,s corresponding to the
trivialization of det Rm, 0y defined by the local generating section (xx) is also
expressed by semi-infinite forms as

-1
(/\ cv)®(/\ nx>®{/\ e“} .
veN xeK neM

3.2. ow-extension of Jy,(—D). Consider the product X, xs X, over S,
where we denote by X, the open set of X where n is smooth. We identify
sheaves on X, with that on X, x5 X,., with support on the diagonal 4,.,. We
have the following exact sequence.

0 - pw — p3a(+24,.,) > Diffyls - 0.

Where Diffy,s denotes the sheaf of first order differential operators along the
fiber of . Recall that w coincides with Qf, the sheaf of relative 1-forms, on

X,es- The map 6 is given by the following formula.

(6(r(z, w)dw).f)(1) = Res,,—, r(t, ;) f(t,) .
We pull this sequence back by the inclusion Jy,s(—D) = Diffy;s to obtain
0 pfw = Bo,p > Tys(—D) =0,
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where we denote the sheaf 6~ '(7y;s(—D)) by By . We push this sequence out
by the projection p¥w — p¥w/piw(—4,.) = w and obtain

0 w— Ayl S Tys(—D) = 0.

Here A4, o By, p/p3w(—4,.,) is called the w-extension of Jys(—D). Its support
is contained in 4, and we regard the above sequence as an exact sequence of
sheaves on X,.,.

Using the above exact sequence we define the complex 4, , of sheaves on
X, by the middle column in following diagram.

0 JE—
Ao,p Tx, %0
-1
0 w AO D g’x/s p ——— 0
-2
0 AsD

Note that Jy , p acts on Ag'p as an infinitesimal symmetry of (n: X — S, {g;}).
3.3. The Virasoro algebra. We define the sheaf of Virasoro algebras as
VIR = n,(Ao)plv)/d(my Op) .
It has a canonical structure of Lie algebra with the following bracket.
[ri,72]vsa = 06(r)).rs .
Note that there is an exact sequence
0 - d(m, Og) > mywys > VIR S 1, T g5~ 0.
v #R has the following canonical subsheaves of Lie algebras

VIR, = n*(A(;,lDlU)/d(n*0U)

the class of 0P en, Ty
VIRy =< Fe(n x n),(Bolyxv) | (Resy F).m, 05 =0
in YIR (Res' A).m wys =0

The map 6: ¥ IRy - n,Tys is surjective. In fact, take a good local frame
{e*},em Oof m, Oy and its dual frame {e,},.n of m,wy;. Then for any section
Ty of n, Ty s, the element 7 of (m x 7),(Byly.y) defined by

it u) = Y, (tx.£") ()&, (w)

veN

gives the element of ¥ #%&; with 6(r) = t4. (See the last part of section 0.3.)
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3.4. Atiyah algebra <;,, Rr, Oy In this subsection, we show that the presen-
tation of 4. ge,0, admits a Cech-cohomological expression. If 7 is smooth, (so
that X coincides with X,.,,) it is the O-th direct image Rz, (A}, p) of the complex

o.p> as you may find the proof in [BS]. Although the sheaf corresponding to
By p is not defined all over X in the case when 7 is singular, the “formal Cech”
presentation of the cohomology group, which is effectively used in [BS], extends
to this case.

The set of cocycles is given by the following.
Z = {(tx, T3 To)T% € Ty T 2o Ty € Ny TG nips Ty € VIR, T3 — Ty = 0(rp)} -
It has a structure of Lie algebra as follows
[(tx, Tu; ro), (0%, ous sp)] = ([T, 0%, [Tu, Ou); xS0 — Ou.Tw)
The set of coboundaries is
B ={(8(rg), 8(ry); ry — rp)Irx € VIRy, 1y € VIR, }

It is an ideal of Z.
The cohomology group Z/# gives a presentation of &/ rr,0,- 10 see this,
first remark that there is an exact sequence

(sxx) 005> 2/B5 T3 -0,
where the map 7, is defined by
T[T Tus o) = 7y (tx) = My (t0)
whereas the map i is determined by the following diagram.
T, Wps — .,

Y Res=(:|1) projectionl

05 —— /%

Next we give the action of an element (ty, Ty;ry) of & on det Rn, Oy by
the following equation

-1
(1 + &(zx, w5 ro)). (( /\N 6”) ® < /\K n") ® { /\M e“} )

-1

= ( A1+ 81:,'{)6”) ®( A 1+ srun"> ®{ A (1 + &(zy — Resg f(,))e”} ,
veN xeK ueM

where ¢ is the dual number, that is, &2 = 0.

Using lemma 0.2.1 we see that {(1 +et3)&"}, {(1 +ety)n*}, {1 +e(ry —
Res, Fy))e*} is a consistent triple of frames defined on C[e] ® S, and hence the
right hand side of the above formula is well-defined. If we take a very consistent
triple of frames and choose a local trivialization defined by it, the above action
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is expressed as a first-order differential operator

Ty(Ty) + ZN (e.|Res; (Fg)e”) + 3. (ec|Reso (Fy)e™) + (eo|Res, (Fy)e®)

xekK

+ 3 (eul(Reso () — to)et).

ueM

By this formdla, it is easy to see that the action of & on det Rn, 0y factors
through an action of %/4, and that the sequence (x*%) can be identified with
the fundamental sequence

Symb,
’
0 Os = Aiergn 0, —— Ts = 0.

§4. The projective connection on the sheaf of covacua

4.1. The Sugawara form. Here in this section, we formulate the notion of
the Sugawara form (see for example [Kac], Chap. 12) in a coordinate-free manner
using the result of the last section.

We fix a basis {J*}dm8 and its dual basis {J,}4m?% with respect to the invari-
ant bilinear form (, ). We denote the value of an operator (1/2)Zad J%ad J,
by g*. In what follows, we fix a weight 1 = (A ¢) € P¢ and assume that ¢ + g* #
0. Put ¢, = c(dim §)/(c + g*).

We define the Sugawara form T[r] associated to an element r of ¥.#%.
Recall that the sheaf ¥°## is a quotient of (n x 7),(B,, DIU X U).

Definition 4.1.1. Let {e*}, .\ be a local frame of n,0y, {e,},cp its dual
frame. Let i be a section of (m x m),(By. plyxy). We define the energy-momentum
tensor T[F] as

T[F] = 2(0—:-1417),,;54< Z JLe, o 8(F)1J,[e*] — c(dim §)(e,|Res, (r)e“))

The sum converges strongly on the representation space M, in the sense that the
sum is always finite when it acts on an element of M.

To show the last claim of the above definition, we first note that the commu-
tation relation of g’ (definition 1.1.1), and the following equality

dOF) o )| f) = —(w]|6F).f) for fen, Oy, wen,wy;s.

implies the following identity which gives another expression for the summand.
dim §

3. JLe, o 3(7)1.Le*] — cldim §) (e, Reso (et

dim §

= Z J.[e*]J%[e, o 6(F)] — c(dim §)(e,|Res; (F)e*) .
Then using lemma 0.2.1, we find that the summand is equal to
dim §

3 Jole, o 81, [e"]

a=1
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when p is large enough, and to

S e e, 0 6]

when p is small enough.

We refer the above situation simply as T[F] is a strong-operator limit of
elements of U(g’). It is clear from the definition that T[F] acts also on .},
&,. It is easy to show the following lemmas.

Lemma 4.1.2. T[F] does not depend on the choice of a local frame {e"}.

Let {f*} be another local frame. Then {e*} and {f*'} are related to each
other by an essentially upper triangular matrix {a}}.

fr =3 ale*.
"
The dual frames are related to each other by the following relation.
e, = ; at'f, .

Using these relations, the lemma easily follows, similarly to the proof of the
base-independence of trace of an linear operator on a finite dimensional vector
space.

Lemma 4.1.3. If e piwy;s(=Ker §), then
¢, N ., Cy .
T[] = —Trace,,‘% (Resy F) = 3 ; Res, —o Fi(tj, ;) = E(r,AII) .

The above lemma suggests in particular that for any 7 of (m x 7),(By plyx o)
T[F] depends only on the class r of ¥ in ¥.#%. We may thus write T[r]
instead of T[F].

Lemma 4.14. The action of ten,Ty;s on T[r] is given by the following
formula.

©(T[r]) = T[z.r].

Where we consider T[r] as a strong-operator limit of elements of U(g').
(Recall we have an action of n,Ty;s on U(g). (Lemma 1.2.4).)

Let us denote by T[F; {e*}, {e,}] the Sugawara form associated to 7, calcu-
lated by means of a frame {e*} and its dual frame {e,}. For each t in n,Jy,
1 + et defines a fiber preserving infinitesimal automorphism of U. Applying this
automorphism to T[F; {e*}, {e,}], and computing, we find

(1 + e1).T[F {e*}, {e,}1 = TL(1 + ev).F; {(1 + e1).e*}, {(1 + &1).e,}].

But since {(1 + et).e*} is a local frame and {(1 + et).e,} is its dual, we deduce
the lemma from lemma 4.1.2.
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The derivation of the following commutation relation between the Sugawara
form and an element of the affine Lie algebra is essentially well known.

Lemma 4.1.5. [T[r], X[f]1] = X[6(r).f] (X eg, fen,0p).

The proof is obtained by rewriting the [Kac, lemma 12, 3] using local
coordinates along Q;.
Thus, for each element & of U(g’), we obtain,

[T[r]. &1 =06(n.C.

This commutation relation, together with lemma 4.1.4, implies
Lemma 4.1.6. [T[r], T[r,1]1 = T[6(ry).r;1 = T([ry, r21vsal

So the Sugawara form gives a representation of the Virasoro algebra on
highest weight modules of affine Lie algebras.

4.2. The existence of a projective connection: main theorem. We are now
in a position to give a projective connection on ¥.

Theorem.
CU

n
,/ [/
2 det Rm, Oy + Zl Al,- 9 wxs
i=

acts on ;. (Here {4, }i-, are the values given in section 2.5, that is, the value
of the Casimir operator of § on the irreducible highest weight module V, of §
with highest weight 1;.)

It follows that there is an action of I3 on P(¥}). In other words, there is
a projective connection on V.

We may put the statement in another way. Let & be a line bundle defined
in section 2.5. Then the above theorem says that the Lie algebra /i gy, o0, acts
on ¥;® %, and that the element I = idéun-.ex(l) of e\, 0, aCts ON ¥, ® F as
a multiplication by c,/2. (We refer the latter fact as “the central charge of the
action is ¢,/2”.)

Proof of the theorem. We first define an action of & on #,® % and
Q7.

(D) (%t (I @) = (1p. V) ®s + Tyl P ® s + PIAD @ ty.s,

where ¥ e U(g') and se £.

Using lemmas 4.1.5 and 4.1.6, we can easily check that this is indeed an
action of a Lie algebra.

The commutation relation of a Sugawara form with elements of U(g') gives
another formula representing the action.

@ (o) PIO®s= (1Y) s+ YTl @s + Y| @ 1y.s



48 Yoshifumi Tsuchimoto

This formula implies that the action preserves the gauge condition and hence
induces the action of 2 on ¥,. By calculation we conclude that # acts trivially
on ¥;®% and s0 i pe,o, = Z/# acts on ¥;® F. In fact, (6(rx),0,ry)
(ry € ¥ FRy) acts on ¥, ® F trivially, in view of (1) and the following formula
for a Sugawara form using good frame of n, 0.

Thryl= Y J'[(rg) o e,1J[e"] + ZN Ju[e"]J[d(ri)e,].

ne M\N

(We omit the summation symbol for a for simplicity.) Note that é(rg)oe, is
regular on X if ue M\N and that e* is regular on X if peN.

Similarly, (0, 6(ry), —ry) (ry € ¥ FR,) acts on ¥, ® F trivially, in view of
(2) and the following identity.

Tlryl= Y J[8(ry) © hmpdLulh™1+ 3 1 J[h™D1J°[8(ry) © hgn, ]

(m,i),m>1 (m,i),m<—
+ Z J[o(ry) o h(o,i)]-]a[h(o'i)] s

where we fix local coordinates t; of U; and set
hmd|y =10, hmply, =t Aty
Indeed,
©, 8(ry), —ry). ¥14)
= —¥T[ry]IA) @ s+ ¥ @ ty.s

= W(-Z J[8(ry) © hio,p 1T [H*PT12> + 14> ® 5(ru).5>

- .{,(Z Ai(0(ry)i 0 dt)(0) ® s + 1) ® (ry).s )

=0

Lemma 4.1.3 shows that the central charge of the action is c,/2.
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