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Kostant's formula and homology vanishing theorems
for generalized Kac-Moody algebras

By

Satoshi NAITO

Introduction

A real n x n  matrix A =(a u )i,J .1 indexed by a set / = 11, 2, ... , n1 is called
a GGCM if it satisfies

(Cl) e ither a ii= 2  or a 0;
(C2) a i,< 0  if 1* ) ,  and a u  E  Z  if au =2;
(C3) a u =0  implies a.u =0.

Let g(A) be a generalized Kac-Moody algebra (GKM algebra), over the com-
plex number field C, associated to a symmetrizable GGCM A =(a 1),,,E1, with
Cartan subalgebra b, simple roots 11={cri}.1, and simple coroots =tan ,.1 .
And let g(A) = n - C)f)On+ be the triangular decomposition with n±  = E L a  g a ,
where ga is the root space attached to a root aE Z I± . See [5] (and also [1]) for
the definition of generalized Kac-Moody algebras.

In the previous paper [11], we studied the b-module structure of the
homology H,(n - , L(A)) 0) of n-  or the cohomology 1-11'(n+ , L(A)) 0) of n+
with coefficients in the irreducible highest weight g(A)-module L (2 )  with
highest weight Aeb*:=Homc(1), C ) .  (Remark that the cohomology
L(2)) ( j  0) used in  [11] is slightly different from the usual Lie algebra
cohom ology.) Then, we proved "K ostant's formula" under the following
condition (e l )  on the GGCM A =(ai,),,,.i:

(C 1 )  either a ii= 2  or a i i = 0  ( i / ) .

Namely, we proved

Theorem A  ([11]). Let A E P + := {A VI<2, >_0 (iE I), and <A, a n
E .Z 0  if  a ii= 2 } . Denote by the set of  all sum s of distinct pairwise perpen-
dicular elem ents f rom  171m :={ a1El1lau<0} . A n d  w e put (A):=1/1 1
( A O )  01, where (•1•) is a standard bilinear form on V .  Then, as e-modules
(j 0),
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H (n , L (A ))=-  Hi(n -  L (A )) ,TEs(A) C(w(A+ P  13) —  10 ) ,
e(w>=7±viito )

where C(,u)(pEb*) is the irreducible (one-dimensional) o-module with weight
/.1. Here, p is a fixed element of  b* such that <p, ( 1 1 2 ) • a i i  ( i E I ) ,  P ( w )
is the length of  an  element w  of the W eyl group W , and f or /3=Ei.ik ia1 (k i

E S , we put ht(g):=Ei.., k i.

In the present paper, using the idea of L. Liu [10] for Kac-Moody algebras,
we extend the above result so that the nilpotent part n+ of the Borel subalgebra
b : =  ED n ± is allowed to be the nilpotent Part of a parabolic subalgebra contain-
ing b.

Let us explain in more d e ta i l .  Let /"  (re sp . Pm) be the subset liE /I au
=2 (resp. au< 0)1 of the indexing set I . And let J be a subset of / " .  We define
a submatrix A , of A  by A J :=(a,),,,,E j , which is a generalized Cartan matrix
(G C M ). Note that there exists a certain subspace b j  of ti with ce j  (iE  J),
such that the triple (hj , {adtb, ), J , {e} ,..1) is a m inim al realization of the GCM
A j . Then, we can identify the Kac-Moody algebra g(A j ) with the subalgebra
gj  of g(A) generated by e „ f ,( iE J) ,  and tv. Furthermore, t)J0 E (a} ).4 ,g a ,
where 4: =4 n E„, Zaz (or its restriction to ti,) is the root system of (gj , hj ).
Now, we define the following subalgebras of g(A):

n1- := ETE,Iga , n i : = E L 4 g - a  ,  u + : = E L 4 , (J)ga

u- :=E L d-w g- a, mu= njet)OnI , ni e ,

where J(J) :=4 \4 6 Z r ( J ) : = J +  Z I ( J ) .  W e call )p=m0u+ the
parabolic subalgebra of g(A) defined by J .  Note that since the triple (h, {a,},e j ,
tanzE j ) is a realization (but not necessarily a minimal realization) of the GCM

m=g,-Ft) can be regarded a s  a  Kac-Moody algebra associated to A j ,
whose Cartan subalgebra is h.

Recall that the Weyl group W of g(A) is defined to be the subgroup of
G L (* )  generated by fundamental reflections r ,  ( i E I " ) .  Now, let Ifj  be  the
subgroup of W generated by re's  (iEJ), which is the Weyl group of ni. A n d  we
p u t W (J):= IwE W w(L1) n zrc zr(J)} (= twE c  J + 1 ) .  Then,
w e w ill obtain the follow ing theorem . (Here, as in [l a  the cohomology
HZ(u+, L(A )) (j 0 )  is sligh tly  d ifferen t from  the u su a l one, w hereas the
homology 1-11 (u- , L (A ))  ( j 0) is the usual Lie algebra homology. See § 3 for
the definition.)

Theorem. Let A P + .  A ssume that the GGCM A =(aii)i,J, is symmetr-
izable and  satisfies the condition (el). Then,
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M(u÷, L(A ))=H;(u - , L(A)) -=ELs(A) L,,l(w(A+ P  1 3 ) —  P)
e()E liv—V(/9)

as m-modules (I Here, for pEPJ+ := IA Eb*1<A , anE Zo (iEJ)} , L .,(11) is
the irreducible highest weight m-module with highest weight II.

Note that when J= q5, this theorem is nothing but Theorem A, since in this
case, u+ = n+, u-  = n- , m = f), and W (J) =  W.

A nd in the la s t p art o f th is paper, we prove a  homology vanishing
theorem for GKM algebras with coefficients in a generalized V erm a module,
as a consequence of our "Kostant's form ula". This theorem generalizes the
result of C. Sen [13], which is only for the class of Kac-Moody algebras and
under the condition that the subset J  of / is of f inite type (i.e., the submatrix
A J =(a,,),,,,.., of A is a  classical Cartan m atrix  of finite type).

This paper is organized as fo llow s. In § 1, we review some basic results
for GKM algebras, especially the Weyl-Kac-Borcherds character formula. In
§ 2, we will introduce the algebra g". o f form al m -characters, where we can
carry out certain formal operations. In § 3, we rewrite some results of L. Liu
[10] for Kac-Moody algebras, which can be proved also for GKM algebras in
just the same way that they are proved for Kac-Moody a lg eb ras . In § 4, we
prove our main theorem stated above, combining the results of [10] and [11].
In § 5, a s  consequences o f our main theorem, we obtain some vanishing
theorems for the homology of GKM algebras.

Acknowledgments. I would like to express my sincere thanks to Profes-
sor Akira Kono for answering my questions about the singular cohomology of
Kac-Moody groups.

§ 1. The category 0  and the character formula

In this section, we prepare fundamental results about GKM algebras for
later use . F or detailed accounts of this section, see [1] and [5].

We put /:= {1, 2, ,  n l .  Let g(A ) be the GKM algebra associated to a
GGCM A — (a 0 ),,,E1 with the Cartan subalgebra b.

Definition 1.1 ([5]). 0  is the category of all t)-modules V  satisfying the
following:

(1) V  admits a weight space decomposition V = E EP.9( v) VA, where 2 (V )
is the set of all weights of V . A n d  each weight space VA is finite-dimensional
(AE9( V));

(2) there exist a finite number of elements 
A t)*

 (1 i  s )  su ch  th at ( V )
C  u D (A ,) , where D(/I,):= {A— ( 1  i  s ) .

Note that the category 0  is closed under the operations of taking sub-
modules, quotients, finite direct sums, and finite tensor products.
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Now, let C  be the algebra over C  consisting of all series of the form
AEb* cAe(A), where cAE C and CA =O for À outside a finite union of sets of the

form D(jI) (fi E t f ) .  Here, the elements e(A ) are called form al exPonentials.
They are linearly independent and are in one-to-one correspondence with the
elements ilE b * . And the multiplication in E  is defined by e(.1)•e(p):= e(/1
+12) (A, P E V ) .  Then, for V= E,tb* VA in O , we define the formal character
o f V  b y  ch V:=EA.t)* (dimc VA)e(A) C .  T h e n , w e kn o w  the following
character formula.

Theorem 1 .1  ([1] and [5]). A ssume that A  is  a  symmetrizable GGCM.
L et (•1.) be a fixed standard bilinear form  on b * .  For A E 1 " , we put

SA := e(A + p)• EREe(A)(-1)" ( fl ) e ( - 8 ) ,  R :=II«.4 ,  (1— e (—
a ) ) n u l t ( a )

where mult(a):= dimcga (aEJ±). Then,

e(p)• R •ch L (A )=Ew ew  (det tv)u)(SA)

with w (e(p)):=e(w (p)) (pEV).

Remark 1 . 1 .  The set 101U /7' is contained in by definition. And,
especially when A  is a G C M , consists of only one element 0Eb*.

§ 2. The category Oj  and the algebra g

In this section, we explain the notion of the category Oj  of m-modules.
And then, we introduce the algebra g  of "formal m-characters" of m-modules
from the category 0j . Note that when J = 0 ,  these are nothing but the
category 0  and the algebra C.

From now on, we always assume that the GGCM A is symmetrizable, and
that J  is a subset of / "  =  f iE  a =2 1 . We use notations in the Introduction.

Definition 2.1 (cf. [10, § 1]). Oj  i s  the category of a l l  m-modules M
satisfying the following:

(1) Viewed as an b-module, M  is an object of the category 0;
(2) Viewed as an m-module, M  is  a direct sum of irreducible highest

weight m-modules Lm(À) with highest weight A E17= {p E  < p , e  Z o  (iE
J)}.

Clearly, the category 0 , is closed under the operations of taking sub-
modules, quotients, and finite direct sums. Moreover, a tensor product of two
modules from Of  is again in the category Of , because L(/1)(DcL.(tt) EOj (A,
EP,+) by [5, Theorem 10.7.b)] (note that the modules Li( z- ) (rEP7) remain
irreducible as gi -modules). The main reason for our requirement that J  is a
subset of /" comes from the fact that this theorem holds only for Kac-Moody
algebras.
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The following proposition plays a fundamental role in this paper.

Proposition 2.1 (cf. [10, § 1]). For A E P + , L (A ) and (11-'111(8)c L(A )
0) are in the category 0 1, w here ll i tc  is the exterior algebra of  degree j over
and is an m-module under the adjoint action ( j>0 ), since [m,

Now, we define a certain algebra g  over C .  The elements of g  are
series of the form E.i.p7 cAm(A), where cAE C  and CA =O for A outside a finite
union of sets of the form  D(p) (f iE h * ). Here, the elements m(A) are called
form al m -exPonentials. They are linearly independent and are in one-to-one
correspondence with the elements AEPJ±.

For a module M  in the category 0j ,  we define the form al m -character
ch,,M of M  by chifiM:=EAEN [M  : L.(A)]m(A), where [M : L (A )] is the "multi-
plicity" of L .(2) in M  (see [5, Ch. 9, Lemma 9.6]). Note tha t [M  L n,(A)] (AE
Pt) is finite since M  is in the category 0  as an h-m odule. Therefore, ch M
is an element of the algebra g  for ME 01. Then, the multiplication in g  is
defined as follows: for A , f iEP7, m (A ) • m (a):= ch.(Lm (A )0c L ,(p)). Thus, g
becomes a commutative associative algebra over C.

Following [10], we now define an algebra homomorphism W(m, h): g  e ,
by C m , h)(m(A)):= ch L.(A) E  (AGPJ+ ). Then, we have

Lemma 2.1. The mapping !['(ni, b): E  is  injective.

Proof  (cf. [10, § 1]). Let EAEpt cdn(A) b e  a non-zero elem ent o f  g .
Then, there exist Il Ef) * ( 1<i<S) such that {.1EPJ+ 1 cA*0} C Uf=1D(ti,). By
replacing the set tia - -1  with a suitable finite subset {,1}.-1 of b* if necessary,
we can assume tha t ti'k—  Q  = E , E 1  Z a , (1 5  k  1  t ) .  Consider the subset
l.Y=1 {110/4 —  A)1.1E Pi+ w ith  cA*0, and /1 D ( ) 1  of .& o , and take A0 G P7
which attains the minimum of th is  subse t. Then, clearly Ao is not a weight of
L .(A )(A EPA IA ol). H e n c e , W(m, b)(EA.py cAm(A))* OE C. T h u s  w e  have
shown the injectivity of Cm, h). Q.E.D.

§ 3. Some results of L. Liu

In this section, we rewrite, in the case of GKM algebras, some of Liu's
results on m-modules L ( A ) )  and Hg(u+, L(A)) (j_0) for Kac-Moody
algebras. H is proofs for these results require no modifications. For details,
see [10].

The j-th  hom ology W u - , L(A)) of u-  w ith  coefficients in L(A) (AEh*) is
defined as the j-th  homology of the m-module complex {(/l i u- )0c L(A),
where the action of ni and the boundary operators cl;  are defined in a usual
w a y  ( s e e  [ 3 ]  and  [9]). T he j-th cohomology 1-/(u+, L(A)) o f  u+ with
coefficients in L(A) is defined as the j-th cohomology of the ni-module complex

L(A )), clib, where H o m (./ 'u , L(2)) is the b- semisimple part of
Homc(Il'u÷, L(A)) (see § 5.1 for the definition), with the action of ni and the
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coboundary operators c13 being the restrictions of the usual ones. Note that
this cohomology HZ(u+, L (A )) (j> 0 ) of u+ is different from the usual Lie
algebra cohomology, which we denote by 1-/J(u+, L(A)) (j since we have
employed Hom(A.Ju+, L (A )) instead of Homc(A'u+, L(2)) as the space of
j-cochains (j 0) (see [3] and [10]).

Then, we have the following, due to L. Liu.

Proposition 3.1 (cf. [10, § 41). For any A E P+ and j  Z >o , H (e , L(A))
is isomorphic to I/,(u - , L (A )) as m-modules.

So, from now on, we concentrate on m-modules L (A ))  (j>0).
Since L (A ) and (11'u)O cL(A) are in the category Of  b y  Proposition 2.1,

L(A)) is also in 0 j , and so, is a direct sum of modules L (L t) (pE  PO as
an m-module. Furthermore, we have

Proposition 3.2 (cf. [10, § 5]). L et (•1.) be a fixed standard bilinear form
on t)* . T hen, for any  A E P + and j E Z 0 , every m-irreducible  component o f
W u -  , L (A )) is of  the form  Lin(p) (PEP!) w ith  (P+ PIP+ P)= (A + PIA + P)•

§ 4. Kostant's formula for GKM algebras

In this section, we prove "Kostant's formula" for GKM algebras, which is
a generalization of that in my previous paper [11]. Here, we assume that the
symmetrizable GGCM A — (az,),,,E, satisfies the following condition (Cl):

(e l) e ith e r a„ =2 or a„ = 0  (iE / ).

And recall that J  is a subset of I .

4.1. Necessary condition. Now, we review some results given in [11,
Lemma 4.2] and its proof. Let (•1.) be a standard bilinear form on b * . Then,
we have

Lemma 4.1 ( [1 1 ]) . L et A E P + .  I f  f o r some j  ( j ()), p is a weight of
(A in - )C)cL (A ) and  satisfies (p + p lp + p )= (A + pIA + p), then

(1) there exist a /30 E ( A )  and  a Wo E W , such that ( wo) +ht( 130) = j and
=  W o (A  p p;

(2) the multiplicity of p  in  (A *n - )C )cL (A ) is equal to one, where A*11-

= ET,011:71-c.

Let us fix A E  P+ . From the above, we can prove the following.

Lemma 4.2. A ssum e that p E b *  is a weight o f  (A 3 u- )(31c L(A) f o r some
j E Z 0 ,  and  satisfies (p+ PIP+ 10 ) = (A + p iA + p ) .  Then,

(a) there exist a ,(3E ( A )  and  a w E W (J) , such that .P(w )+ht(a)= j and
P= w (A + 10 —  13) —  10 ;

(b) the multiplicity of p  in  (A .Ju lO cL (A ) is equal to one.
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P ro o f  If ,ttEt)* is  a  weight of (A A C)OcL(A ), then 1.1 is  a  weight of
(2Pn- )0 c L (A ), since (21'u- )® c L (A ) can be regarded a s  a  submodule of
(Ain- )C )cL (A ). Then, by Lemma 4.1, it follows that there exist a ,30E ( A )
and a wo E W, such that .P (wo)+ht(Ro)=j and p=wo(A + p —  Ro) —  p, and that
the multiplicity of p in (A*n - )O cL (A ) is equal to one. So, we have only to
show that w o  W (J) =  w E  W  w (J - ) n Zrc.Z1+ (f)}. Now, recall that wo(P)
—p = —Eaeow o oe, w h ere  Owo = wo(J - ) n J +  ( s e e  [11, Proposition 1.2.b)]).
Express 80 = a,k, where m=ht(80), a,„E17 (1 < k <m ), and ir* it (1 r  *
t < m ).  And take non-zero root vectors EkEg-wo(ai.) (1 k < m), EaEg_a ( a

Owe ), and a non-zero weight vector vEL(A )w ( A) . Then, it is clear that 0*
(Ei A • • • A E .) A ( A a . o w o Ea)® yE (A * 11 )0c L (n ) is a weight vector of weight p
(cf. the proof of [11, Lemma 4.2]). Since the multiplicity of p in (A*n - )0c L(A)
is equal to one, and p is a weight of (Au - )Oc L(A ) by assumption, it follows
that (E1 A -  A E .)A  (Aa.o., Ea)® vE L (A ) . Therefore, a EZ1+ (j)
(if a E w o ). Hence, wo E W (J) by the definition o f W (J) . Thus we have
proved Lemma 4.2. Q.E.D.

By Proposition 3.2 and Lemma 4.2, we have the following.

Proposition 4 .1 .  Let j  E Z o .  I f  L m (p) (pEP7) i s  an m-irreducible
component of H,(u -  , L(A )), then

(a) p= w(A + p— p, fo r som e R E(A ) and some wEW (J) such that
.e(w)+ht(13)= j;

(b) Lm(p) occurs with multiplicity  one as m-irreducible components of
H (u, L (A )).

4 .2 .  Sufficient condition. Here, we use the setting in § 2. Let A E P + .
Before carrying out formal operations on formal m-characters in the algebra
g , we note that w(A + p 13)—  p varies if WE W or 13Es varies (see the proof
of [11, Proposition 4.2]).

Lem m a 4.3. For wE W (J) and ,(3E ,  we have w(A+ p— 13)— pEPI+.

P ro o f  W e have to  show th at <w(A+ p— 13)—  p, anEZ ›o fo r  iEJ.
Since wE W (J)= twE WI w - 1 (ZI)- )E4+1 and iE Jcire, it follows that w- 1 (ai)
E 4 + . So, we have w- 1 (e )E (J ')+ ,  where Jv=4 ( tA.)c f) is  the dual root
system of g(A) (see [5]). Moreover, w-1 ( e )E  E J E / -  Z ai since JOE/". On the
other hand, we have

<w(A+ p—g)— p, = <A+ p— R,w - 1 (e)> —  <p, an

= <A , w '(an> —  ( w - 1 (an> + <p, w - 1 (an> — 1.

Since ACP ±  and g  is a sum of elements from /Pm, we deduce that <w(A +p
10 ,  a n E Z 0  from the above equality. Thus the assertion has been

proved. Q.E.D.
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Proposition 4.2 . For A E P + ,  there holds in the algebra 9,

E j ,o(-1)jchni(H,(u - , L(A )))

=Efl.e(A)( - 1) Ew.ww(det w)m(w (A + p — R)— p) .

P ro o f  Both sides of the above equality are clearly in the algebra g  by
Lemma 4.3. So, because W(m, —) E is injective, we have only to show the
following in the algebra e (cf. also Proposition 4.1).

(#) E i,o(-1)ich(H i(u-, L(A )))

=E fie(A )( - 1)h t ( B ) EwEwu)(det w)chL„,(w(A +p— R)— p) .

By the well-known Euler-Poincaré principle, the left hand side of (#) is equal
to

E j — 1)iC h (H j(14-, L(A))) 1)iCh((A ill-)0C  L(A))

= — 1Ych(niu-))-ch L (A ) a.4+u) (1— e( — a))mu" (a) • ch L (A )

e ( p ) • f ia .4 ,  (1—  e(— a))mu l t ( a)  

e(P) a.4- (1 —  e(— a)ruft(a) 
c h  L ( A )  .

By Theorem 1.1, this is equal to

e(— p) • -EwEw (det w) E flEsu i ( — 1)" ) e( w(A + p — ,3)) ,

where R j :=II.E41 (1— e(—

On the other hand, by Theorem 1.1 applied to the rri ( = g j +b)-module
L,„(w(A p—R)— p), the right hand side of (#) is equal to

e(—  p). R i'-E f l Ee( A) ( — 1)" ) E .. wu)(det w) x

x E u Ew ,  (det u )e (u (w (A +  p  8 )))

= e( - 0•1? -11•Efiee(A) ( —  1)" ( f l )  X

X  E w E w (J ), . w , (det uw)e(uw(A+ p— 8)).

Now, we quote the fact that every w  W  can be uniquely expressed in the
form wr • w(J), where Wj  W  and w(J) E W (J ) .  Note that this fact requires
J to be a subset of I .  (See [10, § 2] for the proof.) Therefore, the above is
equal to

e(— p)• I?» -E f l ecii)( — 1)h" ) E .. w (det w)e(w(A+ p— R))

= e(— p)• • Ea, w (det w) E f l e( A) ( -1 ) h" ) e(w(A+ p— g)).

Thus, we have proved the equality (#). This completes the proof of Proposi-

O)mult(a)
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tion 4.2. Q.E.D.

By Propositions 4.1 and 4.2, we have the following.

Proposition 4.3. Fix j  Z . 0. A nd put p:= w(A + p—  3)—  p, where dE
(A )  an d  w E W (J)  such that .e(w )+ ht(d)= j . T hen, L .( / i)  occurs as

irreducible components o f  II,(tr , L (A )).

Summarizing Propositions 3.1, 4.1, and 4.3, we obtain the following theo-
rem.

Theorem 4 .1  (Kostant's fo rm ula). L et A E13 + . A n d  le t g(A ) be the
GKM algebra associated to a symmetrizable GGCM A =(aki)i,JEI satisfying (el).
We assume that the subset J  of  I is contained i n  I  = { iE II a i i=2 } .  Then, as
m-modules (j 0),

M(u+, L(A)) -=- Hi(u- , L (A )) - E/Tes(A) L„,(w(A+ 13) —  19 )
W E  W J)

e(w )= j— ht(fl)

Here, the above sum is a direct sum of  inequivalent irreducible highest weight
m-modules.

Remark 4 . 1 .  Theorem 4.1 is a generalization of "Kostant's formula" for
symmetrizable Kac-Moody algebras, which was proved by L. Liu in [10]
without assuming that the subset J  of / is of finite type (cf. Remark 1.1).

Remark 4 .2 .  In our arguments, the assumption that J  is a subset of / '
plays an essential role. So, we cannot remove it.

§ 5. Applications—some vanishing theorems

In this section, as applications of Theorem 4.1, we extend some classical
results about the homology of symmetrizable Kac-Moody algebras to GKM
algebras associated to symmetrizable GGCMs satisfying the condition (e l).
Their proofs are very similar to the ones for Kac-Moody algebras given in
[13] or [7].

5 . 1 .  Linear homomorphisms with compact support. Here, we intro-
duce the notion of linear homomorphisms with compact support, following [10].
L et V = ELI,* VA and W = ELf,* Wp be h-diagonalizable modules with finite-
dimensional weight spaces. Then, a linear homomorphism f  from V to W is
called with compact support if f(VA) = 0 for all but finitely many weights AE
b* of V . We denote by HomRV, W) the space of all linear homomorphisms
with compact support from V to W. In particular, we write Vc* for Hom(V,
C), where C is the trivial h-module, while for a (possibly infinite-dimensional)
vector space X  over C, X * denotes the full dual Homc(X, C ) .  Then, we can
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easily show the following.

Proposition 5.1. For b-diagonaliz able m odules V  and W  with finite-
dimensional weight spaces, we have

(1) (Ve*)ck "-1- • V ,
(2) Vc*Oc Hom(V, W ) .

Corollary 5 .1 .  L e t V  an d  W  be ni -m odules. If  as t)-modules, they are
b-diagonalizable with finite-dimensional weight spaces, then

{(vc.)0c w):= Hornuo,o(v, w) n HomC(V, W) .

Here, U(m ) is the universal enveloping algebra of  the L ie algebra m , and for
an m -m odule X , we put X m :=(x E X Im (x )= 0 f o r all m E m l (the space of
m-invariants).

Remark 5 .1 .  For the irreducible highest weight m-module L.(2) with
highest weight /lEb*, {L(A)}} is isomorphic to the irreducible lowest weight
m-module with lowest weight —A as m-modules (see [5]). We simply write
L (A ) for it.

5 .2 .  Homology vanishing theorem for GKM algebras with coefficients
in a generalized Verma m odule. From now on, we assume that A — (a„),,,Ei
is an n x  n symmetrizable GGCM satisfying the condition (Cl), and that J  is
a  (fixed) arbitrary subset of I"—  { iE / la u = 2 } . Note that since J  is not
necessarily of finite type, L (A ) may be infinite-dimensional even if /1 P j + = {p
E V !  an E & o ( iE J)} .

For AEP.7, we define the generalized V erm a m odule V (A ) with highest
weight A as follows: V„,(/1):= U (g(A))( D u L,(A) , where u+ ( cu) acts on Lm(A)
trivially. T his becomes a  U(g(A))-module by le ft multiplication. Note
that when J = 0 ,  the m odule V„(.1) is just th e  V erm a m odule V (A ):=
U(g(A ))® v(b)C(A ) with highest weight AE[', where C(/1) is  th e  one-
dimensional e-module on which t.) acts by the weight A and n+ acts trivially.
Then, as an application of Theorem 4.1, we obtain the following generaliza-
tion of [13, Theorem 4.17].

Theorem 5.1. L et A E PJ+ . A n d  le t  V  ( A )  be the generalized Verma
module with highest weight A . Then, as C-vector spaces:

(a) I f  A * w(p— 13)— p f o r any  f iE S  an d  w E W  (j) , we have

1/1(g(A), V(A)) -= 0 f o r all i O.

(b) I f  A = wo(p —  do) — p f o r some (necessarily unique)  0 E  an d  some
(necessarily unique) wo E  W (j), we have

i(n(A), 14„(2))=-
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1 1 (( .0 ) -i- htoo»Ori, Lt(wo(p —  go) p)(8)c L(wo(p —  /30) p ) )

fo r all .

In particular, H(A ), V  m (A )) = 0 un less i .e(wo)+ht( go) .

P r o o f  First, note that Hz(g(A), V(.1))"=- L ( A ) )  (i 0) as C-vector
spaces, as is well-known (see [2, Proposition 4.2, p. 275 ]). Now, for the pair

u+) and a 0-module L (2 ) , there exists the Hochschild-Serre spectral se-
quence fo r  homology {ET', such that E n "1 -17z(0,
L (A )) and p(m, 11,(u+ , 1,,,,(A))) (see [2, p. 3511 for example).

Since e acts trivially on L1(.1), we clearly have

11,(u+ , L,„(/1)) 11,(u+ , L(0))0 c Lnn(A ) as m-modules ( q  0) .

And, we can show that 1/q(u+, L(0)) {H q (u-  , L(04 as rn-modules (q >0) (cf.
[10, § 4]). Therefore, by Theorem 4.1, we get

q (u+ , L(0))"-=' ELe Lit(w(P— 13) —  p) as m-modules.w.w(f)
P (W )= 4 - h t (9 )

So, as m-modules (q 0),

Hq (u+, L(A))--- ETEs Lt(w(P P )O C  L4/0 .
1DE W (J)

¢ (w )=q-h t(g )

Here, we have the following claim:

CLAIM. HP(M, Lgti)(p c LBW) = 0 for any p E P ; such that ti *  (p 0).

P roo f of the c l a im .  Recall that there exists a subspace t)(J) of t) such that
= t)j 0f)(J) and that the simple roots a  (iG J) vanish on t)(J). Then, we have

the direct sum decomposition of m as ideals:

m=a18b(J).

Further, we see that L (p )  (PE P i) is naturally isomorphic to the outer tensor
product L f ( t i l f » ) O c C ( P l t ) ( J ) ) ,

 w h e r e
 L ( L i t )  is the irreducible highest weight

g, (L--g(11,))-module with highest weight ,tiltVE(f)J) * , and C(tilf )(J)) is the ir-
reducible (one-dimensional) b(J)-module with weight t i l t ) ( J ) E ( ( T ) ) * .  S o ,
L (p )  is isomorphic to the outer tensor product LI(Pit)f)C)c C( — tilb(J)), where
LI(ttit)f):= {Lf(t/LEV)}c* is of-module isomorphic to the irreducible lowest
weight of -module with lowest weight 

_ [ 1 1 E ( ) * .
 Hence, by [9, Proposition

4.12], we have the following vector space isomorphism:

TorA(L„,(A))t , L,t(p))—=
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7=ET.4-s=p Tor11 ((Li(Alf»)) t , LI(PLE)/))0cTor bsu ) ((C(AIVAY, C( — MVP))
Since al  is isomorphic to the symmetrizable Kac-Moody algebra g(Aj ), we can
easily deduce that TorA(L.(.1)) t , L (,u ))=  0 for ti EPJ+  with ti */1 (p (1) from
[8, Corollary 2.13. (131)] and its proof. The claim now follows from [9, Propo-
sitions 4.2 and 4.3].

By the above claim and Lemma 4.3, we have

in  C ase  (a ), E7),, = 0 (p, q> 0)

in Case (b),

o (p o, q*(iv,c,)+11.0,80)) ,

Hp(m, Lm( w o (P  M) —  P)0  c  L n (w o (P RIO p))
(p 0, q=.e(w 0)+ht(R 0)) .

  

Therefore, in Case (a), 1-in(lo, L.(2)) En= a o =  0  (n 0), and in Case (b),

WO, L.(2))=- En=r-' E 2n-cwo-ht(80),P(w0)+ht(fl0)

"=" Hn-a(w.)-Fht(flo)(rn, Lt(wo(P —  Ro) P)O c L in(w 0( p  —  0 )  to)) (n >0 )  .

Thus, we have proved the theorem. Q.E.D.

Corollary 5.2. Let AE Pt be such that Lm(A) is finite-dimensional. Then,
as C-v ector spaces:

(a) I f  A * w(p—  R)—  p fo r any  R E  and w E W (J ) ,  we have

Hz(g(A ), V „,(2))= 0  fo r all .

(b) I f  A = wo(p— Ro)— p for some Ro and W o  E  W (J) , we have

H,(g(A ), V „,(A )) -=' 11,_(e(w0)+ht(fio»(111, L.(0)) fo r all .

P ro o f  Since L1(.1) is finite-dimensional by assumption, Ltt,(A)C)cL.(.1) is
completely reducible as an ni-module b y  [5, Theorem 10.7.b)]. So, i t  is  a
direct sum of modules L .(p ) with 1 iE P /4". And we know that H.,(m, L.(j1)) =
0 for 11E 1 '1  such that A * 0 E i f  ( j 0 )  (see the claim in the proof of Theorem
5.1). Therefore, we see that

Lit(A)Oc L.(A))=- ILit(A)0c L1(A)r) (1 0) .

Now, by Corollary 5.1 and the finite-dimensionality of L.(.1), we have

{L(À)0c L.(A)1" 1"="-HoW,XL4.1), L . ( A ) )  Hornuonam(A), L4/0)

Hence, the corollary immediately follows from Theorem 5.1. Q.E.D.
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Remark 5 .2 .  By [7, Proposition 1.9], we have

H*(m, L.(0)) A * (m/[nl, m])Oc H*([m, m], C)

as graded vector spaces, where C  is  the one-dimensional trivial module.
Here, the derived subalgebra [m, m] of m is clearly equal to [ni , gj ], which is
isomorphic to [g(A.,), g(Aj )]. On the other hand, it is well-known that

111([9(A./), g(AM, C)=11-1z([9(A.,), 9(24/)i, C)) *

where H Ig (A j ), g(Aj )], C) is the usual i-th Lie algebra cohomology of [g(4 1 ),
g(Aj )] with coefficients in the trivial module C  (i 0). Furthermore, by [6,
Theorem 1.6], 111([g(A ,),g(A ,)], C) is isomorphic to the i-th  singular co-
homology Fl i (K (A j ), C ) of K ( A )  with coefficients in the complex number
field C  as vector spaces (i where K (A 1 ) is the "standard compact real
form" of the Kac-Moody (algebraic) group G(A ) associated to the Kac-Moody
algebra g(Aj ). (See also [12] for the definitions of G(A 1 ) and K (A j ).)

When the GCM Ai  is  of finite type, the singular cohomology Flz(K(A j ),
C) (i 0) is well-known, and each cohomology space is of course finite-dimen-
sional. And, when A 1  i s  of non-twisted affine type, -1-P(K (A 1 ), C ) can be
easily determined by a standard spectral sequence argument from the struc-
ture theory of K (A 1 ) (cf. [4, § 2.8]), and proves to be finite-dimensional ( i  0).
More generally, V. G. Kac (and D. H. Peterson) claimed to have determined

C) (i 0) for an arbitrary GCM A 1 , though the proofs have not yet
appeared. According to their results (see [4, § 2.6]), FP(K(A j ), C ) is still
finite-dimensional (i Then, H1ag(I1J ), g(A J )1, C) is finite-dimensional,
and we have

111([9(Ar), 9(A.0], C) -="11-1' (WA)), g(AJ)i, C)} *

11-1'(K(A 1 ), C)}*

In particular, under the conditions of Corollary 5.1, we may conclude that
Hi(g(A), T4,(2)) is finite-dimensional for a ll i >0.

Remark 5 .3 .  When the subset J of I  is of finite type, L.(A) is automati-
cally finite-dimensional for AEPJ+. And in this case, we see from the above
corollary that fiz(g(A), V(A)) = 0 unless i <(w0)+ht( 130)+dimcm.

So, by putting =0 , we get the following corollary.

Corollary 5 .3 .  L et A E  1)* an d  V(A) be the  V erma m odule with highest
weight A. T h e n ,  a s  C-vector spaces:

(a) I f  A* w(p— p f o r an y  ,3 E  an d  wE  W, w e have

H,(g(A), V(A)) = 0  f o r all i>0 .

(b) I f  A = wo(p —  g o )  p f o r some RoES an d  Wo E W, we have
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H , ( g ( A ) ,  V ( A ) )
 A z - e ( . 0 ) - n t o 9 0 0 )

 f o r  a l l  i O .

I n  particu lar, Hi(g(A), V (A)) =  0  u n le ss  .e(w0)+ht( i30) i (w0)+ht( 130)
+dimc
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