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1. Introduction

Let us consider two-dimensional motion of a viscous incompressible fluid
flowing down an inclined plane under the influence of gravity. The motion is
governed by the Navier-Stoke equations. Following [3], we consider fluctua-
tions on a laminar steady motion described by the velocity field,

= (gsina/2v)(2hox:— xs%) , #.=0,
and the scalar pressure,
p=a— pgcosal(xa— ho) ,

which takes place in the slab {(x1, x2)€R% 0<x:<ho}. Here we choose a
coordinate system (x1, x2), where x: is down and x: is normal to the plane.
The given constants are as follows: g is the acceleration of gravity, a the
angle of inclination, v the kinematic visosity, o the density of the fiuid, @ the
atmospheric pressure.

In order to formulate the problem for disturbances from the laminar flow,
we introduce dimensionless variables. Put Us=gho’sina/2v and po= pghosina.
We take %o, Us and po as the unit for length, velocity and pressure respectively.
Then we come to consider the following form of the free boundary problem,

(1.1) 0 +(1— 7%+ u1)0hp— u2=0

on r2=1+75(¢, x1), t >0,

12t U+u, P)ut V)= -7 (p)+gdu

in 0< 2 <14+ 5(¢, x1), t >0,
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(1.3) o+ u=0  in 0<x<1+7(¢, x1), >0,
(1.4) u=0 on x2=0,

(1.5) (e + Bour —27)(1 = (817)?) +2(17)(Berez — Bruaz) =0

on r2=1+7(¢, 21), t >0,

(1.6) p— ncotaf—T:_—(la:;y—)T (uz+ (017)(hur) —(n) (Ot~ Gert—27))

2
+CWCSC(1/T1—+—(8(;IZW=0 on x2=1+7(¢t, x1), t >0.

The problem contains two dimensionless quantities:

_ Uoho_gho3sina _ Te
R= v  2v cw_pghoz’

R being a Reynolds number, % a Weber unmber, where T is surface tension.
U=(2x:— % 0) is the nondimensionalized form of the velocity of the laminar
flow. We refer to [3, pp 150-152] for derivation of (1.1)-(1.6). The upper free
surface is supposed to be given by the graph {(x1, x2); x2=1+ (¢, x1)} at time
t>0. The unknowns « and p are defined in {(x1, x2); 0< x2<1+ (¢, 1)} and
there describing the fluctuation on the steady motion.Throughout this paper
we assume that the fluctuation is downward periodic, and that, for simplicity,
the period is 27.

The purpose of this paper is to show that, when R and e is sufficiently
small, we can obtain global in time solutions for sufficiently smal initial data.
The main result will be given in the last section.

We proceed as follows. We introduce in Sect. 2 notations, function
spaces and auxiliary lemmas. In Sect. 3, as in [2], we transform (1.1)-(1.6) to
the problem on the fixed domain 2=(0,27)%(0,1) in R%. We recall in Sect.
4 the existence of local in time solutions obtained in [10] with some
modification for our purpose. We carry out the energy estimates in Sect. 5.
Using these we show the existence of global in time solutions and their decay
property under the assumptions stated above. The methods used in Sect. 5
and 6 are similar to those in [7]. For other results see [8].

2. Preliminaries

Let »>0. For an open set O in R*, H(O) is the usual Sobolev space.
(See [1 or 6].) Hoc(©O) is the space of functions which are defined in O and are
in H™(O’) for any bounded open set 0" in O. Let 2=(0,27)%(0,1) in R%
We denote by H,™(£2) the space of functions which are in Hioc.(R % (0, 1)) and
are periodic with respect to the first variable x; with period 27. We set Sr
=0RN{x:=1} and Sz=0R2N{x:=0}. We identify Sr with the open interval



Navier-Stokes flow 789

(0,27). H,(Sr) denotes the space of functions which are in Hj(R) and the
periodic with period 27. Set

HgO(SF)={¢err(SF); 12”¢=0} .

Let »>1/2. For ¢ Hji "*(Sr), we define its extension ¢ to 2 by

(2.1) #lan, 22)= /_k*01+k2(x =SVadl
where {¢.} is the Fourier coefficients of ¢.
Lemma 2.1. Let »=1. For ¢S H " (Sr), S Hy) (Q).

This is the usual property of extension operator, so we omit the proof. We
denote the norms of H,"(2) and H,"(Sr) by ||*ll-.e and |+|-.s- respectively.
For later use we introduce an integral identity:

Suppose u, vE Hp(2), g Hp'(2), u=0 on Ss, and, further, div u=div v=01in
2. Then, integration by parts yields

(2.2) —%{—L(—Av+7(2q))u=% <v, u>+/;FS(v, Qu,
where
<o, u>= [[(Boat dhv;)Bsaen+ Buae)
and
S(v, gh= ——(8lvz+azvl) S(v, 61)22% (g — 0202)

(See, e.g., [5], Chapter 3., Section 2.)
Here and hereafter we use the summation convention: Sum over repeated
indices. The lemma below is crucial.

Lemma 2.2. Suppose u< Hp'(Q) satisfies u=0 on Ss. Then, there exist
positive numbers K., Kz such that
l) K1||l7u||02 < (u, u> ,
i) Kolullo < <u, ud.

For the proof see [4].
In the following we assume that R is so small that

(2.3) Ko=%— 2K, 2>0.

We frequently use the lemma below to estimate the nonlinear terms.
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Lemma 2.3. 1) If nonnegative numbers 1, v and 7vs satisfy yi+v.— ys>
1, then there is a positive constant Kz such that

l¢dln <Kl gllnldl, SEH,(Q), $€EH, Q).

i) If monnegative numbers y1, y2 and ys satisfy yi+v.—vs>1/2, then there is
a positive constant Ky such that

|60l <Kildln|¢lre, SEH,"(Sr), ¢EH*(Sk).

Proof. Modifying the proof of [9, Lemma 1] slightly, we can show that
there is a K such that, if 71+ 72— 73> #/2, then

lpgl<Klglnlgly. for s=H™(R™), p€H™(R™).
Using this we can show our case by extending the functions appropriately.

Let B be a Banach space. By H®(0, T; B) we denote the space of B-
valued H°®- functions defined on the interval (0, 7). We set H™"?(2)= H(0,
T; HY (2)NH™0, T; Hy"(2)) and Ho™"""*(Sr)=H*0, T; Hpo(Sr))NH™"(0,
T; Hpo(Sr)). The space C'(#, t;; B) is defined in the usual way.

3. Reduction to fixed domain

Let us assume that, at time ¢ =0, the time dependent domain
Q(t)={(x1, 22); 0<2<1+7(¢, 1))}
is given by a diffeomorphism £2 - 2(¢) defined by
(3.1) n=x{, r=x1+7(t, )
t=t; x'=(x{, )EL,

where 7 is the extension of 7 to 2 (see (2.1)). Put &x=0x}/0z and an=4 !
ox;/oxr, j, k=1, 2. Here 4 =det(dx;/oxi)=1+dxx27). Assume that the
unknowns # and p on 2(¢) are given by the vector field %’ and the scalar p’
on £ as follows

u.i:afku;iy ]:1) 2» p(xa t)=p/(x/’ t’)*
Substitute these into (1.1)-(1.6), then, after some calculation, we obtain

(3.2) dm=—0op+tu+7*hy on I.=1,

(3.3) Oetty —glg_dul +(2x2— 22?1201 +2(1 — x2) w12 +—é;81p

=fi(7, u)—% (022 7)01p— 2201 T OoD) ,
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(3.4) atuz—%duz'i'(2x2—122)31u2+%32,b

=, w) & (— et o p+ BALL M) 5 ),

(3.5) o+ Gz =0, in 2,
(3.6) u=0 on x:=0,
(3.7) Ozt das —27=hi(n, u),
(3.8) p— deuz— (ncota—Wescadi’n)=ho(u, 1), on I2=1.
Here we dropped primes ” * 7. fi(j=1,2) in the right hand sides of

(3.3)-(3.4) do not contain p, but %, 7 and the derivatives. The same is true for
h;(j=1,2). Since the diffeomorphism (3.1) depends on ¢, we have to note that

at = 8u— g “xéaw 7735 .

From the definitinon of extension it follows that 0~ 7 =(d~7)~. Hence, by
using (3.2), we can replace 9.7 in the right hand sides of (3.3)-(3.4) by the
extension of the right hand side of (3.2). In what follows we denote the

matrix of coefficients of V%p in (3.3)-(3.4) by &(n). For details of this

transformation, see [2].
From now on we investigate the solvability of (3.2)-(3.8) with initial
condition

(3.9 u(-,00=u0 inL2, 5(-,00=750 on Sr.

4. Local existence
We first introduce the coordinates
t=t, m=xit+t, x2=x;.

This makes no essential change in treating local in time solutions. By this
coordinate change, d:+ 0, is transformed to 9:, and (3.2)-(3.4) become

den=u+ %37y,

at,ul—%Aul+(1—x22)a{u1+---=f(---) ,

which can be viewed as the two dimensional and downward periodic case of
the problem treated in [10].
We recall
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Proposition 4.1. Assume 0<0<1/4. Let uo= Hp***°(802) and nps H?.
Suppose that uo and 7o satisfy

(4.1) diw uo=0 n 02,
(4.2) uo=0 on Ss,
(4.3) O tto2t+ orton —270= (w0, 70) om Sr.

Fix To>0 arbitrarily. Then there exist positive numbers Co, €0 depending
on Ty such that, if Jo=|uollz+26+|m0|si2+26< €0, then the problem (3.2)-(3.9) has a
unique solution (7, u, p) satisfying

nE Hy**203(Sp) , wE€ H3*¥%(Q), FpeE H'W*12+3(Q)
and Dls.E H¥?+2034+3( QLY |
and, furthey,
IC2, u, D)< Coo.

Here ||(:--)| is the sum of the corresponding norms.

5. Energy estimates

Fix T>0. Suppose that (7, «, p) is a solution of (3.2)-(3.8) for 0<¢t<T.
The purpose of this section is to show

Proposition 5.1. There are positive constants a, €1, M, and y such that,
if the angle of inclination a is such that 0<a<a, and if the solution (7, u,
b) satisfies

(5.1) ngng{|77(f)|%+||u(f)||2} < @,

then it holds that
(5.2) [9(#)ls+ll2e(t)lle < Me™"*{| 70|s + || 2eoll2}
for 0<¢t<T.

The proof of Proposition 5.1 is divided into several steps. To derive the
a priori estimates we assume that the solution is smooth enough, otherwise we
only need to use the usual mollification.

We note some estimates of the elliptic boundary value problem of the
stationary Stokes system.

Proposition 5.2. Let v and q satisfy
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(5.3) —gdvt5Ta=f in @,
(5.4) divv=0 in 2,

(5.5) v=0 on Ss,

(5.6) v=¢ on Sr

then it holds for all [ =0

(5.7) lollevz+ 107 gl < CAlfoll 4@l 42-2) -

Proposition 5.3. Let v and q satisfy (5.3)-(5.5)
(5.8) vr2=¢; on Sr,
(5.9) A2t dvi=¢: on Sr,
then it holds for all [ =0

(5.10) |ollivz 17 gl < CUfoll i+ [@1]csz-L 4 @2l 41-1) .

These come from the facts that the system (5.3)-(5.4) is elliptic in the sense of
Agmon-Douglis-Nirenberg, and that the sets of boundary conditions
((5.5)-(5.6) or (5.5) and (5.8)-(5.9)) satisfy the complementary condition (see [3,
page 317]).

I) We now estimate («, p) in terms of the norms of d: and 0’u(;=0, 1,
2). We regard (u, p) as a solution of elliptic boundary value problem

(5.1)  —grdu +l7(%p>

=—da— (U, P)u—(u, VYU, w)+ ()P 2p,in 2,

(5.12) divu=0 in 2,
(5.13) u=0 on Ss,
(5.14) u=uls, on Sr.

Then by Proposition 5.2 we obtain

(5.15) H%u Lt

2
“7 W",

gc{||atuul+||(u, 7Y+ (u, 7) Ul £ (2, )l
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+or-ges] Hulsdisn 3} 1=0,1.

The boundary term on the right can be estimated as follows

|u|l+2—1/2S C{lulo‘i‘lall“uli}sC{||Vu”0+”l781[+lu”0} .
2

We next give the bounds of the norms of the nonlinear terms. From
Lemma 2.3 and Lemma 2.1 it follows that

|6(nr-5eo] < Cllolee

V_qzﬁ“ < Clyls VﬁRPH

In f(7, u) the terms containing the third order derivatives of 7 can be
estimated by using Lemma 2.3 as follows

||C(77,l777)(3 ;k’?)%t“ gC(‘E‘l)“& ;k7]|| “u"ZSC(Gl)”u”ﬂalHZ77|0

The terms containinbg second order derivatives of % also can be estimated as
follows

1C(7, 7 7)(0x )3 suell < Cle)| nls N ealzst .

The terms in f(7, u) other than the ones referred above have the form
C(7,V 7)udiua
or
C(7,7 7)o" 70" " ur 0<51+7.<2, 0<ki+k<1.

In view of the explicit forms of the coefficients C(7, 7) and C’, we can
regard these as bounded coefficients by Sobolev’s lemma. Hence we can
estimate [7(7, «)|., /=0, 1, as follows

7 5 5
17(n, )l < Clllacllzll el 1+ 101z 7loll el + 1012 7loll ells + 02 7loll e l2+ o}

Collecting these we obtain

1 2
(5.16) Hﬁu 1o + HV@DH[
< C{13acl+ Il e+ Ll s+ 105 bl el
o glluls+1a:2

‘“u”}.

7 . . .
We now need to give the bounds of |8:27)o in terms of # and its deriva-
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tives. Applying —81% to (3.8), multiplying 61%77 to both sides and integrating
the resulting identity over (0, 27), we obtain

7 7
(algrzcotaf —GWescadizy, izy)

=(81%(51D—0132u2), 31%77)&—(31%/12(77, u), 31%77)& .

Note that — d16u2=01%u: from (3.5). Integrating by parts in the left hand
side and substituting 0i16#2= — 6> into the right hand side, we obtain

(5.17) |63 pl3.cota+Wescaldznl,

<l|ap+ 312u1|%|31%7]|sp+ |81%h2||(91%7]|s,~

<(I7 ol + 17 32 2s0)| 317 7|5+ |nZ hal(m, 2)\sel BiZ 7l

Since H*(0,2x) is a Banach algebra (see [1]), taking account of the explicit
form of h2(7, u), we can easily estimate lal%kZ(”» u)ls. as follows

(5.18) |31%h2(7), u)lse < C{|u1|%|8177|%+ |alul|l|77|%+ | u1|1|31%77|o

+(I7 el + 17 8:% Dl 713+ Wescal nlgl iz plo+ | 713l nl) -
From this and (5.17), we easily obtain
(519)  |877ls-< CWsina{l7 pli +7 32« + (the right hand side of (5.18))} .
Here we note that the usual trace theorem tells us that
lulsely < Cllule,

|u|sp|% < C(|u|o+|81u1|%) < C(I7 ul+17 dveel) .

Combining (5.16) and (5.19), then taking account that |7|$ and [u«. are small
enough, we can get

(5.20) “%u

2
z+2+“7§put
< CUl 0wl + P wll+ 7 el + 107 02 2e]]) .

II) We now begin to obtain an energy inequality.
1st. Step.) We take the inner product of (3.3)-(3.4) with «, and use the integral
identity (2.2) and the fact that

(U, P)u, u)e=0,
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to get

(5.21) ||u||2 92 {u, u>+2f(1 I2) Uzt

Zdt

+<—%)/SF(aluz+azul)u1+%/s;(ﬁ—3zm)u2

(£, wa+(b(n) g7,

The boundary terms in the left hand side can be rewritten as

(‘%)];F(aluz+&uﬁuﬁ%/;(p—azuz)uz

z_.&_zL(zﬁhl)ul
+%/;F(ﬂcota—‘WcscaE)lzﬂ)(am +din— 7o) +%£F hatke
= —%/S‘FZWHr—Q%% {cotal |5 +Wcscalonlé )

+?2{— (pcota—Wcscaoln, — 7;28177)sf+< —%)/S‘F Mo+ +%st haus

in view of the boundary conditions (3.7)-(3.8) and the equation for 7, (3.2).
Thus, using Lemma 2.2 and the assumption (2.3), we have

1 d

(5.22) T

ll2el*+ Ko

+.‘R ar {cotaf|77| -+ Wescaldinlie)
<Z (5, w) +l( cot a—Wescadi®n, — n*0in)
[ 7, Ur)srk [ Ui 1"7, —77017])sk

+—§1T/s'phlul+ +%j;thuz+(f, u)9+<b(7])7%p’ u).o :

Here we put Ki= KiK.

2nd. Step.) We differentiate (3.3)-(3.4) with respect to x: and take the
inner product with dix. Since (07, diu, dip) satisfies (3.8)-(3.9) with the
nonlinear terms replaced by their derivatives with respect to xi, in just the
same way as above, we obtain

(5.23) ||31u||2+Ko||l781u||2+gz v {cota/|817)| -+ Wescald?nl)

Zdt
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S% (a7, alu1)55+% (dipcota—Wescad®n, —o(n*017))s,
+%,/S‘r (91]’1161%14“%/; axhzaluz

+(@rf, duda+ (b)),

37d. Step.) We next apply ai® to (3.3)-(3.4) and take the inner product
with 82%. In a similar way we obtain the corresponding inequality,

(5.24) ||81 ull*+ K| 6, u||2+ R dr {cot a|3:2 9%+ Wescalo:® %)

2

_é% (0:%7, axzux)sr+—_% (02pcot @ —Wescadtn, — hX(9*0in))se
+%/;F 312h1312u1 +§2{/s; alzhlalzuz

(s, wo—(a(b(rp). o°u),

Here we briefly show how to estimate the cubic or higher degree terms in
the right hand side of (5.24). The boundary term containing 0*7 can be
estimated as follows

(817, 3(720un))se < Cl(d:Z7, i2(720in))s]
<Clatglln*lslamls

by using Lemma 2.3. We have already seen how f(7, %) can be estimated in
terms of # and 7 in I). Furthermore, in deriving (5.19) through (5.17)-(5.18),
one easily see that |al%;7|o is estimated by the right hand side of (5.20). We can
treat the cubic or higher degree terms in (5.22)-(5.24) in a similar, but easier
way.

4th. Step.) Finally we differentiate (3.3)-(3.4) in ¢ and take the inner
product with d:« to obtain

(5.25) 2 7 |8,u||2+Ko |l78,u||2-t—_qQ dt {cot a|0: |3+ Wcscal610:9|%-}

S% (— 017+ ua, Ottr)ss +% (7?01, Osur)sr

+% (8e cot a—Wcescadiden, — 0:(5%017)) sk
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+%./s‘r athlc?tul-i-%f“ Och20suz+(0:f, deue)a

(0 (7Z). oac) +(bnar-ep). dar) .

Here we used (3.2). Further we use this equation to replace 8.7 in the
right by the right side of (3.2). It is easy to see that the matrix I—b(7) is
invertible, and that A(7)=5b(7)(I —5b(7))™" is positive definite. To deal with

the term, (b(v)&:(V%p), 8:u>g, we use these facts. We recover 8t<l7%p)

from the time derivative of (3.3)-(3.4), then substitute this expression into the
above inner product. After some calculations we can see

(63 7-5p). 30 ) =(B)(— 82+, du)a

= —% % (Bo:u, dert) + -+ .

The next term which is difficult to treat in the right hand side is
J=(Au(7)0:0:°u1, dsuer)a .

Integrating by parts we have
f=£FAoat82uu9¢uk—[)Alazazulagﬁzuk

=h+/.

Note that on Sr we can resolve du: from the boundary condition (3.7). Using
this expression we have

|f1| < Cel(|al%atulgr+ |atu|§F+ |al77|§F+'u|~29F) .

Thus we have

(5.26) ((I— B(9))0eus, dort) + Ki|II7 0cte|P<(— 8177+ w2, Berer)sp+ - .

1 d
2 dt

5th. Step.) Note the fact that, as stated in 3rd. and 4th. Steps, the cubic
or higher degree terms are bounded by the square of the right hand side of
(5.20) with the coefficients of order 1. Hence, if € is sufficiently small, adding
the inequalities obtained above, we obtain

(521)  L(EWD+ o)+ F()
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<2 ((n, w)se| + (@7, Bra)sil + 137, Ba0)s

+ /cl( — o+ us, 3tu1)sF|) ,

where 7’ is some positive constant and

E

Slavul+ (T B)da, dar),

2
F=2I7acul+ el dal,

2 2 )
G)Ecota/( golaljﬂloz + K|at77|02) +CWCSC a/(jgl&’“ 77[02 + /C|axat77|02)

and x>0 is to be specified later. In a similar way to obtain the bound of
|07 7ls,, we can get

(5.28) |6:27|s, < CsineW ' (|7 w| + |7 dvae| + |7 02wl + 177 Deae) -

From this we can see that the right hand side of (5.27) is bounded by F(¢) by
choosing # and @ to be small. Hence,

(5.29) _a’dt—(E+ D)+ F<0,

with some positive constant . Furthermore, combining (5.28) and (3.2) and
the Poincaré inequality, we see that

O+E<CF.

After multiplying this by small positive constant, adding to (5.29), we have
(5.30) L (B(1)+ 0(0)+ n(E(D)+0(1)=0.

We finally apply Proposition 5.3 to («, p) for /=0, regarding this as a solution
of the stationary Stokes problem, (5.3), (5.4), (5.5) and (5.8)-(5.9). Then we
have

CUI SN
< C(”f(’?, u)“+”b(’/)V—%pH-{—|u2|%+|277+hz(”‘ w)ly

Hoad +I(U. DY+, PUI).

As we assume that |7]3+ |« is small enough, we can conclude from (5.31)
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that

(5.32) leell-< C(lldeaell + el + 110 2| + a2l 2+ 7]3) .

By the solenoidal condition we can estimate the trace norm of u. as follows:

(5.33) |22l s¢|3 < Clo ol L < CI7 dh 2o

< C{l|lo 2 we| + |01 2e2]} = Cl 0% we]| .

Thus the quantities in the right hand side of (5.32) can be estimated by £ and
@. From this it is easily to see that Proposition 5.1 holds.

6. Global solutions
We now only need to apply the argument in [7] to show our main result.

Theorem 6.1. Let (2.3) hold. Let a be 0< a<ao, where ay is chosen in
Proposition 5.1.  Then there is a positive constant e such that, if 7S Ho(Sr)
and uoE Hpy*(Q) satisfy the compatibility conditions (4.1), (4.2) and (4.3) and
further if Eo=|uolo+|ml|s<e, then the problem (3.2)-(3.9) has a unique global

in time solution (7, u, p) such that

6.1) 2 C0, 0 Hio(Se)) N LX(0, 00 HE(Sr),
(6.2) u€ C(0, 00; H3(2))N L¥0, o0; H}(R)),
(6.3) 7 pe C(0, 00; HYQ)) N LX0, 0: HXQ)) ,

3
plse€ C(0, 00; Hpo) N L*(0, 00; Hp,) .
It has an exponential decay property:
(6.4) |7ls+lull.=O(e™™) .

Outline of the proof. By Proposition 5.1 and density argument, we can
relax the initial condition in Proposition 4.1. It also follows from the esti-
mates of the tangential derivatives obtained in the proof of Proposition 5.1
and the sta;ionary estimates in Proposition 5.2 that z& L*0, co; H,®) and 7€

L¥0, o0; Hpo).
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