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On the Dirichlet problem for the
nonlinear equation of the vibrating string II

By

A. A. LYASHENKO

O. Introduction

In the present paper we continue the investigations we have begun in [1].
We discussed the solvability in L2(S2) of the Dirichlet problem for the non-
linear equation of the vibrating string

uxy + f(x, y , u)=0 , (x, y)E S2

(1) Ula.o=0

where Q was a bounded domain strictly convex relative to the lines x = const,
y=  co n s t .  Using results obtained in [2] we have proved existence and unique-
ness of weak solutions of (1) in the case F = as2 E c - , D satisfies some symme-
try conditions (DE E(m, n) for some m, nEN , n> m), f(x, y , u) is continuous
in (x, y , u), monotone in u  and satisfies some estimates (see [1]).

In the present paper using some topological methods we discuss the
existence and uniqueness of weak solutions of (1) without assumption of f  to
be monotone in u .  For simplicity we consider here only domains with

 boundary, although most results are valid also in the case when F E
C ° or F is piecewise smooth. In the paper we essentially use some notations
introduced in [1] and results of work [3].

1. Main notations

Let D be a bounded domain convex relative to the lines x=  const, y=
c o n s t .  We shall assume that 1=  as2 is an analytic curve and the curvature of
F  at those points where the tangent is parallel to one of the coordinate axes
is positive.

We shal consider here the following problem

(2) Au+ f(x , y, u)= 0 , (x, y)ES2

where A = Ao in L2(D), Aou -= u,, uED(210)= C - S2( U  F )n  ki(s2 ) .  As in [1],
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[3] we consider some diffeomorphism F  of the boundary: F =  T °  T+ where
the diffeomorphism T± assigns to a point of the boundary another boundary
point with the same coordinate y, while the diffeomorphism T -  assigns to a
point of the boundary another boundary point with the same coordnate x.
The diffeomorphism F is analytic and preserves the orientation of the bound-
ary.

Let F={ (x (s), Y(s))10.s< /1 be a  natural parametrization of F ,  s  be
parameter of arc's length, 1 be total length of F. F o r  each point PE T  we
assign its coordinate S (P)E [0, 1). Then the diffeomorphism F  can be lifted
[4] to a map f: R-> R, i.e. there exists increasing function f ie ±n>R such that 0
< f(0 )<  /  and

f (s+ 1)= f (s)+ Z, s e  R  ; S (FP)= f (S (P)) (mod Z), P F

As far as F  is analytic then the lift f  is an analytic function. It is known [4]
that if we denote .ti(s)---- f (s), fk + i=  f(fk (s )), k e N , then independently of the
choice of sE R  there exists a limit

. in(s) def
11M 7

i  =  a(f )E[0,1]nt

which is called the rotation number of F [4]. Because of the analyticity of F
the following cases are possible [3]:

m(A) a(F)=--;1--- is a rational number, and F n - - = I , where I  is the identity

mapping of F  onto itself.
m(B) a ( F ) r - - a  rational number, (m, n )=1 , and the set of fixed

points of F n on F  is finite.
(C) a(F) is an irrational number, and F n  has no fixed points on F for

any nE N.

2. Case (A)

This case is considered in [1]. The solvability of (2) has been proved if
f (x , y, u) is continuous in (x, y, u), monotone in u , and satisfies some esti-
mates. Assuming f (x , y , u)=g(u)—  f(x , y )  and using general topological
methods we shall derive an abstract solvability condition if g(u) is continuos
and satisfies some estimates.

Let the conditions (A) hold. Then (see [3]) A =A *, dim N (A )=00, the
range R (A ) is closed in L2(S2), L2(S2)=N(A )OR(A ). Besides, as it has been
pointed out in [1], AR- 1  =  (AIR (A)) - 1 :  R (A )-R (A ) is a compact operator.

We denote by EN, PR orthogonal projections from L2(S2) onto N(A ), R(A )
respectively. Consider the following equation
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(3) A u  + g (u )=  f

where fEL2(S2), g(u) L2(Q ) for any uEL2(S2 ). This equation can be re-
written in the form

(4) A u l+PR g(u )= f l

(5) PNg( u)= A

where f Po i" f  P  f  "  P  "  P1-  - 2 -  N, , RU , =  N U ,  or in the other form

(6) ui—AR-1(fi — PRg(ul + u2))

(7) PNg(ui+ u2) — f2

Let g(u) be a continuous function form C into itself and for some constant
C >0 the following inequality hold:

(8) 1.9(u)1-<M1u1+C, uEC

Here M >0  is some positive constant satisfying

1
(9) lAil

where A1 is the eigenvalue of AR- 1  with the largest absolute value.
Let u2 be an arbitrary function from N ( A ) .  Then nonlinear operator

(10) B(v)= AR - 1 (fi— PRg(v + v2))

is compact operator from R (A ) into R ( A ) .  Besides from (8), (9) it follows
that B  maps any closed ball B  nR(A)=tuER(A)111u11,2(.)<r} into itself if

r > IAII IIML2±M11u24,2+ C (11)
1—IA11M

So by the Schauder fixed point theorem we obtain that for any u2EN(A) there
exists u iE R (A ) such that (6) holds. We denote this function ui=H(u2).
Then

H(u2)— A R  l (f Pkg(H(u2)+ 712))

U2 L2( 1-21Alim1111(u2)II k c o ) 1 Al l 11/ 11 11 . )  +  !Ail
(D) C  

So the operator H : N(A)—> R(A)f 11)(A) is bounded. Thus the sufficient
condition for the solvability of the problem (3) is the olvability in N (A ) of the
following equation

( 1 2) PNg( H U2 ) U 2  f 2
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Assume g satisfies

(13) Ig(u)— g(v)I M •Iu — vl , u, v EC

1where M < T i p  Then B is a contractive operator in R (A ) .  So for any u2

N (A ) there exists unique solution ui = H(u2) of the equation (6). Therefore
solvability of (12) in N (A ) is a  necessary and sufficient condition for the
solvability of (3).

Thus we have obtained

Theorem 1. I f  g  i s  a  continuous function an d  (8 )  holds then the
solvability of  (12) in N (A ) is a sufficient condition for the solvability of  (3) in
L2(D).

I f  g  satisfies (13) then problem (3) is  solvable in L2(S2) if  an d  only  if
equation (12) is solvable in N (A ).

Remark 1. In fact, (8), (13) coincide with the inequalities under the
fulfillment of which the existence and uniqueness of the 27r-periodic solution
of the following problem

{

utt—  u,vx+ g(u)= f(x , t)
{u(0, t)= u(7 r, t)=0

are usually proved (see, for example, [5]).

Remark 2. All the arguments remain valid if we consider the domain
with non-analytic boundary, for example, F r i E  c 2 .

Remark 3 .  All the arguments remain valid if instead of (3) we consider
the folowing problem

A u+ K (u)= f

where K (u ) is some nonlinear opérator in L2(S2).

3. Case (B)

Let the conditions (B) ho ld . Then a(F )-.-- m,  set 0 of all fixed points of

Fn on F  is finite. A fixed point PE O is called "simple" [3] if in (S (P ))*1 .
Let all fixed poioss P E O  of Fn be sim ple. Then from [3] it follows that

A  is a  symmetric operator, N(A)={0}, dimN(A*)=09, the ranges R(A),
R (A *) are closed in L2(D) and

L2(S2 ) =N(A*)@ R(A)=R(A*)
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Besides, there exists a constant C >0 such that

(14) Mullkim-<C•11AuilL2(s2), u E D (A )

o
So D(A)c W2 1(.(2) and  K = A R - 1 . PR is  a com pact operator in  L2(S2). The
character of the problems (2), (3) in the case (B) is quite different than in the
case  (A ). To show this we consider the simplest example.

Let g (u )=  —A  u where A *0  is not eigenvalue of A .  Then in the case (A)
problem (3) can be written in the form

{

Aul—Aui=A
— Au2— f2

—So 2,12 =  
f2

 u i  - - (A — AI) - 1  fi; u= ui+u2=(A - 2/) - 1 /1- -  is unique solutionA  ' A
of (3 ). Thus in  the case (A ) solution of (3) exists fo r  any fE L 2 (D ), this
solution is unique and depends continuously of f .

L e t  th e  c a s e  (B ) h o ld .  Consider g(u)= — A• u where 1/A is  n o t an
eigenvalue o f  th e  operator K =A R - 1 . P R . Then th e  equation (3) can be
written in the form

(15)
{

A(ui+ u2) — al—  fi
— AU2— f 2

where ui=PRu=PR(A)U, U2 -  P N .U -  PN(A * ) U ,  f l -  Ad'  , f 2 -  P N *  f . SO U2

and we obtain

(16) Aui— Aui= fi+ A l .'A

We denote v = A u iE R (A ) .  Then ui = Kv and equation (16) can be rewritten
in the form

v— AKv=fi+ 
A.1.2

A

Since 1/A is not eigenvalue of K  then

(18) v =(/ —210 - 1 (A +
 A ! 2 )

Assume

(19) (/—.1K)-1(f1 + A j c2 )E R (A )
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Then using (18), (19) we obtain

u1=AR - 1 v= Kv (v — (I — AK)v)=( 1 ( vA l2 ) ) )E  R (A )

Thus the system (15) is solvable if and only if (19) holds.
Let f(x, y)EL2(S2) and g (u )E L 2 (Q ) for any u E L 2 (Q ). Consider again

(3) Au+ g(u )= f

This equation can be rewritten in the form

(20) u=AR-1.PR(f — g (u ))= K (fl — .9(u))

(21) PN.g(u)= f2

If g satisfies (8), (9) where /11=21(K) is the eigenvalue of K  with the largest
absolute value, then for any fiE R (A ) there exists a solution u = H (A )E D (A )
of the equation (20). So the following condition

(22) PN.g(H(A ))=A

is a  sufficient condition for the solvability of (3).

If g satisfies (13) where M< then the solution u = H (fi) of (20) is

unique and the equation (3) is solvable if and only if (22) holds.
Consider the equation

(2) Au+ f(x , y, u)=0

where f(x , y, u) satisfies

(23) MAX, y, 14111, 2(D) -‹ M • 111442 (Q )+  C , u E L 2 (D )

or

(24) MAX, y ,  u ) — f (X , Y, V)IL2(sa) M • I l i t  V111-2(n) , U, VEL2(S2)

1where M< l A 1 ( K ) 1. Then the equation

(25) u = — AR - lo PR f (x , y, u ) =  — K f ( x ,  y,

posseses a solution uf E D (A ) .  This solution is unique if (24) ho ld s. S o  the
following condition

(26) PN..f(x, y, uf ) =0

is sufficient for the solvability of (2). If (24) holds then (26) is a necessary and
sufficient condition for the solvability of (2).
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If we draw analogy to he theory of linear equations in the spaces of finite
dimensions then equation (2) in the case (B) corresponds to the linear equation

A x =f

where x E R n , f E R m , m >n , rank(A)= n.
So it seems to us that it is impossible to find "regular" conditions for the

functions f (x , y, u), g(u), f (x , y )  to resolve the equations (2), (3) in the case
(B).

Remark 1. The analyticity of the boundary is not essential in the case
( B ) .  All the arguments remain valid if we consider domain with a boundary

FE C 2 such that a(Fr)= is a rational number, the set of fixed points of P i

on F  is finite, all fixed points of Fn are simple.

Remark 2. Let the boundary F of the domain Q satisfies ( B ) .  Then any
mapping of the form

(27) x i=f (x )  , yi— g(y) , (x , y)ES2

transforms domain D onto some domain D  with boundary Fi which satisfies

the conditions (B) and a(Fr)=a(Fri)—
n

. Besides the set of fixed points of

Fn is transformed by (27) onto the set of fixed points of F1n.
So for the domains which satisfy (B ) it is possible to prove a theorem

analogous to Theorem 6 in [1]. However to transform D onto D by mapping

of the form (27) it is not sufficient that ci(Fr)—  a(Fr,)=—
n  

and the sets of fixd

points of Frn, FP, are finite. It is necessary also that the sets of fixed points
of Frn and FP, have the same number of elements.

4. Case (C)

Let the case (C) hold. We shall consider the solvability of the problem
(2). This case is the most complicated and the properties of the operator A
are investigated less than in the cases (A), (B).

We shall assume here that the following condition holds:

(I) The diffeomorphism F  is analytically conjgate to the shift

Ra(F): s 1-4,5 a ( F ) )  (mod 1)

It means that there exists an increasing analytic function g(s): R:92)R such
that

(28) g (f (s ))=g (s)+a(F), sE R
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where f (s ) is lift of diffeomorphism F  [4].
According to the Denjoy's Theorem [4], if a (F ) is irrational then there exits
g(s) satisfying (28). However it can be constructed such diffeomorphism F
with an analytic lift f ( t )  that a(F ) is irrational and the conjugating function
g(s) is not absolutely continuous function [3], [7].

L et [a , b], [c, d ] be the projections of D u i '  onto th e  x  and  y  axes
respectively. Following [3] we set

ai(x)=(x — a)•(b — x) , 62(Y)=(Y — c)• (d — y)

8(k, j )=
1
max(0, 21—k-1)

M.V. Fokin [3] introduced the spaces Hk(,(2), k=0, 1, ••• obtained by closing
o

C(QUE)fl W2 1(S2) in the norm

k2 = M ulli2(sn + ai f l ( k '' )Dx'u ML(a)+ lic2"''' )DyJ uili2(9))
J = 1

It is easy to see that Ho(D)=L2(S2), Hi(D)= i'v2i(s2), w2k(s2)n 4721(s2)cHk(s2)

c  472.(s2), k=2, 3, •••.

(29)

From

Theorem

1)

2)
there

the results

2 . Let

A =A*, N

The range
exists

a(F) n
n

zi

of paper [3] it follows

the condtions (C), ( I)  hold. Then

(A )=  { 0 }  .

R (A ) of the operator A  is closed in L2(Q) if  and only if
a constant C >0 such that f o r any  n, m

C
n2 , m, nEN

3) I f  there exists such PEN, C>0 that f o r any  m, n

(30 a(F) m
n

n p
m ,  n E N

then for any k p —2 it follows that TV21'(S2 )cR (A ) and for some C(k)>0

(31) IA-1u k-(p-2) C(k)•Iluii w,k(sn u E W (Q)

It is known [7], [8] that estimate (30) for irrational a(F ) can hold for all
m, n only if p 2. T h e  s e t  o f  numbers a for which (30) hols for p= 2+ E  has
fu ll measure f o r  an y  e > 0 . There exist th e  transcendental numbers of
Liouville [6] a that for any p, C > 0 there exist m, nE N  such that (30) does not
hold.

L e t fo r any m, n E N  inequality (29) h o ld .  Then from Theorem 2 it
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follows that A=A*, N(A)={0}, R(A )=L2(S2) and

(32) I C(k) w2k(9) ,u  W 2 k  (S2)

Assume f (x , y, u ) satisfies (24) for some constant M >0 such that

1 (33) M < C(0)

Besides, we assume that f (x , y, u ) is defined for all (x , y)E ,Q , uE C  and

(34) f(x , y, 0)E L2(S2)

Then from (24), (34) it follows that f (x , y, u(x , y))E L 2(Q ) for any uEL2(S2)
and equation (2) can be rewritten in the form

def
(35) =  — f(x , y , u )= B u

Using (24), (32), (33) we obtain that B  is a contractive operator in L2(S2). So
there exists unique solution uE D (A ) of equation (2).

Assume f(x , y, u )  satisfies the following inequality

(36) f(x , Y, u(x , y)) — f(x , Y, u(x, Y))11w21(D) <M i • vili'v21(9)

o
for any u, v E  W21(S2) and

1 (37) Mi< C(1)

(38) f (x , y, 0)E W2 1 (D)

o
Then B  is  a contractive operator in  W21(S2). Hence there exists unique

o
solution uE W2 1(S2) of equation (2).

So we have proved

Theorem 3. Let the conditions (C ), ( I )  hold. Assume a (F ) satisfies (29)
for any m, nE IV. T h e n

(1) If  f (x , y, u) satisfies (24), (33), (34) then equation (2) possesses unique
solution in L2(S2).

(2) I f  f (x , y , u )  satisfies (36), (37), (38) then equation (2) possesses unique
0

solution in W21 (S2).

Unfortunately, estimate (32) does not allow us to prove the regularity of
the solution if f (x , y, u )  is  regu lar. For example, if f (x ,  y, u ) —  EZI g(x ,
y), g E  C - CQUE), e> 0 is small, then
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(39) u = EA -1u=Bu

From (32) it fo llow s that A - 1 gE C - (S 2U F). However a s  f a r  a s  1-/kD

w2'(s2)nw21(s2), w2k(s2)n w21(s2) for any k >l, then from (32), (38) and
the general topological methods it does not follow that the operator B  has a
fixed point in Hk(S2) (or W2h (S2), or C k (S2UF)) if k>1.

If a(F) satisfies (30) for some natural number p >2 then R(A ) is not closed
in L2(S2) and estimate (31) does not allow us to prove the existence of a fixed
point in L2(S2) of the operator B u = —  f ( x ,  y, u) using only the general
topological methods.

Remark 1. All the arguments remain valid if instead of (2) we consider
the equation

A u+K (u)=0

where K (u) is some (nonlinear) operator in L2(S2).
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