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On the support of solution of a stochastic
differential equation without drift

By

Takao MASUDA

Introduction

Let M  be a a-compact C- -manifold and Vo, Vi, •••, V, be C - -vector fields
on M .  Throughout this paper, we shall fix any point xE M .  Let (u)', w r)
be an r-dimensional Wiener process. We denote by xt, t < r, the solution
of the stochastic differential equation

(1)
{d.rt= =1V h(xt)odwk(t)+  V o(xt)dt
Xo=- - - X

of Stratonovich type, where r is the explosion time.
Stroock and Varadhan obtained the topological support of the distribu-

tion of {xt}to on the path space. Therefore, that of x i on M  is known
definitely. But sometimes the notion of topological support seems too rough
to characterize a measure. Indeed, the topological support of a measure on
M  which consists of countable point masses may be M  itself.

Recently, Aida-Kusuoka-Stroock [1] obtained the "support" of the distri-
bution of xi assuming the HOrmander's condition. Under their assumption,
there exists a  smooth density function of x i .  Then, they determined the
points on M  at which the density function of xi becomes positive.

In this paper, we will generalize a part of the results in [I]. Especially
when V0 0, we will obtain a simple image of the "support" of xi.

In section I, we will give a sufficient condition for a point on M  to be of
"positive density". The results of section I were essentially obtained in [2]
and [I].

In section 2, we will define the "orbit" E  of the fam ily  Vo, ••-, Vr} of
vector fields, which was proved to be a C- -submanifold of M by Sussmann [7].
Then, we will review the result of [5] that x t stays in E  up to the explosion.

In section 3, we will study the case without drift and show that xi is
distributed everywhere on E .  In fact, we will prove that the Radon-Nikodym
density of the absolutely continuous part of the distribution of xi with respect
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to  the volume on E  is uniformly positive on any compact subset of E .  We
shall note that the distribution of xi is not necessarily absolutely continuous
with respect to the volume on E .  We will offer a simple counterexample to
this.

1. Points of positive density

Let H  be the space of Rr-valued absolutely continuous functions

•••, hr) on  [0, + co) such  tha t h(0)=0 and f  h ( t)rd t< 00 w h e re  h  is  the
Radon-Nikodym derivative of h .  We consider H  as a Hilbert space with the
inner product (hi, h2)=ETi=ifo h i k (t)fi2 k ( t ) d t .  For h E H , w e denote by

§ (h), t < rh, the solution of the ordinary differential equation

{

0 t ( h ) =± i Vk(ggt(h))fi k (t)+ V o(Tt(h))

çoo(h)=x

where Th is  the explosion time. If h G H  and rh>l, then çoi(ii) is defined for
in some neighborhood ft of h, and the map çoi: fi—>M is differentiable in the

sense of Fréchet. We denote the Fréchet differential of çoi a t h by Dçoi(h): H
— >Tvich)(M).

Let us assign on M  any Riemannian metric g. W e denote the Rieman-
nian volume and the Riemannian distance on (M , g ) b y vo/m(•) and d ( ,  •)
respectivelly.

The aim of this section is to prove the following fact, which was essen-
tially obtained in [2] and [1].

T heorem  1.1. Suppose th at h c H  ex ists such that rh >1  and Image
(Dçoi(h))= Ty (M ) where y =ç o i(h ) . Put for E >0 that

ce=inf(lt < rld(x t, sot(h)) E} U{ r} ) .

Then, there exist a neighborhood N  of y and c >0 such that

P(ae>l, x iEB ) c • v olm (B )

fo r  any Borel subset B  o f N

W e shall carry out the proof of Theorem  1.1 in the remainder of this
section. Let us fix h H  in the assumption of Theorem  1.1. Since {o- c >1}
increases as E. increases, we may assume tha t E  is small enough so that K =
{zEMId(z, çot(h)) E  for so m e  tE[O, 1]) i s  compact. N o tin g  th a t  c,>1
implies .rt K  for a ll tE[0, 1], w e can see that P(ce >1, xiEB) is invariant
when we replace Vo, V, by another family of vector fields Vo', •-•, V; such
th a t  V.,= VI on K .  Therefore we may and will assume that

(2)
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the supports of Vo, •••, Vr are compact

to the end of this section. Let us notice that, under this condition, the
processes we consider may not explode.

Let m  be the dimension of M  and put

D p = lu E R 'llu l< 1 0 )

for p > O . Let wi = (w i
l , •••, wi r), j=1,•••,m  be the independent copies of w.

For u = (u 1 , •••, um)EDI, put

(3) w k (t; u )= (1 -
1u 1 2 ) 1 1 2 w k ( t ) +

.;.'" w,k (t) .

Then, for each u c A ,  ( wl (t; u), • • • , wr (t; u)) also becomes a Wiener process.
Let C l (A ; M ) be the space of C'-mappings of A  into M , and we will assign
on O A ;  M ) the compact-open C'-topology  (cf . [ 3 ] ) .  Then, we can define a
continuous C i (Di; M)-valued process f O i l t  which satisfies for each u  DI the
stochastic differential equation

(4)
{ dei ( u) = = i Vk(Ot(u ) ).dw k( t; u ) +  V o(O t(u ) )dt

00( u )=x

(see [4] for example). We shall introduce some notations:

6,(u)=infltid(Ot(u), ç 0 t(h)) s} ,

cip, =inf{cMu)lu E D,} .

IT(u)1=(det(90,(u)(E,, 
M y 1 2

where ez=(d01)u( a
a
te  ) = a

a
u ,  (01(0)E T e i(.)(M).

Since the law of {0 t(u )}to  is the same as that of {xt} to  for each uE D I,
we have

(5) P (6e>1, x1 E B )= P (ce (u )>1  , O i(u )E B ), u E D i .

Suppose 0< p < 1 .  Integrating (5) on D , and applying the Fubini's theorem
and the change of variables formula, we have

1D pIP (ae>1 , x iE B )=  fj(ch (u )>1 , O i(u )E B )d u

f Oi(u)EB)du
D p

E[X1CT px>11 . f  D  /B (01 (74 ) d d

E[Xicy„,>1) • (SID-TV 1)- 1  LIAU)1X13(01(11))diti



726 Takao Masuda

E[xio-,„>1)•(sRP1.11) - 1 •volm(B n ei(a))]

_>_E[x.(,,,,N)•(sbipli1) - i•]•voim(B)

where IDA is the volume of Dp and

A ( p ,  13)={6p,e>1, 01(Dp)DB}  .

Thus we have proved the following.

Lemma 1.2. L et N  be a  neighborhood o f  y = ç o i(h ).  Suppose 0 < p < 1
and E > 0 .  Then, for any  Borel subset B  of  N

P(6,>1, xiEB)> cp,,,N- volm(B)

where

(6) cp,e,N= D p r E [(s li,P1.11)- 1 .xmp,e,N)]

We shall show in the remainder of this section that, for any E > 0 , cp,,,N
becomes positive for suitable p and N .  We shall begin with a refinement of
the inverse mapping theorem. Let us denote by 11.11 the operator norm of m
X m -m atrices.

Lemma 1.3. L et 0< p<1 and  a>o . L et f: Dp-> Rm be a  C - -mapping
such that III — af (u)ll< ô f or all uEDp where I and af are the identity matrix
and the Jacobian matrix of  f  respectively. Then, f(Dp)DtzER112 -  f(0)1<(1
— a)p).

Proof . W e may assume that f ( 0 ) = 0 .  Let us denote by c the identity
mapping on D .  T hen , we see by the assumption that

i(t - f ) (u ) - (1 - f)(v )1<a lu - vI, u, vEDp

Suppose that Izl< (1 - a )p .  Noting that the equation f (u )= z  is equivalent to
u  = z + (t  - f ) (u ),  we shall solve it as follows.

First, let us show that a sequence fu n In o  can be defined inductively by

(7) u 0 = 0  ,  u n + i= z + ( t - f ) (u n ) ,  n=0, 1, 2, .

and then it holds that

(8) un+i-unI-<anIzI , n=0, 1, 2, ••• .

Indeed, u i= z  by (7) and so (8) holds when n

and (8) is defined, then lukI luol

be defineddefined by (7). M oreover, by ( 7 )  and

= 0 .  If {740, •••, uk} satisfying (7)

uf l_< 
1z1

a < p so that uk+i can

(8 ) , lul k + i - u k l = k t - f ) ( u k ) - ( 1
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— f)(uk-1)1 81uk — uk-11-<ak 121.

Then, since luoi+E7,'=olun+i —
- 121E;7=o6n= <p, un converges to

some u E D , .  Then, by (7 ), u =z +(c — f ) (u )  so f ( u ) =z .

We put

(9) Ot(u; h)=çot((1 - 1u12 ) 1/2 h0+- E 7in=iu'hz)

for h=(ho, h1, •••, h.)EHm+ 1 ,  u =( u l , •••, um)EDI and t O. I f  we fix uED1
and put

k,O =  (1  - 11112 ) " 2  V  k k ,j = V k = 1 ,  •  •  ,

then, by (2 ), (3 ), (4 ) and (9), we have the stochastic differential eqution

{ dOt(u)=EI,IET =0Pk ,i(Ot(u))°dw i k (t)+ V o(Ot(u))dt
00(u) - x

where w o(t)=w (t) and the ordinary differential equation

{

(h (u ; h)=Elk'=1E,7=0Pk,;(0t(u; h))hi k (t)+ V o(Ot(u; h))
00(u; h)= x .

Let d is t(• , - ) be any metric on C l (Di; M ) compatible with the compact-open
C'-topology. F o r  heH m + 1 and a > 0 , define the event Cs(h) by

G e(h)— {supot idist(t9t, Ot( • ; h))< a} .

Then we can obtain the following generalization of the Stroock-V aradhan 's
support theorem (see [4 ], the proof of Theorem 5.7.6).

Lemma 1 .4 .  P(G8(h))>0 f o r any  hE 1-1" 1 an d  8 >O.

By means of Lemmas 1.3 and 1.4, we can now prove the following.

Lemma 1.5. Under the condition of  Theorem 1.1, f o r any  E > 0 , there
exist p> 0 an d  a neighborhood N  o f  y  such that P(A (p , E , N ))>0.

P ro o f  Take any local chart z =(z 1 , •••, zni) on a neighborhood o f  y . By
the assumption, we can take h1, •••, hm E H  such that

d 
d u  

z ' (ç i(h + uhM in-o= , j, j=1, •••, m

where 8 ', is the K ronecker's delta. Put h =(h , h1, h.)E H m + 1 . Then the
Jacob ian  matrix of the mapping zo 01(•; h): D I  R'n at 0 is the identity matrix.
If p  is sufficiently small, then
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S U P  le  t(U; h)— çot(h)1<-20 1,ueD,

By Lemma 1.3, G 8 (h )cA (p , c , N ) holds for sufficiently small p and ô  and a
small neighborhood N  of y. Then, by Lemma 1.4, P (A (p , E, N))> P(G8(h))>
0.

Noting (6), cp,,,N, >0 if and only if P (A (p , E, N)) > 0 .  Therefore Lemmas
1.2 and 1.5 imply the assertion of Theorem 1.1.

2. Subm anifold supporting the distribution of solution

We will introduce in this section the "orbit" E  o f  Vo, •••, Vr} following
[7], and review the result of [5].

Definition. Let E  be the subset of M  consisting of all y E E  such that
there exist k1,•••,knE{0,•••,r) and t =(ti, •••, tn)ERn for which

(10 ) oN .. . ( 0,k22(0P,i(x))...)

is well-defined and equal to y. H ere , Otk (x )  is the integral curve of Vk such
tha t Ook (x )= x .

We assign on E  the strongest topology such that (10) becomes a continu-
ous map of t into E  for any le1, •••, kn.

The following fact was obtained by Sussmann [7].

Proposition 2.1. T here is a  differentiable structure on E  f o r which

(i) E  is a  a-compact C - -submanzfold of  M,

(ii) f o r each y E E , there exist k1 ,  ,  knE{0,•••, r) an d  tE R n such that

(11) y= k„ ..,k,(t) a n d  Image(dOk i , .,k„(t))=  Ty ( E ) .

R em ark. W e can  easily  show th a t  the differentiable structure on E
compatible with the topology defined above and with which (i) holds is unique.

Throughout this paper, we consider E  as a C - -submanifold of M  with the
differentiable structure introduced in Proposition 2.1. Then, Vo, •••, 14 can be
considered as C - -vector fields on E . Therefore  it is obvious that x tE  E  for
sufficiently small t  alm ost sure ly . In fact, the following was obtained in [5].

Propoition 2.2. (0 çot(h)EE f or any  h E H  and  t E[0, rh), (ii) x tE E  f or
all tE[0, r) almost surely.

R em ark. Only ( ii)  was proved in [5] explicitly but (i) can be shown more
easily in the same way.
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3. The case without drift

In th is section, w e shall study the case w here  V0—=0 by combining the
results in sections 1 and 2. Let us assign on E  the Riemannian structure
induced from M  and denote by vo/E(•) the Riemannian volume on E .  The
aim of this section is to show the following fact.

Theorem  3.1. Suppose V0= -0 .  T hen, for any  compact subset K  o f  E,
there exists a positive constant cif such that

(12) P(z- >1, xiEB) cK • volE(B)

f or any  Borel subset B  of K.

R em ark . Let P (y ) b e  the Radon-Nikodym density of the absolutely
continuous part of the distribution of xi w ith  respect to  the volume on E.
Then the assertion of Theorem 3.1 means that

ess.infp(y) >0
y e K

for any compact subset K  of E.

W e shall prove theorem 3 .1 . The following lemma tells that Theorem
1.1, replaced M  by E , can be applied for any points on E.

Lem m a 3.2. Suppose Vo 0. Then, for each y E E , there exists an h E H
such that çoi(h)= y and Image(Dçoi(h))= T (E ).

Proo f . Let k 1 , -• •, k {1, « ,  r )  a n d  t=( t i ,  •••, tn)E R n  s a t is f y  (11).
Define hi, •••, hnEH by

hik (t)={ n  
if n

i  t  < - ±  and ki =k

Then we can easily see that

k i — , l e n ( S ) l( E.7 lli)

for any s=(si, sn) in some neighborhood of t. Therefore, putting h=E'1=1
we have

Image(Dçoi (h)) D Image( dçok 1, t ) ) =  T y (E) .

Proof  o f  Theorem 3 . 1 .  Suppose tha t K  is a compact subset of E .  By
Theorem 1.1 and Lemma 3.2, there exist a finite number of open subsets NI,
N1 of E  and positive constants C I, • • • ,  ci such that K c N i U••• UN/ and

P ( r> l ,  x t  B ) > C; • V OlE(B)

0 if otherwise.
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if B  is a Borel subset of N . T h e n  (12) holds by putting cif =min{ci, •-•,

W e shall note that the distribution of xi is not necessarily absolutely
continuous with respect to the volume on E .  Indeed, we have the following
counterexample.

Example. Let us consider the case where M = R 2 , x—(0, 0) and r= 2 .
We denote the coordinate on le by ( u ,  y ) .  Take any smooth function f  on RI

such that f ( u ) = 0  ( r e .  f ( u )  > 0) if  ze - 1  (resP . u  >1). P ut VI= a
a
it , V2=

f ( u ) a
a
v a n d  V0= 0 .  Then E =  le  with its proper differentiable structure.

However, the distribution of xi is a sum of two measures which are equivalent
to the uniform measures on ( —co, 1) and on R 2 respectively.
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