On the support of solution of a stochastic differential equation without drift

By

Takao MASUDA

Introduction

Let *M* be a σ -compact C^{∞} -manifold and V_0, V_1, \dots, V_r be C^{∞} -vector fields on *M*. Throughout this paper, we shall fix any point $x \in M$. Let (w^1, \dots, w^r) be an *r*-dimensional Wiener process. We denote by $x_t, 0 \le t < \tau$, the solution of the stochastic differential equation

(1)
$$\begin{cases} dx_t = \sum_{k=1}^r V_k(x_t) \circ dw^k(t) + V_0(x_t) dt \\ x_0 = x \end{cases}$$

of Stratonovich type, where τ is the explosion time.

Stroock and Varadhan obtained the topological support of the distribution of $\{x_t\}_{t\geq 0}$ on the path space. Therefore, that of x_1 on M is known definitely. But sometimes the notion of topological support seems too rough to characterize a measure. Indeed, the topological support of a measure on M which consists of countable point masses may be M itself.

Recently, Aida-Kusuoka-Stroock [1] obtained the "support" of the distribution of x_1 assuming the Hörmander's condition. Under their assumption, there exists a smooth density function of x_1 . Then, they determined the points on M at which the density function of x_1 becomes positive.

In this paper, we will generalize a part of the results in [1]. Especially when $V_0 \equiv 0$, we will obtain a simple image of the "support" of x_1 .

In section 1, we will give a sufficient condition for a point on M to be of "positive density". The results of section 1 were essentially obtained in [2] and [1].

In section 2, we will define the "orbit" E of the family $\{V_0, \dots, V_r\}$ of vector fields, which was proved to be a C^{∞} -submanifold of M by Sussmann [7]. Then, we will review the result of [5] that x_t stays in E up to the explosion.

In section 3, we will study the case without drift and show that x_1 is distributed everywhere on *E*. In fact, we will prove that the Radon-Nikodym density of the absolutely continuous part of the distribution of x_1 with respect

Communicated by Prof. S. Watanabe, January 30, 1992

to the volume on E is uniformly positive on any compact subset of E. We shall note that the distribution of x_1 is not necessarily absolutely continuous with respect to the volume on E. We will offer a simple counterexample to this.

1. Points of positive density

Let *H* be the space of \mathbf{R}^r -valued absolutely continuous functions $h=(h^1, \dots, h^r)$ on $[0, +\infty)$ such that h(0)=0 and $\int_0^{+\infty} |\dot{h}(t)|^2 dt < \infty$ where \dot{h} is the Radon-Nikodym derivative of *h*. We consider *H* as a Hilbert space with the inner product $(h_1, h_2) = \sum_{k=1}^r \int_0^{+\infty} \dot{h_1}^k(t) \dot{h_2}^k(t) dt$. For $h \in H$, we denote by $\varphi_t(h), 0 \le t < \tau_h$, the solution of the ordinary differential equation

(2)
$$\begin{cases} \dot{\varphi}_t(h) = \sum_{k=1}^r V_k(\varphi_t(h)) \dot{h}^k(t) + V_0(\varphi_t(h)) \\ \varphi_0(h) = x \end{cases}$$

where τ_h is the explosion time. If $h \in H$ and $\tau_h > 1$, then $\varphi_1(\tilde{h})$ is defined for \tilde{h} in some neighborhood \tilde{H} of h, and the map $\varphi_1: \tilde{H} \to M$ is differentiable in the sense of Fréchet. We denote the Fréchet differential of φ_1 at h by $D\varphi_1(h)$: $H \to T_{\varphi_1(h)}(M)$.

Let us assign on M any Riemannian metric g. We denote the Riemannian volume and the Riemannian distance on (M, g) by $vol_{M}(\cdot)$ and $d(\cdot, \cdot)$ respectively.

The aim of this section is to prove the following fact, which was essentially obtained in [2] and [1].

Theorem 1.1. Suppose that $h \in H$ exists such that $\tau_h > 1$ and Image $(D\varphi_1(h)) = T_y(M)$ where $y = \varphi_1(h)$. Put for $\varepsilon > 0$ that

 $\sigma_{\varepsilon} = \inf(\{t < \tau | d(x_t, \varphi_t(h)) \ge \varepsilon\} \cup \{\tau\}).$

Then, there exist a neighborhood N of y and c > 0 such that

 $P(\sigma_{\epsilon} > 1, x_1 \in B) \ge c \cdot vol_M(B)$

for any Borel subset B of N.

We shall carry out the proof of Theorem 1.1 in the remainder of this section. Let us fix $h \in H$ in the assumption of Theorem 1.1. Since $\{\sigma_{\varepsilon} > 1\}$ increases as ε increases, we may assume that ε is small enough so that $K = \{z \in M | d(z, \varphi_t(h)) \le \varepsilon \text{ for some } t \in [0, 1]\}$ is compact. Noting that $\sigma_{\varepsilon} > 1$ implies $x_t \in K$ for all $t \in [0, 1]$, we can see that $P(\sigma_{\varepsilon} > 1, x_1 \in B)$ is invariant when we replace V_0, \dots, V_r by another family of vector fields V'_0, \dots, V'_r such that $V_j = V'_j$ on K. Therefore we may and will assume that

the supports of V_0, \dots, V_r are compact

to the end of this section. Let us notice that, under this condition, the processes we consider may not explode.

Let m be the dimension of M and put

 $D_{\rho} = \{ u \in \mathbf{R}^{m} || u | < \rho \}$

for $\rho > 0$. Let $w_j = (w_j^1, \dots, w_j^r)$, $j=1, \dots, m$ be the independent copies of w. For $u = (u^1, \dots, u^m) \in D_1$, put

(3)
$$w^{k}(t; u) = (1 - |u|^{2})^{1/2} w^{k}(t) + \sum_{j=1}^{m} u^{j} w_{j}^{k}(t).$$

Then, for each $u \in D_1$, $(w^1(t; u), \dots, w^r(t; u))$ also becomes a Wiener process. Let $C^1(D_1; M)$ be the space of C^1 -mappings of D_1 into M, and we will assign on $C^1(D_1; M)$ the compact-open C^1 -topology (cf. [3]). Then, we can define a continuous $C^1(D_1; M)$ -valued process $\{\theta_t\}_{t\geq 0}$ which satisfies for each $u \in D_1$ the stochastic differential equation

(4)
$$\begin{cases} d\theta_t(u) = \sum_{k=1}^r V_k(\theta_t(u)) \circ dw^k(t; u) + V_0(\theta_t(u)) dt \\ \theta_0(u) = x \end{cases}$$

(see [4] for example). We shall introduce some notations:

$$\sigma_{\varepsilon}(u) = \inf\{t | d(\theta_t(u), \varphi_t(h)) \ge \varepsilon\},\$$

$$\sigma_{\rho,\varepsilon} = \inf\{\sigma_{\varepsilon}(u) | u \in D_{\rho}\}.\$$

$$|J(u)| = (\det(g_{\theta_1(u)}(\xi_i, \xi_j)))^{1/2}$$

where $\xi_i = (d\theta_1)_u \left(\frac{\partial}{\partial u^i}\right) = \frac{\partial}{\partial u^i} (\theta_1(u)) \in T_{\theta_1(u)}(M).$

Since the law of $\{\theta_t(u)\}_{t\geq 0}$ is the same as that of $\{x_t\}_{t\geq 0}$ for each $u \in D_1$, we have

(5)
$$P(\sigma_{\varepsilon} > 1, x_1 \in B) = P(\sigma_{\varepsilon}(u) > 1, \theta_1(u) \in B), \quad u \in D_1.$$

Suppose $0 < \rho < 1$. Integrating (5) on D_{ρ} and applying the Fubini's theorem and the change of variables formula, we have

$$|D_{\rho}|P(\sigma_{\epsilon}>1, x_{1}\in B) = \int_{D_{\rho}} P(\sigma_{\epsilon}(u)>1, \theta_{1}(u)\in B) du$$

$$\geq \int_{D_{\rho}} P(\sigma_{\rho,\epsilon}>1, \theta_{1}(u)\in B) du$$

$$= E\Big[\chi_{\{\sigma_{\rho,\epsilon}>1\}} \cdot \int_{D_{\rho}} \chi_{B}(\theta_{1}(u)) du\Big]$$

$$\geq E\Big[\chi_{\{\sigma_{\rho,\epsilon}>1\}} \cdot (\sup_{D_{\rho}}|J|)^{-1} \cdot \int_{D_{\rho}}|J(u)|\chi_{B}(\theta_{1}(u)) du\Big]$$

 $\geq E[\chi_{\{\sigma_{\rho,\varepsilon}>1\}} \cdot (\sup_{D_{\rho}} |J|)^{-1} \cdot vol_{\mathcal{M}}(B \cap \theta_{1}(D_{\rho}))]$ $\geq E[\chi_{A(\rho,\varepsilon,N)} \cdot (\sup_{D_{\rho}} |J|)^{-1} \cdot] \cdot vol_{\mathcal{M}}(B)$

where $|D_{\rho}|$ is the volume of D_{ρ} and

$$A(\rho, \varepsilon, B) = \{\sigma_{\rho,\varepsilon} > 1, \theta_1(D_\rho) \supset B\}$$

Thus we have proved the following.

Lemma 1.2. Let N be a neighborhood of $y = \varphi_1(h)$. Suppose $0 < \rho < 1$ and $\varepsilon > 0$. Then, for any Borel subset B of N.

$$P(\sigma_{\epsilon} > 1, x_1 \in B) \ge c_{\rho,\epsilon,N} \cdot vol_M(B)$$

where

(6)
$$c_{\rho,\varepsilon,N} = |D_{\rho}|^{-1} E[(\sup_{D_{\alpha}} |J|)^{-1} \cdot \chi_{A(\rho,\varepsilon,N)}].$$

We shall show in the remainder of this section that, for any $\varepsilon > 0$, $c_{\rho,\varepsilon,N}$ becomes positive for suitable ρ and N. We shall begin with a refinement of the inverse mapping theorem. Let us denote by $\|\cdot\|$ the operator norm of $m \times m$ -matrices.

Lemma 1.3. Let $0 < \rho < 1$ and $\delta > 0$. Let $f: D_{\rho} \rightarrow \mathbb{R}^{m}$ be a C^{∞} -mapping such that $||I - \partial f(u)|| < \delta$ for all $u \in D_{\rho}$ where I and ∂f are the identity matrix and the Jacobian matrix of f respectively. Then, $f(D_{\rho}) \supset \{z \in \mathbb{R}^{m} ||z - f(0)| < (1 - \delta)\rho\}$.

Proof. We may assume that f(0)=0. Let us denote by ι the identity mapping on D_{ρ} . Then, we see by the assumption that

 $|(\iota-f)(u)-(\iota-f)(v)| < \delta |u-v|, u, v \in D_{\rho}.$

Suppose that $|z| < (1-\delta)\rho$. Noting that the equation f(u) = z is equivalent to $u = z + (\iota - f)(u)$, we shall solve it as follows.

First, let us show that a sequence $\{u_n\}_{n\geq 0}$ can be defined inductively by

(7)
$$u_0=0, \quad u_{n+1}=z+(\iota-f)(u_n), \quad n=0, 1, 2, \cdots$$

and then it holds that

(8) $|u_{n+1}-u_n| \le \delta^n |z|$, $n=0, 1, 2, \cdots$.

Indeed, $u_1 = z$ by (7) and so (8) holds when n = 0. If $\{u_0, \dots, u_k\}$ satisfying (7) and (8) is defined, then $|u_k| \le |u_0| + \sum_{j=0}^{k-1} |u_{j+1} - u_j| \le \frac{|z|}{1-\delta} < \rho$ so that u_{k+1} can be defined by (7). Moreover, by (7) and (8), $|u_{k+1} - u_k| = |(\iota - f)(u_k) - (\iota - f)(u_k)| \le |u_k| \le |u$

 $-f)(u_{k-1})|\leq \delta|u_k-u_{k-1}|\leq \delta^k|z|.$

Then, since $|u_0| + \sum_{n=0}^{\infty} |u_{n+1} - u_n| \le |z| \sum_{n=0}^{\infty} \delta^n = \frac{|z|}{1-\delta} < \rho$, u_n converges to some $u \in D_{\rho}$. Then, by (7), $u = z + (\iota - f)(u)$ so f(u) = z.

We put

(9)
$$\theta_t(u; \mathbf{h}) = \varphi_t((1-|u|^2)^{1/2}h_0 + \sum_{i=1}^m u^i h_i)$$

for $h = (h_0, h_1, \dots, h_m) \in H^{m+1}$, $u = (u^1, \dots, u^m) \in D_1$ and $t \ge 0$. If we fix $u \in D_1$ and put

$$\tilde{V}_{k,0} = (1 - |u|^2)^{1/2} V_k$$
, $\tilde{V}_{k,j} = u^j V_k$, $j = 1, \cdots, m$

then, by (2), (3), (4) and (9), we have the stochastic differential eqution

$$\begin{cases} d\theta_t(u) = \sum_{k=1}^r \sum_{j=0}^m \tilde{V}_{k,j}(\theta_t(u)) \circ dw_j^k(t) + V_0(\theta_t(u)) dt \\ \theta_0(u) = x \end{cases}$$

where $w_0(t) = w(t)$ and the ordinary differential equation

$$\begin{vmatrix} \dot{\theta}_t(u; \mathbf{h}) = \sum_{k=1}^r \sum_{j=0}^m \tilde{V}_{k,j}(\theta_t(u; \mathbf{h})) \dot{h}_j^k(t) + V_0(\theta_t(u; \mathbf{h})) \\ \theta_0(u; \mathbf{h}) = x .$$

Let dist(\cdot , \cdot) be any metric on $C^1(D_1; M)$ compatible with the compact-open C^1 -topology. For $h \in H^{m+1}$ and $\delta > 0$, define the event $G_{\delta}(h)$ by

 $G_{\delta}(\boldsymbol{h}) = \{ \sup_{0 \leq t \leq 1} \operatorname{dist}(\theta_t, \theta_t(\boldsymbol{\cdot}; \boldsymbol{h})) < \delta \}.$

Then we can obtain the following generalization of the Stroock-Varadhan's support theorem (see [4], the proof of Theorem 5.7.6).

Lemma 1.4. $P(G_{\delta}(\mathbf{h})) > 0$ for any $\mathbf{h} \in H^{m+1}$ and $\delta > 0$.

By means of Lemmas 1.3 and 1.4, we can now prove the following.

Lemma 1.5. Under the condition of Theorem 1.1, for any $\varepsilon > 0$, there exist $\rho > 0$ and a neighborhood N of y such that $P(A(\rho, \varepsilon, N)) > 0$.

Proof. Take any local chart $z = (z^1, \dots, z^m)$ on a neighborhood of y. By the assumption, we can take $h_1, \dots, h_m \in H$ such that

$$\frac{d}{du}z^{i}(\varphi_{1}(h+uh_{j}))|_{u=0}=\delta^{i}{}_{j}, \quad i,j=1,\cdots, m$$

where δ_{j}^{i} is the Kronecker's delta. Put $\boldsymbol{h} = (h, h_{1}, \dots, h_{m}) \in H^{m+1}$. Then the Jacobian matrix of the mapping $\boldsymbol{z} \circ \theta_{1}(\boldsymbol{\cdot}; \boldsymbol{h}) : D_{1} \rightarrow \boldsymbol{R}^{m}$ at 0 is the identity matrix. If ρ is sufficiently small, then

$$\sup_{0\leq t\leq 1, u\in D_{\rho}} |\theta_t(u; \boldsymbol{h}) - \varphi_t(h)| < \frac{\varepsilon}{2}.$$

By Lemma 1.3, $G_{\delta}(\mathbf{h}) \subset A(\rho, \varepsilon, N)$ holds for sufficiently small ρ and δ and a small neighborhood N of y. Then, by Lemma 1.4, $P(A(\rho, \varepsilon, N)) \ge P(G_{\delta}(\mathbf{h})) > 0$.

Noting (6), $c_{\rho,\varepsilon,N} > 0$ if and only if $P(A(\rho, \varepsilon, N)) > 0$. Therefore Lemmas 1.2 and 1.5 imply the assertion of Theorem 1.1.

2. Submanifold supporting the distribution of solution

We will introduce in this section the "orbit" E of $\{V_0, \dots, V_r\}$ following [7], and review the result of [5].

Definition. Let *E* be the subset of *M* consisting of all $y \in E$ such that there exist $n \ge 1$, $k_1, \dots, k_n \in \{0, \dots, r\}$ and $t = (t_1, \dots, t_n) \in \mathbb{R}^n$ for which

(10)
$$\psi_{k_1,\cdots,k_n}(t) = \theta_{t_n}^{k_n}(\cdots(\theta_{t_2}^{k_2}(\theta_{t_1}^{k_1}(x))\cdots))$$

is well-defined and equal to y. Here, $\theta_t^k(x)$ is the integral curve of V_k such that $\theta_0^k(x) = x$.

We assign on E the strongest topology such that (10) becomes a continuous map of t into E for any k_1, \dots, k_n .

The following fact was obtained by Sussmann [7].

Proposition 2.1. There is a differentiable structure on E for which

- (i) E is a σ -compact C^{∞} -submanifold of M,
- (ii) for each $y \in E$, there exist $k_1, \dots, k_n \in \{0, \dots, r\}$ and $t \in \mathbb{R}^n$ such that

(11)
$$y = \psi_{k_1, \cdots, k_n}(t)$$
 and $\operatorname{Image}(d\psi_{k_1, \cdots, k_n}(t)) = T_y(E)$.

Remark. We can easily show that the differentiable structure on E compatible with the topology defined above and with which (i) holds is unique.

Throughout this paper, we consider E as a C^{∞} -submanifold of M with the differentiable structure introduced in Proposition 2.1. Then, V_0, \dots, V_r can be considered as C^{∞} -vector fields on E. Therefore it is obvious that $x_t \in E$ for sufficiently small t almost surely. In fact, the following was obtained in [5].

Propoition 2.2. (i) $\varphi_t(h) \in E$ for any $h \in H$ and $t \in [0, \tau_h)$, (ii) $x_t \in E$ for all $t \in [0, \tau)$ almost surely.

Remark. Only (ii) was proved in [5] explicitly but (i) can be shown more easily in the same way.

728

3. The case without drift

In this section, we shall study the case where $V_0 \equiv 0$ by combining the results in sections 1 and 2. Let us assign on *E* the Riemannian structure induced from *M* and denote by $vol_E(\cdot)$ the Riemannian volume on *E*. The aim of this section is to show the following fact.

Theorem 3.1. Suppose $V_0 \equiv 0$. Then, for any compact subset K of E, there exists a positive constant c_K such that

(12)
$$P(\tau > 1, x_1 \in B) \ge c_K \cdot vol_E(B)$$

for any Borel subset B of K.

Remark. Let p(y) be the Radon-Nikodym density of the absolutely continuous part of the distribution of x_1 with respect to the volume on E. Then the assertion of Theorem 3.1 means that

$$\operatorname{ess.inf}_{y \in K} p(y) > 0$$

for any compact subset K of E.

We shall prove theorem 3.1. The following lemma tells that Theorem 1.1, replaced M by E, can be applied for any points on E.

Lemma 3.2. Suppose $V_0 \equiv 0$. Then, for each $y \in E$, there exists an $h \in H$ such that $\varphi_1(h) = y$ and $\text{Image}(D\varphi_1(h)) = T_y(E)$.

Proof. Let $k_1, \dots, k_n \in \{1, \dots, r\}$ and $t = (t_1, \dots, t_n) \in \mathbb{R}^n$ satisfy (11). Define $h_1, \dots, h_n \in H$ by

$$h_j^{k}(t) = \begin{cases} n \text{ if } \frac{j-1}{n} \le t < \frac{j}{n} \text{ and } k_j = k \\ 0 \text{ if otherwise.} \end{cases}$$

Then we can easily see that

 $\psi_{k_1\cdots,k_n}(\mathbf{s}) = \varphi_1(\sum_{j=1}^n S_j h_j)$

for any $\mathbf{s} = (s_1, \dots, s_n)$ in some neighborhood of t. Therefore, putting $h = \sum_{j=1}^{n} t_j h_j$, we have

Image $(D\varphi_1(h)) \supset$ Image $(d\varphi_{k_1,\dots,k_n}(t)) = T_y(E)$.

Proof of Theorem 3.1. Suppose that *K* is a compact subset of *E*. By Theorem 1.1 and Lemma 3.2, there exist a finite number of open subsets N_1, \dots, N_t of *E* and positive constants c_1, \dots, c_t such that $K \subseteq N_1 \cup \dots \cup N_t$ and

$$P(\tau > 1, x_t \in B) \ge c_j \cdot vol_E(B)$$

if B is a Borel subset of N_j . Then (12) holds by putting $c_{\kappa} = \min\{c_1, \dots, c_l\}$.

We shall note that the distribution of x_1 is not necessarily absolutely continuous with respect to the volume on *E*. Indeed, we have the following counterexample.

Example. Let us consider the case where $M = \mathbb{R}^2$, x = (0, 0) and r = 2. We denote the coordinate on \mathbb{R}^2 by (u, v). Take any smooth function f on \mathbb{R}^1 such that f(u)=0 (resp. f(u)>0) if $u \le 1$ (resp. u>1). Put $V_1 = \frac{\partial}{\partial u}$, $V_2 = f(u)\frac{\partial}{\partial v}$ and $V_0=0$. Then $E = \mathbb{R}^2$ with its proper differentiable structure. However, the distribution of x_1 is a sum of two measures which are equivalent

to the uniform measures on $(-\infty, 1)$ and on \mathbb{R}^2 respectively.

KOBE UNIVERSITY OF COMMERCE

References

- [1] S. Aida, S. Kusuoka and D. W. Stroock, On the support of Wiener functionals, Preprint.
- [2] G. Ben Arous et R. Léandre, Décroissance exponentielle du noyau de la chaleur sur la diagonale (I), Probab. Th. Rel. Fields, 90 (1991), 175-202.
- [3] M. Hirsch, Differential topology, Springer, Verlag, Berlin-Heidelberg-New York, 1976.
- [4] H. Kunita, Stochastic flows and stochastic differential equations, Cambridge Univ. Press, 1990.
- [5] T. Masuda, Certain invariant sets of stochastic flows generated by stochastic differential equations, To appear in J. Math. Kyoto Univ. 32 (1992).
- [6] D. W. Stroock and S. R. S. Varadhan, On the support of diffusion processes with applications to the strong maximum principle, Proc. Sixth Berkeley Symp. Math. Statist. Prob. III. 333-359, Univ. California Press, Berkeley, 1972.
- [7] H. J. Sussmann, Orbits of families of vector fields and integrability of distributions, Trans. Amer. Math. Soc. 180 (1973), 171-188.

730