Kostant's formula and homology vanishing theorems for generalized Kac-Moody algebras

By

Satoshi NAITO

Introduction

A real $n \times n$ matrix $A = (a_{ij})_{i,j \in I}$ indexed by a set $I = \{1, 2, ..., n\}$ is called a GGCM if it satisfies

- (C1) either $a_{ii}=2$ or $a_{ii}\leq 0$;
- (C2) $a_{ij} \leq 0$ if $i \neq j$, and $a_{ij} \in \mathbb{Z}$ if $a_{ii} = 2$;
- (C3) $a_{ij}=0$ implies $a_{ji}=0$.

Let g(A) be a generalized Kac-Moody algebra (GKM algebra), over the complex number field C, associated to a symmetrizable GGCM $A = (a_{ij})_{i,j \in I}$, with Cartan subalgebra \mathfrak{h} , simple roots $\Pi = \{a_i\}_{i \in I}$, and simple coroots $\Pi^{\vee} = \{a_i^{\vee}\}_{i \in I}$. And let $g(A) = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}^+$ be the triangular decomposition with $\mathfrak{n}^{\pm} = \sum_{\alpha \in \mathcal{A}^{\pm}}^{\oplus} \mathfrak{g}_{\alpha}$, where \mathfrak{g}_{α} is the root space attached to a root $\alpha \in \mathcal{A}^{\pm}$. See [5] (and also [1]) for the definition of generalized Kac-Moody algebras.

In the previous paper [11], we studied the h-module structure of the homology $H_j(\mathfrak{n}^-, L(\lambda))$ $(j \ge 0)$ of \mathfrak{n}^- or the cohomology $H_c^j(\mathfrak{n}^+, L(\lambda))$ $(j \ge 0)$ of \mathfrak{n}^+ with coefficients in the irreducible highest weight $\mathfrak{g}(A)$ -module $L(\lambda)$ with highest weight $\lambda \in \mathfrak{h}^* := \operatorname{Hom}_c(\mathfrak{h}, \mathbb{C})$. (Remark that the cohomology $H_c^j(\mathfrak{n}^+, L(\lambda))$ $(j \ge 0)$ used in [11] is slightly different from the usual Lie algebra cohomology.) Then, we proved "Kostant's formula" under the following condition ($\widehat{\mathbb{C}}1$) on the GGCM $A = (a_{ij})_{i,j \in I}$:

($\widehat{C}1$) either $a_{ii}=2$ or $a_{ii}=0$ ($i \in I$).

Namely, we proved

Theorem A ([11]). Let $\Lambda \in P^+:=\{\lambda \in \mathfrak{h}^* | \langle \lambda, a_i^{\vee} \rangle \geq 0 \ (i \in I), and \langle \lambda, a_i^{\vee} \rangle \in \mathbb{Z}_{\geq 0}$ if $a_{ii}=2\}$. Denote by \mathfrak{S} the set of all sums of distinct pairwise perpendicular elements from $\Pi^{im}:=\{a_i \in \Pi | a_{ii} \leq 0\}$. And we put $\mathfrak{S}(\Lambda):=\{\lambda \in \mathfrak{S} | (\lambda | \Lambda) = 0\}$, where $(\cdot | \cdot)$ is a standard bilinear form on \mathfrak{h}^* . Then, as \mathfrak{h} -modules $(j \geq 0)$,

Prc. Jan. 21, 1992

Recceived January 21, 1992

S. Naito

$$H^{j}_{c}(\mathfrak{n}^{+}, L(\Lambda)) \cong H_{j}(\mathfrak{n}^{-}, L(\Lambda)) \cong \sum_{\beta \in \mathfrak{S}(\Lambda)}^{\oplus} \sum_{\substack{w \in W \\ \ell(w) = j - ht(\beta)}}^{\oplus} C(w(\Lambda + \rho - \beta) - \rho) ,$$

where $C(\mu)$ ($\mu \in \mathfrak{h}^*$) is the irreducible (one-dimensional) \mathfrak{h} -module with weight μ . Here, ρ is a fixed element of \mathfrak{h}^* such that $\langle \rho, a_i^{\vee} \rangle = (1/2) \cdot a_{ii}$ ($i \in I$), $\ell(w)$ is the length of an element w of the Weyl group W, and for $\beta = \sum_{i \in I} k_i a_i$ ($k_i \in \mathbb{Z}_{\geq 0}$) $\in \mathfrak{S}$, we put $ht(\beta) := \sum_{i \in I} k_i$.

In the present paper, using the idea of L. Liu [10] for Kac-Moody algebras, we extend the above result so that the *nilpotent part* n^+ of the *Borel subalgebra* $b := \mathfrak{h} \oplus \mathfrak{n}^+$ is allowed to be the *nilpotent part* of a *parabolic subalgebra* containing b.

Let us explain in more detail. Let I^{re} (resp. I^{im}) be the subset $\{i \in I \mid a_{ii} = 2 \text{ (resp. } a_{ii} \leq 0)\}$ of the indexing set I. And let J be a subset of I^{re} . We define a submatrix A_J of A by $A_J := (a_{ij})_{i,j \in J}$, which is a generalized Cartan matrix (GCM). Note that there exists a certain subspace \mathfrak{h}_J of \mathfrak{h} with $a_i^{\vee} \in \mathfrak{h}_J$ ($i \in J$), such that the triple $(\mathfrak{h}_J, \{a_i | \mathfrak{h}_J\}_{i \in J}, \{a_i^{\vee}\}_{i \in J})$ is a minimal realization of the GCM A_J . Then, we can identify the Kac-Moody algebra $\mathfrak{g}(A_J)$ with the subalgebra \mathfrak{g}_J of $\mathfrak{g}(A)$ generated by e_i , f_i ($i \in J$), and \mathfrak{h}_J . Furthermore, $\mathfrak{g}_J = \mathfrak{h}_J \oplus \sum_{a \in J} \mathfrak{g}_a$, where $\Delta_J := \mathcal{L} \cap \sum_{i \in J} \mathbb{Z} a_i$ (or its restriction to \mathfrak{h}_J) is the root system of $(\mathfrak{g}_J, \mathfrak{h}_J)$. Now, we define the following subalgebras of $\mathfrak{g}(A)$:

$$\mathfrak{n}_{J}^{+} := \sum_{\alpha \in \mathcal{J}}^{\oplus} \mathfrak{g}_{\alpha} , \quad \mathfrak{n}_{J}^{-} := \sum_{\alpha \in \mathcal{J}}^{\oplus} \mathfrak{g}_{-\alpha} , \quad \mathfrak{u}^{+} := \sum_{\alpha \in \mathcal{J}}^{\oplus} \mathfrak{g}_{-\alpha} ,$$
$$\mathfrak{u}^{-} := \sum_{\alpha \in \mathcal{J}}^{\oplus} \mathfrak{g}_{-\alpha} , \quad \mathfrak{m} := \mathfrak{n}_{J}^{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{J}^{+} , \quad \mathfrak{p} := \mathfrak{m} \oplus \mathfrak{u}^{+} ,$$

where $\Delta(J):=\Delta\setminus\Delta_J$, $\Delta_J^{\dagger}:=\Delta^{+}\cap\Delta_J$, $\Delta^{+}(J):=\Delta^{+}\cap\Delta(J)$. We call $\mathfrak{p}=\mathfrak{m}\oplus\mathfrak{u}^{+}$ the *parabolic subalgebra* of $\mathfrak{g}(A)$ defined by J. Note that since the triple $(\mathfrak{h}, \{\alpha_i\}_{i\in J}, \{\alpha_i^{\vee}\}_{i\in J})$ is a *realization* (but not necessarily a minimal realization) of the GCM A_J , $\mathfrak{m}=\mathfrak{g}_J+\mathfrak{h}$ can be regarded as a Kac-Moody algebra associated to A_J , whose Cartan subalgebra is \mathfrak{h} .

Recall that the *Weyl group* W of g(A) is defined to be the subgroup of $GL(\mathfrak{h}^*)$ generated by *fundamental reflections* r_i $(i \in I^{re})$. Now, let W_j be the subgroup of W generated by r_i 's $(i \in J)$, which is the Weyl group of \mathfrak{m} . And we put $W(J) := \{w \in W | w(\Delta^-) \cap \Delta^+ \subset \Delta^+(J)\}$ $(= \{w \in W | w^{-1}(\Delta_j^+) \subset \Delta^+\})$. Then, we will obtain the following theorem. (Here, as in [11], the cohomology $H_c^j(\mathfrak{u}^+, L(\Lambda))$ $(j \ge 0)$ is slightly different from the usual one, whereas the homology $H_j(\mathfrak{u}^-, L(\Lambda))$ $(j \ge 0)$ is the usual Lie algebra homology. See § 3 for the definition.)

Theorem. Let $A \in P^+$. Assume that the GGCM $A = (a_{ij})_{i,j \in I}$ is symmetrizable and satisfies the condition ($\hat{C}1$). Then,

Kostant's formula and homology vanishing theorems

$$H^{j}_{c}(\mathfrak{u}^{+}, L(\Lambda)) \cong H_{j}(\mathfrak{u}^{-}, L(\Lambda)) \cong \sum_{\beta \in \mathfrak{S}(\Lambda)}^{\oplus} \sum_{\substack{w \in W(J)\\ \ell(w) = j - \operatorname{ht}(\beta)}}^{\oplus} L_{\mathfrak{u}}(w(\Lambda + \rho - \beta) - \rho),$$

as m-modules $(j \ge 0)$. Here, for $\mu \in P_J^+ := \{\lambda \in \mathfrak{h}^* | \langle \lambda, \alpha_i^{\vee} \rangle \in \mathbb{Z}_{\ge 0} \ (i \in J)\}$, $L_m(\mu)$ is the irreducible highest weight m-module with highest weight μ .

Note that when $J = \phi$, this theorem is nothing but Theorem A, since in this case, $\mathfrak{u}^+ = \mathfrak{n}^+$, $\mathfrak{u}^- = \mathfrak{n}^-$, $\mathfrak{m} = \mathfrak{h}$, and W(J) = W.

And in the last part of this paper, we prove a homology vanishing theorem for GKM algebras with coefficients in a generalized Verma module, as a consequence of our "Kostant's formula". This theorem generalizes the result of C. Sen [13], which is only for the class of Kac-Moody algebras and under the condition that the subset J of I is of finite type (i.e., the submatrix $A_I = (a_{ij})_{i,j \in J}$ of A is a classical Cartan matrix of finite type).

This paper is organized as follows. In § 1, we review some basic results for GKM algebras, especially the Weyl-Kac-Borcherds character formula. In § 2, we will introduce the algebra \mathcal{F} of *formal* m-*characters*, where we can carry out certain formal operations. In § 3, we rewrite some results of L. Liu [10] for Kac-Moody algebras, which can be proved also for GKM algebras in just the same way that they are proved for Kac-Moody algebras. In § 4, we prove our main theorem stated above, combining the results of [10] and [11]. In § 5, as consequences of our main theorem, we obtain some vanishing theorems for the homology of GKM algebras.

Acknowledgments. I would like to express my sincere thanks to Professor Akira Kono for answering my questions about the singular cohomology of Kac-Moody groups.

§ 1. The category \mathcal{O} and the character formula

In this section, we prepare fundamental results about GKM algebras for later use. For detailed accounts of this section, see [1] and [5].

We put $I:=\{1, 2, ..., n\}$. Let g(A) be the GKM algebra associated to a GGCM $A=(a_{ij})_{i,j\in I}$ with the Cartan subalgebra \mathfrak{h} .

Definition 1.1 ([5]). \mathcal{O} is the category of all \mathfrak{h} -modules V satisfying the following:

(1) *V* admits a weight space decomposition $V = \sum_{\lambda \in \mathcal{P}(V)}^{\bigoplus} V_{\lambda}$, where $\mathcal{P}(V)$ is the set of all weights of *V*. And each weight space V_{λ} is finite-dimensional $(\lambda \in \mathcal{P}(V))$;

(2) there exist a finite number of elements $\lambda_i \in \mathfrak{h}^*$ $(1 \le i \le s)$ such that $\mathscr{P}(V) \subset \bigcup_{i=1}^s D(\lambda_i)$, where $D(\lambda_i) := \{\lambda_i - \beta | \beta \in Q_+ = \sum_{j \in I} \mathbb{Z}_{\ge 0} \alpha_j\}$ $(1 \le i \le s)$.

Note that the category \mathcal{O} is closed under the operations of taking submodules, quotients, finite direct sums, and finite tensor products.

S. Naito

Now, let \mathcal{E} be the algebra over C consisting of all series of the form $\sum_{\lambda \in \mathbb{h}^*} c_\lambda e(\lambda)$, where $c_\lambda \in C$ and $c_\lambda = 0$ for λ outside a finite union of sets of the form $D(\mu)$ ($\mu \in \mathbb{h}^*$). Here, the elements $e(\lambda)$ are called *formal exponentials*. They are linearly independent and are in one-to-one correspondence with the elements $\lambda \in \mathbb{h}^*$. And the multiplication in \mathcal{E} is defined by $e(\lambda) \cdot e(\mu) := e(\lambda + \mu)$ ($\lambda, \mu \in \mathbb{h}^*$). Then, for $V = \sum_{\lambda \in \mathbb{h}^*}^{\Phi} V_{\lambda}$ in \mathcal{O} , we define the *formal character* of V by ch $V := \sum_{\lambda \in \mathbb{h}^*} (\dim_C V_{\lambda}) e(\lambda) \in \mathcal{E}$. Then, we know the following character formula.

Theorem 1.1 ([1] and [5]). Assume that A is a symmetrizable GGCM. Let $(\cdot|\cdot)$ be a fixed standard bilinear form on \mathfrak{h}^* . For $A \in P^+$, we put

 $S_{\boldsymbol{A}} := e(\boldsymbol{A} + \boldsymbol{\rho}) \boldsymbol{\cdot} \sum_{\boldsymbol{\beta} \in \mathfrak{S}(\boldsymbol{A})} (-1)^{\operatorname{ht}(\boldsymbol{\beta})} e(-\boldsymbol{\beta}) \,, \quad \boldsymbol{R} := \prod_{\boldsymbol{\alpha} \in \boldsymbol{A}^+} (1 - e(-\boldsymbol{\alpha}))^{\operatorname{mult}(\boldsymbol{\alpha})} \,,$

where $\operatorname{mult}(\alpha) := \dim_{\mathcal{C}} \mathfrak{g}_{\alpha} \ (\alpha \in \Delta^+)$. Then,

$$e(\rho) \cdot R \cdot \operatorname{ch} L(\Lambda) = \sum_{w \in W} (\det w) w(S_{\Lambda}),$$

with $w(e(\mu)):=e(w(\mu)) \ (\mu \in \mathfrak{h}^*)$.

Remark 1.1. The set $\{0\} \cup \Pi^{im}$ is contained in \mathfrak{S} by definition. And, especially when A is a GCM, \mathfrak{S} consists of only one element $0 \in \mathfrak{h}^*$.

§ 2. The category \mathcal{O}_J and the algebra \mathcal{F}

In this section, we explain the notion of the category \mathcal{O}_J of m-modules. And then, we introduce the algebra \mathcal{F} of "formal m-characters" of m-modules from the category \mathcal{O}_J . Note that when $J = \phi$, these are nothing but the category \mathcal{O} and the algebra \mathcal{E} .

From now on, we always assume that the GGCM *A* is symmetrizable, and that *J* is a subset of $I^{re} = \{i \in I | a_{ii} = 2\}$. We use notations in the Introduction.

Definition 2.1 (cf. [10, § 1]). \mathcal{O}_J is the category of all m-modules M satisfying the following:

(1) Viewed as an h-module, M is an object of the category \mathcal{O} ;

(2) Viewed as an m-module, M is a direct sum of irreducible highest weight m-modules $L_{m}(\lambda)$ with highest weight $\lambda \in P_{J}^{+} = \{\mu \in \mathfrak{h}^{*} | \langle \mu, \alpha_{i}^{\vee} \rangle \in \mathbb{Z}_{\geq 0} \ (i \in J)\}.$

Clearly, the category \mathcal{O}_J is closed under the operations of taking submodules, quotients, and finite direct sums. Moreover, a tensor product of two modules from \mathcal{O}_J is again in the category \mathcal{O}_J , because $L_m(\lambda) \otimes_C L_m(\mu) \in \mathcal{O}_J(\lambda, \mu \in P_J^+)$ by [5, Theorem 10.7.b)] (note that the modules $L_m(\tau)$ ($\tau \in P_J^+$) remain irreducible as g_J -modules). The main reason for our requirement that J is a subset of I^{re} comes from the fact that this theorem holds only for Kac-Moody algebras. The following proposition plays a fundamental role in this paper.

Proposition 2.1 (cf. [10, § 1]). For $\Lambda \in P^+$, $L(\Lambda)$ and $(\Lambda^j \mathfrak{u}^-) \otimes_c L(\Lambda)$ $(j \ge 0)$ are in the category \mathcal{O}_j , where $\Lambda^j \mathfrak{u}^-$ is the exterior algebra of degree j over \mathfrak{u}^- , and is an \mathfrak{m} -module under the adjoint action $(j \ge 0)$, since $[\mathfrak{m}, \mathfrak{u}^-] \subset \mathfrak{u}^-$.

Now, we define a certain algebra \mathcal{F} over C. The elements of \mathcal{F} are series of the form $\sum_{\lambda \in P_I} c_{\lambda} m(\lambda)$, where $c_{\lambda} \in C$ and $c_{\lambda} = 0$ for λ outside a finite union of sets of the form $D(\mu)$ ($\mu \in \mathfrak{h}^*$). Here, the elements $m(\lambda)$ are called *formal* m*-exponentials*. They are linearly independent and are in one-to-one correspondence with the elements $\lambda \in P_I^+$.

For a module M in the category \mathcal{O}_J , we define the *formal* m-*character* $\operatorname{ch}_{\mathfrak{m}} M$ of M by $\operatorname{ch}_{\mathfrak{m}} M := \sum_{\lambda \in P^{\sharp}} [M : L_{\mathfrak{m}}(\lambda)] m(\lambda)$, where $[M : L_{\mathfrak{m}}(\lambda)]$ is the "multiplicity" of $L_{\mathfrak{m}}(\lambda)$ in M (see [5, Ch. 9, Lemma 9.6]). Note that $[M : L_{\mathfrak{m}}(\lambda)]$ ($\lambda \in P_J^+$) is finite since M is in the category \mathcal{O} as an \mathfrak{h} -module. Therefore, $\operatorname{ch}_{\mathfrak{m}} M$ is an element of the algebra \mathcal{F} for $M \in \mathcal{O}_J$. Then, the multiplication in \mathcal{F} is defined as follows: for $\lambda, \mu \in P_J^+, m(\lambda) \cdot m(\mu) := \operatorname{ch}_{\mathfrak{m}}(L_{\mathfrak{m}}(\lambda) \otimes_C L_{\mathfrak{m}}(\mu))$. Thus, \mathcal{F} becomes a commutative associative algebra over C.

Following [10], we now define an algebra homomorphism $\Psi(\mathfrak{m},\mathfrak{h})$: $\mathcal{F} \to \mathcal{E}$, by $\Psi(\mathfrak{m},\mathfrak{h})(\mathfrak{m}(\lambda)) := \operatorname{ch} L_{\mathfrak{m}}(\lambda) \in \mathcal{E} \ (\lambda \in P_{J}^{+})$. Then, we have

Lemma 2.1. The mapping $\Psi(\mathfrak{m},\mathfrak{h})$: $\mathfrak{T} \to \mathcal{E}$ is injective.

Proof (cf. [10, § 1]). Let $\sum_{\lambda \in P_{f}} c_{\lambda}m(\lambda)$ be a non-zero element of \mathcal{F} . Then, there exist $\mu_{i} \in \mathfrak{h}^{*}$ $(1 \leq i \leq s)$ such that $\{\lambda \in P_{f}^{+} | c_{\lambda} \neq 0\} \subset \bigcup_{i=1}^{s} D(\mu_{i})$. By replacing the set $\{\mu_{i}\}_{i=1}^{s}$ with a suitable finite subset $\{\mu_{i}'\}_{i=1}^{t}$ of \mathfrak{h}^{*} if necessary, we can assume that $\mu'_{k} - \mu'_{i} \notin Q = \sum_{j \in I} \mathbb{Z}\alpha_{j}$ $(1 \leq k \neq l \leq t)$. Consider the subset $\bigcup_{i=1}^{t} \{\operatorname{ht}(\mu'_{i} - \lambda) | \lambda \in P_{f}^{+} \text{ with } c_{\lambda} \neq 0, \text{ and } \lambda \in D(\mu'_{i})\}$ of $\mathbb{Z}_{\geq 0}$, and take $\lambda_{0} \in P_{f}^{+}$ which attains the minimum of this subset. Then, clearly λ_{0} is not a weight of $L_{\mathfrak{m}}(\lambda)(\lambda \in P_{f}^{+} \setminus \{\lambda_{0}\})$. Hence, $\Psi(\mathfrak{m}, \mathfrak{h})(\sum_{\lambda \in P_{f}} c_{\lambda}m(\lambda)) \neq 0 \in \mathcal{E}$. Thus we have shown the injectivity of $\Psi(\mathfrak{m}, \mathfrak{h})$.

§ 3. Some results of L. Liu

In this section, we rewrite, in the case of GKM algebras, some of Liu's results on m-modules $H_j(\mathfrak{u}^-, L(\lambda))$ and $H_c(\mathfrak{u}^+, L(\lambda))$ $(j \ge 0)$ for Kac-Moody algebras. His proofs for these results require no modifications. For details, see [10].

The *j*-th homology $H_j(u^-, L(\lambda))$ of u^- with coefficients in $L(\lambda)$ $(\lambda \in \mathfrak{h}^*)$ is defined as the *j*-th homology of the m-module complex $\{(\Lambda^j u^-) \otimes_c L(\lambda), d_j\}_j$, where the action of m and the boundary operators d_j are defined in a usual way (see [3] and [9]). The *j*-th cohomology $H_c^j(u^+, L(\lambda))$ of u^+ with coefficients in $L(\lambda)$ is defined as the *j*-th cohomology of the m-module complex $\{\operatorname{Hom}_c^c(\Lambda^j u^+, L(\lambda)), d^j\}_j$, where $\operatorname{Hom}_c^c(\Lambda^j u^+, L(\lambda))$ is the \mathfrak{h} -semisimple part of $\operatorname{Hom}_c(\Lambda^j u^+, L(\lambda))$ (see § 5.1 for the definition), with the action of m and the coboundary operators d^{j} being the restrictions of the usual ones. Note that this cohomology $H_{c}^{j}(\mathfrak{u}^{+}, L(\lambda))$ $(j \ge 0)$ of \mathfrak{u}^{+} is different from the usual Lie algebra cohomology, which we denote by $H^{j}(\mathfrak{u}^{+}, L(\lambda))$ $(j \ge 0)$, since we have employed Hom $c(\Lambda^{j}\mathfrak{u}^{+}, L(\lambda))$ instead of Hom $c(\Lambda^{j}\mathfrak{u}^{+}, L(\lambda))$ as the space of *j*-cochains $(j \ge 0)$ (see [3] and [10]).

Then, we have the following, due to L. Liu.

Proposition 3.1 (cf. [10, § 4]). For any $\Lambda \in P^+$ and $j \in \mathbb{Z}_{\geq 0}$, $H_c^j(\mathfrak{u}^+, L(\Lambda))$ is isomorphic to $H_j(\mathfrak{u}^-, L(\Lambda))$ as m-modules.

So, from now on, we concentrate on m-modules $H_j(\mathfrak{u}^-, L(\Lambda))$ $(j \ge 0)$. Since $L(\Lambda)$ and $(\Lambda^j\mathfrak{u}^-)\otimes_c L(\Lambda)$ are in the category \mathcal{O}_J by Proposition 2.1, $H_j(\mathfrak{u}^-, L(\Lambda))$ is also in \mathcal{O}_J , and so, is a direct sum of modules $L_m(\mu)$ $(\mu \in P_j^+)$ as an m-module. Furthermore, we have

Proposition 3.2 (cf. [10, § 5]). Let $(\cdot|\cdot)$ be a fixed standard bilinear form on \mathfrak{h}^* . Then, for any $\Lambda \in P^+$ and $j \in \mathbb{Z}_{\geq 0}$, every m-irreducible component of $H_j(\mathfrak{u}^-, L(\Lambda))$ is of the form $L_\mathfrak{m}(\mu)$ ($\mu \in P_f^+$) with $(\mu + \rho | \mu + \rho) = (\Lambda + \rho | \Lambda + \rho)$.

§ 4. Kostant's formula for GKM algebras

In this section, we prove "Kostant's formula" for GKM algebras, which is a generalization of that in my previous paper [11]. Here, we assume that the symmetrizable GGCM $A = (a_{ij})_{i,j \in I}$ satisfies the following condition ($\hat{C}1$):

(Ĉ1) either $a_{ii}=2$ or $a_{ii}=0$ $(i \in I)$.

And recall that J is a subset of I^{re} .

4.1. Necessary condition. Now, we review some results given in [11, Lemma 4.2] and its proof. Let $(\cdot|\cdot)$ be a standard bilinear form on \mathfrak{h}^* . Then, we have

Lemma 4.1 ([11]). Let $\Lambda \in P^+$. If, for some j ($j \ge 0$), μ is a weight of $(\Lambda^j \mathfrak{n}^-) \otimes_C L(\Lambda)$ and satisfies $(\mu + \rho | \mu + \rho) = (\Lambda + \rho | \Lambda + \rho)$, then

(1) there exist a $\beta_0 \in \mathfrak{S}(\Lambda)$ and a $w_0 \in W$, such that $\ell(w_0) + \operatorname{ht}(\beta_0) = j$ and $\mu = w_0(\Lambda + \rho - \beta_0) - \rho$;

(2) the multiplicity of μ in $(\Lambda^*\mathfrak{n}^-)\otimes_c L(\Lambda)$ is equal to one, where $\Lambda^*\mathfrak{n}^- = \sum_{j\geq 0}^{\oplus} \Lambda^j\mathfrak{n}^-$.

Let us fix $\Lambda \in P^+$. From the above, we can prove the following.

Lemma 4.2. Assume that $\mu \in \mathfrak{h}^*$ is a weight of $(\Lambda^{j}\mathfrak{u}^{-}) \otimes_{c} L(\Lambda)$ for some $j \in \mathbb{Z}_{\geq 0}$, and satisfies $(\mu + \rho | \mu + \rho) = (\Lambda + \rho | \Lambda + \rho)$. Then,

(a) there exist a $\beta \in \mathfrak{S}(\Lambda)$ and a $w \in W(J)$, such that $\ell(w) + \operatorname{ht}(\beta) = j$ and $\mu = w(\Lambda + \rho - \beta) - \rho$;

(b) the multiplicity of μ in $(\Lambda^{j}\mathfrak{u}^{-})\otimes_{c} L(\Lambda)$ is equal to one.

Proof. If $\mu \in \mathfrak{h}^*$ is a weight of $(\Lambda^j \mathfrak{u}^-) \otimes_{\mathcal{C}} L(\Lambda)$, then μ is a weight of $(\Lambda^{j}\mathfrak{n}^{-})\otimes_{c} L(\Lambda)$, since $(\Lambda^{j}\mathfrak{u}^{-})\otimes_{c} L(\Lambda)$ can be regarded as a submodule of $(\Lambda^{j}\mathfrak{n}^{-})\otimes_{C} L(\Lambda)$. Then, by Lemma 4.1, it follows that there exist a $\beta_{0} \in \mathfrak{S}(\Lambda)$ and a $w_0 \in W$, such that $\ell(w_0) + ht(\beta_0) = j$ and $\mu = w_0(\Lambda + \rho - \beta_0) - \rho$, and that the multiplicity of μ in $(\Lambda^*\mathfrak{n}) \otimes_c L(\Lambda)$ is equal to one. So, we have only to show that $w_0 \in W(J) = \{ w \in W | w(\Delta^-) \cap \Delta^+ \subset \Delta^+(J) \}$. Now, recall that $w_0(\rho)$ $-\rho = -\sum_{\alpha \in \Phi_{w_0}} \alpha$, where $\Phi_{w_0} = w_0(\Delta^-) \cap \Delta^+$ (see [11, Proposition 1.2.b)]). Express $\beta_0 = \sum_{k=1}^m \alpha_{i_k}$, where $m = ht(\beta_0)$, $\alpha_{i_k} \in \Pi^{i_m}$ $(1 \le k \le m)$, and $i_r \ne i_t$ $(1 \le r \ne m)$ $t \le m$). And take non-zero root vectors $E_k \in g_{-w_0(\alpha_{i_k})}$ $(1 \le k \le m), E_{\alpha} \in g_{-\alpha}$ $(\alpha \in g_{-\alpha})$ Φ_{w_0}), and a non-zero weight vector $v \in L(\Lambda)_{w(\Lambda)}$. Then, it is clear that $0 \neq 0$ $(E_1 \wedge \cdots \wedge E_m) \wedge (\Lambda_{a \in \Phi_{w_0}} E_a) \otimes v \in (\Lambda^* \mathfrak{n}^-) \otimes_c L(\Lambda)$ is a weight vector of weight μ (cf. the proof of [11, Lemma 4.2]). Since the multiplicity of μ in $(\Lambda^*\mathfrak{n}^-)\otimes_c L(\Lambda)$ is equal to one, and μ is a weight of $(\Lambda^{j}\mathfrak{u}^{-})\otimes_{\mathcal{C}} L(\Lambda)$ by assumption, it follows that $(E_1 \wedge \cdots \wedge E_m) \wedge (\Lambda_{\alpha \in \varphi_{w_0}} E_\alpha) \otimes v \in (\Lambda^j \mathfrak{u}^-) \otimes_C L(\Lambda)$. Therefore, $\alpha \in \Delta^+(J)$ (if $\alpha \in \Phi_{w_0}$). Hence, $w_0 \in W(J)$ by the definition of W(J). Thus we have proved Lemma 4.2. Q.E.D.

By Proposition 3.2 and Lemma 4.2, we have the following.

Proposition 4.1. Let $j \in \mathbb{Z}_{\geq 0}$. If $L_m(\mu)$ $(\mu \in P_j^+)$ is an m-irreducible component of $H_j(\mathfrak{u}^-, L(\Lambda))$, then

(a) $\mu = w(\Lambda + \rho - \beta) - \rho$, for some $\beta \in \mathfrak{S}(\Lambda)$ and some $w \in W(J)$ such that $\ell(w) + \operatorname{ht}(\beta) = j$;

(b) $L_m(\mu)$ occurs with multiplicity one as m-irreducible components of $H_j(\mu^-, L(\Lambda))$.

4.2. Sufficient condition. Here, we use the setting in § 2. Let $\Lambda \in P^+$. Before carrying out formal operations on formal m-characters in the algebra \mathcal{F} , we note that $w(\Lambda + \rho - \beta) - \rho$ varies if $w \in W$ or $\beta \in \mathfrak{S}$ varies (see the proof of [11, Proposition 4.2]).

Lemma 4.3. For $w \in W(J)$ and $\beta \in \mathfrak{S}$, we have $w(\Lambda + \rho - \beta) - \rho \in P_J^+$.

Proof. We have to show that $\langle w(A+\rho-\beta)-\rho, a_i^{\vee}\rangle \in \mathbb{Z}_{\geq 0}$ for $i \in J$. Since $w \in W(J) = \{w \in W | w^{-1}(\Delta_f^+) \subset \Delta^+\}$ and $i \in J \subset I^{re}$, it follows that $w^{-1}(a_i) \in \Delta^+$. So, we have $w^{-1}(a_i^{\vee}) \in (\Delta^{\vee})^+$, where $\Delta^{\vee} = \Delta({}^tA) \subset \mathfrak{h}$ is the *dual root* system of $\mathfrak{g}(A)$ (see [5]). Moreover, $w^{-1}(a_i^{\vee}) \in \sum_{j \in I^{re}} \mathbb{Z}a_j^{\vee}$ since $J \subset I^{re}$. On the other hand, we have

$$\langle w(\Lambda + \rho - \beta) - \rho, a_i^{\mathsf{v}} \rangle = \langle \Lambda + \rho - \beta, w^{-1}(a_i^{\mathsf{v}}) \rangle - \langle \rho, a_i^{\mathsf{v}} \rangle$$
$$= \langle \Lambda, w^{-1}(a_i^{\mathsf{v}}) \rangle - \langle \beta, w^{-1}(a_i^{\mathsf{v}}) \rangle + \langle \rho, w^{-1}(a_i^{\mathsf{v}}) \rangle - 1 .$$

Since $\Lambda \in P^+$ and β is a sum of elements from Π^{im} , we deduce that $\langle w(\Lambda + \rho - \beta) - \rho, \alpha_i^{\vee} \rangle \in \mathbb{Z}_{\geq 0}$ from the above equality. Thus the assertion has been proved. Q.E.D.

Proposition 4.2. For $\Lambda \in P^+$, there holds in the algebra \mathcal{F} ,

$$\begin{split} &\sum_{j\geq 0} (-1)^{j} \mathrm{ch}_{\mathfrak{m}}(H_{j}(\mathfrak{u}^{-}, L(\Lambda))) \\ &= \sum_{\beta\in\mathfrak{S}(\Lambda)} (-1)^{\mathrm{ht}(\beta)} \sum_{w\in W(J)} (\det w) m(w(\Lambda + \rho - \beta) - \rho) \; . \end{split}$$

Proof. Both sides of the above equality are clearly in the algebra \mathcal{F} by Lemma 4.3. So, because $\Psi(\mathfrak{m},\mathfrak{h}): \mathcal{F} \to \mathcal{E}$ is injective, we have only to show the following in the algebra \mathcal{E} (cf. also Proposition 4.1).

(#)
$$\sum_{j\geq 0} (-1)^{j} \operatorname{ch}(H_{j}(\mathfrak{u}^{-}, L(\Lambda)))$$
$$= \sum_{\beta\in\mathfrak{S}(\Lambda)} (-1)^{\operatorname{ht}(\beta)} \sum_{w\in W(J)} (\det w) \operatorname{ch} L_{\mathfrak{m}}(w(\Lambda+\rho-\beta)-\rho).$$

By the well-known Euler-Poincaré principle, the left hand side of (#) is equal to

$$\sum_{j\geq 0} (-1)^{j} \operatorname{ch}(H_{j}(\mathfrak{u}^{-}, L(\Lambda))) = \sum_{j\geq 0} (-1)^{j} \operatorname{ch}((\Lambda^{j}\mathfrak{u}^{-}) \otimes_{C} L(\Lambda))$$
$$= (\sum_{j\geq 0} (-1)^{j} \operatorname{ch}(\Lambda^{j}\mathfrak{u}^{-})) \cdot \operatorname{ch} L(\Lambda) = \prod_{a \in \mathcal{A}^{+}(J)} (1 - e(-a))^{\operatorname{mult}(a)} \cdot \operatorname{ch} L(\Lambda)$$
$$= \frac{e(\rho) \cdot \prod_{a \in \mathcal{A}^{+}} (1 - e(-a))^{\operatorname{mult}(a)}}{e(\rho) \cdot \prod_{a \in \mathcal{A}^{+}} (1 - e(-a))^{\operatorname{mult}(a)}} \cdot \operatorname{ch} L(\Lambda).$$

By Theorem 1.1, this is equal to

$$e(-\rho) \cdot R_J^{-1} \cdot \sum_{w \in W} (\det w) \sum_{\beta \in \mathfrak{S}(\Lambda)} (-1)^{\operatorname{ht}(\beta)} e(w(\Lambda + \rho - \beta)),$$

where $R_J := \prod_{\alpha \in \Delta^{\dagger}} (1 - e(-\alpha))^{\text{mult}(\alpha)}$.

On the other hand, by Theorem 1.1 applied to the $\mathfrak{m}(=\mathfrak{g}_J+\mathfrak{h})$ -module $L_{\mathfrak{m}}(w(\Lambda+\rho-\beta)-\rho)$, the right hand side of (#) is equal to

$$e(-\rho) \cdot R_J^{-1} \cdot \sum_{\beta \in \mathfrak{S}(\Lambda)} (-1)^{\operatorname{ht}(\beta)} \sum_{w \in W(J)} (\det w) \times$$
$$\times \sum_{u \in W_J} (\det u) e(u(w(\Lambda + \rho - \beta)))$$
$$= e(-\rho) \cdot R_J^{-1} \cdot \sum_{\beta \in \mathfrak{S}(\Lambda)} (-1)^{\operatorname{ht}(\beta)} \times$$
$$\times \sum_{w \in W(J), u \in W_J} (\det uw) e(uw(\Lambda + \rho - \beta)).$$

Now, we quote the fact that every $w \in W$ can be uniquely expressed in the form $w_J \cdot w(J)$, where $w_J \in W_J$ and $w(J) \in W(J)$. Note that this fact requires J to be a subset of I^{re} . (See [10, § 2] for the proof.) Therefore, the above is equal to

$$e(-\rho) \cdot R_J^{-1} \cdot \sum_{\beta \in \mathfrak{S}(\Lambda)} (-1)^{\operatorname{ht}(\beta)} \sum_{w \in W} (\det w) e(w(\Lambda + \rho - \beta))$$
$$= e(-\rho) \cdot R_J^{-1} \cdot \sum_{w \in W} (\det w) \sum_{\beta \in \mathfrak{S}(\Lambda)} (-1)^{\operatorname{ht}(\beta)} e(w(\Lambda + \rho - \beta)).$$

Thus, we have proved the equality (#). This completes the proof of Proposi-

Q.E.D.

tion 4.2.

By Propositions 4.1 and 4.2, we have the following.

Proposition 4.3. Fix $j \in \mathbb{Z}_{\geq 0}$. And put $\mu := w(\Lambda + \rho - \beta) - \rho$, where $\beta \in \mathfrak{S}(\Lambda)$ and $w \in W(J)$ such that $\ell(w) + ht(\beta) = j$. Then, $L_m(\mu)$ occurs as mirreducible components of $H_j(u^-, L(\Lambda))$.

Summarizing Propositions 3.1, 4.1, and 4.3, we obtain the following theorem.

Theorem 4.1 (Kostant's formula). Let $\Lambda \in P^+$. And let g(A) be the GKM algebra associated to a symmetrizable GGCM $A = (a_{ij})_{i,j \in I}$ satisfying ($\hat{C}1$). We assume that the subset J of I is contained in $I^{re} = \{i \in I | a_{ii} = 2\}$. Then, as m-modules $(j \ge 0)$,

$$H^{j}_{c}(\mathfrak{u}^{+}, L(\Lambda)) \cong H_{j}(\mathfrak{u}^{-}, L(\Lambda)) \cong \sum_{\beta \in \mathfrak{S}(\Lambda)}^{\oplus} \sum_{\substack{w \in W(J) \\ \ell(w) = j - ht(\beta)}}^{\oplus} L_{\mathfrak{m}}(w(\Lambda + \rho - \beta) - \rho)$$

Here, the above sum is a direct sum of inequivalent irreducible highest weight m-modules.

Remark 4.1. Theorem 4.1 is a generalization of "Kostant's formula" for symmetrizable Kac-Moody algebras, which was proved by L. Liu in [10] without assuming that the subset J of I is of finite type (cf. Remark 1.1).

Remark 4.2. In our arguments, the assumption that J is a subset of I^{re} plays an essential role. So, we cannot remove it.

§ 5. Applications—some vanishing theorems

In this section, as applications of Theorem 4.1, we extend some classical results about the homology of symmetrizable Kac-Moody algebras to GKM algebras associated to symmetrizable GGCMs satisfying the condition ($\hat{C}1$). Their proofs are very similar to the ones for Kac-Moody algebras given in [13] or [7].

5.1. Linear homomorphisms with compact support. Here, we introduce the notion of *linear homomorphisms with compact support*, following [10]. Let $V = \sum_{\lambda \in b^*}^{\oplus} V_{\lambda}$ and $W = \sum_{\mu \in b^*}^{\oplus} W_{\mu}$ be b-diagonalizable modules with finitedimensional weight spaces. Then, a linear homomorphism f from V to W is called *with compact support* if $f(V_{\lambda}) = 0$ for all but finitely many weights $\lambda \in b^*$ of V. We denote by Hom^c_C(V, W) the space of all linear homomorphisms with compact support from V to W. In particular, we write V_c^* for Hom^c_C(V, C), where C is the trivial b-module, while for a (possibly infinite-dimensional) vector space X over C, X^* denotes the full dual Hom^c(X, C). Then, we can easily show the following.

Proposition 5.1. For \mathfrak{h} -diagonalizable modules V and W with finitedimensional weight spaces, we have

(1) $(V_c^*)_c^* \cong V$,

(2) $V_c^* \otimes_c W \cong \operatorname{Hom}_c^c(V, W)$.

Corollary 5.1. Let V and W be m-modules. If, as \mathfrak{h} -modules, they are \mathfrak{h} -diagonalizable with finite-dimensional weight spaces, then

 $\{(V_c^*) \otimes_c W\}^{\mathfrak{m}} \cong \operatorname{Hom}^{c}_{\mathfrak{m}}(V, W) := \operatorname{Hom}_{U(\mathfrak{m})}(V, W) \cap \operatorname{Hom}^{c}_{c}(V, W).$

Here, U(m) is the universal enveloping algebra of the Lie algebra m, and for an m-module X, we put $X^m := \{x \in X | m(x) = 0 \text{ for all } m \in m\}$ (the space of m-invariants).

Remark 5.1. For the irreducible highest weight m-module $L_m(\lambda)$ with highest weight $\lambda \in \mathfrak{h}^*$, $\{L_m(\lambda)\}_c^*$ is isomorphic to the irreducible lowest weight m-module with lowest weight $-\lambda$ as m-modules (see [5]). We simply write $L_m^*(\lambda)$ for it.

5.2. Homology vanishing theorem for GKM algebras with coefficients in a generalized Verma module. From now on, we assume that $A = (a_{ij})_{i,j \in I}$ is an $n \times n$ symmetrizable GGCM satisfying the condition ($\hat{C}1$), and that J is a (fixed) arbitrary subset of $I^{re} = \{i \in I | a_{ii} = 2\}$. Note that since J is not necessarily of finite type, $L_{m}(\lambda)$ may be infinite-dimensional even if $\lambda \in P_{J}^{+} = \{\mu \in \mathfrak{h}^{*} | \langle \mu, a_{i}^{\vee} \rangle \in \mathbb{Z}_{\geq 0}$ $(i \in J)\}$.

For $\lambda \in P_J^+$, we define the generalized Verma module $V_{\mathfrak{m}}(\lambda)$ with highest weight λ as follows: $V_{\mathfrak{m}}(\lambda) := U(\mathfrak{g}(A)) \otimes_{U(\mathfrak{b})} L_{\mathfrak{m}}(\lambda)$, where $\mathfrak{u}^+ (\subseteq \mathfrak{p})$ acts on $L_{\mathfrak{m}}(\lambda)$ trivially. This becomes a $U(\mathfrak{g}(A))$ -module by left multiplication. Note that when $J = \phi$, the module $V_{\mathfrak{m}}(\lambda)$ is just the Verma module $V(\lambda) :=$ $U(\mathfrak{g}(A)) \otimes_{U(\mathfrak{b})} C(\lambda)$ with highest weight $\lambda \in \mathfrak{h}^*$, where $C(\lambda)$ is the onedimensional \mathfrak{b} -module on which \mathfrak{h} acts by the weight λ and \mathfrak{n}^+ acts trivially. Then, as an application of Theorem 4.1, we obtain the following generalization of [13, Theorem 4.17].

Theorem 5.1. Let $\lambda \in P_J^+$. And let $V_{\mathfrak{m}}(\lambda)$ be the generalized Verma module with highest weight λ . Then, as C-vector spaces:

(a) If $\lambda \neq w(\rho - \beta) - \rho$ for any $\beta \in \mathfrak{S}$ and $w \in W(J)$, we have

 $H_i(\mathfrak{g}(A), V_\mathfrak{m}(\lambda)) = 0$ for all $i \ge 0$.

(b) If $\lambda = w_0(\rho - \beta_0) - \rho$ for some (necessarily unique) $\beta_0 \in \mathfrak{S}$ and some (necessarily unique) $w_0 \in W(J)$, we have

 $H_i(\mathfrak{g}(A), V_{\mathfrak{m}}(\lambda)) \cong$

Kostant's formula and homology vanishing theorems

$$\cong H_{i-(\ell(w_0)+\operatorname{ht}(\beta_0))}(\mathfrak{m}, L^*_{\mathfrak{m}}(w_0(\rho-\beta_0)-\rho)\otimes_{\mathcal{C}} L_{\mathfrak{m}}(w_0(\rho-\beta_0)-\rho))$$

for all $i \ge 0$.

In particular, $H_i(g(A), V_m(\lambda)) = 0$ unless $i \ge \ell(w_0) + ht(\beta_0)$.

Proof. First, note that $H_i(\mathfrak{g}(A), V_{\mathfrak{m}}(\lambda)) \cong H_i(\mathfrak{p}, L_{\mathfrak{m}}(\lambda))$ $(i \ge 0)$ as *C*-vector spaces, as is well-known (see [2, Proposition 4.2, p. 275]). Now, for the pair $(\mathfrak{p}, \mathfrak{u}^+)$ and a \mathfrak{p} -module $L_{\mathfrak{m}}(\lambda)$, there exists the Hochschild-Serre spectral sequence for homology $\{E_{p,q}^r, d_{p,q}^r: E_{p,q}^r \to E_{p-r,q+r-1}^r\}$ such that $E_n \cong H_n(\mathfrak{p}, L_{\mathfrak{m}}(\lambda))$ and $E_{p,q}^2 \cong H_p(\mathfrak{m}, H_q(\mathfrak{u}^+, L_{\mathfrak{m}}(\lambda)))$ (see [2, p. 351] for example).

Since u^+ acts trivially on $L_m(\lambda)$, we clearly have

 $H_q(\mathfrak{u}^+, L_\mathfrak{m}(\lambda)) \cong H_q(\mathfrak{u}^+, L(0)) \otimes_{\mathcal{C}} L_\mathfrak{m}(\lambda)$ as m-modules $(q \ge 0)$.

And, we can show that $H_q(\mathfrak{u}^+, L(0)) \cong \{H_q(\mathfrak{u}^-, L(0))\}_c^*$ as m-modules $(q \ge 0)$ (cf. [10, § 4]). Therefore, by Theorem 4.1, we get

$$H_q(\mathfrak{u}^+, L(0)) \cong \sum_{\beta \in \mathfrak{S}}^{\bigoplus} \sum_{\substack{w \in W(J) \\ \ell(w) = q - ht(\beta)}}^{\bigoplus} L^*(w(\rho - \beta) - \rho) \text{ as m-modules.}$$

So, as m-modules $(q \ge 0)$,

$$H_q(\mathfrak{u}^+, L_\mathfrak{m}(\lambda)) \cong \sum_{\substack{\beta \in \mathfrak{C} \\ \ell(w) = q - ht(\beta)}}^{\oplus} L^*_\mathfrak{m}(w(\rho - \beta) - \rho) \otimes_C L_\mathfrak{m}(\lambda) .$$

Here, we have the following claim:

CLAIM.
$$H_p(\mathfrak{m}, L^*_{\mathfrak{m}}(\mu) \otimes_C L_{\mathfrak{m}}(\lambda)) = 0$$
 for any $\mu \in P_J^+$ such that $\mu \neq \lambda$ $(p \ge 0)$.

Proof of the claim. Recall that there exists a subspace $\mathfrak{h}(J)$ of \mathfrak{h} such that $\mathfrak{h} = \mathfrak{h}_J \oplus \mathfrak{h}(J)$ and that the simple roots α_i ($i \in J$) vanish on $\mathfrak{h}(J)$. Then, we have the direct sum decomposition of \mathfrak{m} as ideals:

$$\mathfrak{m} = \mathfrak{g}_J \oplus \mathfrak{h}(J)$$
.

Further, we see that $L_{\mathfrak{m}}(\mu)$ ($\mu \in P_{J}^{+}$) is naturally isomorphic to the outer tensor product $L_{J}(\mu|\mathfrak{h}_{J})\hat{\otimes}_{c} C(\mu|\mathfrak{h}(J))$, where $L_{J}(\mu|\mathfrak{h}_{J})$ is the irreducible highest weight $\mathfrak{g}_{J}(\cong\mathfrak{g}(A_{J}))$ -module with highest weight $\mu|\mathfrak{h}_{J} \in (\mathfrak{h}_{J})^{*}$, and $C(\mu|\mathfrak{h}(J))$ is the irreducible (one-dimensional) $\mathfrak{h}(J)$ -module with weight $\mu|\mathfrak{h}(J) \in (\mathfrak{h}(J))^{*}$. So, $L_{\mathfrak{m}}^{*}(\mu)$ is isomorphic to the outer tensor product $L_{J}^{*}(\mu|\mathfrak{h}_{J})\hat{\otimes}_{c} C(-\mu|\mathfrak{h}(J))$, where $L_{J}^{*}(\mu|\mathfrak{h}_{J}):=\{L_{J}(\mu|\mathfrak{h}_{J})\}_{c}^{*}$ is \mathfrak{g}_{J} -module isomorphic to the irreducible lowest weight \mathfrak{g}_{J} -module with lowest weight $-\mu|\mathfrak{h}_{J} \in (\mathfrak{h}_{J})^{*}$. Hence, by [9, Proposition 4.12], we have the following vector space isomorphism:

$$\operatorname{Tor}_{p}^{\mathbb{M}}((L_{\mathbb{M}}(\lambda))^{t}, L_{\mathbb{M}}^{*}(\mu))\cong$$

$$\cong \sum_{r+s=p}^{\oplus} \operatorname{Tor}_{r}^{\mathfrak{g}}((L_{J}(\lambda|\mathfrak{h}_{J}))^{t}, L_{J}^{*}(\mu|\mathfrak{h}_{J})) \otimes_{c} \operatorname{Tor}_{s}^{\mathfrak{h}(J)}((C(\lambda|\mathfrak{h}(J)))^{t}, C(-\mu|\mathfrak{h}(J))).$$

Since g_J is isomorphic to the symmetrizable Kac-Moody algebra $g(A_J)$, we can easily deduce that $\operatorname{Tor}_P^{\mathfrak{m}}((L_{\mathfrak{m}}(\lambda))^t, L_{\mathfrak{m}}^*(\mu)) = 0$ for $\mu \in P_J^+$ with $\mu \neq \lambda \ (p \ge 0)$ from [8, Corollary 2.13. (b₁)] and its proof. The claim now follows from [9, Propositions 4.2 and 4.3].

S. Naito

By the above claim and Lemma 4.3, we have

in Case (a), $E_{p,q}^2 = 0 \ (p, q \ge 0)$,

in Case (b),
$$E_{p,q}^2 \cong \begin{cases} 0 \quad (p \ge 0, q \neq \ell(w_0) + \operatorname{ht}(\beta_0)), \\ H_p(\mathfrak{m}, L_{\mathfrak{m}}^*(w_0(\rho - \beta_0) - \rho) \otimes_c L_{\mathfrak{m}}(w_0(\rho - \beta_0) - \rho)) \\ (p \ge 0, q = \ell(w_0) + \operatorname{ht}(\beta_0)). \end{cases}$$

Therefore, in Case (a), $H_n(\mathfrak{p}, L_m(\lambda)) \cong E_n \cong E_{n,0}^2 = 0$ ($n \ge 0$), and in Case (b),

 $H_n(\mathfrak{p}, L_{\mathfrak{m}}(\lambda)) \cong E_n \cong E_{n-\ell(w_0)-\operatorname{ht}(\beta_0),\ell(w_0)+\operatorname{ht}(\beta_0)}^2$

$$\cong H_{n-(\ell(w_0)+ht(\beta_0))}(\mathfrak{m}, L^*_{\mathfrak{m}}(w_0(\rho-\beta_0)-\rho)\otimes_{c} L_{\mathfrak{m}}(w_0(\rho-\beta_0)-\rho)) \quad (n \ge 0).$$

Q.E.D.

Thus, we have proved the theorem.

Corollary 5.2. Let $\lambda \in P_J^+$ be such that $L_m(\lambda)$ is finite-dimensional. Then, as *C*-vector spaces:

(a) If $\lambda \neq w(\rho - \beta) - \rho$ for any $\beta \in \mathfrak{S}$ and $w \in W(J)$, we have

 $H_i(\mathfrak{g}(A), V_{\mathfrak{m}}(\lambda)) = 0$ for all $i \ge 0$.

(b) If $\lambda = w_0(\rho - \beta_0) - \rho$ for some $\beta_0 \in \mathfrak{S}$ and $w_0 \in W(J)$, we have

 $H_i(\mathfrak{g}(A), V_{\mathfrak{m}}(\lambda)) \cong H_{i-(\ell(w_0)+\operatorname{ht}(\beta_0))}(\mathfrak{m}, L_{\mathfrak{m}}(0)) \text{ for all } i \ge 0.$

Proof. Since $L_{\mathfrak{m}}(\lambda)$ is finite-dimensional by assumption, $L_{\mathfrak{m}}^*(\lambda) \otimes_C L_{\mathfrak{m}}(\lambda)$ is completely reducible as an m-module by [5, Theorem 10.7.b)]. So, it is a direct sum of modules $L_{\mathfrak{m}}(\mu)$ with $\mu \in P_j^+$. And we know that $H_j(\mathfrak{m}, L_{\mathfrak{m}}(\mu)) = 0$ for $\mu \in P_j^+$ such that $\mu \neq 0 \in \mathfrak{h}^*$ $(j \ge 0)$ (see the claim in the proof of Theorem 5.1). Therefore, we see that

$$H_{j}(\mathfrak{m}, L_{\mathfrak{m}}^{*}(\lambda) \otimes_{C} L_{\mathfrak{m}}(\lambda)) \cong H_{j}(\mathfrak{m}, \{L_{\mathfrak{m}}^{*}(\lambda) \otimes_{C} L_{\mathfrak{m}}(\lambda)\}^{\mathfrak{m}}) \quad (j \ge 0).$$

Now, by Corollary 5.1 and the finite-dimensionality of $L_m(\lambda)$, we have

$$\{L_{\mathfrak{m}}^{*}(\lambda) \otimes_{c} L_{\mathfrak{m}}(\lambda)\}^{\mathfrak{m}} \cong \operatorname{Hom}_{\mathfrak{m}}^{c}(L_{\mathfrak{m}}(\lambda), L_{\mathfrak{m}}(\lambda)) = \operatorname{Hom}_{U(\mathfrak{m})}(L_{\mathfrak{m}}(\lambda), L_{\mathfrak{m}}(\lambda))$$
$$\cong L_{\mathfrak{m}}(0) .$$

Hence, the corollary immediately follows from Theorem 5.1. Q.E.D.

Remark 5.2. By [7, Proposition 1.9], we have

 $H_*(\mathfrak{m}, L_\mathfrak{m}(0)) \cong \Lambda^*(\mathfrak{m}/[\mathfrak{m}, \mathfrak{m}]) \otimes_C H_*([\mathfrak{m}, \mathfrak{m}], C)$

as graded vector spaces, where C is the one-dimensional trivial module. Here, the derived subalgebra [m, m] of m is clearly equal to $[g_J, g_J]$, which is isomorphic to $[g(A_J), g(A_J)]$. On the other hand, it is well-known that

$$H^{i}([\mathfrak{g}(A_{J}),\mathfrak{g}(A_{J})], \mathbb{C}) \cong \{H_{i}([\mathfrak{g}(A_{J}),\mathfrak{g}(A_{J})], \mathbb{C})\}^{*}$$

where $H^i([\mathfrak{g}(A_J), \mathfrak{g}(A_J)], \mathbb{C})$ is the usual *i*-th Lie algebra cohomology of $[\mathfrak{g}(A_J), \mathfrak{g}(A_J)]$ with coefficients in the trivial module \mathbb{C} $(i \ge 0)$. Furthermore, by [6, Theorem 1.6], $H^i([\mathfrak{g}(A_J), \mathfrak{g}(A_J)], \mathbb{C})$ is isomorphic to the *i*-th singular cohomology $\hat{H}^i(K(A_J), \mathbb{C})$ of $K(A_J)$ with coefficients in the complex number field \mathbb{C} as vector spaces $(i \ge 0)$, where $K(A_J)$ is the "standard compact real form" of the *Kac-Moody* (*algebraic*) group $G(A_J)$ associated to the Kac-Moody algebra $\mathfrak{g}(A_J)$. (See also [12] for the definitions of $G(A_J)$ and $K(A_J)$.)

When the GCM A_J is of finite type, the singular cohomology $\hat{H}^i(K(A_J), C)$ $(i \ge 0)$ is well-known, and each cohomology space is of course finite-dimensional. And, when A_J is of non-twisted affine type, $\hat{H}^i(K(A_J), C)$ can be easily determined by a standard spectral sequence argument from the structure theory of $K(A_J)$ (cf. [4, § 2.8]), and proves to be finite-dimensional $(i \ge 0)$. More generally, V. G. Kac (and D. H. Peterson) claimed to have determined $\hat{H}^i(K(A_J), C)$ ($i \ge 0$) for an arbitrary GCM A_J , though the proofs have not yet appeared. According to their results (see [4, § 2.6]), $\hat{H}^i(K(A_J), C)$ is still finite-dimensional $(i \ge 0)$. Then, $H_i([g(A_J), g(A_J)], C)$ is finite-dimensional, and we have

$$H_i([\mathfrak{g}(A_J),\mathfrak{g}(A_J)], \mathbf{C}) \cong \{H^i([\mathfrak{g}(A_J),\mathfrak{g}(A_J)], \mathbf{C})\}^*$$
$$\cong \{\widehat{H}^i(K(A_J), \mathbf{C})\}^* \qquad (i \ge 0).$$

In particular, under the conditions of Corollary 5.1, we may conclude that $H_i(\mathfrak{g}(A), V_{\mathfrak{m}}(\lambda))$ is finite-dimensional for all $i \ge 0$.

Remark 5.3. When the subset J of I is of finite type, $L_m(\lambda)$ is automatically finite-dimensional for $\lambda \in P_I^+$. And in this case, we see from the above corollary that $H_i(g(A), V_m(\lambda)) = 0$ unless $i \leq \ell(w_0) + \operatorname{ht}(\beta_0) + \operatorname{dim}_C m$.

So, by putting $J = \phi$, we get the following corollary.

Corollary 5.3. Let $\lambda \in \mathfrak{h}^*$ and $V(\lambda)$ be the Verma module with highest weight λ . Then, as C-vector spaces:

(a) If $\lambda \neq w(\rho - \beta) - \rho$ for any $\beta \in \mathfrak{S}$ and $w \in W$, we have

 $H_i(\mathfrak{g}(A), V(\lambda)) = 0$ for all $i \ge 0$.

(b) If $\lambda = w_0(\rho - \beta_0) - \rho$ for some $\beta_0 \in \mathfrak{S}$ and $w_0 \in W$, we have

 $H_i(\mathfrak{g}(A), V(\lambda)) \cong \Lambda^{i-\ell(w_0)-\operatorname{ht}(\beta_0)}(\mathfrak{h}) \text{ for all } i \ge 0.$

In particular, $H_i(\mathfrak{g}(A), V(\lambda)) = 0$ unless $\ell(w_0) + \operatorname{ht}(\beta_0) \le i \le \ell(w_0) + \operatorname{ht}(\beta_0)$ + dim c b.

DEPARTMENT OF MATHEMATICS SHIZUOKA UNIVERSITY

References

- [1] R. Borcherds, Generalized Kac-Moody algebras, J. Algebra, 115 (1988), 501-512.
- [2] H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press, Princeton, 1956.
- [3] H. Garland and J. Lepowsky, Lie algebra homology and the Macdonald-Kac formulas, Invent. Math., 34 (1976), 37-76.
- [4] V. G. Kac, Constructing groups associated to infinite dimensional Lie algebras, in Infinite Dimensional Groups with Applications, MSRI publications Vol. 4, Springer-Verlag, 1985, 167-216.
- [5] V. G. Kac, Infinite Dimensional Lie Algebras (3rd edition), Cambridge University Press, Cambridge, 1990.
- [6] S. Kumar, Rational homotopy theory of flag varieties associated to Kac-Moody groups, in Infinite Dimensional Groups with Applications, MSRI publications Vol. 4, Springer-Verlag, 1985, 233-273.
- [7] S. Kumar, A homology vanishing theorem for Kac-Moody algebras with coefficients in the category O, J. Algebra, 102 (1986), 444-462.
- [8] S. Kumar, Extension of the category O^g and a vanishing theorem for the Ext functor for Kac-Moody algebras, J. Algebra, 108 (1987), 472-491.
- [9] J. Lepowsky, Generalized Verma modules, loop space cohomology and Macdonald-type identities, Ann. Sci. Éc. Norm. Sup., 12 (1979), 169-234.
- [10] L. Liu, Kostant's formula for Kac-Moody Lie algebras, J. Algebra, 149 (1992), 155-178.
- S. Naito, Kostant's formula for a certain class of generalized Kac-Moody algebras, Tôhoku Math. J, 44 (1992), 567-580.
- [12] D. H. Peterson and V. G. Kac, Infinite flag varieties and conjugacy theorems, Proc. Natl. Acad. Sci. USA, 80 (1983), 1778-1782.
- [13] C. Sen, The homology of Kac-Moody Lie algebras with coefficients in a generalized Verma module, J. Algebra, 90 (1984), 10-17.