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Multiple points of fractional stable processes

By

Narn-Rueih SHIEH

§ 1. Introductions and main results

Let Z a(u), —00 < u<oe, be a  real-valued Levy symmetric a-stable proc-
ess, 0< a <2 . Let H > 0, H  1/a, and define f (t, u ) by

f ( t , u)=It — u r - "" — lu r - " a  , t and uER .

The real-valued process X (t) determined by the integral representation

f  :f (t, u)Z a(du)

is called a  linear fractional stable process with parameter (a, H ) .  Cambanis-
Maejima[5] have had detailed discussions on the distributional properties and
limiting theorems on this class of processes.

Now, we consider a d-dimensional process X (t)=(X i(t), •••, X d(t)), where
the components X ( t)  are independent and each X i (t) is linear fractional with
parameter (a) , H ) ). In  case  af = 2  for all j ,  X ( t)  is Gaussian and has been
called a  fractional Brownian motion, see Mandelbrot-Van Ness[19]. We
assume that a ,< 2  fo r  all j  in  this paper an d  call X (t) a  d - dimensional
fractional stable process (We have suppressed the adjective "linear" because it
is somewhat misleading). X(t) is non-Gaussian and non-Markovian; yet it is
self-similar and has stationary increments in the following sen se . F o r each c
>0 and b >0

X (C t)=d  (C H 1  X l(t), • • •, C H  e X d ( t ) )  and

X(t+ b)—X(b)-d=X (t)— X (0) ,

where ±±- denotes the finite-dimensional equivalence of two processes. Fact:
when 1/a,< H, for all j, X (t) has a version of which all the paths are continu-
ous; while in case Hi < for some j, any version of X(t) is of everywhere
discontinuous paths (indeed, the paths are unbounded on each time interval,
see Maejima[18]).

Let k be a  given integer. A point xERd is a  k-multiple point of the
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path X( • , w) if there exist 0< ti < - • < tk (depending on w) such that x=X(ti, co)
X (tk , w ). We will prove in this paper that

Theorem 1 . 1 .  L et X (t)— (X i(t),•••, X d(t)) be a d-dimensional fractional
stable Process as described above. Suppose that 2, 1/a, < H, <1, and that
we have chosen and fixed a  continuous version of  X ( t ) .  Suppose moreover
that

od2fk —1 
k

T hen alm ost surely  the path  X (., co) has k-m ultiple po in ts . Futhermore,
almost surely

•, <  • •  • <  tk, X (ti)= •••=X (tk )} k (1—  e).

In  th e  above, d im E  denotes the  H ausdorff d im ension  of a  B orel E.
Various authors have studied multiple points of fractional Brownian motions;
we cite Kono[14], Goldman[10], Rosen[24], Cuzick[6]. We also cite Evans[7],
Fitzsimmons-Salisbury[8], Legall-Rosen-Shieh[17], Rogers[23], and Shieh[26]
fo r  recent result concerning this asp ec t o f Levy a n d  Markov processes.
Theorem 1.1 represents a generalization of the above known results to certain
important non-Gaussian non- Markovian stable processes.

R em ark . Since 1/2<1/a1 <H, for all j ,  (1.1) is non-void only if

d=2, k>2: 1 < Hi+Hz< k /(k -1 )  and

d=3, k=2: 3/2<H1+H2+H3<2

Based on the known results for Brownian and fractional Brownian motions,
we believe that, for the process in Theorem1.1, almost all paths are simple (no
intersections) in case  d 4.

The basic idea of proving Theorem 1.1, akin to that found in the most of
th e  above literature, is to consider th e  k-parameter d(k  —1)-dimensional
random field

Z ( t,, tOdg (x (t2)—x(t,), x(tk) —x(tk _ i) ) , o < t1<. •.< tk.

The view is that the  se t of ti <  <  tk such that X(t1)=•••=X(tk) (the set of
"k-multiple times") is simply the zero set of Z, and the best way to study level
se ts of a  random field is through its local tim es . L et [a.,, b.7] be k  disjoint
intervals in  R+, with 0< a, < b, < a,+i< b,+i< 0 , j=1,••-,k  — 1. Another con-
tribution of this paper is to prove that

Theorem 1 . 2 .  L et X (t)=(X i(t), •--, X d(t)) be a d-dimensional fractional
stable process as  described abov e. Suppose that 1<a ; <2, 0< 113 <1  an d  that
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the condition (1.1) ho lds. L et 1=[ai, b i]x •••x [ak , bd. There ex ists (alm ost
surely) a jointly continuous 0(.. t ) , xk_i)ER d(k-" an d  t
tk )E I such that f o r all bounded continuous f (± )

f (± )0 ( .t , t)c l,t  = f  ( S 1 , S k ) ) d Sf  f(1.2) • • • , l•  •  • dSk •
f R c n k - , ' al al,

That is to say, Z  has jointly continuous local time 0(. t )  o v e r I . L et 0(.
B), B being a B orel subset o f  I, denote that local time o f  Z  over B, i.e. we
replace the rectangle [ a i ,  tdx •••x [ak ,tk ] on the right hand side of  (1.2) by B.
Let A be 0< A <1—  0, then the following uniform Holder condition "in the set
variable" holds alm ost surely . L e t e (B )  denote the  edge length o f  a  k-
dimensional cube B . L et K  be any  compact subset of R '" " . T h e re  e x is t
finitely positive C=C(co), E=E(co) such that

(1.3) s u p  s u p  10(±, B)1 CLeb(B) Â .
1 E K  B cl,e (B )<

R em ark . In Theorem 1.2, we do not assume that 1/a.,<H, for all j(which
asserts the path continuity); the local time is defined for every measurable
path. While for the application of Theorem 1.2 to Theorem 1.1, we do need
the path continuity.

As that already appeared in the literature q5(X• , t) is called the k-hold
(self.) intersection local tim e o f X . W e refer to  Geman-Horowitz[9] and
Rosen[10], Adler[1, Chapter 8] as excellent overviews on local time theory.
In case X  is Brownian or fractional Brownian motion, Geman-Horowitz-
Rosen[10], Rosen[24] have studied multiple points from the intersection local
time of X ( t ) .  The contiributions of this paper can be regarded as to show
that we can extend fruitfully the results in [10, 24] to  certain important
non-Gaussian non-Markovian stable processes. However, we should mention
our novelty in such generalizations. In the Brownian case [10, 24], the in-
dependent increments property is indispensable for the proof. To compen-
sate this property for fractional Brownian motions, Rosen[24] used the local
nondeterminism of Gaussian processes, a concept formulated firstly by Ber-
man[3] and later in a different context by P itt[22 ]. Pitt's formulation seems
stronger; yet Geman-Horowitz [9, Theorem 24.3] pointed out that the two
formulations are in fact equilvalent. Nolan[20] extented Berman's formula-
tion from the Gaussian case to the symmetric stable case. Nolan's result is
sufficient for his application to the joint continuity of (non-intersection) local
tim es. W hile for our purpose in proving Theorem 1.2, we need certain
stronger (i.e. that similar to Pitt's) local nondeterminism which we prove in
Proposition 2.1 of § 2. See the remark below Proposition 2.1 for the more
explicit comparision between Berman's and Pitt's fomulations. We also
remark that it is not clear at all that Theorem 24.3 in [9] holds for non-
Gaussian stable processes. In this sense, our Theorem 1.2 is not merely a



734 N . R . Shieh

routine generalization of [10, 24]. The proof of Theorem 1.1 is based on
Theorem 1.2, a real-analytic lemma concerning the connections between the
level sets and local times, and the "ergodicity" of linear fractional stable
processes.

W e commence to prove Theorem 1.2 in  § 2. Then in  § 3 we prove
Theorem 1.1. We prove in the final § 4 the existence of k-multiple points for
X( T ), where T  is a compact subset of R+ with dim T >  0  and 0 is given in
Theorem 1.1. This is again a generalization of those known in Kahane[12],
Testard [30] and Shieh[27] for Gaussian and Markov processes. We remark
that the study of "fine sample path property" of self-similar processes has been
an expanding topic since the pioneering work of V ervaat[32]. The real-
valued case has been quite well studied, see Kono-Maejima[15]; however,
results of the multidimensional case seem to be few. Nolan[21] obtained
some dimension results for the image, the graph, and the level sets of certain
"index- 13 stable fields". It is hoped that our results contribute some steps in
this aspect. We should mention the recent detailed study of Sato[25] on the
structure of multidimensional self-similar processes with independent incre-
ments, of which the self-intersections of the paths seem to occur too.

§ 2. The proof of Theorem 1.2

The following "strong" local nondeterminism property of linear frac-
tional stable processes is needed for the proof of Theorem 1.2.

Proposition 2 .1 .  Let 1 a<2, 0 < H < 1 ,  0 < e < T < c  0 .  L e t  f ( t , u )
denote the kernel function of  a linear fractional stable process with parameter
(a, H ), as mentioned in § 1. Then, for each integer j) 2, there exist positive
8p and Cp such that f o r all vi,•••, vp_iER

(2.1) Il[f(tp, •) — f(tp-1, •)i — P
.7* , [ f ( t , ,  •) — f(ti-1,

C i9 1 1 . f ( t p ,  • ) -  f ( t P - i ,  • )

whenever s ti <•••<tp T  and (tp— tp_1)< 8p. In the above, to=0 and f ( t ,
-)11« denotes the L a (R, Leb) norm  of  f ( t , u )  with respect to the variable u.

R em ark . The local nondeterminism of Gaussian processes was for-
mulated by Berman[3], in which the range for t is restrictd to tp— ti < 8p (the
"locally" lo c a l nondeterm ism ). P itt[22] later reformulated Berman's
definition, in which ti <  <  tp are ranging freely all over [E ,  T] (the "globally"
local nondeterminism). Nolan[20] formulated the local nondeterminism for
symmetric stable processes by using linear predictors to replace conditional
variances, and pointed out ([20, Theorem 3.2]) that his formulation expressed
in terms of kernel functions is exactly the display (2.1). He also proved that
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certain stable processes are locally nondeterministic; the time range is in the
same consideration as Berm an. Our Proposition 2.1 requires that tp— tp_i is
small yet allows that ti < • •• < tp_i are freely ranging; thus Proposition 2.1 is a
"adequate" non-Gaussian version of Pitt's local nondeterminism. As we have
mentioned in § 1, it is unknown that the two formulations of Berman and Pitt
are equivalent in the non-Gaussian case.

Proof of Proposition 2 . 1 .  In [16, Proposition 4.1], Kono and Shieh proved
that linear fractional stable processes is locally nondeterministic in Nolan's
sense; we find that the arguments in [16] can be modified to obtain Proposition
2.1. It seems beter to include a  complete proof here. Note that (2.1) is
equivalent to

lim inf inf inf
( t p  t p _ i )  0  E S t i< • - • < tp _ i< tp 5 T

fll[f( tp, •)—f(tp _ i , .)111g}
Ilf(tp,

= Cp >0.

Suppose on the contrary that Cp = 0  for some p .  Then there exist
sequences ti n and a i " , j=1 ,••• , p and n =1 , 2, • • • , E ‹  ti n < t 2n  < • • • < t  - 1  <  t pn  T ,
tpn — 67_1 0 as n  T C o  and dIER such that

(2.2) lim  liff (Pp', •)— f ( t_ 1 , •)1 — E ./1=11 dff(tf, •)11:  _ 0
n-.co Ilf(t;, .)II:

Define

f( u)= 11—u1H-"a-
1 u  

-  1  /  a

, u  R

It is sasy to check that

f (tB , f( tB -1 , 11 ) = ( tin3—  tin, - 1 )
1 1 - 1 1 c r i (

11 —

andtpn —

f(tf, u )= (C ) 1 1 - " a f ( li z )

By a linear change of variable:

u = t ;_ i + ( t r7— ,

the numerator of (2.2) becomes

n_i)\ Ha P -1

P Il(2 .3)t f ( u i )— aq( n

i ) u i

m=i j
6 L i t f ) 1 1 2 . ( d 2 1 1 )
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and the denominator of (2.2) becomes
\Ha

11/  0 4 1 )1 1 L .(d u i)  •

Therefore, the limit in (2.2) is 0 means that the L a(du i) norm in (2.3) tends to
0 as n  T 00• S in c e  a > l ,  there must exist subsequences tr  and a "  such that

(2.4) f ( u i ) =  l i m

{
P - 1  , (r e  )1 I- " a  E a'./ J f
3=1 tr — t r

for a .e . u i .  We argue that (2.3) is impossible. Observe that, for each ul >0,
the f ( • )  in the above summund is

[ (tr i —  tin ) + (We  t ;1 1)U1111 – 1 1  a [ t r- -1± (tr t;1 1 )2 1 1 1 H - 1 1 a

t i n '

Since E  tie < tin: T  and 0<(/— 6711)1 0, we can extract further subse-
quences tr  along which the above display tends to a limit independent on  ui
>0 as n i  o o . Thus, f ( u i )  determined by (2.4) is constant on ui >0, which is
obviously a contradiction. q.e.d,

The proof o f  Theorem 1 . 2 .  We proceed by the arguments adapted from
Rosen [24] and B erm an [4 ]. In the following, U 1 — (ui, •--, uL_I)ER d ( k- 1 )  while
each component 14-=(u"-i, •••, t4d) R.cl ;  moreover, T z — (til ,•-•, a ) E I .  Let y
be any fixed real number such that

0<y< 1— 0 
2 0  '

and let B E I be any fixed cube. W e w ill estimate, for all even m , the
followding multiple integral

(2.5) f  d(k-i,m., Bm 1=1
f

where, • and d ( • )  denote the inner product and the Lebesgue integral in the
appropriate Euclidean space.

From the definition of Z , the independence assumption on the components
of X, and the characteristic functions of a symmetric stable process, we have

(2.6) E e 1  1  (Z 71 )•  U1 _  
E e

zEg1e.locw,1)-x(tf»•ui

d

H a t n i z m c f , ( t i -= H e  —
d



Fractional stable Processes 737

Since NE[ar, br] and b r<  a r+ i by our assumption, we always have /-7<
V 1, .  By the symmetry in integrating a, it moreover suffices to consider the
case N '  > N , V /_<m, in evaluating (2.5). Define z4-E R d  r= 1,k ,  1 =

1, •••, m recursively by
„,1U r —  V  r —  U r —  ( s r  ,

m
U r—  V r —1

„ i _ „ 1 _ 1 1
is°  — &ck— v ,

v'kn= 0 .

We see that (2.6) is transformed into

E e ' r-'l z d Adj.' , • ) -  f
•

1=1

where t ' 0 + 1 . Now we apply our local nondeterminism Proposition 2.1,
with p= mk there, and Nolan [20, Theorem 3.2 (b)(c)] to conclude that there
exists a positive Cm such that

(2.7) EeEr=lz (To• < A

To assure (2.7), It should be noted that we may always assume that t — t '
is small enough so that it is smaller than the given in the condition in
Proposition 2.1, since we shall eventually be considering the integration over
T 1 and  tr, N J -  are adjacent each other (This is the spot w hee Berman's
formulation is not sufficinent for our purpose; we cannot assume that t -
<amk, since the latter quantity could become arbitrarily small as m becomes
bigger). Then using the same scaling method as that in the proof of Proposi-
tion 2.1 to calculate the L a norm for f, we can deduce from (2.7) that

(2.8) EeEN,z(m•ui < 111 e-Crne--TIP-11(tf;'1-thaJ.'1V5r1.-,
1=1

where the two constants C . in (2.7) and (2.8) are different, although we have
used the same notation.

Now, we integrate firstly over U 1 in (2.8). To transform u into v, the
following algebraic inequality in Resen [24, (2.12)] is  tactica l. For each p=
1, k , let

C p = {(r ,1 )1 1 r k,1 1- m , r * P } U { (P , ,

then, there exists some constant c  independent on m such that

JT Ul c mH ( H  (1+1/41 2 )) 1 1 7

P=1 (rm.c,
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sem111 (  IT e l  (1 + vir1 2 ) "k )p=i (r.1).cp,=1

From the  definition o f  14, we see that { i 4 :  (r, C\{ (k , m )}} is  a  se t o f
coordinates for le k - 1 ) 7 n. Therefore, by (2.8), the inequlity above, and Holder
inequality for the product of k functions we have (confer Rosen [24, (2.13)] for
such techniques in the Gaussian case)

hi  (1+ I vir12 ) 7e -
k, , , , Itf± '

plf o c k - n m  ( r ,  rii ) E c p ,  J=1

111 H (t71:4-1-- tirEY ,H ix i+27/k
P=1 (rmecp

k  m -1
(Const.) n i n •r=1 1=1

Therefore,

The multiple integral in (2.5)

k  m -1 k -1 n i' ( C O n S t . )m  f H
1 
—

t l y ( X Y = I H J ) ( 1 + 2 7 )   k II dtr l .
Bm 7 =1 1=1 (r , l )

We have, by our choice of y and our definition of 0,

The multiple integral in (2.5)=0(e(B)) k ( m- 1 ) ( 1 - 0 ( 1 +2 7 ) ) .

N ow , by those indicated in  Geman-Horowitz [9, § 26] a n d  Resen[24], the
assertions of Theorem 1.2 follow directly from the above display. q.e.d.

§ 3. The proof of Theorem 1.1

Firstly, we cite the following lemma from Adler [1, Theorem 8.7.4].

Lemma 3.1. L et F: T E / = [ a i ,  bdx ••• X [ap, =F( t)E  R q be
a  continuous function. A ssume that F  has a jointly  continuous local time
q5(X , t) which also satisfies a uniform  Ildlder condition as that (1.3). T hen
dim  F - - '( x)>pÀ f o r every X E R g  such that 0(. -x , I)>0.

The proof  o f  Theorem 1.1. L et /= [1, 2] x [3, 4] x x [2k —1, 2k]. By
Theorem 1.2 and Lemma 3.1, we have

Pfthere exist t.,E [2j— 1, 2j] such that X(ti)=••• = X( tk)}

./3 {Z - 1 (0)*0 }

P{q5(0, I)> 0} ,
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w h ere  is  the local time of Z over / given in Theorem 1.2. The last event
in the above display is of positive probability, since it can be seen that

E0(0, I)=f LP( •  •  • , th; x, x)dxdtr • • dth >0 ,

where p ( t i ,  • • • ,  t k ;  X i , • • • ,  . 1 . k )  denotes the joint density function of X(ti), •-•, X(t)
at (xi, •••, xh). Now, we consider the event

—{o): the path X(•, co) has k-multiple points} .

We have shown at above that P(D')> O. Takashima [28] noted that for each
c >0, c *1 the transformation Sc on the underlying probability space S2 which
is induced by Sc(X)(t)— (C H IXi(ct), •••, c'X d ( c t ) )  is P-measure preserving,
and he proved that Sc is ergodic (in fact, mixing). It is easy to see that D' is
invariant with respect to Sc, i.e. S c- 1  S2' E D '  Therefore, we must heave P(S2')
=1, which proves the almost sure existence of k-multiple points. The lower
bound estimate on the Hausdorff dimension of the set of k-multiple times
follows directly from Lemma 3.1 and our exponent of Holder continuity of

T) in the set variable.

§ 4. A related result

Once we have proved the existence of multiple points of X(t), it becomes
interesting to ask (i) for which subsets E  of Rd  can we find multiple points x
E E with positive probability (such an E is referred as "not k-multiple polar")
and (ii) for which time sets T ER+ are thick enough to make that {X(t), tE
T I has multiple points (i.e. x =X(ti)= ••• =X( th) for k  different ti E T ), see
T ay lo r[29 ]. T h e two problems have been investigated fo r  Brownian
motions, M arkov processes and certain Gaussian fields, see Fitzsimmon-
Salisbery[8], Kahane[12], Shieh[27], Tastard[30] and T ongring[31]. The first
problem seems closely related to the potential theory of the processes which
we do not know any development in this aspect for non-Markovian stable
processes. Here we show that the arguments for proving Theorem 1.1 can be
modified to have a result for the second problem.

Theorem 4.1. U nder the conditions of T heorem  1 .1 .  L et a com pa ct T
E R +  be w ith  dimT  >0. T h e n ,  w ith  positive probab ility  [X (t), t e  n  has
k-multiple points.

To prove the above theorem, since dim T  >0, where must exist some 01:
< Oi_<dimT such that the Hausdorff 01-measure o f  T  is  positive. By

Frostman's Lemma as mentioned in Kahane [13, p 130], there exists a proba-
bility measure v on R+  which is supported on T  and satisfies Holder condition
that v[a, a+ 11[ (const .)11°I for all a, h. Let T1, •-•, Th be k disjoint compact
subsets of T , each T,E[a,, b3], 0< a,< b,< a3+1<b,+1, and ii( T3 ) >0. L e t  v, be
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the restriction of v to [a,, b i ] and let p  be the k-product of v.,. Then, p  is a
Borel mersure on / [ a l , bi] x ••• x [ak, bk] which is supported on Tix ••• X Tk
and satisfies the Milder condition that ,u(J)__ const.Leb(J) e ' for all rectangles
J c / .  Then we can use the same techniques as in the proof of Theorem 1.2,
with Lebesgue measure there replaced by the non-atomic p , to have jointly
continuous local time Op of Z with respect to the measure p .  This Op also
satisfies the uniform Holder condition in the set variable, with exponent A<
01— O . We remark that the local time theory is usually stated with respect to
Lebesgue measure; yet some basic formulations and properties still hold with
respect a non-atomic Borel measure and in  fact they have certain nice
applications, see Pitt[22] and Geman-Horowitz[9]. Lemma 3.1 holds for 0,;
note that p  is absolutely continuous with respect to Lebesgue measure. By
Lemma 3.1 and noting that our local time is relative to p  which is supported
on Ti x ••• x Tk, we have

dim { (ti, •••, tk )eT ix T k C T k :Z ( t l ,  •  t  k ) = k ( 0 1 -  0 )  >0

whenever 0,(0, I) > 0 .  The latter holds with positive probability, as we can
see from the first moment of 0,.(0, I) which is given by

E o p ( o ,  1 ) = f f „ ,p ( t i ,  • • •, tk ; •  •  • ,  x )ch ti(d t i)• • • t i(d tk )> o  .

Theorem 4.1 follows again from the correspondence between the k-multiple
points of X and the zeroes of Z.
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