Kostant's formula and homology vanishing theorems for generalized Kac-Moody algebras

By

Satoshi NaITO

Introduction

A real $n \times n$ matrix $A=\left(a_{i j}\right)_{i, j \in I}$ indexed by a set $I=\{1,2, \ldots, n\}$ is called a GGCM if it satisfies
(C1) either $a_{i i}=2$ or $a_{i i} \leq 0$;
(C2) $\quad a_{i j} \leq 0$ if $i \neq j$, and $a_{i j} \in \boldsymbol{Z}$ if $a_{i i}=2$;
(C3) $\quad a_{i j}=0$ implies $a_{j i}=0$.
Let $g(A)$ be a generalized Kac-Moody algebra (GKM algebra), over the complex number field \boldsymbol{C}, associated to a symmetrizable GGCM $A=\left(a_{i j}\right)_{i, j \in I}$, with Cartan subalgebra \mathfrak{h}, simple roots $\Pi=\left\{\alpha_{i}\right\}_{i \in I}$, and simple coroots $\Pi^{\vee}=\left\{\alpha_{i}^{\vee}\right\}_{i \in I}$. And let $\mathfrak{g}(A)=\mathfrak{n}^{-} \oplus \mathfrak{h} \oplus \mathfrak{n}^{+}$be the triangular decomposition with $\mathfrak{n}^{ \pm}=\sum_{\alpha \in \Delta^{ \pm}}^{\oplus} \mathrm{g}_{\alpha}$, where g_{α} is the root space attached to a root $\alpha \in \Delta^{ \pm}$. See [5] (and also [1]) for the definition of generalized Kac-Moody algebras.

In the previous paper [11], we studied the \mathfrak{h}-module structure of the homology $H_{j}\left(\mathfrak{n}^{-}, L(\lambda)\right)(j \geq 0)$ of \mathfrak{n}^{-}or the cohomology $H_{c}^{j}\left(\mathfrak{n}^{+}, L(\lambda)\right)(j \geq 0)$ of \mathfrak{n}^{+} with coefficients in the irreducible highest weight $g(A)$-module $L(\lambda)$ with highest weight $\lambda \in \mathfrak{h}^{*}:=\operatorname{Hom}_{c}(\mathfrak{h}, \boldsymbol{C})$. (Remark that the cohomology $H_{c}^{j}\left(\mathfrak{n}^{+}\right.$, $L(\lambda))(j \geq 0)$ used in [11] is slightly different from the usual Lie algebra cohomology.) Then, we proved "Kostant's formula" under the following condition ($\widehat{\mathrm{C}} 1$) on the GGCM $A=\left(a_{i j}\right)_{i, j \in I}$:
($\widehat{\mathrm{C}} 1)$ either $a_{i i}=2$ or $a_{i i}=0 \quad(i \in I)$.
Namely, we proved
Theorem A ([11]). Let $\Lambda \in P^{+}:=\left\{\lambda \in \mathfrak{h}^{*} \mid\left\langle\lambda, \alpha_{i}^{\vee}\right\rangle \geq 0(i \in I)\right.$, and $\left\langle\lambda, \alpha_{i}^{\vee}\right\rangle$ $\in \boldsymbol{Z}_{20}$ if $\left.a_{i i}=2\right\}$. Denote by \mathbb{S} the set of all sums of distinct pairwise perpendicular elements from $\Pi^{i m}:=\left\{\alpha_{i} \in \Pi \mid a_{i i} \leq 0\right\}$. And we put $\mathbb{S}(\Lambda):=\{\lambda \in \mathbb{S} \mid$ $(\lambda \mid \Lambda)=0\}$, where $(\cdot \mid \cdot)$ is a standard bilinear form on $\mathfrak{\mathfrak { b }}$. Then, as \mathfrak{h}-modules $(j \geq 0)$,

$$
H_{c}^{j}\left(\mathfrak{n}^{+}, L(\Lambda)\right) \cong H_{j}\left(\mathfrak{n}^{-}, L(\Lambda)\right) \cong \sum_{\beta \in \mathbb{E}(\Lambda)}^{\oplus} \sum_{\substack{w \in w \\ \ell(w)=j-\mathrm{ht}(\beta)}}^{\oplus} \boldsymbol{C}(w(\Lambda+\rho-\beta)-\rho),
$$

where $\boldsymbol{C}(\mu)\left(\mu \in \mathfrak{G}^{*}\right)$ is the irreducible (one-dimensional) \mathfrak{h}-module with weight μ. Here, ρ is a fixed element of \mathfrak{h}^{*} such that $\left\langle\rho, \alpha_{i}^{\vee}\right\rangle=(1 / 2) \cdot a_{i i}(i \in I), \ell(w)$ is the length of an element w of the Weyl group W, and for $\beta=\sum_{i \in I} k_{i} \alpha_{i}\left(k_{i}\right.$ $\left.\in \boldsymbol{Z}_{\geq 0}\right) \in \mathbb{S}$, we put $\operatorname{ht}(\beta):=\sum_{i \in I} k_{i}$.

In the present paper, using the idea of L. Liu [10] for Kac-Moody algebras, we extend the above result so that the nilpotent part \mathfrak{n}^{+}of the Borel subalgebra $\mathfrak{b}:=\mathfrak{h} \oplus \mathfrak{n}^{+}$is allowed to be the nilpotent part of a parabolic subalgebra containing b.

Let us explain in more detail. Let $I^{r e}$ (resp. $I^{i m}$) be the subset $\left\{i \in I \mid a_{i i}\right.$ $=2\left(\right.$ resp. $\left.\left.a_{i i} \leq 0\right)\right\}$ of the indexing set I. And let J be a subset of $I^{r e}$. We define a submatrix A_{J} of A by $A_{J}:=\left(a_{i j}\right)_{i, j \in J}$, which is a generalized Cartan matrix (GCM). Note that there exists a certain subspace \mathfrak{h}_{J} of \mathfrak{h} with $\alpha_{i}^{v} \in \mathfrak{h}_{J}(i \in J)$, such that the triple $\left(\mathfrak{h}_{J},\left\{\alpha_{i} \mid \mathfrak{h}_{J}\right\}_{i \in J},\left\{\alpha_{i}^{\vee}\right\}_{i \in J}\right)$ is a minimal realization of the GCM A_{J}. Then, we can identify the Kac-Moody algebra $\mathrm{g}\left(A_{J}\right)$ with the subalgebra g_{J} of $\mathrm{g}(A)$ generated by $e_{i}, f_{i}(i \in J)$, and \mathfrak{h}_{J}. Furthermore, $g_{J}=\mathfrak{h}_{J} \oplus \sum_{\alpha \in \Delta}^{\oplus}, g_{\alpha}$, where $\Delta_{J}:=\Delta \cap \sum_{i \in J} \boldsymbol{Z} \alpha_{i}$ (or its restriction to \mathfrak{h}_{J}) is the root system of $\left(\mathfrak{g}_{J}, \mathfrak{h}_{J}\right)$. Now, we define the following subalgebras of $g(A)$:

$$
\begin{aligned}
& \mathfrak{n}_{J}^{+}:=\sum_{\alpha \in \Delta_{j}^{j}}^{\oplus} \mathfrak{g}_{\alpha}, \quad \mathfrak{n}_{J}^{-}:=\sum_{\alpha \in J_{j} j}^{\oplus} \mathfrak{g}_{-\alpha}, \quad \mathfrak{u}^{+}:=\sum_{\alpha \in \Delta^{+}(J)}^{\oplus} \mathfrak{g}_{\alpha}, \\
& \mathfrak{u}^{-}:=\sum_{\alpha \in J^{+}(J)}^{\oplus} \mathfrak{g}_{-\alpha}, \quad \mathrm{m}:=\mathfrak{n}_{J}^{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{J}^{+}, \quad \mathfrak{p}:=\mathfrak{m} \oplus \mathfrak{u}^{+},
\end{aligned}
$$

where $\Delta(J):=\Delta \backslash \Delta_{J}, \Delta_{J}^{+}:=\Delta^{+} \cap \Delta_{J}, \Delta^{+}(J):=\Delta^{+} \cap \Delta(J)$. We call $\mathfrak{p}=\mathfrak{m} \oplus \mathfrak{u}^{+}$the parabolic subalgebra of $\mathrm{g}(A)$ defined by J. Note that since the triple $\left(\mathfrak{h},\left\{\alpha_{i}\right\}_{i \in J}\right.$, $\left\{\alpha_{i}^{\vee}\right\}_{i \in J}$) is a realization (but not necessarily a minimal realization) of the GCM $A_{J}, \mathfrak{m}=g_{J}+\mathfrak{h}$ can be regarded as a Kac-Moody algebra associated to A_{J}, whose Cartan subalgebra is \mathfrak{h}.

Recall that the Weyl group W of $\mathrm{g}(A)$ is defined to be the subgroup of $G L\left(\mathfrak{h}^{*}\right)$ generated by fundamental reflections $r_{i}\left(i \in I^{r e}\right)$. Now, let W_{J} be the subgroup of W generated by r_{i} 's $(i \in J)$, which is the Weyl group of m. And we put $W(J):=\left\{w \in W \mid w\left(\Delta^{-}\right) \cap \Delta^{+} \subset \Delta^{+}(J)\right\} \quad\left(=\left\{w \in W \mid w^{-1}\left(\Delta_{J}^{+}\right) \subset \Delta^{+}\right\}\right)$. Then, we will obtain the following theorem. (Here, as in [11], the cohomology $H_{c}^{j}\left(\mathfrak{u}^{+}, L(\Lambda)\right)(j \geq 0)$ is slightly different from the usual one, whereas the homology $H_{j}\left(\mathfrak{u}^{-}, L(\Lambda)\right)(j \geq 0)$ is the usual Lie algebra homology. See $\S 3$ for the definition.)

Theorem. Let $\Lambda \in P^{+}$. Assume that the GGCM $A=\left(a_{i j}\right)_{i, j \in I}$ is symmetr izable and satisfies the condition (C 1$)$. Then,

$$
H_{c}^{j}\left(\mathfrak{u}^{+}, L(\Lambda)\right) \cong H_{j}\left(\mathfrak{u}^{-}, L(\Lambda)\right) \cong \sum_{\beta \in \Xi(\Lambda)}^{\oplus} \sum_{\substack{w \in W(J) \\ \ell(w)=j-\mathrm{ht}(\beta)}}^{\oplus} L_{\mathrm{mi}}(w(\Lambda+\rho-\beta)-\rho),
$$

as m-modules $(j \geq 0)$. Here, for $\mu \in P_{J}^{+}:=\left\{\lambda \in \mathfrak{h}^{*} \mid\left\langle\lambda, \alpha_{i}^{\vee}\right\rangle \in Z_{z_{0}}(i \in J)\right\}$, $L_{\mathrm{m}}(\mu)$ is the irreducible highest weight m -module with highest weight μ.

Note that when $J=\phi$, this theorem is nothing but Theorem A, since in this case, $\mathfrak{u}^{+}=\mathfrak{n}^{+}, \mathfrak{u}^{-}=\mathfrak{n}^{-}, \mathfrak{m}=\mathfrak{h}$, and $W(J)=W$.

And in the last part of this paper, we prove a homology vanishing theorem for GKM algebras with coefficients in a generalized Verma module, as a consequence of our "Kostant's formula". This theorem generalizes the result of C. Sen [13], which is only for the class of Kac-Moody algebras and under the condition that the subset J of I is of finite type (i.e., the submatrix $A_{J}=\left(a_{i j}\right)_{i, j \in J}$ of A is a classical Cartan matrix of finite type $)$.

This paper is organized as follows. In § 1, we review some basic results for GKM algebras, especially the Weyl-Kac-Borcherds character formula. In § 2, we will introduce the algebra \mathcal{F} of formal m -characters, where we can carry out certain formal operations. In § 3, we rewrite some results of L. Liu [10] for Kac-Moody algebras, which can be proved also for GKM algebras in just the same way that they are proved for Kac-Moody algebras. In §4, we prove our main theorem stated above, combining the results of [10] and [11]. In $\S 5$, as consequences of our main theorem, we obtain some vanishing theorems for the homology of GKM algebras.

Acknowledgments. I would like to express my sincere thanks to Professor Akira Kono for answering my questions about the singular cohomology of Kac-Moody groups.

§ 1. The category \mathcal{O} and the character formula

In this section, we prepare fundamental results about GKM algebras for later use. For detailed accounts of this section, see [1] and [5].

We put $I:=\{1,2, \ldots, n\}$. Let $g(A)$ be the GKM algebra associated to a GGCM $A=\left(a_{i j}\right)_{i, j \in I}$ with the Cartan subalgebra \mathfrak{h}.

Definition 1.1 ([5]). \mathcal{O} is the category of all \mathfrak{h}-modules V satisfying the following:
(1) V admits a weight space decomposition $V=\sum_{i \in \mathscr{P}_{(}(V)}^{~_{\lambda}}$, where $\mathscr{P}(V)$ is the set of all weights of V. And each weight space V_{λ} is finite-dimensional $(\lambda \in \mathscr{P}(V))$;
(2) there exist a finite number of elements $\lambda_{i} \in \mathfrak{h}^{*}(1 \leq i \leq s)$ such that $\mathscr{P}(V)$ $\subset \cup_{i=1}^{s} D\left(\lambda_{i}\right)$, where $D\left(\lambda_{i}\right):=\left\{\lambda_{i}-\beta \mid \beta \in Q_{+}=\sum_{j \in I} \boldsymbol{Z}_{\geq 0} \alpha_{j}\right\}(1 \leq i \leq s)$.

Note that the category \mathcal{O} is closed under the operations of taking submodules, quotients, finite direct sums, and finite tensor products.

Now, let \mathcal{E} be the algebra over \boldsymbol{C} consisting of all series of the form $\sum_{\lambda \in h^{*}} c_{\lambda} e(\lambda)$, where $c_{\lambda} \in \boldsymbol{C}$ and $c_{\lambda}=0$ for λ outside a finite union of sets of the form $D(\mu)\left(\mu \in \mathfrak{h}^{*}\right)$. Here, the elements $e(\lambda)$ are called formal exponentials. They are linearly independent and are in one-to-one correspondence with the elements $\lambda \in \mathfrak{h}^{*}$. And the multiplication in \mathcal{E} is defined by $e(\lambda) \cdot e(\mu):=e(\lambda$ $+\mu)\left(\lambda, \mu \in \mathfrak{h}^{*}\right)$. Then, for $V=\sum_{i \in h^{*}}^{\oplus} V_{\lambda}$ in \mathcal{O}, we define the formal character of V by ch $V:=\sum_{\lambda \in b^{*}}\left(\operatorname{dim}_{C} V_{\lambda}\right) e(\lambda) \in \mathcal{E}$. Then, we know the following character formula.

Theorem 1.1 ([1] and [5]). Assume that A is a symmetrizable GGCM. Let $(\cdot \mid \cdot)$ be a fixed standard bilinear form on \mathfrak{h}^{*}. For $\Lambda \in P^{+}$, we put

$$
S_{\Lambda}:=e(\Lambda+\rho) \cdot \sum_{\beta \in \S(\Lambda)}(-1)^{\mathrm{ht}(\beta)} e(-\beta), \quad R:=\prod_{\alpha \in \Lambda^{+}}(1-e(-\alpha))^{\mathrm{mult}(\alpha)},
$$

where $\operatorname{mult}(\alpha):=\operatorname{dim}_{c} g_{\alpha}\left(\alpha \in \Delta^{+}\right)$. Then,

$$
e(\rho) \cdot R \cdot \operatorname{ch} L(\Lambda)=\sum_{w \in W}(\operatorname{det} w) w\left(S_{\Lambda}\right),
$$

with $w(e(\mu)):=e(w(\mu))(\mu \in \mathfrak{h} *)$.
Remark 1.1. The set $\{0\} \cup \Pi^{i m}$ is contained in \mathbb{S} by definition. And, especially when A is a GCM, © consists of only one element $0 \in \mathfrak{h}^{*}$.

§ 2. The category \mathcal{O}_{J} and the algebra \mathscr{E}

In this section, we explain the notion of the category \mathcal{O}_{J} of m-modules. And then, we introduce the algebra \mathscr{I} of "formal \mathfrak{m}-characters" of \mathfrak{m}-modules from the category \mathcal{O}_{J}. Note that when $J=\phi$, these are nothing but the category \mathcal{O} and the algebra \mathcal{E}.

From now on, we always assume that the GGCM A is symmetrizable, and that J is a subset of $I^{r e}=\left\{i \in I \mid a_{i i}=2\right\}$. We use notations in the Introduction.

Definition 2.1 (cf. [10, §1]). \mathcal{O}_{J} is the category of all m-modules M satisfying the following:
(1) Viewed as an \mathfrak{h}-module, M is an object of the category \mathcal{O};
(2) Viewed as an m-module, M is a direct sum of irreducible highest weight \mathfrak{m}-modules $L_{\mathrm{m}}(\lambda)$ with highest weight $\lambda \in P_{J}^{+}=\left\{\mu \in \mathfrak{h}^{*} \mid\left\langle\mu, \alpha_{i}^{\vee}\right\rangle \in \boldsymbol{Z}_{\geq 0}(i \in\right.$ $J)\}$.

Clearly, the category \mathcal{O}_{J} is closed under the operations of taking submodules, quotients, and finite direct sums. Moreover, a tensor product of two modules from \mathcal{O}_{J} is again in the category \mathcal{O}_{J}, because $L_{\mathrm{m}}(\lambda) \otimes_{c} L_{\mathrm{m}}(\mu) \in \mathcal{O}_{J}(\lambda, \mu$ $\in P_{J}^{+}$) by [5, Theorem 10.7.b)] (note that the modules $L_{\mathrm{m}}(\tau)\left(\tau \in P_{J}^{+}\right)$remain irreducible as g_{J}-modules). The main reason for our requirement that J is a subset of $I^{r e}$ comes from the fact that this theorem holds only for Kac-Moody algebras.

The following proposition plays a fundamental role in this paper.
Proposition 2.1 (cf. [10, § 1]). For $\Lambda \in P^{+}, L(\Lambda)$ and $\left(\Lambda^{j} \mathfrak{u}^{-}\right) \otimes_{c} L(\Lambda)(j \geq$ 0) are in the category \mathcal{O}_{J}, where $\Lambda^{j} \mathfrak{u}^{-}$is the exterior algebra of degree j over \mathfrak{u}^{-}, and is an m -module under the adjoint action $(j \geq 0)$, since $\left[\mathrm{m}, \mathfrak{u}^{-}\right] \subset \mathfrak{u}^{-}$.

Now, we define a certain algebra \mathscr{F} over \boldsymbol{C}. The elements of \mathscr{F} are series of the form $\sum_{\lambda \in P P^{\prime}} c_{\lambda} m(\lambda)$, where $c_{\lambda} \in \boldsymbol{C}$ and $c_{\lambda}=0$ for λ outside a finite union of sets of the form $D(\mu)\left(\mu \in \mathfrak{h}^{*}\right)$. Here, the elements $m(\lambda)$ are called formal \mathfrak{m}-exponentials. They are linearly independent and are in one-to-one correspondence with the elements $\lambda \in P_{J}^{+}$.

For a module M in the category \mathcal{O}_{J}, we define the formal m-character $\operatorname{ch}_{\mathrm{m}} M$ of M by $\mathrm{ch}_{\mathrm{m}} M:=\sum_{\lambda \in P f}\left[M: L_{\mathrm{m}}(\lambda)\right] m(\lambda)$, where $\left[M: L_{\mathrm{m}}(\lambda)\right]$ is the "multiplicity" of $L_{\mathrm{m}}(\lambda)$ in M (see [5, Ch. 9, Lemma 9.6]). Note that $\left[M: L_{\mathrm{m}}(\lambda)\right](\lambda \in$ $\left.P_{J}^{+}\right)$is finite since M is in the category \mathcal{O} as an \mathfrak{h}-module. Therefore, $\mathrm{ch}_{1 \mathrm{~m}} M$ is an element of the algebra \mathscr{F} for $M \in \mathcal{O}_{J}$. Then, the multiplication in \mathscr{F} is defined as follows: for $\lambda, \mu \in P_{J}^{+}, m(\lambda) \cdot m(\mu):=\operatorname{ch}_{\mathrm{m}}\left(L_{\mathrm{m}}(\lambda) \otimes_{c} L_{\mathrm{m}}(\mu)\right)$. Thus, \mathscr{E} becomes a commutative associative algebra over \boldsymbol{C}.

Following [10], we now define an algebra homomorphism $\Psi(\mathfrak{m}, \mathfrak{h}): \mathscr{I} \rightarrow \mathcal{E}$, by $\Psi(m, \mathfrak{h})(m(\lambda)):=\operatorname{ch} L_{m}(\lambda) \in \mathcal{E}\left(\lambda \in P_{J}^{+}\right)$. Then, we have

Lemma 2.1. The mapping $\Psi(\mathrm{m}, \mathfrak{h}): \mathscr{F} \rightarrow \mathcal{E}$ is injective.
Proof (cf. [10, § 1]). Let $\sum_{\lambda \in P_{j}} c_{\lambda} m(\lambda)$ be a non-zero element of \mathscr{F}. Then, there exist $\mu_{i} \in \mathfrak{G}^{*}(1 \leq i \leq s)$ such that $\left\{\lambda \in P_{J}^{+} \mid c_{\lambda} \neq 0\right\} \subset \cup_{i=1}^{s} D\left(\mu_{i}\right)$. By replacing the set $\left\{\mu_{i}\right\}_{i=1}^{s}$ with a suitable finite subset $\left\{\mu_{i}^{\prime}\right\}_{i=1}^{t}$ of \mathfrak{G} * if necessary, we can assume that $\mu_{k}^{\prime}-\mu_{l}^{\prime} \notin Q=\sum_{j \in I} \boldsymbol{Z} \alpha_{j}(1 \leq k \neq l \leq t)$. Consider the subset $\bigcup_{i=1}^{t}\left\{\operatorname{ht}\left(\mu_{i}^{\prime}-\lambda\right) \mid \lambda \in P_{J}^{+}\right.$with $c_{\lambda} \neq 0$, and $\left.\lambda \in D\left(\mu_{i}^{\prime}\right)\right\}$ of $\boldsymbol{Z}_{\geq 0}$, and take $\lambda_{0} \in P_{J}^{+}$ which attains the minimum of this subset. Then, clearly λ_{0} is not a weight of $L_{\mathrm{m}}(\lambda)\left(\lambda \in P_{J}^{+} \backslash\left\{\lambda_{0}\right\}\right)$. Hence, $\Psi(\mathfrak{m}, \mathfrak{h})\left(\sum_{\lambda \in P_{j}} c_{\lambda} m(\lambda)\right) \neq 0 \in \mathcal{E}$. Thus we have shown the injectivity of $\Psi(\mathfrak{m}, \mathfrak{h})$.
Q.E.D.

§ 3. Some results of L. Liu

In this section, we rewrite, in the case of GKM algebras, some of Liu's results on m-modules $H_{j}\left(\mathfrak{u}^{-}, L(\lambda)\right)$ and $H_{c}^{j}\left(\mathfrak{u}^{+}, L(\lambda)\right)(j \geq 0)$ for Kac-Moody algebras. His proofs for these results require no modifications. For details, see [10].

The j-th homology $H_{j}\left(\mathfrak{u}^{-}, L(\lambda)\right)$ of \mathfrak{u}^{-}with coefficients in $L(\lambda)\left(\lambda \in \mathfrak{h}^{*}\right)$ is defined as the j-th homology of the m-module complex $\left\{\left(\Lambda^{j} \mathfrak{u}^{-}\right) \otimes_{c} L(\lambda), d_{j}\right\}_{j}$, where the action of m and the boundary operators d_{j} are defined in a usual way (see [3] and [9]). The j-th cohomology $H_{c}^{j}\left(\mathfrak{u}^{+}, L(\lambda)\right)$ of \mathfrak{u}^{+}with coefficients in $L(\lambda)$ is defined as the j-th cohomology of the m-module complex $\left\{\operatorname{Hom}_{c}^{c}\left(\Lambda^{j} \mathfrak{u}^{+}, L(\lambda)\right), d^{j}\right\}_{j}$, where $\operatorname{Hom}_{c}^{c}\left(\Lambda^{j} \mathfrak{u}^{+}, L(\lambda)\right)$ is the \mathfrak{k}-semisimple part of $\operatorname{Hom}_{c}\left(\Lambda^{j} \mathfrak{u}^{+}, L(\lambda)\right)$ (see $\S 5.1$ for the definition), with the action of \mathfrak{m} and the
coboundary operators d^{j} being the restrictions of the usual ones. Note that this cohomology $H_{c}^{j}\left(\mathfrak{u}^{+}, L(\lambda)\right)(j \geq 0)$ of \mathfrak{u}^{+}is different from the usual Lie algebra cohomology, which we denote by $H^{j}\left(\mathfrak{u}^{+}, L(\lambda)\right)(j \geq 0)$, since we have employed $\operatorname{Hom}_{c}^{c}\left(\Lambda^{j} \mathfrak{u}^{+}, L(\lambda)\right)$ instead of $\operatorname{Hom}_{c}\left(\Lambda^{j} \mathfrak{u}^{+}, L(\lambda)\right)$ as the space of j-cochains ($j \geq 0$) (see [3] and [10]).

Then, we have the following, due to L. Liu.
Proposition 3.1 (cf. [10, §4]). For any $\Lambda \in P^{+}$and $j \in \boldsymbol{Z}_{\geq 0}, H_{c}^{j}\left(\mathfrak{u}^{+}, L(\Lambda)\right)$ is isomorphic to $H_{j}\left(\mathfrak{u}^{-}, L(\Lambda)\right)$ as m-modules.

So, from now on, we concentrate on m-modules $H_{j}\left(\mathfrak{u}^{-}, L(\Lambda)\right)(j \geq 0)$. Since $L(\Lambda)$ and $\left(\Lambda^{j} \mathfrak{u}^{-}\right) \otimes_{c} L(\Lambda)$ are in the category \mathcal{O}_{J} by Proposition 2.1, $H_{j}\left(\mathfrak{u}^{-}, L(\Lambda)\right)$ is also in \mathcal{O}_{J}, and so, is a direct sum of modules $L_{\mathrm{n}}(\mu)\left(\mu \in P_{J}^{+}\right)$as an m-module. Furthermore, we have

Proposition 3.2 (cf. [10, §5]). Let $(\cdot \mid \cdot)$ be a fixed standard bilinear form on \mathfrak{h}^{*}. Then, for any $\Lambda \in P^{+}$and $j \in \boldsymbol{Z}_{\geq 0}$, every m-irreducible component of $H_{j}\left(\mathfrak{u}^{-}, L(\Lambda)\right)$ is of the form $L_{\mathrm{m}}(\mu)\left(\mu \in P_{J}^{+}\right)$with $(\mu+\rho \mid \mu+\rho)=(\Lambda+\rho \mid \Lambda+\rho)$.

§ 4. Kostant's formula for GKM algebras

In this section, we prove "Kostant's formula" for GKM algebras, which is a generalization of that in my previous paper [11]. Here, we assume that the symmetrizable GGCM $A=\left(a_{i j}\right)_{i, j \in I}$ satisfies the following condition ($\widehat{\mathrm{C}} 1$):
($\widehat{\mathrm{C}} 1$) either $a_{i i}=2$ or $a_{i i}=0 \quad(i \in I)$.
And recall that J is a subset of $I^{r e}$.
4.1. Necessary condition. Now, we review some results given in [11, Lemma 4.2] and its proof. Let $(\cdot \mid \cdot)$ be a standard bilinear form on \mathfrak{b}. Then, we have

Lemma 4.1 ([11]). Let $\Lambda \in P^{+}$. If, for some $j(j \geq 0), \mu$ is a weight of $\left(\Lambda^{j} \mathfrak{n}^{-}\right) \otimes_{c} L(\Lambda)$ and satisfies $(\mu+\rho \mid \mu+\rho)=(\Lambda+\rho \mid \Lambda+\rho)$, then
(1) there exist a $\beta_{0} \in \mathbb{S}(\Lambda)$ and $a w_{0} \in W$, such that $\ell\left(w_{0}\right)+\operatorname{ht}\left(\beta_{0}\right)=j$ and $\mu=w_{0}\left(\Lambda+\rho-\beta_{0}\right)-\rho ;$
(2) the multiplicity of μ in $\left(\Lambda^{*} \mathfrak{n}^{-}\right) \otimes_{c} L(\Lambda)$ is equal to one, where $\Lambda^{*} \mathfrak{n}^{-}$ $=\sum_{j \geq 0}^{\oplus} \Lambda^{j} \mathfrak{n}^{-}$.

Let us fix $\Lambda \in P^{+}$. From the above, we can prove the following.
Lemma 4.2. Assume that $\mu \in \mathfrak{h}^{*}$ is a weight of $\left(\Lambda^{j} \mathfrak{u}^{-}\right) \otimes_{c} L(\Lambda)$ for some $j \in \boldsymbol{Z}_{20}$, and satisfies $(\mu+\rho \mid \mu+\rho)=(\Lambda+\rho \mid \Lambda+\rho)$. Then,
(a) there exist a $\beta \in \mathbb{S}(\Lambda)$ and $a w \in W(J)$, such that $\ell(w)+\operatorname{ht}(\beta)=j$ and $\mu=w(\Lambda+\rho-\beta)-\rho ;$
(b) the multiplicity of μ in $\left(\Lambda^{j} \mathfrak{u}^{-}\right) \otimes_{c} L(\Lambda)$ is equal to one.

Proof. If $\mu \in \mathfrak{h}^{*}$ is a weight of $\left(\Lambda^{j} \mathfrak{u}^{-}\right) \otimes_{c} L(\Lambda)$, then μ is a weight of $\left(\Lambda^{j} \mathfrak{n}^{-}\right) \otimes_{c} L(\Lambda)$, since $\left(\Lambda^{j} \mathfrak{u}^{-}\right) \otimes_{c} L(\Lambda)$ can be regarded as a submodule of $\left(\Lambda^{j} \mathfrak{n}^{-}\right) \otimes_{c} L(\Lambda)$. Then, by Lemma 4.1, it follows that there exist a $\beta_{0} \in \mathbb{S}(\Lambda)$ and a $w_{0} \in W$, such that $\ell\left(w_{0}\right)+\operatorname{ht}\left(\beta_{0}\right)=j$ and $\mu=w_{0}\left(\Lambda+\rho-\beta_{0}\right)-\rho$, and that the multiplicity of μ in $\left(\Lambda^{*} \mathfrak{n}^{-}\right) \otimes_{c} L(\Lambda)$ is equal to one. So, we have only to show that $w_{0} \in W(J)=\left\{w \in W \mid w\left(\Delta^{-}\right) \cap \Delta^{+} \subset \Delta^{+}(J)\right\}$. Now, recall that $w_{0}(\rho)$ $-\rho=-\sum_{\alpha \in \Phi_{w_{0}} \alpha} \alpha$, where $\Phi_{w_{0}}=w_{0}\left(\Delta^{-}\right) \cap \Delta^{+} \quad$ (see [11, Proposition 1.2.b)]). Express $\beta_{0}=\sum_{k=1}^{m} \alpha_{i k}$, where $m=\operatorname{ht}\left(\beta_{0}\right), \alpha_{i_{k}} \in \Pi^{i m}(1 \leq k \leq m)$, and $i_{r} \neq i_{t}(1 \leq r \neq$ $t \leq m)$. And take non-zero root vectors $E_{k} \in g_{-w_{0}\left(\alpha_{\left.i_{k}\right)}\right)}(1 \leq k \leq m), E_{\alpha} \in g_{-\alpha}(\alpha \in$ $\Phi_{w_{0}}$), and a non-zero weight vector $v \in L(\Lambda)_{w(\Lambda)}$. Then, it is clear that $0 \neq$ $\left(E_{1} \wedge \cdots \wedge E_{m}\right) \wedge\left(\Lambda_{a \in \Phi_{w_{0}}} E_{\alpha}\right) \otimes v \in\left(\Lambda^{*} n^{-}\right) \otimes_{c} L(\Lambda)$ is a weight vector of weight μ (cf. the proof of [11, Lemma 4.2]). Since the multiplicity of μ in $\left(\Lambda^{*} \mathfrak{n}^{-}\right) \otimes_{c} L(\Lambda)$ is equal to one, and μ is a weight of $\left(\Lambda^{j} \mathfrak{u}^{-}\right) \otimes_{c} L(\Lambda)$ by assumption, it follows that $\left(E_{1} \wedge \cdots \wedge E_{m}\right) \wedge\left(\Lambda_{a \in \Phi_{w_{0}}} E_{\alpha}\right) \otimes v \in\left(\Lambda^{j} \mathfrak{u}^{-}\right) \otimes_{c} L(\Lambda)$. Therefore, $\alpha \in \Delta^{+}(J)$ (if $\alpha \in \Phi_{w_{0}}$). Hence, $w_{0} \in W(J)$ by the definition of $W(J)$. Thus we have proved Lemma 4.2.
Q.E.D.

By Proposition 3.2 and Lemma 4.2, we have the following.
Proposition 4.1. Let $j \in \boldsymbol{Z}_{\geq 0}$. If $L_{m}(\mu)\left(\mu \in P_{J}^{+}\right)$is an \mathfrak{m}-irreducible component of $H_{j}\left(\mathfrak{u}^{-}, L(\Lambda)\right)$, then
(a) $\mu=w(\Lambda+\rho-\beta)-\rho$, for some $\beta \in \mathbb{S}(\Lambda)$ and some $w \in W(J)$ such that $\ell(w)+h t(\beta)=j$;
(b) $L_{\mathrm{m}}(\mu)$ occurs with multiplicity one as m -irreducible components of $H_{j}\left(\mathfrak{u}^{-}, L(\Lambda)\right)$.
4.2. Sufficient condition. Here, we use the setting in § 2. Let $\Lambda \in P^{+}$. Before carrying out formal operations on formal m-characters in the algebra \mathfrak{F}, we note that $w(\Lambda+\rho-\beta)-\rho$ varies if $w \in W$ or $\beta \in \mathbb{S}$ varies (see the proof of [11, Proposition 4.2]).

Lemma 4.3. For $w \in W(J)$ and $\beta \in \mathbb{S}$, we have $w(\Lambda+\rho-\beta)-\rho \in P_{J}^{+}$.
Proof. We have to show that $\left\langle w(\Lambda+\rho-\beta)-\rho, \alpha_{i}^{\vee}\right\rangle \in \boldsymbol{Z}_{\geq 0}$ for $i \in J$. Since $w \in W(J)=\left\{w \in W \mid w^{-1}\left(\Delta_{j}^{+}\right) \subset \Delta^{+}\right\}$and $i \in J \subset I^{r e}$, it follows that $w^{-1}\left(\alpha_{i}\right)$ $\in \Delta^{+}$. So, we have $w^{-1}\left(\alpha_{i}^{\vee}\right) \in\left(\Delta^{\vee}\right)^{+}$, where $\Delta^{\vee}=\Delta\left({ }^{t} A\right) \subset \mathfrak{h}$ is the dual root system of $\mathrm{g}(A)$ (see [5]). Moreover, $w^{-1}\left(\alpha_{i}^{\vee}\right) \in \sum_{j \in I^{r e}} \boldsymbol{Z} \alpha_{j}^{\vee}$ since $J \subset I^{r e}$. On the other hand, we have

$$
\begin{aligned}
& \left\langle w(\Lambda+\rho-\beta)-\rho, \alpha_{i}^{\vee}\right\rangle=\left\langle\Lambda+\rho-\beta, w^{-1}\left(\alpha_{i}^{\vee}\right)\right\rangle-\left\langle\rho, \alpha_{i}^{\vee}\right\rangle \\
& =\left\langle\Lambda, w^{-1}\left(\alpha_{i}^{\vee}\right)\right\rangle-\left\langle\beta, w^{-1}\left(\alpha_{i}^{\vee}\right)\right\rangle+\left\langle\rho, w^{-1}\left(\alpha_{i}^{\vee}\right)\right\rangle-1
\end{aligned}
$$

Since $\Lambda \in P^{+}$and β is a sum of elements from $\Pi^{i m}$, we deduce that $\langle w(\Lambda+\rho$ $\left.-\beta)-\rho, \alpha_{i}^{\vee}\right\rangle \in \boldsymbol{Z}_{\geq 0}$ from the above equality. Thus the assertion has been proved.
Q.E.D.

Proposition 4.2. For $\Lambda \in P^{+}$, there holds in the algebra \mathcal{F},

$$
\begin{aligned}
& \sum_{j \geq 0}(-1)^{j} \mathrm{ch}_{\mathfrak{m}}\left(H_{j}\left(\mathfrak{u}^{-}, L(\Lambda)\right)\right) \\
& \quad=\sum_{\beta \in \Theta(\Lambda)}(-1)^{\mathrm{ht}(\beta)} \sum_{w \in W(J)}(\operatorname{det} w) m(w(\Lambda+\rho-\beta)-\rho) .
\end{aligned}
$$

Proof. Both sides of the above equality are clearly in the algebra \mathcal{F} by Lemma 4.3. So, because $\Psi(\mathfrak{m}, \mathfrak{k}): \mathscr{F} \rightarrow \mathcal{E}$ is injective, we have only to show the following in the algebra \mathcal{E} (cf. also Proposition 4.1).

$$
\begin{align*}
& \sum_{j \geq 0}(-1)^{j} \operatorname{ch}\left(H_{j}\left(u^{-}, L(\Lambda)\right)\right) \\
& \quad=\sum_{\beta \in \Subset(A)}(-1)^{\mathrm{ht}(\beta)} \sum_{w \in W(J)}(\operatorname{det} w) \operatorname{ch} L_{\mathrm{m}}(w(\Lambda+\rho-\beta)-\rho) .
\end{align*}
$$

By the well-known Euler-Poincaré principle, the left hand side of (\#) is equal to

$$
\begin{gathered}
\sum_{j \geq 0}(-1)^{j} \operatorname{ch}\left(H_{j}\left(\mathfrak{u}^{-}, L(\Lambda)\right)\right)=\sum_{j \geq 0}(-1)^{j} \operatorname{ch}\left(\left(\Lambda^{j} \mathfrak{u}^{-}\right) \otimes_{c} L(\Lambda)\right) \\
=\left(\sum_{j \geq 0}(-1)^{j} \operatorname{ch}\left(\Lambda^{j} \mathfrak{u}^{-}\right)\right) \cdot \operatorname{ch} L(\Lambda)=\prod_{\alpha \in \Delta^{+}(J)}(1-e(-\alpha))^{\operatorname{mult}(\alpha)} \cdot \operatorname{ch} L(\Lambda) \\
=\frac{e(\rho) \cdot \prod_{a \in \Lambda^{+}}(1-e(-\alpha))^{\operatorname{mult}(\alpha)}}{e(\rho) \cdot \prod_{a \in \Lambda^{f}}(1-e(-\alpha))^{\operatorname{mult}(\alpha)}} \cdot \operatorname{ch} L(\Lambda) .
\end{gathered}
$$

By Theorem 1.1, this is equal to

$$
e(-\rho) \cdot R_{J}^{-1} \cdot \sum_{w \in W}(\operatorname{det} w) \sum_{\left.\beta \in \mathcal{S}_{(\Lambda)}\right)}(-1)^{\mathrm{ht}(\beta)} e(w(\Lambda+\rho-\beta)),
$$

where $R_{J}:=\prod_{\alpha \in \Delta j}(1-e(-\alpha))^{\text {mult }(\alpha)}$.
On the other hand, by Theorem 1.1 applied to the $\mathfrak{m}\left(=g_{J}+\mathfrak{h}\right)$-module $L_{m}(w(\Lambda+\rho-\beta)-\rho)$, the right hand side of (\#) is equal to

$$
\begin{aligned}
e(- & \rho) \cdot R_{J}^{-1} \cdot \sum_{\beta \in \mathbb{E}(\Lambda)}(-1)^{\mathrm{ht}(\beta)} \sum_{w \in W(J)}(\operatorname{det} w) \times \\
& \times \sum_{u \in W J}(\operatorname{det} u) e(u(w(\Lambda+\rho-\beta))) \\
= & e(-\rho) \cdot R_{J}^{-1} \cdot \sum_{\beta \in \mathfrak{E}(\Lambda)}(-1)^{\operatorname{ht}(\beta)} \times \\
& \times \sum_{w \in W(J), u \in W_{J}}(\operatorname{det} u w) e(u w(\Lambda+\rho-\beta)) .
\end{aligned}
$$

Now, we quote the fact that every $w \in W$ can be uniquely expressed in the form $w_{J} \cdot w(J)$, where $w_{J} \in W_{J}$ and $w(J) \in W(J)$. Note that this fact requires J to be a subset of $I^{r e}$. (See [10, §2] for the proof.) Therefore, the above is equal to

$$
\begin{aligned}
& e(-\rho) \cdot R_{J}^{-1} \cdot \sum_{\beta \in \Xi(\Lambda)}(-1)^{\mathrm{ht}(\beta)} \sum_{w \in W}(\operatorname{det} w) e(w(\Lambda+\rho-\beta)) \\
& =e(-\rho) \cdot R_{J}^{-1} \cdot \sum_{w \in W}(\operatorname{det} w) \sum_{\beta \in \Theta_{(\Lambda)}(-1)^{\mathrm{ht}(\beta)} e(w(\Lambda+\rho-\beta)) . ~ . ~ . ~ . ~}^{\text {(}} \text {. }
\end{aligned}
$$

Thus, we have proved the equality (\#). This completes the proof of Proposi-
tion 4.2.
Q.E.D.

By Propositions 4.1 and 4.2, we have the following.
Proposition 4.3. Fix $j \in \boldsymbol{Z}_{20}$. And put $\mu:=w(\Lambda+\rho-\beta)-\rho$, where $\beta \in$ $\mathfrak{S}(\Lambda)$ and $w \in W(J)$ such that $\ell(w)+h t(\beta)=j$. Then, $L_{\mathrm{m}}(\mu)$ occurs as m irreducible components of $H_{j}\left(\mathfrak{u}^{-}, L(\Lambda)\right)$.

Summarizing Propositions 3.1, 4.1, and 4.3, we obtain the following theorem.

Theorem 4.1 (Kostant's formula). Let $\Lambda \in P^{+}$. And let $\mathrm{g}(A)$ be the GKM algebra associated to a symmetrizable GGCM $A=\left(a_{i j}\right)_{i, j \in I}$ satisfying (C 1$)$. We assume that the subset J of I is contained in $I^{\text {re }}=\left\{i \in I \mid a_{i i}=2\right\}$. Then, as m-modules $(j \geq 0)$,

$$
H_{c}^{j}\left(\mathfrak{u}^{+}, L(\Lambda)\right) \cong H_{j}\left(\mathfrak{u}^{-}, L(\Lambda)\right) \cong \sum_{\beta \in \mathbb{E}(\Lambda)}^{\oplus} \sum_{\substack{w \in W^{(J)} \\ \ell(w)=j-\mathrm{ht}(\beta)}}^{\oplus} L_{\mathrm{m}}(w(\Lambda+\rho-\beta)-\rho)
$$

Here, the above sum is a direct sum of inequivalent irreducible highest weight m -modules.

Remark 4.1. Theorem 4.1 is a generalization of "Kostant's formula" for symmetrizable Kac-Moody algebras, which was proved by L. Liu in [10] without assuming that the subset J of I is of finite type (cf. Remark 1.1).

Remark 4.2. In our arguments, the assumption that J is a subset of $I^{r e}$ plays an essential role. So, we cannot remove it.

§ 5. Applications-some vanishing theorems

In this section, as applications of Theorem 4.1, we extend some classical results about the homology of symmetrizable Kac-Moody algebras to GKM algebras associated to symmetrizable GGCMs satisfying the condition ($\widehat{\mathrm{C}} 1$). Their proofs are very similar to the ones for Kac-Moody algebras given in [13] or [7].
5.1. Linear homomorphisms with compact support. Here, we introduce the notion of linear homomorphisms with compact support, following [10]. Let $V=\sum_{\lambda \in b^{*}}^{\oplus_{\lambda}} V_{\lambda}$ and $W=\sum_{\mu \in h^{*}}^{\oplus_{\mu}} W_{\mu}$ be \mathfrak{h}-diagonalizable modules with finitedimensional weight spaces. Then, a linear homomorphism from V to W is called with compact support if $f\left(V_{\lambda}\right)=0$ for all but finitely many weights $\lambda \in$ \mathfrak{h}^{*} of V. We denote by $\operatorname{Hom}_{c}^{c}(V, W)$ the space of all linear homomorphisms with compact support from V to W. In particular, we write V_{c}^{*} for $\operatorname{Hom}_{c}^{c}(V$, \boldsymbol{C}), where \boldsymbol{C} is the trivial \mathfrak{h}-module, while for a (possibly infinite-dimensional) vector space X over \boldsymbol{C}, X^{*} denotes the full dual $\operatorname{Hom}_{c}(X, \boldsymbol{C})$. Then, we can
easily show the following.
Proposition 5.1. For \mathfrak{h}-diagonalizable modules V and W with finitedimensional weight spaces, we have
(1) $\left(V_{c}^{*}\right)_{c}^{*} \cong V$,
(2) $\quad V_{c}^{*} \otimes_{c} W \cong \operatorname{Hom}_{c}^{c}(V, W)$.

Corollary 5.1. Let V and W be m-modules. If, as \mathfrak{h}-modules, they are \mathfrak{h}-diagonalizable with finite-dimensional weight spaces, then

$$
\left\{\left(V_{c}^{*}\right) \otimes_{c} W\right\}^{m \prime} \cong \operatorname{Hom}_{m}^{c}(V, W):=\operatorname{Hom}_{U(m)}(V, W) \cap \operatorname{Hom}_{c}^{c}(V, W)
$$

Here, $U(\mathfrak{m})$ is the universal enveloping algebra of the Lie algebra \mathfrak{m}, and for an \mathfrak{m}-module X, we put $X^{\prime \prime \prime}:=\{x \in X \mid m(x)=0$ for all $m \in \mathfrak{m}\}$ (the space of m-invariants).

Remark 5.1. For the irreducible highest weight m-module $L_{m}(\lambda)$ with highest weight $\lambda \in \mathfrak{h}^{*},\left\{L_{m \mathrm{~m}}(\lambda)\right\}_{c}^{*}$ is isomorphic to the irreducible lowest weight m-module with lowest weight $-\lambda$ as m-modules (see [5]). We simply write $L_{\text {m }}^{*}(\lambda)$ for it.
5.2. Homology vanishing theorem for GKM algebras with coefficients in a generalized Verma module. From now on, we assume that $A=\left(a_{i j}\right)_{i, j \in I}$ is an $n \times n$ symmetrizable GGCM satisfying the condition ($\widehat{\mathrm{C}} 1$), and that J is a (fixed) arbitrary subset of $I^{r e}=\left\{i \in I \mid a_{i i}=2\right\}$. Note that since J is not necessarily of finite type, $L_{\mathrm{m}}(\lambda)$ may be infinite-dimensional even if $\lambda \in P_{J}^{+}=\{\mu$ $\left.\in \mathfrak{h})^{*} \mid\left\langle\mu, \alpha_{i}^{\vee}\right\rangle \in Z_{\geq 0}(i \in J)\right\}$.

For $\lambda \in P_{J}^{+}$, we define the generalized Verma module $V_{\mathrm{m}}(\lambda)$ with highest weight λ as follows: $V_{\mathrm{m}}(\lambda):=U(\mathrm{~g}(A)) \otimes_{U(v)} L_{\mathrm{m}}(\lambda)$, where $\mathfrak{u}^{+}\left(\subset_{\mathfrak{p}}\right)$ acts on $L_{\mathrm{m}}(\lambda)$ trivially. This becomes a $U(\mathrm{~g}(A))$-module by left multiplication. Note that when $J=\phi$, the module $V_{\mathrm{m}}(\lambda)$ is just the Verma module $V(\lambda):=$ $U(\mathrm{~g}(A)) \otimes_{U(\mathfrak{v})} \boldsymbol{C}(\lambda)$ with highest weight $\lambda \in \mathfrak{h}^{*}$, where $\boldsymbol{C}(\lambda)$ is the onedimensional \mathfrak{b}-module on which \mathfrak{h} acts by the weight λ and \mathfrak{n}^{+}acts trivially. Then, as an application of Theorem 4.1, we obtain the following generalization of [13, Theorem 4.17].

Theorem 5.1. Let $\lambda \in P_{J}^{+}$. And let $V_{\mathrm{m}}(\lambda)$ be the generalized Verma module with highest weight λ. Then, as \boldsymbol{C}-vector spaces:
(a) If $\lambda \neq w(\rho-\beta)-\rho$ for any $\beta \in \mathbb{S}$ and $w \in W(J)$, we have

$$
H_{i}\left(\mathrm{~g}(A), V_{\mathrm{m}}(\lambda)\right)=0 \quad \text { for all } i \geq 0
$$

(b) If $\lambda=w_{0}\left(\rho-\beta_{0}\right)-\rho$ for some (necessarily unique) $\beta_{0} \in \mathbb{S}$ and some (necessarily unique) $w_{0} \in W(J)$, we have

$$
H_{i}\left(\mathrm{~g}(A), V_{\mathrm{m}}(\lambda)\right) \cong
$$

$$
\begin{aligned}
& \cong H_{i-\left(\ell\left(w_{0}\right)+\operatorname{ht}\left(\beta_{0}\right)\right)}\left(\mathfrak{m}, L_{\mathrm{ml}}^{*}\left(w_{0}\left(\rho-\beta_{0}\right)-\rho\right) \otimes_{C} L_{\mathrm{ml}}\left(w_{0}\left(\rho-\beta_{0}\right)-\rho\right)\right) \\
& \quad \text { for all } i \geq 0 .
\end{aligned}
$$

In particular, $H_{i}\left(\mathrm{~g}(A), V_{\mathrm{m}}(\lambda)\right)=0$ unless $i \geq \ell\left(w_{0}\right)+\mathrm{ht}\left(\beta_{0}\right)$.
Proof. First, note that $H_{i}\left(\mathrm{~g}(A), V_{\mathrm{m}}(\lambda)\right) \cong H_{i}\left(\mathfrak{p}, L_{\mathrm{m}}(\lambda)\right)(i \geq 0)$ as \boldsymbol{C}-vector spaces, as is well-known (see [2, Proposition 4.2, p. 275]). Now, for the pair ($\mathfrak{p}, \mathfrak{u}^{+}$) and a \mathfrak{p}-module $L_{\mathrm{m}}(\lambda)$, there exists the Hochschild-Serre spectral sequence for homology $\left\{E_{p, q}^{r}, d_{p, q}^{r}: E_{p, q}^{r} \rightarrow E_{p-r, q+r-1}^{r}\right\}$ such that $E_{n} \cong H_{n}(\mathfrak{p}$, $L_{\mathrm{m}}(\lambda)$) and $E_{p, q}^{2} \cong H_{p}\left(\mathrm{~m}, H_{q}\left(\mathrm{u}^{+}, L_{\mathrm{m}}(\lambda)\right)\right.$) (see [2, p. 351] for example).

Since \mathfrak{u}^{+}acts trivially on $L_{\mathrm{m}}(\lambda)$, we clearly have

$$
H_{q}\left(\mathfrak{u}^{+}, L_{\mathrm{m}}(\lambda)\right) \cong H_{q}\left(\mathfrak{u}^{+}, L(0)\right) \otimes_{c} L_{\mathrm{m}}(\lambda) \quad \text { as m-modules }(q \geq 0) .
$$

And, we can show that $H_{q}\left(\mathfrak{u}^{+}, L(0)\right) \cong\left\{H_{q}\left(\mathfrak{u}^{-}, L(0)\right)\right\}_{c}^{*}$ as m-modules $(q \geq 0)$ (cf. [10, § 4]). Therefore, by Theorem 4.1, we get

$$
H_{q}\left(\mathfrak{u}^{+}, L(0)\right) \cong \sum_{\beta \in \mathbb{E}}^{\oplus} \underset{\substack{w \in W^{(0)} \\ \ell(w)=q-\mathrm{ht}(\beta)}}{\sum_{11}^{\oplus}} L^{*}(w(\rho-\beta)-\rho) \text { as m-modules. }
$$

So, as m-modules ($q \geq 0$),

$$
H_{q}\left(\mathfrak{u}^{+}, L_{\mathrm{m}}(\lambda)\right) \cong \sum_{\beta \in \mathbb{E}}^{\oplus} \sum_{\substack{w \in W(J) \\ \ell(w)=q-\mathrm{ht}(\beta)}}^{\oplus} L_{\mathrm{ml}}^{*}(w(\rho-\beta)-\rho) \otimes_{c} L_{\mathrm{m}}(\lambda) .
$$

Here, we have the following claim:
Claim. $\quad H_{p}\left(\mathfrak{m}, L_{\mathrm{m}}^{*}(\mu) \otimes_{c} L_{\mathrm{m}}(\lambda)\right)=0$ for any $\mu \in P_{J}^{+}$such that $\mu \neq \lambda(p \geq 0)$.
Proof of the claim. Recall that there exists a subspace $\mathfrak{h}(J)$ of \mathfrak{h} such that $\mathfrak{h}=\mathfrak{h}, \oplus \mathfrak{h}(J)$ and that the simple roots $\alpha_{i}(i \in J)$ vanish on $\mathfrak{h}(J)$. Then, we have the direct sum decomposition of m as ideals:

$$
\mathfrak{m}=\mathrm{g}_{J} \oplus \mathfrak{h}(J)
$$

Further, we see that $L_{\mathrm{m}}(\mu)\left(\mu \in P_{J}^{+}\right)$is naturally isomorphic to the outer tensor product $L_{J}\left(\mu \mid \mathfrak{h}_{J}\right) \widehat{\otimes}_{C} \boldsymbol{C}(\mu \mid \mathfrak{G}(J))$, where $L_{J}\left(\mu \mid \mathfrak{G}_{J}\right)$ is the irreducible highest weight $\mathrm{g}_{J}\left(\cong \mathrm{~g}\left(A_{J}\right)\right)$-module with highest weight $\mu \mid \mathfrak{h}_{J} \in\left(\mathfrak{h}_{J}\right)^{*}$, and $\boldsymbol{C}(\mu \mid \mathfrak{h}(J))$ is the irreducible (one-dimensional) $\mathfrak{h}(J)$-module with weight $\mu \mid \mathfrak{h}(J) \in(\mathfrak{h}(J))^{*}$. So, $L_{\mathrm{m}}^{*}(\mu)$ is isomorphic to the outer tensor product $L_{J}^{*}\left(\mu \mid \mathfrak{h}_{J}\right) \widehat{\otimes}_{c} \boldsymbol{C}(-\mu \mid \mathfrak{h}(J))$, where $L_{J}^{*}\left(\mu \mid \mathfrak{G}_{J}\right):=\left\{L_{J}\left(\mu \mid \mathfrak{h}_{J}\right)\right\}_{c}^{*}$ is g_{J}-module isomorphic to the irreducible lowest weight g_{J}-module with lowest weight $-\mu \mid \mathfrak{h}_{J} \in\left(\mathfrak{h}_{J}\right)^{*}$. Hence, by [9, Proposition 4.12], we have the following vector space isomorphism:

$$
\operatorname{Tor}_{p}^{\prime \prime \prime}\left(\left(L_{\mathrm{mI}}(\lambda)\right)^{t}, L_{\mathrm{m}}^{*}(\mu)\right) \cong
$$

$$
\cong \sum_{r+s=p}^{\oplus} \operatorname{Tor}_{r}^{\xi_{j}}\left(\left(L_{J}\left(\lambda \mid \mathfrak{h}_{J}\right)\right)^{t}, L_{J}^{*}\left(\mu \mid \mathfrak{G}_{J}\right)\right) \otimes_{c} \operatorname{Tor}_{s}^{\mathfrak{h}(J)}\left((\boldsymbol{C}(\lambda \mid \mathfrak{G}(J)))^{t}, \boldsymbol{C}(-\mu \mid \mathfrak{G}(J))\right) .
$$

Since g_{J} is isomorphic to the symmetrizable Kac-Moody algebra $g\left(A_{J}\right)$, we can easily deduce that $\operatorname{Tor}_{p}^{\prime \prime \prime}\left(\left(L_{\mathrm{m}}(\lambda)\right)^{t}, L_{\mathrm{m}}^{*}(\mu)\right)=0$ for $\mu \in P_{J}^{+}$with $\mu \neq \lambda(p \geq 0)$ from [8, Corollary 2.13. (b_{1})] and its proof. The claim now follows from [9, Propositions 4.2 and 4.3].

By the above claim and Lemma 4.3, we have in Case (a), $\quad E_{p, q}^{2}=0(p, q \geq 0)$,
in Case (b), $\quad E_{p, q}^{2} \cong\left\{\begin{array}{l}0 \quad\left(p \geq 0, q \neq \ell\left(w_{0}\right)+\mathrm{ht}\left(\beta_{0}\right)\right), \\ H_{p}\left(\mathrm{~m}, L_{\mathrm{m}}^{*}\left(w_{0}\left(\rho-\beta_{0}\right)-\rho\right) \otimes_{c} L_{\mathrm{m}}\left(w_{0}\left(\rho-\beta_{0}\right)-\rho\right)\right) \\ \quad\left(p \geq 0, q=\ell\left(w_{0}\right)+\operatorname{ht}\left(\beta_{0}\right)\right) .\end{array}\right.$
Therefore, in Case (a), $H_{n}\left(\mathfrak{p}, L_{\mathrm{m}}(\lambda)\right) \cong E_{n} \cong E_{n, 0}^{2}=0(n \geq 0)$, and in Case (b),

$$
\begin{aligned}
& H_{n}\left(\mathfrak{p}, L_{\mathrm{m}}(\lambda)\right) \cong E_{n} \cong E_{n-\ell\left(w_{0}\right)-\mathrm{ht}\left(\beta_{0}\right), \ell\left(w_{0}\right)+\mathrm{ht}\left(\beta_{0}\right)} \quad \cong H_{\left.n-\ell\left(w_{0}\right)+\mathrm{ht}\left(\beta_{0}\right)\right)}\left(\mathfrak{m}, L_{\mathrm{m}}^{*}\left(w_{0}\left(\rho-\beta_{0}\right)-\rho\right) \otimes_{c} L_{\mathrm{m}}\left(w_{0}\left(\rho-\beta_{0}\right)-\rho\right)\right) \quad(n \geq 0) .
\end{aligned}
$$

Thus, we have proved the theorem.
Q.E.D.

Corollary 5.2. Let $\lambda \in P_{J}^{+}$be such that $L_{m}(\lambda)$ is finite-dimensional. Then, as \boldsymbol{C}-vector spaces:
(a) If $\lambda \neq w(\rho-\beta)-\rho$ for any $\beta \in \mathbb{S}$ and $w \in W(J)$, we have

$$
H_{i}\left(\mathrm{~g}(A), V_{\mathrm{m}}(\lambda)\right)=0 \quad \text { for all } i \geq 0 .
$$

(b) If $\lambda=w_{0}\left(\rho-\beta_{0}\right)-\rho$ for some $\beta_{0} \in \subseteq$ and $w_{0} \in W(J)$, we have

$$
H_{i}\left(\mathrm{~g}(A), V_{\mathrm{m}}(\lambda)\right) \cong H_{i-\left(\ell\left(w_{0}\right)+\mathrm{ht}\left(\beta_{0}\right)\right)}\left(\mathfrak{m}, L_{\mathrm{m}}(0)\right) \quad \text { for all } i \geq 0
$$

Proof. Since $L_{\mathrm{m}}(\lambda)$ is finite-dimensional by assumption, $L_{\mathrm{m}}^{*}(\lambda) \otimes_{c} L_{\mathrm{m}}(\lambda)$ is completely reducible as an m-module by [5, Theorem 10.7.b)]. So, it is a direct sum of modules $L_{\mathrm{m}}(\mu)$ with $\mu \in P_{J}^{+}$. And we know that $H_{j}\left(\mathrm{~m}, L_{\mathrm{m}}(\mu)\right)=$ 0 for $\mu \in P_{J}^{+}$such that $\mu \neq 0 \in \mathfrak{h}^{*}(j \geq 0)$ (see the claim in the proof of Theorem 5.1). Therefore, we see that

$$
H_{j}\left(\mathfrak{m}, L_{\mathrm{m}}^{*}(\lambda) \otimes_{c} L_{\mathrm{m}}(\lambda)\right) \cong H_{j}\left(\mathfrak{m},\left\{L_{\mathrm{m}}^{*}(\lambda) \otimes_{c} L_{\mathrm{m}}(\lambda)\right\}^{\mathrm{m}}\right) \quad(j \geq 0) .
$$

Now, by Corollary 5.1 and the finite-dimensionality of $L_{\mathrm{m}}(\lambda)$, we have

$$
\begin{aligned}
\left\{L_{\mathrm{m}}^{*}(\lambda) \otimes_{c} L_{\mathrm{m}}(\lambda)\right\}^{\prime \prime \prime} & \cong \operatorname{Hom}_{\mathrm{m}}^{c}\left(L_{\mathrm{m}}(\lambda), L_{\mathrm{m}}(\lambda)\right)=\operatorname{Hom}_{U(\mathrm{~m})}\left(L_{\mathrm{m}}(\lambda), L_{\mathrm{m}}(\lambda)\right) \\
& \cong L_{\mathrm{m}}(0)
\end{aligned}
$$

Hence, the corollary immediately follows from Theorem 5.1.
Q.E.D.

Remark 5.2. By [7, Proposition 1.9], we have

$$
H_{*}\left(\mathfrak{m}, L_{\mathfrak{m}}(0)\right) \cong \Lambda^{*}(\mathfrak{m} /[\mathfrak{m}, \mathfrak{m}]) \otimes_{c} H_{*}([\mathfrak{m}, \mathfrak{m}], \boldsymbol{C})
$$

as graded vector spaces, where \boldsymbol{C} is the one-dimensional trivial module. Here, the derived subalgebra [$\mathfrak{m}, \mathfrak{m}$] of \mathfrak{m} is clearly equal to [g_{J}, g_{J}], which is isomorphic to $\left[\mathrm{g}\left(A_{J}\right), \mathrm{g}\left(A_{J}\right)\right]$. On the other hand, it is well-known that

$$
H^{i}\left(\left[g\left(A_{J}\right), \mathrm{g}\left(A_{J}\right)\right], \boldsymbol{C}\right) \cong\left\{H_{i}\left(\left[g\left(A_{J}\right), \mathrm{g}\left(A_{J}\right)\right], \boldsymbol{C}\right)\right\}^{*},
$$

where $H^{i}\left(\left[g\left(A_{J}\right), \mathrm{g}\left(A_{J}\right)\right], \boldsymbol{C}\right)$ is the usual i-th Lie algebra cohomology of $\left[\mathrm{g}\left(A_{J}\right)\right.$, $\mathrm{g}\left(A_{J}\right)$] with coefficients in the trivial module $\boldsymbol{C}(i \geq 0)$. Furthermore, by [6, Theorem 1.6], $H^{i}\left(\left[g\left(A_{J}\right), g\left(A_{J}\right)\right], \boldsymbol{C}\right)$ is isomorphic to the i-th singular cohomology $\hat{H}^{i}\left(K\left(A_{J}\right), \boldsymbol{C}\right)$ of $K\left(A_{J}\right)$ with coefficients in the complex number field \boldsymbol{C} as vector spaces $(i \geq 0)$, where $K\left(A_{J}\right)$ is the "standard compact real form" of the Kac-Moody (algebraic) group $G\left(A_{J}\right)$ associated to the Kac-Moody algebra $\mathrm{g}\left(A_{J}\right)$. (See also [12] for the definitions of $G\left(A_{J}\right)$ and $K\left(A_{J}\right)$.)

When the GCM A_{J} is of finite type, the singular cohomology $\widehat{H}^{i}\left(K\left(A_{J}\right)\right.$, C) $(i \geq 0)$ is well-known, and each cohomology space is of course finite-dimensional. And, when A_{J} is of non-twisted affine type, $\hat{H}^{i}\left(K\left(A_{J}\right), C\right)$ can be easily determined by a standard spectral sequence argument from the structure theory of $K\left(A_{J}\right)$ (cf. [4, § 2.8]), and proves to be finite-dimensional $(i \geq 0)$. More generally, V. G. Kac (and D. H. Peterson) claimed to have determined $\hat{H}^{i}\left(K\left(A_{J}\right), \boldsymbol{C}\right)(i \geq 0)$ for an arbitrary GCM A_{J}, though the proofs have not yet appeared. According to their results (see [4, §2.6]), $\widehat{H}^{i}\left(K\left(A_{J}\right), \boldsymbol{C}\right.$) is still finite-dimensional $(i \geq 0)$. Then, $H_{i}\left(\left[\mathrm{~g}\left(A_{J}\right), \mathrm{g}\left(A_{J}\right)\right], \boldsymbol{C}\right)$ is finite-dimensional, and we have

$$
\begin{aligned}
H_{i}\left(\left[g\left(A_{J}\right), \mathrm{g}\left(A_{J}\right)\right], \boldsymbol{C}\right) & \cong\left\{H^{i}\left(\left[g\left(A_{J}\right), \mathrm{g}\left(A_{J}\right)\right], \boldsymbol{C}\right)\right\}^{*} \\
& \cong\left\{\widehat{H}^{i}\left(K\left(A_{J}\right), \boldsymbol{C}\right)\right\}^{*} \quad(i \geq 0) .
\end{aligned}
$$

In particular, under the conditions of Corollary 5.1, we may conclude that $H_{i}\left(\mathrm{~g}(A), V_{\mathrm{m}}(\lambda)\right)$ is finite-dimensional for all $i \geq 0$.

Remark 5.3. When the subset J of I is of finite type, $L_{m}(\lambda)$ is automatically finite-dimensional for $\lambda \in P_{J}^{+}$. And in this case, we see from the above corollary that $H_{i}\left(\mathrm{~g}(A), V_{\mathrm{m}}(\lambda)\right)=0$ unless $i \leq \ell\left(w_{0}\right)+\mathrm{ht}\left(\beta_{0}\right)+\operatorname{dim}_{c} \mathrm{~m}$.

So, by putting $J=\phi$, we get the following corollary.
Corollary 5.3. Let $\lambda \in \mathfrak{h}^{*}$ and $V(\lambda)$ be the Verma module with highest weight λ. Then, as \boldsymbol{C}-vector spaces:
(a) If $\lambda \neq w(\rho-\beta)-\rho$ for any $\beta \in \mathbb{S}$ and $w \in W$, we have

$$
H_{i}(\mathrm{~g}(A), V(\lambda))=0 \quad \text { for all } i \geq 0
$$

(b) If $\lambda=w_{0}\left(\rho-\beta_{0}\right)-\rho$ for some $\beta_{0} \in \subseteq$ and $w_{0} \in W$, we have

$$
H_{i}(g(A), V(\lambda)) \cong \Lambda^{i-\ell\left(w_{0}\right)-h t\left(\beta_{0}\right)}(\mathfrak{h}) \quad \text { for all } i \geq 0
$$

In particular, $H_{i}(\mathrm{~g}(A), V(\lambda))=0$ unless $\ell\left(w_{0}\right)+\mathrm{ht}\left(\beta_{0}\right) \leq i \leq \ell\left(w_{0}\right)+\mathrm{ht}\left(\beta_{0}\right)$ $+\operatorname{dim}_{c} \mathfrak{h}$.

Department of Mathematics Shizuoka University

References

[1] R. Borcherds, Generalized Kac-Moody algebras, J. Algebra, 115 (1988), 501-512.
[2] H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press, Princeton, 1956.
[3] H. Garland and J. Lepowsky, Lie algebra homology and the Macdonald-Kac formulas, Invent. Math., 34 (1976), 37-76.
[4] V. G. Kac, Constructing groups associated to infinite dimensional Lie algebras, in Infinite Dimensional Groups with Applications, MSRI publications Vol. 4, Springer-Verlag, 1985, 167-216.
[5] V. G. Kac, Infinite Dimensional Lie Algebras (3rd edition), Cambridge University Press, Cambridge, 1990.
[6] S. Kumar, Rational homotopy theory of flag varieties associated to Kac-Moody groups, in Infinite Dimensional Groups with Applications, MSRI publications Vol. 4, Springer-Verlag, 1985, 233-273.
[7] S. Kumar, A homology vanishing theorem for Kac-Moody algebras with coefficients in the category O, J. Algebra, 102 (1986), 444-462.
[8] S. Kumar, Extension of the category \mathcal{O}^{g} and a vanishing theorem for the Ext functor for Kac-Moody algebras, J. Algebra, 108 (1987), 472-491.
[9] J. Lepowsky, Generalized Verma modules, loop space cohomology and Macdonald-type identities, Ann. Sci. Éc. Norm. Sup., 12 (1979), 169-234.
[10] L. Liu, Kostant's formula for Kac-Moody Lie algebras, J. Algebra, 149 (1992), 155-178.
[11] S. Naito, Kostant's formula for a certain class of generalized Kac-Moody algebras, Tôhoku Math. J, 44 (1992), 567-580.
[12] D. H. Peterson and V. G. Kac, Infinite flag varieties and conjugacy theorems, Proc. Natl. Acad. Sci. USA, 80 (1983), 1778-1782.
[13] C. Sen, The homology of Kac-Moody Lie algebras with coefficients in a generalized Verma module, J. Algebra, 90 (1984), 10-17.

