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1. Introduction

Let us consider two-dimensional motion of a viscous incompressible fluid
flowing down an inclined plane under the influence of g rav ity . The motion is
governed by the Navier-Stoke equations. Following [3], we consider fluctua-
tions on a laminar steady motion described by the velocity field,

= (gsin a/ 2 v)(2hox2 — x22 ) , u 2 O

and the scalar pressure,

p = co — pgcosa(x2— ho) 7

which takes place in the slab {(xi, x2)E R 2 ; 0< x2< hob Here we choose a
coordinate system (xi, x2), where xi is down and x2 is normal to the plane.
The given constants are as follows: g  is the acceleration of gravity, a the
angle of inclination, v the kinematic visosity, p the density of the fluid, ce7 the
atmospheric pressure.

In order to formulate the problem for disturbances from the laminar flow,
we introduce dimensionless variables. Put Uo=gho2sina/ 2v and Po= pghosina.
We take ho, Uo and Po as the unit for length, velocity and pressure respectively.
Then we come to consider the following form of the free boundary problem,

(1.1) ao+0.— 7) 2 + u,)ao— u2=o

on x2=1+ 7)(t, t >0 ,

(1.2) +(u + u, v )(u+ --v(40 ) +1 ,Ju

in 0<x2<1+77(t, t >0 ,
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(1.3) alui+a2u2=0 in 0<x2<1+72(t, t >0,

(1.4)u =0o n  x2=0,

(1.5) (aiu2+(92ui-272)(1—( (917))2)+2(a17))(32u2— (91zt2) - 0

on x2=1+ 7/(t, t >0 ,

1 \ f
(1.6) P  7)cota 1 + 0 0 7 ) 2  k u2u2 \u17//2\ului, \,171/kuitt2 u2741—.

9

7b,

92

7) +  " W c s c a  

(1+ (a 02)3'
2  -  0 on x2=1+ 7/(t, t >0.t 

The problem contains two dimensionless quantities:

g t=  
Uoho 

 = 
g h o 's in a T ,  

21) ' pgho2 '

gt. being a Reynolds number, "r4; a Weber unmber, where Te is surface tension.
U=(2x2—x22, 0) is the nondimensionalized form of the velocity of the laminar
flow . We refer to [3, pp 150-1521 for derivation of (1 .1 )-(1 .6 ). The upper free
surface is supposed to be given by the graph [(xi, x2); x2=1+ 7 / ( t ,  xi)} at time
t The unknowns u and pare defined in {(xi, x2); 0< x2<1+ ?At, xi)) and
there describing the fluctuation on the steady motion.Throughout this paper
we assume that the fluctuation is downward periodic, and that, for simplicity,
the period is 27r.

The purpose of this paper is to show that, when gZ and a is sufficiently
small, we can obtain global in time solutions for sufficiently smal initial data.
The main result will be given in the last section.

We proceed as follows. We introduce in Sect. 2  notations, function
spaces and auxiliary lemmas. In Sect. 3, as in [2], we transform (1.1)-(1.6) to
the problem on the fixed domain Q=(0, 27r) x (0,1) in R2 . We recall in Sect.
4  the existence of local in time solutions obtained in  [10 ] with some
modification for our purpose. We carry out the energy estimates in Sect. 5.
Using these we show the existence of global in time solutions and their decay
property under the assumptions stated above. The methods used in Sect. 5
and 6 are similar to those in [7]. For other results see [8].

2. Preliminaries

Let r  > 0 . For an open set 0  in Rn, H r(0) is the usual Sobolev space.
(See [1 or 6].) H i,(  0 ) is the space of functions which are defined in 0  and are
in I-F ( 0 )  for any bounded open set O ' in O . L e t  Q=(0, 27r) x (0, 1) in R2 .
We denote by H r ( Q )  the space of functions which are in Hiroc(R x (0, 1)) and
are periodic with respect to the first variable xi with period 27r. We set SF
= aQ n {x2=1} and SB= aQ n { x 2 - 0 } .  We identify SF with the open interval
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(0, 27r). Hpr(SF) denotes the space of functions which are in H[0(R) and the
periodic with period 27r. Set

H USF) = {0EHP r (SF); fo
2n

 0= 0 }  •

Let r  1 / 2 .  For OEHA - 112(SF), we define its extension :7-5- to D by

(2.1) x2)= 1 E q5
kk.0 1+ k2(x2-

where {0 } is the Fourier coefficients of q5.

OE H 71,-0- 1 / 2 (SF), s-b'Ellp r (S2).Lemma 2 .1 .  L et r  > 1 . For

This is the usual property of extension operator, so we omit the proof. We
denote the norms of H r (Q ) and Hpr '(SF) by 11•11r,.0 and I I r e s p e c t iv e ly .
For later use we introduce an integral identity:
Suppose u, vEHp2 (S2), qEHp i (S2), U = 0 on SB, and, further, div u= div v=0 in
D . Then, integration by parts yields

(2.2) -1-f9(-4v+17(2q))u 4  < v  , u > +  fs r S(v, q)u ,

where

< y, u > = -
1 

f  (a yk+akyi)(aJuk+ aku ; )2  S2

and

S(v, q)i= (aiv2+ (92 0  ,  s ( y , (q— a2y2)

(See, e.g., [5], Chapter 3., Section 2.)
Here and hereafter we use the summation convention: Sum over repeated

indices. The lemma below is crucial.

Lemma 2 .2 .  Suppose uEHp l (S2) satisfies u=0 on SB. Then, there exist
Positive numbers K1, K2 such that

i) K i I V u M o 2 < u ,  u >
ii) K2Mull0 <u, u> 1 1 2 .

For the proof see [4].
In the following we assume that R is so small that

1(2.3) K 0= --2K 2-2> 0 .

We frequently use the lemma below to estimate the nonlinear terms.

kxi
2
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Lem m a 2.3. i) I f  nonnegative numbers 71, y2 and  73 satisfy 71+ 72— >
1, then there is a positive constant K3 such that

M001173-K3110M7iM0117., OEHp71 (D ) , 0e 14 7 2 (S2).

ii) I f  nonnegative numbers 7 ,  72 and 73 satisfy yi+ 72— 73 >1/ 2, then there is
a Positive constant K4 such that

100173 K41017i10172, O E H p n (SF), sbEllp"(SF)

P ro o f  Modifying the proof of [9, Lemma 1] slightly, we can show that
there is a K  such that, if 71+72-73>n/2, then

11001173 1095 117,1101172 f o r  q5 I- -I n (R n
) ,  OEH 7 2 (R n ) .

Using this we can show our case by extending the functions appropriately.

Let B  be a Banach sp ace . B y  IM O, T ; B ) we denote the space of B-
valued Hs- functions defined on the interval (0, T ) .  We set H r ''(Q )= H ° (0,
T; Hpr(S2))ni-ri2(0, T ; H p °(D)) a n d

 1 1 0 7 - 0 - 1 2 (s F )=  H ° (0 , T ; H (S F ))n .w w (o,
T; Hpo(SF)). The space O h, t2; B ) is defined in the usual way.

3. Reduction to fixed domain

Let us assume that, at time t >0, the time dependent domain

S2(t)={(xi, x2); 0<x2<1+7)(t, xi)))

is given by a diffeomorphism D->S2(t) defined by

(3.1)X i —  X i  ,  x 2 = 4 1 +  ( t ' ,  x"));

t = t'; xDE Q ,

where i")  is the extension of 7) to D (see (2.1)). Put -,k=ax.,/axk and ajk = g
j,  k = 1 , 2. H ere g =det(ax,/a4)=1+32(x277). Assume th a t the

unknowns u and p on S2(t) are given by the vector field u' and the scalar p'
on D as follows

tti =a i ku'k, j= 1 , 2  , p(x, t)=P '(x ', t').

Substitute these into (1.1)-(1.6), then, after some calculation, we obtain

(3.2) at71= — al7) + u2+ 7) 2,917)  o n  X2 = 1 ,

(3.3) atu1--1-Jui+(2x2— x22)a,u, +2(1— x2)u2
 2

=A(7), u ) ( M x2 x2ai 7732p) ,
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1 A 2
(3.4) dtu2 z_atg ,2  

_ L ( 9

,„x2 x 2 2 )ai U 2 M  g zu 2 p

=f207, ( —x2.91 77alp+  ( x 2 a l  ) 2 g—
 a 2 ( x 2 a 2 P )  ,

(3.5) a l u i  a2u2=0 , in ,S2 ,

(3.6) u = 0  o n  x2=0 ,

(3.7) aiu2+ a2u1 - 27)=1/1(7), u ),

(3.8) p—a2u2—(7)cota—Vcsca31 2 22)=h2(u, 72) , on x 2 = 1  .

Here we dropped primes "  '  " .  f ,( j=1 , 2 )  in the right hand sides of
(3.3)-(3.4) do not contain p, but u, 77 and the derivatives. The same is true for
k,(1=1, 2). Since the diffeomorphism (3.1) depends on t, we have to note that

at= at,— g

From the definitinon of extension it follows that at, = ( a t , 0 ~ .  Hence, by
using (3.2), we can replace at, 77 in the right hand sides of (3.3)-(3.4) by the
extension of the right hand side of (3.2). In what follows we denote the

2matrix of coefficients of F —  ip  n (3.3)-(3.4) by b ( ) .  For details of this

transformation, see [2].
From now on we investigate the solvability of (3.2)-(3.8) with initial

condition

(3.9) u( • , 0) =  u o  in Q ,  7 )(• , 0 ) =  7 7 0  on SF

4. Local existence

We first introduce the coordinates

t = t ' ,

This makes no essential change in treating local in time solutions. By this
coordinate change, at + al is transformed to a t , ,  and (3.2)-(3.4) become

at,,, =1,12+7,2a,5,

x 2 2 ) a ;7 4 ,+ - •  f(••.) ,9:2

which can be viewed as the two dimensional and downward periodic case of
the problem treated in [10].

We recall
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Proposition 4 .1 .  Assume 0 < a < 1 / 4 .  Let uoEHp 2 + 2 8 (S2) and 7)oEHp% 2 5
.

Suppose that uo and  i)o satisfy

(4.1) d iv  u o = 0  in Q ,

(4.2) u o = 0  o n  SB ,

(4.3) a1u0,2+a2u0,1-27)0— h1(u0, 770) o n  SF

Fix To> 0 arbitrarily. T hen there ex ist Positive numbers Co, 60 depending
on To such that, i f  J0 - 11110112+26+17201512+28<E0, then the problem (3.2)-(3.9) has a
unique solution (q, u, p) satisfying,

27 E  H 0 7/2+23,7/ 4+s( s F ) u  E  H3+23,3/2+ 8(s2) , pE  H 1+28,1/2+ S (Q )

and PlsFEH 3 1 2 + 2 6 '3 / 4 + 8 (SF)

and, further,

u, coEo

Here 1K- . )11 is the sum of the corresponding norms.

5. Energy estimates

Fix T >O . Suppose that (7), u, p )  is a solution of (3.2)-(3.8) for 0 < t  ‹ TT.
The purpose of this section is to show

Proposition 5.1. There are positive constants ao, el, M , and y  such that,
i f  the angle of  inclination a is such that 0< a ‹ a o ,  and if  the solution (7), u,
p )  satisfies

(5.1) sup {172(014 111 MM
O s tsT

then it holds that

(5.2) 17)(013+11u(t)112<me'{172013+117401121

f or 0 < t ‹T .

The proof of Proposition 5.1 is divided into several steps. To derive the
a priori estimates we assume that the solution is smooth enough, otherwise we
only need to use the usual mollification.

We note some estimates of the elliptic boundary value problem of the
stationary Stokes system.

Proposition 5 .2 .  L et v  and q  satisfy
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1 2(5.3) - -
gZ

LIv+—
g2.

/ 7 q = f0  in Q ,

793

(5.4) d iv  v= 0  in Q ,

(5.5) v = 0  on SB

(5.6) v= 9  on SF

th en  it h o ld s  fo r all

(5.7) iiviii+2+11Fq11/<Caf0lit+1911+2-0

Proposition 5.3. Let v and q sa tis fy  (5.3)-(5.5)

(5.8) v2=91 on SF ,

(5.9) a1v2+ a2v1= s02 on SF ,

th en  it h o ld s fo r a ll

(5.10)

These come from the facts that the system (5.3)-(5.4) is elliptic in the sense of
Agmon-Douglis-Nirenberg, a n d  that th e  s e ts  o f  boundary conditions
((5.5)-(5.6) or (5.5) and (5.8)-(5.9)) satisfy the complementary condition (see [3,
page 317]).

I) We now estimate (u, p) in terms of the norms of a tu  and al 3 u ( j= 0 , 1,
2). We regard (u, p) as a solution of elliptic boundary value problem

1(5.11) --27.Z1u +F(-1-P)

= — atu —(U , 17)u— (u,F)U + f(7), u)+ b(71)P4 -- , in S2 ,

(5.12) div u = 0  in S2 ,

(5.13)u =0 o n  SB ,

(5.14) u = u 1 s ,  on S F .

Then by Proposition 5.2 we obtain

2
+ 017

1+2 gZ  DI
C'Illatulli+M(U,F)u+(u,17)01/+ii.f(7), OM/

(5.15) Oku
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b(77)vi p UISFI /+2-1 } 1=0,1 .2

 

The boundary term on the right can be estimated as follows

C{lulo+ l9i1+'u14} c{1117 ull.+ 11173i1' ullo}

We next give the bounds of the norms of the nonlinear terms. From
Lemma 2.3 and Lemma 2.1 it follows that

 

b(77)FipO i sClIb(0162 2F—p

 

< C17215/2
2F—p

       

In f(7 ), u ) the terms containing the third order derivatives o f  ij can be
estimated by using Lemma 2.3 as follows

110 -0(aL.k ii)14A1 i c(E1)114.5.,7111411112‹ C(EMUbla 1 1 + 1  7210 .

The terms containinbg second order derivatives of u also can be estimated as
follows

)(a, )(9F,JukIl1< c(601771111u112+, .

The terms in f(2 i, u ) other than the ones referred above have the form

C( ij)ufaittA

or

C'( 17 32" ijai k  a2k 2 u,t 0< ji+ j2<2 , 0<ki+ k2<1

In view of the explicit forms of the coefficients C (  F ri) and C', we can
regard these as bounded coefficients by Sobolev's lemma. Hence we can
estimate IV(?), u)II,, 1=0, 1, as follows

Ilf (7), u)11,<cau11211u11,1+1aiLAolluM2+1A21.11u113+1317/1011u112+,1

Collecting these we obtain

2(5.16) O z. u 1+2
+  F (., p

‹ C { Matulli+Ilaiulli+Ilulli+Ilu112 11u111+ i +laiL2101174112

+1.07)1011 u113+1 33- 711011 u112+,+ I 7711 2 -Hrum+mva,—umf.

   

7 ,
We now need to give the bounds of 2 7)10 in terms of u  and its deriva-
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tives. Applying —0,4 to (3.8), multiplying a16  to both sides and integrating
the resulting identity over (0, 27r), we obtain

(a3-77cota—cfvcscaaj77, ai'12-72)

--(a,+(aip— 322/0, aifi2)s,—(33- 1/2(, u), a,Ly)s, .

Note that — a,a2u2=viti from (3.5). Integrating by parts in the left hand
side and substituting a102u2= —(912 ui into the right hand side, we obtain

(5.17) laibiii,cota+Vcscalailqrs,

<laip+ai 2uili2-1a1L)15,+lai-421

(1117pI(1+1117a,2uillo) (911 7)6+10i -42(77, u)1.,,lai;q1s,

Since 1/4(0, 27r) is a Banach algebra (see [1]), taking account of the explicit
form of h2 (7/ , u ), we can easily estimate la14 h2(7), u)ls, as follows

(5.18) la1 h2(77,

+(lraiull+11Fai 2 u0)1774+Wcscalq ajdo+17)141a0141.
From this and (5.17), we easily obtain

(5.19) laiL)ls,< C`W- i sinatrAli +1117Vull +(the right hand side of (5.18))} .

Here we note that the usual trace theorem tells us that

Club ,

C(1117u11+1117aiuli).

Combining (5.16) and (5.19), then taking account that 17711 and 1174112 are small
enough, we can get

(5.20) 1
ull +1+2

2I7—p

    

‹c(latulli+11Fuli+Ilvaium+Irai20) •

II) We now begin to obtain an energy inequality.
1st. S tep.) We take the inner product of (3.3)-(3.4) with u, and use the integral
identity (2.2) and the fact that

(( U, F)u, ,
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to get

1  d 1(5.21) 2  dti111112+ .<u, u>+2 f (1— x2)u2ui

+ (  
--L ) f  (3 0 4 2 + a 2 u o u l+ i fs ,(p— a,uou2sF

=(f ,u)9+(b(7)) 17 u )  .

The boundary terms in the left hand side can be rewritten as

(— k )fs al U2 + a2U2)141 (p—a2u2)U2

1= f  (27i h l)U 1
ZIN. S F

2 2+Tz i s F  (7)cota—Vcscaa1 2 7))(at7) + ai7/-772 ,9i7/)+T z f sF h2u2

is , 27)u i+ 1 d
d

t {cotal7a+ V cscalai espl

+ - - — 7)2 a0 ).0 - ( - - )f h iu i+  + -7 f h2u2
S F

1 2

in view of the boundary conditions (3.7)-(3.8) and the equation for 72, (3.2).
Thus, using Lemma 2.2 and the assumption (2.3), we have

1  d 1  d 
dt(5.22) 11 U112 ±KAVUI1 2 + dt {cotal7a-VIIPcscalaiesF}2 gt. 

2 2<TR-, ( 7), zei)s,+Tz (7) cot a— "Wescaa12 7), - 712 30)sF

+ - a) f h12,11+ - a) f h 2 U 2  (f, OD+ b( i t )  .
: A .  S F Z A  S F

1 2

Here we put K ;-- - KiKo.

2nd. Step.) We differentiate (3.3)-(3.4) with respect to xi and take the
inner product with Diu. Since (30, aiu, sip) satisfies (3.8)-(3.9) with the
nonlinear terms replaced by their derivatives with -respect to xi, in just the
same way as above, we obtain

i d 2 , 2 1 d(5.23) dt Ilaiull +--g—z--T{cotalaoliF-Fcwcscala127a}
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7) 7)< -
2  

(a
'

o  ui)s,.+ -

2

(aoicota `Wcsca — ai( 2 ai ))sF

, 1 n , 2
u i r e i v a t i  - r- T t ciii22u1Z/2

+ (aif, ,  a iu )9 + (a i (b ( ) v ip ) ,  a l l ( ) .

3rd. S tep.) We next apply a12 to  (3.3)-(3.4) and take the  inner product
with 3i 2 u .  In  a  similar way we obtain the corresponding inequality,

(5.24) i d 1   d  
2  d t

ilai2 ur +M P' ai2 u112 + d t (cot 4012 7712sF+51)  cscala13 721M

(.912 7/, (912 141)s,+-
2  

(312 7)cot a —̀1,P cscaai 4 7), — .9i2 (7)2 a177))s,

1 2f  Whiai 2 ui +—„,„ f a l2 h2a u
S F S F 1 2

—(aj, ai 3 u)D—(ai(b(7))F p), ai 3 u )  .

Here we briefly show how to estimate the cubic or higher degree terms in
the  right hand side o f  (5 .24). T he boundary term containing a14 7) can be
estimated as follows

( a14 7), ai 2 (7)2 317)))sFl< , a1l-(7)2 a17/))sfl

‹claifi)1.177 2 41aoll

by using Lemma 2.3. We have already seen how f(7), u) can be estimated in
terms of u and 7) in I). Furthermore, in deriving (5.19) through (5.17)-(5.18),
one easily see that laiL/10 is estimated by the right hand side of (5 .20). We can
treat the cubic or higher degree terms in (5.22)-(5.24) in a similar, but easier
way.

4th. S tep.) Finally we differentiate (3.3)-(3.4) in  t  and  take th e  inner
product with au  to obtain

1 d 2 1   d  (5.25)
d t

+10117 atull2+
d t  

(cot ala0L+51) cscalaiatesA

2  , , ■ 2  ( 29n \
—  71 7 . U2, Oftill)SF - r —R- - 0 , 1 7 ) ,  U t U l l S F

2  ,+— o't7) cot a — Vcscaaiat77, — at(772a0))s,
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f a th ia tu ,+ m  f  a mt ,u2+ (atj, B tu).
S F r f l .  S F

+(a,b(7,)(F 2  p ) , a tu ) + (b(72)at(F P ), a tu ) s2

Here we used (3.2). Further we use this equation to replace ao  in the
right by the right side of (3.2). It is easy to see that the matrix I— b(71) is
invertible, and that g(72) =-• b(o(I — b( ) ) - ' is positive definite. To deal with
the term, (b (7 l)a (1 7 - - p ) ,  a u ) ,  w e use these facts. We recover O t(F ip )

from the time derivative of (3.3)-(3.4), then substitute this expression into the
above inner product. After some calculations we can see

(b(7))at(F atu)= G 3()(—  at2u+ •••, ato.

1   d 
2  d t  

C3aitt
'  
atu)+••• .

The next term which is difficult to treat in the right hand side is

J=(A0(77)ata2 2 ui, atuk)n

Integrating by parts we have

j —  fFAoata2uiatuk— f Aiata2uiata2uk
S

+J2
Note that on SF we can resolve azui from the boundary condition (3.7). Using
this expression we have

ILI-<c,(lai+aturs,+laturs,+laoli,HulL).

Thus we have

(5 1 d
.26) ( ( i  R (7 )) )a tu , a 0 )  + K atull 2 <(— + 112, atui)s,+...2  d t

5 th . S t e p . )  Note the fact that, as stated in 3 rd . and 4 th . S teps, the cubic
or higher degree terms are bounded by the square of the right hand side of
(5.20) with the coefficients of order €1. Hence, if el is sufficiently small, adding
the inequalities obtained above, we obtain

(5.27) d -(E(t)+ o(t))+ F (t )d t
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( 0), te1),s,1+1(30, a12u0s,1

+ Kl(—a1 + u2, a t u i ) s , I )  ,

where y' is some positive constant and

J=0
u 112 + K( (I—,8)atu, atu )

F —=±1IF af u112 + IdIVBtU 2
,J=0

(1)=--cota(± laii10 2 +Klat7/102 ) + V c s c  a( ( aii+' 721.2 + Klaiat7)10 2 )J-0 i=o

and K > 0 is to be specified la ter. In  a  sim ilar way to obtain the bound of
laiL)I,s,, we can get

(5.28) la12271s,.< CsindW- 1 (11Full +11Faium+rwult+IratulD•

From this we can see that the right hand side of (5.27) is bounded by F(t) by
choosing K and a to be small. Hence,

(5.29) d (É+0 )+7"F_O ,dt

with some positive constant y". Furthermore, combining (5.28) and (3.2) and
the Poincaré inequality, we see that

0+ -P C F .

After multiplying this by small positive constant, adding to (5.29), we have

d (5.30) (R(t)+ o(t))+ 71(E(t)+ o(t)) odt

We finally apply Proposition 5.3 to (u, p ) for 1=0, regarding this as a solution
of the stationary Stokes problem, (5.3), (5.4), (5.5) and (5.8)-(5.9). Then we
have

(5.31) 1 u
2

2 p—17

    

f ( 7 ;?, u)

 

b( 7)V- -p + L(4+ 1272 + 112( 7), 014-

    

latull+11(U, F)u +(u, 17) 0 )

As we assume that 17714+11/1112 is small enough, we can conclude from (5.31)
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that

(5.32) 1124l2<

By the solenoidal condition we can estimate the trace norm of u2 as follows:

(5.33) 1u21.9,4 aiu211

00, 2 11211 + Mai a2u2I1} = CMd12 uM.

Thus the quantities in the right hand side of (5.32) can be estimated by E and
0 .  From this it is easily to see that Proposition 5.1 holds.

6. Global solutions

We now only need to apply the argument in [7] to show our main result.

Theorem 6 .1 .  Let (2.3) hold. Let a be 0< a<ao, where ao is chosen in
Proposition 5.1. Then there is a Positive constant 60 such that, if 720E Ino(SF)
and uoEHAQ) satisfy the compatibility conditions (4.1), (4.2) and (4.3) and
further if Eo=•11uoll2+1 2201 Eo, then the problem (3.2)-(3.9) has a unique global
in time solution (7), u, p) such that

(6.1) 72E C(0, co; ino(SF))n L20, 00; 1 4 0 (s ,)  ,

(6.2) uE C (0 , 0 0 ;  H ( D)) n L2(O, co; H (D)) ,

(6.3) FpE C(0, co; H,g( S2)) n L2(0, co ; im p )) ,

tilsFE c(0, 00; H 0 ) n L 2 (0, co ; H ).

It has an exponential decay property:

(6.4) 17113+11u112= 0(e -  rt)

Outline of the p ro o f . By Proposition 5.1 and density argument, we can
relax the initial condition in Proposition 4.1. It also follows from the esti-
mates of the tangential derivatives obtained in the proof of Proposition 5.1
and the stationary estimates in Proposition 5.2 that u E  L 2 (0 , 00 ; H p 3 )  and 7) E

7
L 2 (0, 0 0

;  M).
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