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Irreducible unitary representations of the group
of diffeomorphisms of a non-compact manifold
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Introduction

Let M  be a  connected paracompact C - -manifold and G=Diffo(M) the
group of all diffeomorphisms of M with compact supports. In this paper, we
construct new series of irreducible unitary representations ( =IURs) of G, for
a non-compact M , by using a certa in  kind of product measures on X =
rizeNM„ M = M ,  an d  IURs of the infinite symmetric group ao of all finite
permutations on the set N  of natural numbers.

1. The group G acts on X  from the left and the group a. acts from the
right through permutations of the coordinates. The latter produces inter-
twining operators when we consider representations o f G  on /2-spaces of
ao-invariant measures on X  or tensor products (with respect to some refer-
ence vectors) of natural representations of G on the Hilbert spaces /2(M,). If
we can decompose these representations into irreducibles, then we will obtain
many different IURs of G .  Actually we do not proceed in this direction, but
our results obtained here can be viewed, at least from the spirit, as an infinite
version of the Weyl's beatiful situation in [18] for finite-dimensional (holomor-
phic) irreducible reprensentations of the full linear group G'=GL(n, C): for
the tensor product (X=1 V , V, V, of natural representation of G' on V =  Cn,
the symmetric group c N  of indices {1, 2, •••, N I generates the algebra of its
intertwining operators, and thanks to this, there exists a  natural correspon-
dence between IURs of c N  and irreducible representations of G' with Young
diagrams of rank N  (for any N 1 ) .

2. Let us explain our method and results more exac tly . An element
(x,),eN of X  is called an ordered configuration in M, if the underlying set of
points {z},eN is a configuration in M or it has no accumuration points and x,
* x ,  (1*]). T h e  s e t  X-  o f  all ordered configurations can be viewed as a
principal bundle with a base set Q =  X /  and fibres a o .  We can introduce
on ..(2 no suitable topology but rather good measurable structures consistent to
those on g , and then, to construct IURs of G, we can apply a version of the
standard method of associated vector bundles.
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We proceed as follows. Take a measure p  on M , locally equivalent to
Lebesgue measures, defined on the family E m  of all Lebesgue measurable
subsets of M .  We call a subset of X  of the form E E , E T t m ,  u n i t a l
if .E,'s are mutually disjoint and p (E )> 0 , E,N 111(E,) - 11< c o .  Two unital
product subsets E  and F=IL EN F, are said to be cofinal (Notation: E  F )  if
E,enT ,u(EeF,)< cc. For any fixed E, we denote by 0(E) the a-ring generat-
ed by the set of unital product subsets IF; F  Then vE(F)=-111A rti(F)
can be uniquely extended to a measure on 9R(E) which is as-invariant. This
measure LIE is supported by je: vE(A )= vE(An k) for AETZ(E), and we get a
quotient measure on Using the measure vE on (X , V (E )) and an
IUR H  of a., we can construct a unitary representation TE of G, attached to
such a  datum E -- - (//: p , E ), by a  measurable version of the method of as-
sociated vector bundles.

The irreducibility o f TE is proved in  Theorem 4.1. The equivalence
criterion for any pair of such repesentations is given in Theorem 5.2. On the
way of proving the latter, we encounter an interesting problem, Problem 5.8,
on a series (c,,), J EN of non-negative real numbers satisfying the condition that
d, -- - E,ENc,, >0, e, -- - E,ENc„, >0, and II,N ch, H JN eJ are unconditionally con-
vergent. (This (c,,),,,EN can be said to be, essentially, a stochastic matrix of
infinite size.)

We remark that the case of I. M. Gelfand et al. [17] is nothing but the case
of principal bundle g-0 F= X- 1 ... with the group of all permutations on N
and the space of all configurations in M .  Moreover groups of diffeomor-
phisms themselves or their homogeneous spaces are also studied by several
mathematicians (e.g., [3], [4], [11]-112D.

3. The paper is organized as follows. Section 1 is devoted to studying
product measures on X  and measurable principal bundles .S2= )?-1 -  with
measurable structures determined by fixed unital product subsets E  and also
the structure of the group Diffo(M). In Section 2, we construct unitary
representations TE for E =( / / : p ,  E ) .  In Section 3, we collect several lemmas
and propositions which are necessary to study irreducibility and equivalence
relation for T E 's• In Section 4, the irreducibility is proved. In Section 5, we
establish the criterion for TE -=' X =(//; p , E ), E '=(H '; p , E ') . The princi-
pal part of its proof is to get E ' E b  for some
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§ 1 .  Product measures

Let M  be a C- -manifold, and Diff(M) the group of all diffeomorphisms of
M .  For a gEDiff(M), supp(g) is defined as the closure of the set {p m; gp*
p}, and put
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(1.1) G=Diffo(M)—{gEDiff(M); supp(g) is compact).

We equip G with the natural topology: a sequence gn converges to g  if supp
( g )  and every supP(gn) are contained in a compact set C and gn, together with
all its derivatives, tends to g  uniformly on C .  In this paper, we study irreduc-
ible unitary representations ( =IURs) of G assuming M  to be connected and
non-compact. To construct IURs of G, we shall use product measures on the
infinite product space X = M - =ILENM, with Mi = M  fo r i E N , where N
denotes the set of natural numbers.

Notation. For an open subset U and a subset D of M , we put

G(U)=Diffo(U) (the group is connected) ,

GID={gE G; supp(g)c D}

Note that GIL, G( U) for an open UOEM. Other important subgroups
G(E') and G((E ')) of G are defined in § 3.

1.1. Measurable structures on the product space X .  Let us fix  a
measure ,a on M  which is equivalent locally to Lebesgue measures, that is, in
each coordinate neighbourhood U cM ,  d i  is given as

du(P)= wu(P)dPidP2. • • dPn ,

where (Pi, P2, . • * ,  Pn), n= dim M , is the local coordinates of p ,  and wu(P) is a
positive measurable function. We assume that p(M)=-00 and further that wu
is bounded both from below and from above on every compact subset of U so
that p(K )< co for every compact subset K  of M .  The measure ,a is under-
stood as is defined on the family MAI of all Lebesgue measurable subsets of M.

In each component M ,= M  of X=IL.N M „ take a measurable subset E,,
and put E=ILEN E,. We call such a subset of X  un ita l p rodu ct su b set if it
satisfies the following two conditions:

(UPS1) Nlii(E1) - 11<co and ti(E1)>0 (iEN );

(UPS2) E , (iE N ) are mutually disjoint.

We denote by the family of all the un ital product subsets of X.
We introduce two kinds of equivalence relations in a s  follows. Let E

=iliENEi and E '=IliE N E 'i be two elements in a

Definition 1.1. E  is co fin a l with E' if the condition

(CF) E,Eivii(ECLE)<°••

holds, and E  is  s tron g ly  co fin a l with E' if the condition

(SCF) ,u (E 1 eE )= 0  for i > 0  (sufficiently large i)
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holds. Here E fe E  --(E i\E )U (E i\E  i), the symmetric difference.

Denote by E— E' (re sp . E"-z-- E ') the  re la tion  "cofinal" (resp. "strongly
co fina l"). T he equivalence class fo r  "—" in t co n tan in g  E  is denoted by

(E).

Definition 1 .2 .  A family VI of subsets of X  is called finitely additive if it
satisfies

(1.1) AEVI,BEVI  AUBEW ,

(1.2) AEW, BEW A \BEW

is called coun tab ly  additive if it satisfies

CO

(1.3) AnE2X (n= 1 ,2 , •••) AnEW  ,n=1

together with (1.2).

Let Ttx be the countably additive family of subsets of X  which is generat-
ed by the collection of the subsets of X  of the form

(1.4) K i NKi with measurable K icM i= M  (iE N ) .

We denote by a(E) (resp. C (E )) the finitely (resp. countably) additive
family generated by (E ) .  Then we get the following

Lemma 1.1. ( i )  The family R(E) consists of finite unions of subsets of the
form

(1.5) E' \(U JE ) )

with E' and a f inite num ber of  Eu )  i n  (E).
( i i )  The family V (E ) consists of  elements in W1x which can be covered by

a cou n ta b ly  infinite number o f  elements i n  (E).

P ro o f  The first assertion is direct from the definition. So we prove the
second assertion. A s is easily seen, it is enough to prove that a subset K  of
X in (1.4) belongs to 9J(E) if and only if it can be covered by some E (E),
k=1, 2, The "only if" part is clear and so let us prove the "if" part. Put
K ( k ) =E ( k ) nK , then

K ( k ) = IT (E i(k 'nK i)= 1im ( H  ( E i(k ) (1 K i) )> <  (II 1> i E  i ( k ) )
ie N i - o .

This means that K ( k) E9R(E). Q.E.D.

1.2. Product measures. Take a unital product subset E=IIiENEi of X.
For any E '=  iENE i n  (E), we put
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(1.6) vE (E ')= ILE N ti(E ) ,

where the (unconditional) convergence of the infinite product is guaranteed by
the condition (UPS1) for E ' .  Moreover we see from an extension theorem for
measures due to Hopf that the product measure on E ' of pl E  ( i E N )  is
uniquely defined. Therefore we have a completely additive measure on E (E )
extending LE o n  (E ) .  We denote it again by the same symbol IVE. S in ce
every element in 0 (E ) is covered by a countably infinite number of elements
in a(E), with finite measures, the extension is unique and for any L W ( E )

(1.7) vE(L)=inf{ E  vE(E ( ''); U E(k)DL, E(k)E(E)}
1 k<oo l ‘ k < c o

Note 1.1. The measure vE on 9N(E) is a-finite in the sense that for any
B E E (E ),  there exist B E ( E ) such that 1.E(B7,)<••0 and B=UneNBn.

Now let F = Ili .N F i be another unital product subset of X .  Assume that
E / F  (not cofinal) and compare the product measures vE on 0 (E )  and vE on
M (F ).  We know that (E ) n ( F ) = 0  and that, for any E '= 1 1 iN E E (E )
and F '= i l iE N F E (F ) ,

v E (E 'n F )=I1  N ii(EnFo=

and similarly v E (E T IP )= 0 .  Then, we get from Lemma 1.1 (ii) the following

Lemma 1.2. A ssume E /  F . T h e n  f o r any  L E O (E )n n (F ) ,

2-1E (L)=0 and  2 F (L )= 0  .

1.3. Actions of G and e- on X .  An element gE G  acts naturally on X
as, for x =(xi)i.NE X ,

(1.8) gx=(gx,)ieN

Further, let ao denote the infinite symmetric group or the group of all finite
permutations of N .  Then a E e . acts on X  from the right as

(1.9) xa— (x)ieN with x;=x0 - (i) •

Then, since (ar) (i)—(5(z - ( i ) )  for a, rEas, we have x(or)= (x (5 )r.
These actions of G and o n  X  commute with each other, and induce

those on subsets of X .  First let g E G .  Take a  unital product subset E =
H N E 1  of X .  Then gE=HzeNgE, is also a unital product subset and g E -
E .  In fact, gE,'s are mutually disjoint, and putting S9 =supp(g), we have
E,eg.E,ŒS, and so

E ie g E ic (E in S g )U (g E in S g ) for any

Hence
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E p(E1egE1) ti(E inS9)+E,u(gE1nS 9 ) 2p(S g ) <00 .
i e N

Thus we get E—gE.
For dEas, the situation is much simpler. In fact, E a =  i .N E ;  with E;

=E 6 ( ) and so E = E  for i >0, whence E o  E
Thus we obtain, with some additional discussions, the following.

Lemma 1.3. L et E = IL E N E i be a unital Product subset of  X.
(i) For any  gEG , gE  is cofinal with E: gE— E .  A nd for any  a E a o ,  Ea

is strongly  cofinal w ith E : Eci E.
(ii) The f am ily  (E ) is invariant under gE G  and and consequent-

ly  so are the fam ilies a(E) and T (E ).

1.4. Jacobians for the actions of G and Let gE G  and E'=11,ENE
E ( E ) .  Then, g E 'E (E )  and

(1.10) vE(gE')= H ,u (gE )=  H f  1 9 A f ( g ;  x i ) d p ( x i )  ,
i e N iE N

where

(1.11) pm(g; p)=  d i l ( g P ) f o r  pEmdu(p)

For x = (x i)i.N E E ', let us prove that the infinite product

(1.12) PE(.91x)= iENPA/(9; xi)

converges LIE-almost everywhere on E ' .  Since Sp=supp(g) is compact, there
exist two constants CI, C2 such that

(1.13)C i  p m ( g ; p) c'2 (p S 9 ) .

Further pm(g; p)=1 for pEEsg . Therefore the infinite product (1.12) con-
verges for x E E ' such that xiEr Sg  for almost all indices i E N  (or except a
finite number of i). Our assertion follows from

Lemma 1.4. L et E 'e ( E )  and S be a measurable subset of  M with finite
m easure. Put

Es >= {x = (x i)i,N E E '; x i E S  for i» 0 } .

Then Es ) E9R(E) and  vE(E'\E('.51)=0.

Proof. T h e  subset E(s) is the union of

( H  ,E) x (E \  S )
i i N i> N
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over N=1, 2, each of which is cofinal with E ' and so with E .  Therefore
E.5) is in Ti(E) and its measure is given by

v E(Es))= lim{ 1I p (E )• H \ S))
N - 0 .  1 5 i5 N i> N

= II ieN 1.1( E 1 ) - = L E (E ' ) .

Now, as is seen below, we can rewrite (1.10) as

vE(gE9= LpE(glx)dvE(x)

so that we get the following theorem.

Q.E.D.

Theorem 1 .5 .  L et E  be a  unital Product subset o f  X  and LIE  b e  the
associated product measure on (X, 931(E)). Then, for g E G  and x =( x 1)E E '
—E,

dvE(gx) (1.14) p E (g lx )  H pm(g; x i )  .
d V E (X )  i e N

P ro o f  It is enough to prove that the infinite product II i.iv ipm (g; x i)
converges in LA E', dvE1E'), because its L2 -norm is convergent accordingly.
Let us evaluate

Liz,n=ll H ,/pm (g; x i )  — H .1pm(g; x i ) Ili
l s i s m 1 i6 r t

for m< n .  This is equal to

( H ,u(gE))•( „1:In g ( E ) ) •  H f  liPm (g ; x i )  — 112 dP(x i)
n z < in  El

Recall the evaluation (1.13) and put C=max{liCi — 112 , l iC2 — 112 }, then

1,/ p m (g; x i)  —  112 dp( x i )  C  p (E n So )  .

Note that H iEN ti(gE) and II iEN /i(E) are convergent and E i .N C • p ( E n .S g )
C•p(S 9 )< ••0. Then we see Im, n O (m, n—>co), as desired. Q.E.D.

Note that the above proof follows the line of Kakutani [10].
Let us now consider the action of We can easily see that, for

there holds vE(E' (5)=vE(E') for any E 'E ( E ) ,  and therefore that

(1.15) dvE (x6) =1 (x E .ch/E(x)

1 .5 .  Relation to two kinds of configuration spaces. An element x =
(xi)i..N in X=Hi&vMi, M i= M , is called an ordered configuration in M  if (a) x i
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* x ., for 1± ],  and (b) the sequence x „ i E N , has no accumulation points in M.
Denote by X the set of all ordered configurations in M .  Here let us study the
product measure vE in relation to .k  and ao.

Recall that a locally finite subset of M  is called a configuration in M .  We
denote by FA/ the set of all infinite configurations in M .  Let be the group
of all permutations on N : Then, naturally •g -  F A T  and we have
a principal fibre bundle .)-"- ->17A4. Using this fibre bundle, I. M. Gelfand and
others have constructed irreducible unitary representations ( = IURs) of the
group G in [17].

Let us begin with the following important fact.

Lemma 1.6. The subset J? of X  belongs to 91tx. For any  unital product
subset E ,  the Product m easure vE is carried by  g  in the sense that, f o r any  L
E fft (E ) ,  L nk is also in 9J1(E) and

(1.16) I■E(L)= vE(Ln)?) .

P ro o f  Take a  system of countable open base U.,}3EN of M  such that
each U., is relatively compact, that is, the closure cl( U3 ) is com pact. Then .g
is expressed as

n  u {,T=cx,) xl u.,}<=N} ,3EN 01■1 <co

where #A  denotes the number of elements o f a  set A . Therefore _k belongs
to Ttx.

By Lemma 1.1 (ii), every element in 9N(E) is covered by an infinite number
of E m E E ( E ) ,  q =1 ,  2, •-•. Hence, to prove the second assertion, it is enough
to prove it for L = E ( ' ) =FL EN E, ( q ) . Then

E m n  n  u E N  with
je N  1 6 N  <0.

EN = ( E im ) X ( H  (Ei (q) \  U  U k ) )i>N IS.k6j

The subsets E N  of E ( g) a r e  decreasing in  j  and increasing in  N .  Since
vE(E ( q) ) < co and ,a( U h)< 00 for any k , we get

L E (E ( q ) n ) -0 = l1n1 liM E(E.i?1■')
j - c o  N - c o

=lim ,u(E i" ) ) = v E(E ( q) ) . Q.E.D.
i e N

The above lemma suggests that the measure vE can be considered on X- -

instead of X .  Since the family 9311(E) and measure vE are invariant under the
action of ao, we may induce from vE a measure on the quotient space .Q=..Qm
= i e j a . .  Then, it may be possible to consider R-9: f —> flivi as a principal fibre
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bundle for the group  a ., and to follow the standard method employed for
->FAT also in this situation to construct IURs of G = D iffo (M ), which acts from
the left on je- and so on / I  and avi.

D efinition 1.3. A  subset B  o f a u  is  c a lle d  E -m ea su r a b le  if 7r52- 1 (B)
belongs to TR(E). The set of all E-measurable sets is denoted by WItfl(E).

The measure vE,D is defined as follows: for a measurable BOES2m, take a
fundam ental set L e 937(E) for B such that

(1.17) rcs?-1(B)=110-eacoL6 (disjoint union) ,

and put

(1.18) 1E,s2(B)= vE(L) .

Then this value does not depend on the choice of L .  Hence we should prove
the existence of a fundamental set L.

Lem m a 1.7. F o r  an y  B E T tp (E ) ,  there ex ists an L E V (E )  satisfying
(1.17).

Proof. S in c e  7rp- 1 (B )  is  in TI(E), it is covered by a countably infinite
number of E ( q) E ( E ) .  Put L ,= E ( g ) n  7r.Q- ' ( B ) .  Then, for any  q , L q c
ao) are mutually disjoint because E ( q) satisfies the condition (UPS2). Now
set for q

U ( U L i )o.

W < ,7

and L=IL,,<-L',. Then, La (a E a .) are mutually disjoint and 742 - 1 (B )=-

1_16.e.,La. Q.E.D.

As seen above, we may call 7r2: j e - ->S2m a measurable principal bundle in
the sense that the group ao acts mesurably on X  and the projection RI is also
m easurable. Lem m a 1.7 says, in other words, that for any ao-invariant A E
937(E) there exists an FETS(E) such that A = LI cr...Fo• (disjoint union). In a
certain degree, th is property for 7rs2: k->S2m, replaces the local triviality
property in the case of usual fibre bu nd les. In later sections, in studying the
irreducibility and mutual equivalence of the representations of G constructed
there, it is convenient for us to keep the presentation in the form of (X, 9R(E),
LIE) ra ther than  that in the form of (QM, 9Jts2(E), vE,s2). So we will use these
two forms according to the situations for the convenience of discussions.

1.6. Remarks on topologies. First note that, in the case when the space
of configurations FM and the fibre bundle g - > . g / . . . 2=-Em are treated, it is
natural to consider a m etric d on X D .?? given as
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(1.19) d(x , y )--suydm (x i, yi)

for x =(x i) , y =(y i)  in X, where dm is a  metric on M .  Then, denoting the
orbit X c O O  by [x i, we have a metric on Pm as

d r([x ],[y ])= in f  d(xo . , y r)= inf d(xa, y) ,6,r e 4 0 6 E 6 - 0 ,

for x, yE X- .
In contrast to this, as in  our present situation, in the case when the

quotient space QM and the measurable fibre bundle R -> g l S2m are treated,
any suitable topologies cannot be found. In fact, when we introduce the
above metric d in .g (or in X), the orbit x a .  is not necessarily closed. So,
we should consider in  X  a  much stronger topology. Let us consider a
topology for which an open base is given by the family of subsets of the form

(1.20) U=HiENUi with open (L cM  ( iE N ).

Then, on the one hand, this topology is suitable for the present situation
in the following points.

(1) Every element in the open base is in 9:ftx.
(2) For any .E=FLENE; in 9R(E) a n d  >0, there exists an open UE

FR(E) such that vE(E'OU)< E.

(3) Every orbit xa . is closed in X .
(4) The action of a. is discontinuous in the sense that (D1) for any xE

X , there exists a neighbourhood Ur such that U.ran Ux=0 for (YE  e x c e p t
(1=1, and further that (D2) for any x , y E R  such that xao*yao, there exist
neighbourhoods U.  and Uy  such that urcynuy =o for any cE ao .

On the other hand, this topology is not suitable with the present situation
in the points that, for an open set U=II,.NU,, the measure liE( UnE '), with
E 'E (E ),  is in general zero, and that we even do not know if vnE is in V (E )
for any open V.

Note 1 .2 .  In this strong topology, the connected component of a point x
=(x,),EN in X=II i.NM„ M,=M, is equal to the union of (III NM,)x (x,),>/v
over N 1  (cf. Exerc.I.11.8 in [1]). Therefore each orbit x a .  is contained in
the connected component of x.

1 . 7 .  Relation to an infinite tensor product of Hilbert spaces. Let us
consider two Hilbert spaces

, ivi=L 2 (M ,9J7m , p) a n d  f)(E )= L 2 (X, V(E), E ),

where E— H ,E,E , is a unital product subset of X .  Then the characteristic
function xE, of E ,  M  belongs to M and the one xE for E c X  belongs to . (E ),
and we have a formal expression



Irreducible unitary representations 837

(1.21) X E = O i E N Z E i  o r  xE (x)=  iE N xE ,(xi) f o r  x — (xi) •

This expression has a rigorous meaning in terms of infinite tensor product of
Hilbert spaces (cf. [16]). Take a unit vector ço i= xE, I 11 X E from 1M and choose
ço=(soi)i.N as a reference vector to form the tensor product

(1.22) C)TEN•f Oi.Nt-f)i, soi} w ith  , 1=•,m ( iE N ) .

Then we can prove that this tensor product Hilbert space is canonically
isomorphic to (E), and (1.21) is an equality through this isomorphism. So
that the Hilbert space •f)(E ) is seen to be separable.

In this and many other reasons, we can understand that, fixing the unital
product subset E=FLENE (at the starting point), we choose a direction in
which "tensor products" of many things will be taken. This direction is
nothing but a one in which the ordered configurations x = ( x )  remain to
follow as i—> co.

1 .8 .  Normalization of unital product subsets. Let E=FLENE, be a
unital product subset of X = IL .N M ,, M ,— M . We wish to choose a good
unital product subset E (0)

= 11 ,N E (' ) , cofinal with E, as a representative of
the equivalence class (E ) .  Then we will see that it is more convenient to use
E ( ' ) instead of E. This replacement of E  by E ( ' ) is natural in the sense that
9:11(E) ---- O (V ) ) , vE= vE ,o) and so on.

Now let us choose E m  . Since the measure ti on M  is locally equivalent
to Lebesgue measures, there exists, for every i ,  a relatively compact, open
subset ECM such that p (E ,e E )< 2 — . We may further assume that every
E; has only a finite number of connected components and that p (E  \ E)=0,
where E ;= cl(E ;). Put E;' = E;\ (U 1 < 4 ) .  Then E'z' are m utualy disjoint
and

EiGE'i'c(E,C)E aU lU i,;< i( E,f1EM .

Thus we have

E  g(EiC)E;') E  ,u(E i0E0+Eu(EinE.;),1 i<- i> i

z f i c E i n E . E  t i ( (  U E  ti(EA E ; ) ,
i<i<oo 1 , i < 0 0

whence E it i( E i0 E ) - 5 1 + 1 = 2 , and s o  E = IL E N E i is  cofinal with E" =
i E N E '  :  E  E " .

We can replace E" further by another one to arrive at

Proposition 1.8. A ny  u n ita l Product subset E=IIi.N Ei is c o f in a l with a
u n ita l Product subset E (°) =HiENEi (°) hav ing the following properties.

(U PS3) The closures c l (E m ) and cl(U  E ; (°) ) are mutually disjoint for any
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i. Each E im  is relatively  compact, open and w ith only  a f inite num ber of
connected components.

(US P4) In case n = d im M > l, E i "  is connected, simply connected and
diffeomorPhic (together with its closure), by an element in G, to an open ball
(together with its closed ball) in a coordinate neighbourhood. For i* j,
and E i "  can be connected by an open path Pi;  such that cl(Pu)ncl(U k*i,JEk (°))
=0.

Here an open path between connected and simply connected sets A  and B
means a  connected, simply connected open set P  such that P n A  and P r I B
a re  non-empty a n d  connected, simply connected together with the union
PU A U B .

Proof  We construct from E.,"s inductively according to i. For the
condition (UPS3), it is enough to shrink each a little if necessary. So we
consider the condition (UPS4).

We will define B , inductively and work o n  i t .  F o r  i =1, put B 1=E '.
STEP 1. Assume B , be given. Let the connected components of B , be

U1, U 2 ,  " • ' ,  U r . I f  some Us is not simply connected, then we cut it by a finite
number of hypersurfaces into simply connected pieces and shrink them so that
the closures of pieces are mutually disjoint.

STEP 2. Thus, assuming each Us is simply connected, we connect Us to
U 8 + 1  by an open path in  such a  way that all such paths do  not intersect
mutually and they form together with all Us's a connected, simply connected
open set E,

(
°
)
. The demand "diffeomorphic (together with its closure) to an

open ball (together with its closed ball)" in (USP4) is seen to be satisfied if we
shrink a  little if necessary. Thus we can get E ,"  so that the difference
B ,C )E ," is so small that

(1.23) ,u (B ieE i")< 2- i

and  that M \  c l(U i, i ,i.E
°)

)  is connected (note that M  \  cl(U i,i6 i-iE ;
(°)

)  is
connected by induction hypopthesis).

STEP 3. F o r  i >1, we still choose open paths Pi;  connecting E r  with
for 1 j< i  so that

(1.24) c1(P ,J)nc1(E k")= 0 f o r  k* j , ,

and that the union of E i " ,  1 j  i ,  and P i k ,l k < j i ,  does not cover any
fo r 1> i (if necessary, shrink Ei

(
°
) a  little).

STEP 4. Now assume that El", E2", •••, E," have already been chosen.
To choose Er-1, we start with

(1.25) B'q+1=E \til),,C1(E.inUi,k .).,,c1(Pik )}
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and shrink it if necssary to get an open set B g + i  cB 41  such that

(1.26) p (B ± 1 \ 1 3 ,1 )< 2 -(" "  , c l(B g+ i)n c l(E , (°) ) = 0 (15 j q) .

Then we follow Steps 1 to 3 for i =  q + 1. Thus we get and .130„1 -5
j  < i .  The induction process is now completed.

Let us evaluate the sum EzENP(ETeE,m). Note that

E;'0E,mc (E;'CDR) U ( B ; c ) a ) u m e E (.) )

with and take into account Rea= R \ B  and (1.23), (1.26), then we
get

E Nti(E 'OEi ( °) ) 5 EiEN,a(E7C)Ba+2 .

On the other hand,

E7e.B ;=E7 \ n( U
i
ci(Ei(o))u ,,ky. < i ci(Pio)

and so

f i (E 7 e .B )5  E  ,a (( E E7)(1c1(E; ( °) ))+ EP(C1(Pik))
i e N W < c o j< i < c . k < j

5 E ,u(cl(E1°)) \ B ; ) +E2 - J5 2 .
W < c o

Here we used the fact that ETDB, and so

(U.i<i<mE7)n cl(E im )ccl (E1° ) )\

Thus we come to Ei,u(E7eEi
(°)) 5 4 , which says that E"=ILENE7 is

cofinal with Em =  i .N E i ( ° ) . Hence Em —E" -- E.
Thus the proposition is now completely proved. Q.E.D.

§ 2. Representations o f G =Diffo(M)

Let H be a unitary representation (=UR) of ao on a Hilbert space V(//).
We construct URs of G starting from (H, V (H)) and the product measure (X ,
931(E), vE )  of ( M  WIM, p )  associated to a unital product subset E =II iENE i of
X = H i e N M i ,  M i =M.

2 .1 .  Representation Tz on a Hilbert space V E ) .  With a given datum

(2.1) =(H; p, E)

we construct first a Hilbert sp a c e  (2') and then define a UR T f  of G on it.
Let E' =II zEiv E; be a  unital product subset which is cofinal with E:

E ENti(EiC).E) < c o .  Consider the measure space (E', T (E )E ', vE lE '), where
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3Jt(E)1E'={ B nE'; B E9R (E)} . Then the Hilbert space

,Mr— L 2 (E ', 9N(E)1E', L EE'; V (H))

of L 2 -functions on E ' with values in V(/7) is defined as the completion of the
pre-Hilbert space of step functions of the form

(2.2) ço=x B k lOv k (finite sum)

with BkEV(E)1E', vk V ( / / ) ,  for which the inner product is given by

(2.3) =1:,1140(x)RondvE(x)

We give a Hilbert s p a c e  (E) as the one which is generated by the family of
no E ,  with E ' E  (cofinal):

(2.4) V Z ) =  VE- cE)

H ere, for two elements gi,ço2 in  the union UE , --Ea ,  their inner product is
defined as follows: le t ço EOE(,) with Em — E, then

(2.5)< p 1 , ÇO2> = E < (x), 11(6) - 1 (s02(x6- 1 ))>vundvE(x) .
&J E  ( 1  nE■z)a

A representation of G is defined as, for çoE ( Z )  and gE G,

dvE(gx) (2.6) TE(g)ço(x)= pE(g - 1 1x) 1 / 2 so(g- 1 x )  w ith  pE(glx)= dvE(x) •

To recognize that the inner product (2.5) is well-defined and gives actually
a Hilbert space, and that the formula (2.6) defines a unitary representation of
G on that Hilbert space, it is natural and convenient to restate the  above
construction of Hilbert space by imitating the case of L 2 -sections of a vector
bundle associated to a principal fibre bund le. This will be done below.

2 .2 .  H ilbert space M (2 ) canonically isomorphic to ,N E ) . I n  our
present case, w e h a v e  a  measurable ao -principal bundle 74): .g->S2m. The
group G acts on .)? measurably, and we get a measurable associated bundle for
an a.-module (H, V (H)).

We introduce some n o ta t io n . F o r  a  function f  o n  X  with values in
V (H), we put, for (5E - ,

(2.7) (R (0)f )(x )= f (x d) ,

(17(c)f )(x )=11(0)(i(x ))

Let 4 E, be, for a unital product subset E'— E, the Hilbert space defined above.
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To consider V 7E., a s  a  space of L 2 -sections of the vector bundle associated to
.g->QA, for (H, V(H)), we extend every çoE V IE, to a function f  = Q 1 1 9  on X  as

(2.8) Q 1 7 ç 9 = E6.e.(R(a)• 11( 0 9

or more exactly, for x E  E ' and cs a.,,

(2.8') (Q119)(xa)= 17(6) - 1 (9(x)) ,

recalling that E' a (cE a .) are mutually d is jo in t. Then f  =QH9 satisfies

(2.9) f (x a)= M a r f ( x )  ( x E  X , a E a .)

and f ( x )=0  outside llae s ,.,E 'c . Put

Ilf112 =f,11f(x)KundvE(x),

then we get a H ilbert space SCrE, , isomorphic to V IE, through the map Q  .

The H ilbert space 3C(E) for —(17; i ,  E )  is the  one generated by the
family ATE', E ' E :

(2.10) M ( I ) =  V  ATE' .
E 'e (E )

Here, for two elements fiESCrEw with E m  E ,  their inner product is defined as
follows: take an F E W (E ) such that F a  ( a e a s )  a re  mutually disjoint and
fi(x )=0  or f2(x)=0 outside L10-Es_F(5, then

(2.11) < fi,  f 2›.41 . (1) —  f < f l ( X ) ,  f 2 ( X ) >  V ( I 1 ) d 2 )  E ( X )  .

We see easily that the map Q/7 gives an isomorphism of H ilbert spaces
,(/ ') and SC(E).

Remark 2 .1 .  The Hilbert spaces ,(2') and 3C(/) are actually generated
respectively by and 3CrE, = Q u a  with E ' E  (strongly cofinal):

(2.12) ,(2 ')=  V , M (E )= V  I C [.
Ef ,E

Therefore the  subset A  o f  step functions o f th e  form ço=x.30v with BE
9JZ(E)1E', for some and yE V (H), is to ta l in  ,f)(E), and so the subset
Qi7A={Q/79; ipEA} is to ta l in  JC (/). In particular, the Hilbert spaces VX)
and JC (I) are separable.

2 .3 .  Unitary representation Tx of G .  A representation of G is given
on S C(I) as

(2.13) T . ( g)f ( x )= ,0E(g- '1x)"2.f (g - lx )
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for fE3C(2'), gE G and xE X , which we denote by the same symbol TE with
that on VE).

The unitarity of 7-1 is clear if we note that the domain of integration F
E (E ) in (2.11) can be replaced by gF if fi and f2EJC(Z) is replaced respec-

tively by TE(g)fi and TE(g)i2.
For the continuity of G Dgl-- TE(g), we should first mention the topology

of G .  The group G =Diff o(M) is equipped with the usual D-type topology or
the inductive topology according to the family DiffK(M), K  compacts in M,
where DiffK(M) denotes the subgroup of G consisting of g with supp(g)ŒK,
and is equipped with the topology of uniform convergence of every derivative.
Then we have

Proposition 2.1. The formula (2.13) gives a continuous unitaly represen-
tation o f  G =Diffo(M ) on the Hilbert space 1 C(f).

Proof . Since the unitarity is already known, it is enough to prove the
continuity of GDg1-3<T1(g)fi, f2> for fi, f2 in  a  fixed total subset of M(X).
Therefore, by Remark 2.1, we can take as A, f2 two step functions of the form
fi=  Q uso, w ith  ço,=xB ,,, Ov.,, B ( J) E9N(E)IE ( ' ) for unital E  and y e  V(//).
Then

<TE(g)fl, f 2 > _  <V I ,  v 2 > v (H ) . fE,2, pE (g -lix )1/2x B ,, , (g - i x '  x 1 3 ,) 2,(X )C /V E(X )

p E ( g  i l x )112 dv E ( x )=<vi, V2> v(in• f n 13,2,

Further we can take as B ( ' ) a subset of the product form f3( 3 ) =11,ENB, ( 3 ) such
that B » ) = E , for i> 0 .  Then, by (1.12) and an additional discussion on the
interchange of "infinite product" and "integration", we get

< TE(g)fl, f2> —  < V I, V2> VC/7) . H PM(g - 1 , X i ) 1 1 2 C / ( X i)  .

ieN f g B

e
n)r)Bi (2 '

Now, fix a compact K M  and take g E D iffK (M ). Then, by assumption
on the measure ji, there exist positive constants ci(g), c2(g) such that

m(g - 1 ; P)<= c2(g) (PE K ) ; to m(g - 1 ; p)=1 (p K) .

Note that we can demand ci(g) c,>0 and c2(g):- c2< co for any g in a certain
neighbourhood of e=identity in  DiffK(M ). Thus an  evaluation similar to
that in § 1.4 proves that, when g tends to e=identity, the infinite product in the
above expression of < T1(g)fi, f2> tends to

<Vi, V2> V(II) • H 1.1 ( B n /31(2))= oh, v2> v(n)- vE(B(i)n B(2)) =<fi, f2>.
EN

The continuity of g■-, T i(g ) is now completely proved. Q.E.D.
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Thus, for a datum  =(/7; p , E ) with a UR 17 of ao and a unital product
subset E  of X  with respect to p, we get a UR Tx of G .  For another datum
X' =(/ / '; p , E ')  but with the same p ,  we have Tz , -= T E  if  11' 11  (unitary
equivalent) and E' — E (cofinal).

Remark 2 .2 .  To study irreducibility and equivalence relations for TE's,
it is often convenient for us to use the realization of Tx on V E )=V E , ,E ,M ,

and utilize the family of subspaces for explicit calculations. These
subspaces play a role, for the Hilbert space , (2'), something like local charts
for a manifold. Symbolically speaking, global structure of the manifold M  is
reflected in the structure of V I )  or JC (E )=Q H (X ) at the point how to patch
together these subspaces a  or ,gCrE., = Q/7,M ,  whereas in each VE , only local
structure can be reflected. Anyhow we have enough reason to keep two kinds
of realizations of TE: the one on V E )  and the other on ,4C(Z)= Q .4(Z ).

§ 3. Some fundamental lemmas

Here we collect some lemmas which will be needed later.

3 .1 .  Elementary representations of diffeomorphism grou p s. Let E1,
E 2 ,  • • " ,  E r be mutually disjoint open subsets of M , and put

‘.1 =  0  L 2 (E )  w ith  L 2 (E i)=L 2 (E1; ,

G1 =  H  G1E, w i t h  G IE ,={ g G; supp(g)cEi} .16ir

Then we have a natural representation of G1 on as the tensor product of
that on L 2 (E1) of GE,:

forg = ( g ) GI and y= (Y i)E lli6 ii-E i

(3.1) i(g ) f)(y ) H  p m (g i -i ; 3,,)112. f (g -1y )

with the Jacobian tom(g; p) for pE M  in (1.11), and gy =(giy i).
Note that G1E1 = G (E i)D if fo (E i ) .  Let the connected components of Ei

be E0 , JEJ I (we admit the case ILI = o e ) .  Then GlEi.,= G(E1) for every E0, and
G(E1) is equal to the restricted direct product of G(E1.)'s, and is contained in
the direct product of G(Eif )'s :

(3.2) is)= fiG ( E  .

We get easily the following

Lemma 3.1. T he representation L1 o f  G1 o n  i  i s  a direct sum  of  IURs
which are not mutually  equivalent.

Pro o f . The group G1E1 is equal to M e.,,G(E k i ) and the natural representa-
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tion of each G(E u ) on L 2 (E1) is irreducible, and the decomposition L 2 (E1)=
V E J ,L 2 (E u ) for each 1 I  r  gives, through tensor product, a desired direct
sum decomposition. Q . E . D .

Now let F1, F2, be also mutually disjoint open subsets of M, and put

.N =  0  L 2 (Fi) , G 2 =  H G(Fi),W 6S

then we have a natural reprensentation L2 of G2 on ,N  similarly as (3.1). Let
us compare two representations L i of Gi (i=1, 2). Put =Ei n F ;  for 1 i

B 1 .=E 1 \c 1 (  U  F; ) , B .0 J = F i \c 1 (  U  B a ) ,
i s

and L0={1, 2, • ,  r ,  001, Lo={1, 2, •, s, c o } .  Assume that

(3.3) ti(Ei U  Bii)=0 , p ( F ;\  U  B ,)=0 .
JE J. i e l .

Then L 2 (E1 )=VE1.L 2 (B 0 ), and therefore

(3.4) ,V=-EED 0 ,N"="E(9 0 LA Bii i ) ,
J1 i r i

where j= (ji,j2 ,•••, jr ), jiE J ., and i2, •--, is) , iiE loo . We put further

G12 =  H  G(B u ) c  ci n G2 ,

where B ...=0  and G (B 1)={ e) for B11 = 0 .  Since F i=0  for any j ,  we
may understand that each  G ( B 1 )  acts trivially on 1 ' 2. Each G (B u) acts
naturally on L 2 (B 1) and trivially on L 2 (B1y ) if (i', j ')* ( i, j) .

For j=(ji, j2, •••, j r )  and i2, •—, is) in (3.4), we put

,f)(j) = L 2 ( B 1 j i )  ,  
,f ) ( i ) =

 C )  L 2( B15j )

Further consider the set of pairs [j]={ (i, ji); 1 r }  and [i]={ (i i , j); 1 j
,s}. In case [ i ]D [ j ]  (and necessarily r -5s), we define , ( [i]\[j])  as the tensor
product of LAB, j ; ) over j such that (i1 , j) E [ i ] \ [ j ] .  Now suppose that [i]
and [i]\ {j]c {(0 0 , j);1 - s} , then changing the order of the factors in the
tensor product, we have a natural isomorphism

(3.5) 0,,: ,f)(i)— ( i )O V [ i ]\ [ j ] ) ,

On the other hand, for any OE,f)([i]\[j1), MOM =1, we have an isomorphism,
under of , ( j )  into , ( j ) 0 ,V [i]\[j])  given as /di00:ço—> ço0 0 ,
where I d ;  is the identity operator on , ( j ) .  Then 0 i ,- 1 -( M ;0 0 )  gives an
isomorphism of ,f ,(j) into V i ) .
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Lemma 3 .2 .  For two representations (Li, t , )  of  G, f o r i =1, 2, let A :
be an  intertw ining operator o f  L11G12 w ith L21G12. A ssume that the

condition (3.3) holds. T h e n  A  is  a  sum  o f  scalar m ultiples of  the natural
isomorphisms

(3.6) 0(Ic JO ,

where O E V [i]\[j]) , and the Pairs ( i, j)  satisfies the condition

[i]D [j] , [i]\[j]c{ (c  0  , j);1 . j s }  .

A proof can be given by using Lemma 3.1. In summary, we can say that
dividing E i's  and F is  into B =E 1 C 1 F, and their outsides B ,- ,  B ., ,  it is
enough, for intertwining operators, to pick up in (3.4) the factors of a n d
having the same B u 's in common.

3 .2 .  Infinite tensor products of representations. Similarly as above,
we get the following, for an infinite tensor product. Let E' =ILENE; be a
unital product subset i n  (E ) such that each E ; is open and connected. Put
G (E )-- -- --H;ENG(E), the restricted direct product of G (E)=-  G1E/. Then G(E')
is contained in G naturally.

We define a  natural representation of G (E ') on , IE., =- L 2 (E', O E M ',
vElEy) as

(3.7) LE,(9)f (x)=PE(g - l ix )" 2 f(g - l x)

with pE(glx) in (1.14), for g G(E'), f ,f)1E., and x E E '.  Then

Lemma 3.3. The unitary representation L E ' o f  G (E ') on is irreduc-
ible.

Proof. P u t  = L2 ( E , die I E), so = xEd and 9 = (9 ,) iE N . Then
,f)1E, is canonically isomorphic to the tensor product Ofeiv, i=®,eN çoj of

with respect to the reference vector ço. Because of (1.14), the representa-
tion L E ' of G(E ')=TLENG(E) is equivalent, under the above isomorphism, to
the outer tensor product OfENL, of reprensentation L , of G (E ) on where

(3.8) 1—(g)sb(p)= p m (g - '; p )i' 2 0 ( g - 'p )

for g eG (E ;) , O G ,, and P E E .  Each L , is irreducible since E; is connected.
Therefore its tensor product is also irreducible, whence so is LE'. Q.E.D.

3 .3 .  Structure of a subgroup G ( ( E ') ) .  Assume now n = d im M 2 .
For a subset E '=11 i.N E ;, E C M ,  of X , let G ((E ')) be a subgroup of G given
by

(3.9) G((E"))=-{ g G; gE = E r(i)  ( iE N ), 3 crE - }  .
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Let E' =ILENE; be a  unital product subset i n  (E‘) satisfying the conditions
(UPS3) — (UPS4) (replacing Eim there by E ) , which exists by Proposition 1.8.
Let us study the structure of G((E')) for such an E'.

By (UPS4), for any i * j ,  c l(E ), c l(E ) and Cz,=c1(Uk*,,,E'k) are mutually
disjoint, and there exists an open path Pi, connecting .E;, E; such that cl(P1)
n c „ , = o .  Put M 1 = E U EU P1 1 . Then Mi., is a connected open submanifold
of M  and s o  G(M,,)=Diffo(M,,) is canonically im bedded into G=Diffo(M).
We shall construct an element g ,, e G(M11 ) such that

(3.10) gi,E;=E; , g i , E ;= E ;  .

Then g1j1E'k is the identity map on .E;, for k* 1, j. Thus we get the following

Lemma 3 .4 . L e t n=dim  M 2  and E '=1 1 i.N E  b e  a  unital produ ct
subset i n  (E ) satisfying (U PS 3)— (U PS 4). Then there exists for an y d E a o ,
an e lem en t go-EG su ch  tha t gcrE = Ea(I) and godE;= id en tity  on E  i f  6(0= i.

P r o o f  It is enough to construct for each 1*] an element gii E G(M if )c  G
in (3.10), and put gc,„=gi, for the transposition au — (i, j ) .

STEP 1. Inside of P 0 , we can choose two non-intersecting simple paths C1
and C2 connecting a point xiEE ; with an x i EEJ.

Figure 3.1.

We give to the path C1 (resp. C2) a direction from xi to x , (resp. x , to x i) . By
(UPS4), E; and E ; are respectively diffeomorphic to  open balls B io cE  with
center x , and Bo cE.; with center x , by elements h i, h,E  G with supports in
small neighbourhoods of cl(E ), c l(E ) respectively. Now choose a series of
points x,i, x 12, •••, xir on CI (resp. Xi i, x,2, •-•, x,,s on C2) and small open balls
B 11, B12, • • • , B 1  (resp. B 3 1, B12, •••, B 18) with center Xii, x12, •••, x ,r (resp. x,i, x,2,
•••, x, ) respectively in such a way that

ci(Bih) n ci(Bi t)= 0  for any k,

B10 n B i, *0, /31 1 n Biz*O, Bir n B 1 0* 0  ;

Bio n B i s * 0  , B 1 in B 1 0 * 0  .

STEP 2. Put
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Figure 3.2.

, , y< s 13.51) ,

=  E \ B  U 1 <ur s B i , }  •

Then there exists an hioGGIEr (resp. h o G  G1E,-) such that D io = h io B io  (resp.
Do = hoBo) is completely contained in Bio fl B il (resp. in Bo  (1 B i 1). Here a set
A is completely contained in an open B  if c l ( A )  B , by definition. Then there
exists an h1EG1i , , w ith  B11=c1(B11) (resp. //fi e  Giff,,) such  tha t Dii=hilDio
(resp. D i i = h j iD o )  is com pletely contained in Bin (resp. in  BD  rI BJ2).
Repeatedly we find h12E '•', hirE G ig, such that D ik = h ik D i,k _ i is com-
pletely contained in a k  n Bi,k+1 for 0  k r —1 and A r E B r nB i o. S im ila r ly
we find hi 2E Guy •••, hisEG1ff„ having the corresponding property.

STEP 3. Finally we can find hiosE GIEf such that h i .D i r = D o ,
D io. Then, since h_Tol Dio = B o, 11,»  Bo= E.; and hTol D io= B io, B io=

E , we see that the element

(3.11) g i i= h »  h.701 h h 7 0 1 (h i,sh ir)( ks -1 . • • hilho)(hi,r-1 .- • hiihio)hihi

gives a desired element in G(Mii ) EG:

g u E= E";  , g E ;  ,  supp(gii ) c  E U E R JE .; ,

whence supp(g k i ) n c i ;  =o. Q.E.D.

3 .4 .  Representations of G ((E ')) on V IE'. Let E' =il iŒNE be as in § 3.2,
and H  an IU R  of a o .  Put V IE, = L 2 (E', d vE lE '; V (H ))  and A Tir=
Q/70 , as in  § 2. For any g G ((E ')), there exists a  a E S -  such that gE '=
E' a, whence, for any x = (x i ) i .N E E ',  we have g - lx = y a - ' with y E  . There-
fore, for f=  Q179, ÇO . f d ,  and x c E ' ,

f 1 x ) == f( .y(f. 1) 11 (C ) f (y) (C ) 9(y) ,

and so

( T z (g )f)(x )=pE (g - ilx ) " 2 f (g - lx) -- - pE(g - 1 1x)" 2 11(6)9(g - Ixa) .
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This means the following: for any gE G ((E ')), T z (g) leaves the subspace JCIE,

of 9 ( ( f )  invariant, and it induces a unitary representation TE, of G ((E ')) on
as

(3.12) TE,(g)ço(x)_ 0 E (g -i i x )1/2/7-( 0) 9 (g -1x ° )

for g E G ((E ')) ,ço E V 7E, ,  x E E ',  where (YE a .  is so chosen that g E '=E 'c .
Let us prove the irreducibility of TE'.

Lemma 3 .5 .  For a  unital product subset E ' satisfying (UPS 3)-(UPS 4),
the unitary representation TE ' on ,f)rE, o f  G ((E ')) is irreducible.

P ro o f  Note that M ii , V  ( H )  with 931(E)1E',
When TE, is restrited to the subgroup G (E )c  G ((E ')), we have

(3.13) TE,(g)-= LE ,(g)01V(17) ,

where lv(H) denotes the identity operator on V (// ). Take an intertwining
operator A  of TE, w ith  itse lf. Then, identifying iC rE , with , 01E., ® V(//), we
have

Ao (L E, (.001v (H))= (L  E
, (g)01v ( H) ). A  ( g E G ( E ) )  .

Since LE ' on is irreducible by Lemma 3.3, A  is of the form A =- 1t IE,® A i
with a bounded operator A1 on V(//).

For any a E a . ,  there exists a gaE G ((E ')) such that g o E '= E 'a .  In (3.12),
put g=go-, 90(x)=0(x)®v with çbE ,f)1E,  an d  vE  V (// ). Then the equation
A. TE, (go.)= TE(g6)° A  is written down for ço as

0 '0 (A 1 ll(6 )y )=0 '0 (1 1 (c )A iy )

with 0'(x )= pE(ga
- 1 1 x ) 1 1 2 0 ( g 6 - 1 x 0 .

)
. Thus we get A1017(o-)=11(o-).A 1, 6 E a o .

Since H is irreducible, A1 should be a scalar multiple of the identity operator.
Hence so is A, and the irreducibility of TE, is proved. Q . E . D .

§ 4. Irreducibility of the representation 71 of G

Let E =(H ; p, E ) be a parameter of the unitary representation Tz of G on
C (E ). Here H is an IUR of a . and E =ll i .N E ,  is a unital product subset of

X, with respect to a measure p  on M , satisfying the conditions at the begin-
ning of § 1.1. We prove the following theorem, one of our main results.
Recall that we have assumed dim M 2.

Theorem 4.1. The unitary  representation T z  o f  G =D if f o(M ) on the
Hilbert space JC(E) is always irreducible.

4 . 1 .  Structure of the Hilbert space ,1C (2'). Before entering into the
details of the proof, we give a remark on the structure of the Hilbert space
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J((X). L e t  E °>
 =  H 1 E N E 1

° be a unital product subset cofinal with E for which
the conditions (UPS3)—(UPS4) in Proposition 1.8 hold. Put  E

° =(H ; i ,  E ° ),
then ( ( X ° )=%(X) and T o =  T .  Hence we can work with in s t e a d  o f

By Remark 2.1, the Hubert space  1JC(X o ) is spanned by the family of
subspaces Ji7 ', where E "s  are strongly cofinal with E °>: E ' E ° . Further,
as seen below, we can chose E °> so as to satisfy one more condition (UPS5).
For any so chosen E °>, the Hilbert space X ) = % ( ^ ° ) is spanned by C " s
with E ' E ° which satisfy  (UPS3)—(UPS4) too.

For a un ital product subset F = H N F i satisfying (UPS3)—(UPS4), we
consider the following condition.

(UPS5) For every N>O, the complement M \ cl(LJl>NFI) of cl(Ul>NFI) is
connected.

Lemma 4.2. Let F = f l lN F l  be a unital product subset satisfying  (UPS3)
— (UPS 4). T hen, cutting o f f  a sm all part of  each F1,  iE IV  w e get a unital
product subse t F'=H ,N F', F,C C F1, c o f in a l  to  F, w h ich  satis f ie s  (U P S5)
together with (UPS3)—(UPS4).

P ro o f  Put A =M  \ cl(LJIENFI), then A  is not empty. In fact, if A 0 ,
then M = cl(1J N FI)=  cl(F l)U cl(U 12F)  on the one hand, and c l(F i) and
c1(U12F1) are mutually disjoint by  (UPS3) on the other hand. This contra-
dicts the connectedness of M .  Since A  is open, its connected components A1,
A2, a re  a t m o st  countably infinite. We connect A 1 with A 1 + 1 inductively as
follows, getting F, from F 1 accordingly.

First connect A 1 with A 2 by a (rectifiable simple) curve C .  In case C
meets with F1, we shift continuously the part C fl F 1 of the curve very near to
the boundary c l ( F 1 ) \ F 1 ,  and pare off a small part of F1 together with the
shifted curve inside F1, thus getting a connected open F » C F 1  such that 1i(F 1\
F 1 ')< 3 1 'i(F1). So  th a t  F ( l > = [ J i E N F i (  i s  cofinal to  F , and A 1 and A 2 is
connected outside cl(U1ENF1' >) by the shifted curve. Secondly, to connect A2
with A3 properly, we work similarly with a curve C connecting them and with
F = H j E N F»>. Paring a sm all part of each  F 1 ' if necessary, we get a
connected open F 1

2 C F »  such  that  1 i ( F » \ F 1 2 ) < 3 2 u i ( F 1 )  and  that a
continuously shifted version of C is outside cl(U1ENF1 2>).

Now assume that for each iE N , we have chosen opens F 1(l>D F 1(2 *
F 1 ' such  that  i ( F » 1 \ F » >) <3 1 1ui(F1) and that A 1 and A 1 + 1 is connected
by a curve outside cl(U1NF1 1 ) for J 1, 2, k - 1. Then, to connect A k
with A k + 1  properly, we work similarly with a curve C connecting them and

cofinal to F .  Thus we get connected opens F ?  such that
F1 C F » _ u ,  i(F1 \ F 1 ) < 3 ' ,a(F1), and that a shifted version of C  is
outside cl(lJ1&vF1).

By induction, we get for each i N  a series of decreasing connected opens
F 1 ,  k=1, 2, Note that
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E k E N ti(F i ' n \ F i ) <  EkEN3-
i

-
k ii(F1)=2 -

13- i p(F1)

with F, (°)— F,. Then we see F,'" ) n k ,E (h ) is  of measure > (1 —2- '3 - ')/i( F )
and so F ' ) =11,eN F,' ) is cofinal to F .  Recall that, by (USP4), every F , is
diffeomorphic (together with its closure) to an open ball (together with its
closed ball), under some gE G .  Then it is seen that we can manage parings
of F ( k ) , k =1, 2, •-, appropriately so that we get as F, (-) a  closed or open ball,
after the transformation by the same g. So doing, le t F; be the interior of
F, (-) . Then p(F - ) \F ;) =0  and so F '= FLE N F is u n ita l and  cofinal to F.
Further, F ' satisfies (UPS3)—(UPS4) since F ;E F ,.  Especially M\c1( 1F,')
is connected.

Now put B N =M \cl(U,>N F) for N 0 .  L et us prove that BN a re  con-
nected for N 1 , b y  induction on N .  Note that, by (UPS3), cl(Uz>NF;) is a
disjoint union of cl(Fk+i) and c l(U > N + IF ). Then we see BN+1=BNUcl(Fk+i)
for N 0 .  A t first, a s  seen above, Bo is connected. Since cl(Fk+i) is con-
nected, we h a v e  a  connected open neighbourhood F "  of it, d isjo in t with
cl( U > N + 1F). Then BN+1 =  B N U F " ,  B N n F " * O ,  and therefore BN+1 is con-
nected. This completes the  induction. So the condition (UPS5) is satisfied.

Q.E.D.

4 .2 .  A  lemma fo r  irreducibility. Assum e that E ( ' )  — E is taken to
satisfy (UP53)— (UPS4) and (UPS5), and that E';--- ,E ( ' )  a r e  taken to satisfy
(U PS3)— (U PS4). Then we see, by Lemma 3 .5 , th e  re s tr ic tio n  TE-(g)—
TE,0,(g)13CrE,  f o r  g E G ((E ') )  gives a n  IU R  o f  G ((E ') ) . To obtain  the
irreducibility o f  Tz(o) of G from that of the family ( TE, ,  A l , ), we apply an
elementary lemma given below.

Lemma 4 .3 .  L e t  H  be a group a n d  T  its unitary representation on a
Hilbert space A ssume there exist a family of  subgroups {H8}8.4 and that of
subspaces { s}se.d such that

(a) ,f)8 is Hs-invariant and  Hs-irreducible;
(b) is spanned by the family Wsls.A;
(c) f o r any 8, there exists a finite sequence 81=8, 8 2 ,  • • • ,  8 ,=8 ' such

that , s, n , , , * ( o )  f o r l i<r;
(d) f o r  som e 80 E ,  the  IU R  o f  I I 8 .  on ,f ) 6 0  does not appear in  t h e

orthogonal complement ( 0 )-Lc . t
Then the representation (T , V  o f  H  is irreducible.

P ro o f  By th e  assumption (d), any H -invariant subspace of either
contains the  H80 -irreducible subspace ,18,3 o r  is orthogonal to it. Therefore
there exists an H-irreducible subspace containig Now take any aE J.
We can find a', •••, as such that ,f)8, n ,8 , (0 ) fo r  0=< i =< s with 8,+1= 6.
Since conta ins S0580 n ,*(0 ) and , r3 i is H -irred u c ib le , we see that d o e s
contain the whole . . Similar arguments prove inductively that con ta ins
"f) 82, •• • a n d 1 5 8 - ,= 8 . Thus contains all of .f)8, (3E J .  This proves that
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n '= t , by (b). Q.E.D.

4.3. Proof of Theorem 4.1. We prove the theorem by applying Lemma
4.3 for H = G, (T ,  ,0 = ( T E ,0,, JC(1")) and the set of parameters

J = IE ';  E ' E (' ) , with (UPS3)—(UPS4)} .

For 8 = E 'L J , we take Ha= W E )), )8
=  JC(k,. Then (a) is proved by Lemma

3.5, and also (b) holds. So we prove (c) and (d) here.
First consider (c). Take E', E" E LI a n d  p u t  i=,gCrE, , ,f)3=‘.4CrE, , . Let us

find E ( 2 ) EJ such that ,N= ATE. satisfies ( -4)2*(0), ( 0 ) .  S i n c e  E',
E" are strongly cofinal with Em, there exists an N >0 such that E =  =  E , (°)

for i>  N  . We see easily that there exist a  o-E N  and an NI, O N1 N, such
that E n  Ez,.(,)*0 for N i<  ,  and that {E U E ( ) ; 1 a r e  mutually
d is jo in t. P u t E " )= E' , E (3) = E" a  and

E(2) = ( I II N F) X E M  w i t h  V )v= ,HN E1 13( )

and with Fi= E iU E ( i) for 1 i NI and F i= E,;(,) for NI< then E ( 2 )

E J .  P u t ■N = 3CrE(2), a n d  n o te  that ..SI=ATE , =M fiii) a n d  .N=A7E--=-ATE,3,.
Then we have ,in ,i+ ,*(o ) for 1 i2  becau se 1E (E ( i ) (1E ( i +1 ) ) * O .  This
proves (c) with r=3.

Let us now prove (d). Fix a  8 0 =E '. Take an arbitrary 8=E" from
and study the decomposition of the subspace along the orthogonal decom-
position ,f)= , 600 ( , s0)± . S ince E ' and E" are strongly cofinal with 

E (» ,
 there

exists an N >0 such that

E '= (  H A i)x ,E " = (  H  Bi)X Enr

where Ai's (resp. Bis) are mutually disjoint open subsets of M \ cl(U i> i (°) ).
Put

A in B;  C io =  Ai\ cl(Ui N_13;) , Coi=131\c1(U1,NA1)

then A i \ Uoi‘NCi.; a n d  B A  Uo,i,NC i;  a r e  o f  measure z e r o .  Therefore,
modulo null sets, B =II w,N.B.; is a disjoint union of subsets of the form D =

with D =  C 0  fo r some if . Let DB be the set of all non-empty such
D c B  and put [D] =D x EM, then ATE ,=7.9), Similar statement is
also true for A=111,i,piAi so that  T a k e  a D DB. T h e n ,
each component Di  is either contained in  some A i or disjoint with all A .
Therefore we have two cases: (i) AWL)] ciqi , in case AYE A for some csE N ,
and (ii) M r[ D] ..1—gCri, in case some Di  is disjoint with all A i or two Di , ( j *
j ')  are contained in the same A i .  Thus we get an orthogonal decomposition
of f o r  each 8 J, as
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( 5 7 1 ) , 7,_,7g.cr-E,, _,75,1e),7f,,,2 ,f c ,f ,7,. 7 ..f.)8 2 j77. 7,0

where and ,t•82 are respectively the direct sums of A' ffp, in the cases (i) and
(ii).

Now consider a subgroup H808 of 1160=G((E)) defined as

Hs oa—V DEDAGD w ith  GD — V15i5NGIDI —=

The representation of GD on ,g1ftD1 is a multiple of the natural IUR on / 2 (D ),

and the one of GD on other JCifD, ) with D 'ED A U D B , D '*D , does not contain
the IUR on L 2 ( D )  (cf. Lemma 3.1). Therefore we see that the representation
of the subgroup 1180  of HS() on the space , 80 = ,g -Cf7E, is disjoint with that on .V
c ( .8 0 )-L. On the other hand, the orthogonal complement (f)8°)-1- is spanned by

2 , 8 E 4 , because the whole space 3 is spanned by ,f)8's and each h a s  the
decomposition (5.1). Therefore the IUR of 1180 on fh o  does not appear in
( 80)-L =V8E4 2 . This is exactly the assumption (d).

Thus the proof of the irreducibility o f  T x  is now complete, and so
Theorem 4.1 is proved.

§ 5. Equivalence relations among the IURs

Let Hi, 112 be two IURs of a., and E =I I ,N E ,,  F =1 1 ,N F , be two unital
product subsets of X  with respect to a measure #  on M .  Put L'1=(//1; p, E),
E2=(112; p, F). We study here a criterion for the equivalence Tz,"" 7-12.

5 . 1 .  Natural equivalence relations. Let be the group of all permu-
tations of N .  Then it acts on X  from the right: x a=(x a(0 ).N  for aEg. and
x = (x , ) ,E N E  X .  Further ge. acts on and accordingly on Hi as

aa=aca - 1 (alli) (6 )=1 1 1 (a a)=1 7 1 (a - i (la) ( a c e . )  .

By the action x - - x a  on X, a unital product subset E =  i E A r E i  is sent to
E a=lliE N E a(i) . Further, if E ' E ,  then E' a— Ea and

v Ea(E'a)=Ili.N p(E'a(0)=11JEN p(E;)= .

This means that the action x — x a on X  gives an isomorphism of measure
spaces (X , 937(E), 2)E) and (X, TI(Ea), vEa).

Since E  is cofinal with Ea if and only if a belongs to the subgroup e c o ,  the
measure spaces coincides with each other if and only if a E a o .  Put, for f =
(H ; p, E ) and aEgoo,

(5.1) =(aH; p,

and, for f E3C (E),

(5.2) (R af ) ( x )= f ( x a)  ( x E .
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Then, as is easily seen, R a g iv es  an  isomorphism of JC ( E )  onto M(aE).
Further we obtain the following

Lemma 5 .1 .  For a E ,  the  map Ra gives an isomorphism of  IURs (TE,
i ( ' ) )  and ( T az ,M (aZ )) o f  G.

5 .2 .  Equivalence criterion. As a necessary and sufficient condition for
unitary equivalence T11:=' T 12, we will get the following rather simple crite-
rion.

Theorem 5 .2 .  Assume dim M . 2 .  Let L'i =(111; p, E) and 12--(172; p, F)
be as above two parameters of  IUR s of  G =D if f o (M ). Then, ( 711, 1C C )), i=
1, 2, are mutually equivalent if  and  only if , for some element

(5.3) 112 a n d  E— Fa - 1  (cofinal) .

The rest of this section is devoted to prove this theorem.

5 .3 .  Relation between E  and F .  To prove the above criterion, let us
begin with the relation between E  and F.

Proposition 5 .3 .  A ssume TE1=- ' T12, then necessarily E— Fb f or some bE

The proof of this proposition is rather long and is divided into several
steps.

STEP 1. As is seen in § 1.8 and in § 4.1, we may assume from the begin-
ning that each E  and F  satisfy the conditions (UPS3)—(UPS4) and (UPS5).
Recall that

(5.4) (10= ,,\( E ATE'fi ,
( (E2)=, F ,y,,,gq2.,

where we can also take E ( ' ) and P "  satisfying (UPS3)—(UPS4) too.
Let A : JC(E1)-gC(E2), be a non-zero intertwining operator of Tz , with

71 2 . Since both T z , (i=1, 2) are irreducible, we may assume A  is unitary.
Denote by Plici■ the orthogonal projection of JC (E i) onto JCT., and put A F ,i,E .

Then A pnE w , viewed as a map

(5.5) AF(')Ein: 'MT"' =  Qm IE 1) - -  ATF2'1) =  6 2170 F 2(1 '

intertwines Tz i l G( 1 ) w ith TizI Gm for a subgroup G w =G ( ( E " )) ) n  G((F"))) of
G.

By definition, for gE there exist c and r E a .  such that

gEi ( 1 ) =E M ) ( i E N ) ,  g F ;
( 1 ) =E - 1

(
)
; ) ( jE N ) .

P u t hul(E ( ") =c1(U i.A rEi m ) and
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(5.6) =FJP=Ei") n ,

n , -- - Eiw\hul(F" ) ) , Fj1) = F 3 " ) \ hul(E ( ") ,

t h e n  hu1(E ( 1 ) ) a n d  hul(F ( 1 ) ) are invariant under g and

(5.7) g n )= E M ), ( ; ) ,  g E N = E W i).  g n o ) =FW.i)- •

Put further

(5.8) Ei(2)= E P ,JçF .F1 2> ==  E  F w  (disjoint unions) .
1 j o o " '

Then E, ( 1 ) ==-E 2 ) and F, ( ' ) F . » ) modulo null sets, and therefore, for E>2 =
H , E N E ( 2 ) and F ( 2 ) =ILENFi ( 2 ) ,

riE cl) —  eX T 1 2 1 , q ( r 2F11) — c..41. 117F212)

STEP 2. Let Ck, kE K , be all the connected components of .E9) =FP ) ,
and F J .  T h e n  G ( ' ) contains the restricted direct product G( 2 ) of Gic,,=G(Ck):
G( 2 ) =11'EAT G(C k)c G( ' ) . To study the action of G( 2 ) , it is convenient for us to
use V 72(2, '=- -IE.(2,0  V(T11) instead of Mil. 0 hri-_  ,2 ( 2 ,= ,212), The Hilbert space ,•,E ,2,=
L 2 (E ( 2 ) , V(E)1E ( 2 ) , dvElE ( 2 ) ) is isomorphic to the infinite product OrENL 2 (E, ( 2 ) )
of

L2 (E i(2 ))=  E l9) L 2 (ET ) ) =  E e l L 2 ( C k )W600 kEKli

w ith  respect t o  the re ference  vec to r 0 = ( 0 i ) i .N ,  O1=xE, ,./11XE,,2, 11,
L 2 (E1 ( 2 ) ) = L 2 (E im , cliflEi ( 2 ) )  etc. and K ii={ k E K ; CkE Ei ( 2 ) }. F ix  an
and put

(5.9) ,N k )= L ( C i )  f o r  k=(ki, k2, •••, k N ) E  H K l i
1 N 15 i5 N

then we have a natural isomorphism

(5.10) •f)1E(2) -='(Ek('I■i( k ))0 ( 0 ; 'L 2 (E i( 2 ) )„  ,

where
N>0,

w here 0 '=(0 2 ) ,>N . B y m eans of th is, a  consideration sim ilar to  that for
Lemma 3.2 proves that A F ,1 )E in =  A F ,2 )E (2 )  kills all the components ,f)1(k)0(0r>N
L 2 (E1( 2 ) )) w ith k —(ki, k2, • • , kN) for which k‘=00 or Cki c.E2,2=E, ( 1 ) \hul(F" ) )
for some i N. T h u s  Afi,2)E(2 kills a ll the components containing a factor
from L 2 (n 2 ) for some i E  N  .  (To see this, we actually compare the action of
GiEi,pc G .)  From this fact, we get the following

Lemma 5 .4 . A ssume that there exists a non-zero intertwining operator A
o f  TE, w ith T Z 2 .  Then,

(5.11) EiENti( n . ),) < 00 , EJENp(Fil) ) < 00 ,
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f or any E m  E  and Fu ) F ,  where n r= E ,m \h u l( F m ) , F g  \h u l( E m )  as in
(5.6).

P ro o f  Put .M.;-) =Ei&■TE.1 ) , then Ei ( 2 ) = + E22 and so

L 2 (E i ( 2 ) ) = L 2 (E 2 ) 0 L 2 (E 22).

Since A F ,2,E ,2, kills all the components containing L ( E ) -factor for some i E

N, we get A F2E(2)(x E-)=0 for any E "  E ( 2 ) (strongly cofinal) if Ei.N p(Eg1)
=00 or equivalently if II i»op(E n  =O. This means that A F(1 E 1 =A F2 E 2 =0 .

On the other hand, if E iEN ii(Eg2)=09 for some pair E m  E ,  F'>— F, then
it holds also for any pair E '— E, F'>— F. Hence we get A =0 , a contradic-
tion.

A similar argument for 11- 1  proves the assertion for F.P.2's. Q.E.D.

STEP 3. Now replace Ei ( 1 ) and E i
m  respectively by E i ( 3 ) = E i ( 1 ) + M ,  F I 3 )

= F ;
( 1 ) + E5!2. Then, for E ( 3 ) =11iENEi ( 3 ) and F ( 3 ) =H ; ENF;

( 3 ) , we have
E(3)DE(i) ; F(3)DF(i) F(3),,,, F0)

hul(E ( 3 ) ) = hul(F ( 3 ) ) e=hul(E ( 1 ) ) U hul(Fm)) .

Note that then we obtain

Lemma 5.5. A ssume that there exists a non-zero intertwining operator A
of  TE, with TE2 . Then A  is approximated strongly by the family A F(i)E.=
o A .P lin  with E m  E ,  F ( 1 ) F  such that E, ( 1 ) and F,,a ) are open and hul(Ea ) )
=hul(Fm ).

Corollary 5.6. A ssume TE, ---- T12. Then, replacing unital product subsets
E  in Z1 and F  in E2 by their cof inal ones, we can assume that hu l(E )=hu l(F).
(Here the conditions (UPS 3)— (UPS 4) are not necessarily satisfied.)

5 .4 .  From hul(E)=hul(F) to E  F b ( ] We continue to study
the relation between E  and F , and wish to get E — Fb for some

STEP 4. By Lemma 5.5, we may pursue A F,i)E,,) with hul(E ( 1 ) ) —hul(F" ) ).
In this case, E22=0, F1,10) =0  and

(5.12)E 1 2 == E =  E  C h  p ( E i n E i ( 2 ) ) =0 ;
j eN k e K l i

F; ( 2 ) = E  F J P =  E  C k , P ( F j " ) \ F j (2) ) =  0  ,
ieN k eK 2 j

where K zi= {kE K ; C hcF ; ( 1 ) }. Consider the action of C 2 ) =IL E K G (C k )  on
both of ,VE',i) - - - ,f)1E,43) V ( / /1 )  and 0-2.) -=‘,F( , )® V(/72). Note t h a t  G( 2 ) a c ts
tr iv ia lly  on the second factors V (/7 1 ) , i =1, 2, an d  t h a t  n-,1E(i , — E , 2, i s
decomposed as in (5.10), and — , f ) I F (2 )  as in
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(5.13) = ( / N(12'))0 (A,1-2 (F12 ) ))

for N ' > 0 (the reference vector is omitted for 0.,>N , ), with

(5.14) f)2 (k )= L 2 (C k ,)  f o r  k '--(16, /6, VAT, ) E  H  K2J.1 N,

Considerations similar to that for Lemma 3.2, on the action of G( 2 ) , give
us the following crucial lemma.

Lemma 5.7. The image of  A p i,E (i)=A F.E 2  is contained in the sum  of
the components

(5.15) )2(12, )0 ( A , L i (2(F2)))

f o r which the parameter k '=(k i,  k ,  ,  k 'N , )E rl1 s ,N , K2., satisfies the condition

(NT) among 16, k'N,, no two o f  them belong to the same K1, iE N .

STEP 5. Denote by PAP the orthogonal projection of  l F2 onto the sub-
space spanned by such subspaces in (5.15) that the condition (NT) holds for
them. Then it is enough for us to prove PN , -> 0 strongly in case E ( 2 )  F ( 2 )  b or
E / F b  for an y bE  In fact, if so, w e have Ap1,E(i)=AF(2,E2,=0. This
means A = 0  by Lemma 5.5, a contradiction.

To prove PN , - ) 0  is reduced to a  problem on series of real numbers as
follows, by considering PN , (x.p) - - ,  0 (N '-* co) for any u n ita l product subsets F '
E F ( 2 ) which are strongly cofinal to P 2 >. P u t  c,,, =p ( E g ) ) =p(F1,1 ) ) ,  and we
consider n ) = P r  grouping Ck's, instead of Ck them selves. Put

d1= (E1>2 >)=  f NC1 , P(Fi(2))=E i.N cii

then p(E1 ( 2 ) e F 2 ) ) =d 1 + and we come to the following problem (N ' is
replaced by N ).

Problem 5 . 8 .  L et cii M  f or i ,  j E N .  Put d i=E ;E N c u , e i=E i& v c ii, and
assume that

d 1 > 0 ,  e ; >0 j N ) ;

i . N d i ,  IL EN e; are (unconditionally) convergent.

For N >0 ,  expand the product II (re sP.ili,,sN d z )  in terms of  c i,'s  and
let p N  (resp. qN ) be the sum of monomial terms c 1 c,22---c„„N (resP. c 1 C2jz civ.m)
such that
(DE) i 1 ,  2, ••-, iN  (resP. ji, jN ) are different from each other.

Assume further that
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(5.16) E  (di+ eb( i) -2ci,b ( ) ) =00 f o r any  b E &  .
ieN

Then, does there hold pN—> 0 o r qN-■O as N->00?

Note that (5.16) is expressed as

(5.16') E  c 0 = c 0  for any b E & .
i,ieN
i* b ( i )

5 . 5 .  Solution of Problem 5 .8  (Step 1). For a finite subset J  of N ,
consider the product

H j e J e j

and expand it in a (possibly infinite) sum of terms

(5.17) H j c j j  w i t h  ( 2 , ) , E J E N J

Denote by p j  the sum of all such terms (5.17) that the sets of indices ti,; jE
consist of different integers. Then PN =

 A IN  for IN =
{1, 2, 3, •••, NI, and we get

easily the following

Lemma 5.9. For two disjoint finite subsets J , J ' of  IV,

PI UP  PJ • PP •

To treat pN  or p j ,  we can normalize (c u ) as follows. Put 6 = c d e ;  with
ei =EiENc u , then E ie N C ;;= 1 . Let p b e  the sum for (6 )  corresponding to p j

for (c 0 ). Then, p;=p j /(ILE j e; ), and f I J E J e J  is bounded from above and below
for any finite J c N .  Therefore the assertion on PN  for (c u )  is equivalent to
that for ( 6 ) .  Hence, to treat p N , we m ay put the following additional
condition on

(5.18) e., ---E N c„ , = 1  ( j E N )  ,

and in this case we may call (cA ,,eN  a  stochastic matrix of infinite size.
Here we should note that 11,Nci[, with d,' = E J ENc;,, is again  convergent.
This can be seen from that every term c •••c 'N ,N  in the expansion of
i l i, , ,N X  is a multiple of cii,c2.,•••cAr.m by and that all the products
11,Efe, J c N ,  are bounded from below and above.

Under the condition (5.18), put 81 =1— p j =11,E j e,—p j _ 0. Then, for any
disjoint subsets J1, J2, • • • of N , we have by Lemma 5.9

(5.19) limPN ,14`,7=1(1 —  aj „) .

Therefore, to verify p N — > o  (N  - .0 ) ,  it is sufficient to see the existence of
disjoint subsets j,, such that EZ-1(3.,,,= co or more simply aj „ c  (n =1 , 2, •••) for
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a constant c >O.
Now, for the term in (5.17), put L k

=
{ : 1 E J ;  i 3

=  k} for k N , and K — { k EN ;
L k *0} , If p={ k E K ;IL k i - P}, then

(5.20) H J E J C i i i k . K ( i  i E L k c k i )  .

The factor H l e L k C k j is the contribution to  ILEjcii i from the k-th row of (cu).
Therefore

PJ =the sum  of terms for which Ka2=0.

Since ei =1 and n i , f ei =1, we have

(5.21) j=the sum of terms for which If,2 *O.

Let us evaluate the sum in the right hand side. For a finite subset Q  of
N  and a family (R q ),“, of disjoint subsets of Jc N , let ,A ((q; R q ), Q ) be the
union of all term s in (5.17) containing the factor FI g Ee (11,-eRq cq r). Put J'=
J\ (U q .eR q ), then the total sum of elements in ,1((q; R q ) q E Q )  is equal to

H g eQ (11rERq Cq r)'(11,epe,)-11 q e ()(11reRg Cq r) (by (5.18)) .

We denote it by [,..A ((q; R q ) q E Q ) ] .  Note that the term in (5.20) is contained in
c A ( ( q ;  R q ) q E Q )  if and only if Q K  and R g c L q  for any q e  Q.

Let us now first take Q={ q} , one point set, and R g ={ri, r2}, tw o points
set. In the sum s2J of all such [.A (q; R ,)]=L A (q; r2})], the monomial (5.20)
contributes to s2 several ,A(q; R q ), and the total number of times of
its contribution is equal to

n2=E,,Kk2( q )  w i t h  /q =1L q l .
2

N ext take Q={ q}  and R g ={ri, r2, r3}, three points set, and let s3J be the
sum  of all such [ A (q; R q )]. Then the total number of tim es in which the
monomial (5.20) contributes to sa' is given by

1,
113 =  E q e K 4 3 (  3 )  •

Further w e take Q={qi, q2}, two points set, and R q „ R q 2  disjoint two points
se ts . Denote by Az the sum of a ll L ii((q; R q )q .(2)}  of such typ e . Then the
total number of times in which the monomial (5.20) contributes to S ,2 is equal
to

l q i )  ( 1 q ,
n2,2 — w h e r e  Q={ qi, q2}.

Q T K  Z 
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In particular, n2,2=0 if 1K,21< 2.
Now let us evaluate m= n2— n3— n2,2 for the monomial (5 .2 0 ) . In case

1Kk2i =1, let K,2={q}, then

m -- ( 1q )— ( 1q ) - 1 4 ( 4 - 1 ) ( 5 - 4 ) .
2 3 3 !

Hence m  0  except the cases where /q =2, 3, 4 and m=1, 2, 2 correspondingly.
In case 1K,21=2, we see similarly that m 0 except the cases where /q=iL ql=
2 for qE K ,2 and m = 1 accord ing ly . If 1&21>2, then  m 0 necessarily .

Thus we get the following

Lemma 5 .1 0 .  L et s / ,  5 3  and 5, 2 be the sum s of  L A ((q; R q)qe)] defined
above. Then there holds always the inequality

— 2 .

The above evaluation of 8 ,  is som etim es not convenient to apply in
certain situations. So w e give another but sim ilar evaluation as follows.
Fix a subset I  of N .  Consider only the terms H j c  i n  (5.17) or (5.20) with

(5.22) ./.< 2c /  o r " if fo r  j, j'E J , then i ,E P  .

Denote by ,1 1((q; fe,),E Q ) the subset of i l( (q ; R q ) q e Q )  consisting of such terms
that (5.22) holds, and denote also by s2" s l , i )  the sum of [A '( (q ;
R q ) q e Q )] analogous to the sum 52 (resp. 53", .42) of [A ( (q ; 1 ?,) , Q )]. Since the
evaluation of the number of times of contribution of I L . j c,„ is always true, we
get similarly as above the following

Lemma 5 .1 1 .  L et I be a subset and J  a finite subset o f  N .  Then

1 — s3' .— 2

5 .6 .  Solution of Problem 5.8 (Step 2). Put /={1.}, one point set, then
sk21 = 0 and so  Si  a 2 - i ( s , / , /  — s 3 i - f )  with

—  E C i j 1 Cij 2 , 531 -1 = E C ij2 C  ii3  •

Since fl i . N d i  converges and so di--*1, we may assume tha t di E .i.N cuS 312
for iE N .  Then

1 1 1 j
S3 E E  c i ;  — — ci; S2 •3 tii.foc./ j E J 2 2

Hence 8.1 4- 1 .32' .
Now we apply the following
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Lemma 5.12. L e t xi, ,x2, •-• b e  a  f in ite  num ber o f  non-negative real
nu m bers. Then,

1E x x j - - -tx.olLiXi—max{x.i}) •
<i2 2  j

Thus we get

(5.23) a, cu)(E c u —max{c u l) .8  j E j j E j jE J

Using this evaluation of 8j , we prove

Lemma 5.13. L et (c 0 )  be as  in  Problem 5.8. A ssume there ex ists an
infinite set UOEN of indices such that

M a X { C i j ;  E N } K  ( i E  U )

f o r some K > 0 .  Then 0 as N - œ .

Proof  Since d -> 1 as i -> c c ,  we may assume without loss of generality that
di - 11< K13. First take an i =  u iE  U. F o r  this j, we can find a finite subset

/lc N  such that dz - E ie l i c u  K O .  Then, E , J i c , ,  d i-  K13.1-2KI3, and by
(5.23) we have

, 2 ,
'

2 /, \ 1 2
- -

1
--(1. - - K ) - { ( 1 . - -

3
K)—ki — K)}  = N  — T C ) K  ( =  IC'  (put)) .- 8 3 

Assume we have taken mutually disjoint subsets fi, J2, •••, J ,  of N  such
that (p=1, 2, ••-, n ) .  Then we can find a un+1E U  and a finite subset
Tn+IE/V \ (U;Lijp) S U C h  that, for i =un+i,

By a similar evaluation as above, we get IC' .

Thanks to (5.19), we have p N -  (N-■ co). Q.E.D.

By this lemma, we see that it rests for us to check the case where m a x {c ;
jE N } - »1  as i-> 0 0 . In this case, there exists an injection u  of N  into itself
such that c,,. ( ,) -> 1 (i->œ).

Note that the assumption on c u  in  Probelm 5.8 is symmetric in (i, j).
Then, except a case similar to Lemma 5.13, where qN->0, we come to the case

-> 1 (j-> 00) with an injection v: N - , N , to be checked. Thus, altogether,
taking into account e ,= 1  and dz->1, we come to the following three cases,
modulo appropriate permutations of rows and columns of c ,  by elements in

(A) C H * 1; ( B ) 1 ; ( C )  ci+N z ,i -> 1;
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as 0 , where NI >0, N2> O.

5 .7 .  Solution of Problem 5.8 (Step 3). Let us first treat the case (A).
Then the assumption (5.16') for (c„,) is equivalent to

(5.24) E 00 .
i * j

On the other hand, w e can easily get the inequality sZ,'2' . 2-1 (s2/ J )2, and
therefore

1,1 I ,J  > ( 1 1 I 1 I  J  2
S2 —  S 3  —  S 2 , 2  = max {c/i0 s2 ' ) .

J i l

W e m ay assume w ithout loss of generality ci, 3/2 fo r i E N .  Then, we
obtain

(5.25) 1 f  j
j  >- - S2 ( 1 -  S 2 1  J )— 4

Solving the inequality x(1— x) 8- 1 , we get the following

Lemma 5 .1 4 .  A ssume for a finite subsets J of  N  there exists an I cN  such

2 - 1 2

s21'1 <
2+,12 

4 —  4  •

Then (3.1 ----1—p 1/32.

Now we put I = J .  Then

,1 >S2
1

 =  E cu( E c u )  min{ c i i ) • (  E cii) •iej j e j E j i , j e j
j * i i * j

Since c - *  1, we may assume cii 1 / 2 .  Hence we have

( 5 .2 7 )
J , J - > 1

S2 2 iJEJj*,

On the other hand, put F = F = J u  {p}, one point bigger than / — J .  Then the
difference — s2" is small as shown by

S2" '  S 2 j j E E C I9 jC PP±  E E cucip
ie i iEJ j e j

1
c p p )2 +(d p —  c p p )c p p  + max{di} • (e p  — cpp)

E J

that

(5.26)
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5 , 3
4

iap-  C p p )l - e p  -  Cpp) .

Here d,--E,ENrcz .,5=3/2 and cl1->1 ( i - >œ), ep - E.isrc,p=1, and Cpp - *1 (1) - > C O ).

This means that s2"" '-s2" ..`  is sufficiently small if p > 0 .  Thus we see from
(5.24) and (5.27) that, when we make / -1  increase one by one appropriately,
then some of s21.  comes into the interval (5.26), and  8j  a . 1/32 for such J  by
Lemma 5.14.

From the  above discussion, it is seen by induction that there exists a
series of mutually disjoint finite subsets fi, J2, ••• of N  such that aj „ a 1/32 for
n =1 , 2, •••. From this we obtain by (5.19) that p w -  0 as N-+00.

Note that, by the symmetry of assumption, we have also qN-1:) in Case
(A).

5 . 8 .  Solution of Problem 5 .8  (S te p  4 ) . T h e  ca se s  ( B )  an d  (C )  are
sim ilar, and so we treat only the form er h ere . In  C ase (B )  the condition
(5.16') is automatically satisfied.

First assume that a  similar conditions as (5.24) holds:

(5.28) E  c u = co .
i , j e N

Then, we can reduce the situation to Case (A) and get pN .- 0 and q N - - 0 .  In
fact, for pN, it is sufficient to apply Lemma 5.9 and the result in Case (A). For
qN, we consider a new (c'i.,) with c' 7A=_I,k6I+N,czk, (..i-. 2)• Put q'N
for ( 6,,) the quantity similar o  qN for (c u ). Then qN -q'N  clearly, and q'N-)0
since (c.;.;) is in Case (A).

Now assum e (5 .28 ) does not h o ld .  Then limN—qN >O. In fact,
H  1 6 ,  and II i eN C i,z + N I  converges because E i e N ( d i —  c1,i+N1) < 0 0 .  So let
us prove p N - - .0 .  Define (c; ; ) as c; C ;d —  C z , j+ N i - 1 ( j  a 2 ) .  Then, qN

and therefore we can reduce the case to Ni =1.
Assuming N1=1, let us evaluate N .  Put C=(cd),JEN and let C (N ; k )  be an

(N  -1 ) x  (N  -1 ) matrix obtained from C by cutting off i-th  row for i a. .A1 and
j- th  row for j = k  and j > N .  Further le t DN be an  N x N  matrix with ele-
ments

d u - c i f  ( i < N ,  j < = N ) , (i< = N ).

Denote by PN(C) the quantity P N  for C = ( c ) .  Then we have also PN-1(C(N; k ) )

and pN (DN ), and get by simple calculations

P N ( C )  I N ( D N ) dN k  P N -1 (C (N ; k ) )

PN-i(Cuv;k)) H  (  E H
W 5 N

i * k j * k
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with a constant L >O . Therefore

P N ( C ) _ L •  E  E  C ik
1 1sI N5i<co

The right hand side tends to zero as N because E j* i+ N iC i j<  co by assump-
tion . T hus w e get pN=pN(C)— )0. [END OF ST E P  4]

Summalizing §§ 5.5-5.8, we have solved Problem 5.8 affirmatively. So
that the proof of Proposition 5.3 is also completed.

5 . 9 .  Relation between HI and H 2 . It is now established that, i f  Tz,=-
Tz2 , then E— Fb for som e b E c„ .. Therefore, through the  natural equiva-
lence by a= b - 1  w e  m a y  assume E — F. Changing the  representative
unital product subsets with their cofinal ones, we may further assume that E
=F  and the conditions (UPS3)—(UPS4) in  § 1.8 are satisfied.

Let G((E)) be the subgroup of G defined in (3.9). Consider the represen-
tations o f  G((E)) un der Tz, (1=1,2)  o n  th e  subspaces f)ri V (//,) of
,(Ez) -=-',11. (2',). Then the discussions in § 3.4, especially those in the proof of
Lemma 3.5, prove that, i f  Tz,r=" 7'z 2 , then necessarily /71 /72.

Thus we have completely proved our equivalence criterion, Theorem 5.2.
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