
J. Math. Kyoto Univ. (JMKYAZ) 685
33-3 (1993) 685-695

Pseudoconvex domains of general order
and q-convex domains

in the complex projective space

By

Kazuko MATSUMOTO

Introduction

Let D be an open set in the n-dimensional complex projective space Pn
and let d(P) be the distance from pE D to the boundary 3D associated with the
Fubini metric of P .  Takeuchi [9] showed that if the set D  ( c P n )  is
pseudoconvex (in the original sense) then the (continuous) function —logd(P)
is strongly plurisubharmonic in D .  Therefore, the set D  is strongly 1-
complete, because every continuous strongly plurisubharmonic function can
be approximated by such functions of class C 2 (i.e., strongly 1-convex func-
tions). On the other hand, Barth [1] showed that i f  A  is  a  non-singular
algebraic set in  P n  whose irreducible components are a t le a s t (n—q)-
dimensional, 1 q  n ,  then the domain Pn \ A  is strongly q-convex.

An open set D in an n-dimensional complex manifold X  is said to be
pseudoconvex of order n—q, 1 q n, if its complement X\D has the same
continuity as an analytic set of pure dimension n— q (for the precise definition,
s e e  § 3). T h e  pseudoconvexity o f  o rd er n— q i s  a  lo c a l property.
Pseudoconvex open sets in the original sense are pseudoconvex of order n-1 .
An open set in X  is pseudoconvex of order n— q if it is weakly q-convex, but
the converse is not valid even i f  X = Cn (see Diederich-Fornaess [2] and
Matsumoto [7]). By F ujita  [3 ] and Slodkowski [8], an open set in C n  is
pseudoconvex of order n— q if and only i f  it is exhausted by an (upper
semi-continuous) (q-1)-plurisubharmonic function , w h ich  w as first
introduced by Hunt-M urray [5] as a generalization of a plurisubharmonic
function (for the definition, see § 2). 0-plurisubharm onic functions are pluri-
subharmonic functions in the original sense and (q-1)-plurisubharmonic
functions of class C2 are weakly q-convex functions. We note that, when
1< q<n, (q-1)-plurisubharmonic functions cannot be approximated by such
functions of class C .

In this paper, we first show by the method of Takeuchi [9] that if an open
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se t  D  in  P n  is  pseudoconvex o f  order n — q ,  1 q n , th en  — logd(P) is
( q - 1 ) - p lu r i s u b h a r m o n i c  in  D  (§ 4, Theorem 1). T he function —logd(p) is,
further, strongly q-convex in the subdomain of D  where it is of class C2 (§ 5,
Theorem 2). Therefore, if D is a pseudoconvex open set of order n— q in P n

a n d  if  its boundary aD is  a  real submanifold o f  class C2 i n  P n  (whose
irreducible components may have different dimensions from each other), then
D  is strongly q-convex (§ 5, Corollary).

For example, an open set D  in P n  is pseudoconvex of order n— q if its
complement E = P n \ D  is  a n  analytic se t  (algebraic se t) whose irreducible
components a r e  at least (n— q)-dim ensional. M oreover, D  is a ls o
pseudoconvex of order n— q if for each pE aD there exists an analytic set Sp
of pure dimension n— q defined near p  such that p S p  and S p Œ E . There-
fore, our result includes the main result of Barth [1] stated above.

The method used in our proof of Theorem 1 is based on that of Takeuchi
(Théorème I in  [9]). A mistake in his proof is corrected.

1. Fubini metric of P n

Let (xo: xi: ••• : xn) be a (fixed) homogeneous coordinates of P n  and let d s 2

be the Fubini (or Fubini-Study) metric of P n  determined by (xo: xi: ••• : xn).
If, for example, Uo is the open set in P n  defined by xo*0 and if (zi„ •••, Z n )

where zi =xi/x0 is the inhomogeneous coordinates of Uo, then the metric d s 2  is
written in the form

(1) ds2— 1+ E7=ilzil2( 1 +  E7=ilzil 2 )2

o n  Uo. This is the well-known standard Kahler metric of P .

I f  (y o : y i:• • •  : yn ) is  a  homogeneous coordinates o f  P n  obtained by a
unitary transformation of (xo: xi: ••• : x n ) (as a transform ation of C ' ) ,  then
the Fubini metric d s 2 above has the same expression as (1) replaced z, with w„
where w ,= y 2 l y o .  W e call such (wi, w n )  a n  adm issible inhomogeneous
coordinates of P .

L em m a A  ([9], Lem m e 1). L e t  L n-iD L n-2D •••D L 0  be  a  decreasing
sequence o f  linear subspaces L , of  P n such that dimLi=  i. T hen there ex ists
an admissible in h o m o g e n e o u s  coordinates ( z i ,  « ,  Zn) of  P n  such that each L , is
written by z,+1= z,+2--•-=

F o r  any tw o p o in ts  a ,  b  o f  P n ,  we can choose an  adm issib le  in-
homogeneous coordinates (zi, •••, Zn) of P ,  so that the (complex) line L which
passes a and b  is written by z2= = 0 .  Then a geodesic joining a and b
in  P n  is included in  L P l ). If a and JO are the zi-coordinates of a  and  b
respectively, then the Fubini distance between a and b  is given by
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d(a, b) = s in ' l a  S I  
■/(1+ la12)(1+ 01 2) •

We will later use the following lemmas to prove our theorems:

L em m a 1. For a, R E  C  w ith  a4 / w e  have

sin - 1  la — f i l  2  tan- 1
 l a ' 31

,/(1+ la1 2)(1+1/312) 2

Here the equality holds i f  and only if a= —  /3 an d  a

L em m a 2. L et aE C and lal l. F o r  zEC, put

8(z, a) ---1z —  al , d ( z , a)=s in - 1  l z  a l 
■/(1 + I z12)(1 + I al 2)

and suppose that 8(z  a) c3(— a, a) (= 21a1). T hen it holds that d(z , a) -

d(— a, a).

The proofs of Lemma 1 and 2 are elementary.

2. q-plurisubharmonic functions

Let D be an open set in  C .  A  function ço: D --■ R U { — co} is said to be
subpluriharmonic in D if it satisfies the following conditions ([3]):

(i) ço is upper semi-continuous on D.
(ii) For every domain J  such that LICD and for every pluriharmonic

function u defined in a neighborhood of LI such that ç 0 u  on aZI (= j \ J ) ,  we
have ço_<u in J.

When n=1, the notion of subpluriharmonic function coincides with that
of subharmonic function.

A  function ço: D -q? U 1 -001  where D C  C V  is  sa id  to  b e  (n — 1)-
plurisubharmonic in D  (in the sense of Hunt-Murray [5]), if it is upper semi-
continuous o n  D  a n d  if  it satisfies the condition replaced `pluriharmonic
function' with `plurisuperharmonic function' in the condition (ii) above. By
Slodkowski ([8], Lemma 4.4), ça is subpluriharmonic in D  (c  Cn) if and only
if ço is (n-1)-plurisubharm onic in D (for the direct proof, see [4], Proposition
2).

By Fujita ([3], Proposition 3), the subpluriharmonicity of a funtion is a
local property. Moreover, th e  property is invariant under biholomorphic
mappings. Therefore, we can naturally define subpluriharmonic functions on
complex manifolds.

We have immediately from Proposition 3 in [3] the following:

L em m a 3 . L e t D  be an n-dim ensional com plex  m anifold. A n  upper
semi-continuous function ço:D--, RU { —co} is subpluriharm onic in  D  i f  and
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only  if  f o r each a E D  there exists a  neighborhood (J (c D ) o f  a such that 9
satisfies the following condition (* ) with respect to U:

( . )  F o r every  dom ain LI such that aELI an d  JE U  an d  f o r every
pluriharmonic function u defined in  a neighborhood of J such that ça< u  on
aJ, we have 9(a)<u(a).

Let a be a point of a complex manifold D  and le t 99 be a  function with
values in RU { — co} defined in a neighborhood V (ED) of a. In this paper, we
shall say that ço is subpluriharmonic at a if there exists a neighborhood U  (c
V) of a such that 0 satisfies the above condition (.) with respect to U .  Then
a function 0: D  R  U {— 00} is subpluriharmonic in D, if and only if 9 is upper
semi-continuous on D and subpluriharmonic at each point of D.

By Fujita ([3], Proposition 5), a real valued function 0 of class C2 defined
in a neighborhood V of a is subpluriharmonic in  V if and only if its Levi form
aaço has at least one non-negative eigenvalue at each p o in t o f  V . Therefore,
0 is subpluriharmonic at a if  aaço has at least one positive eigenvalue at a.
Moreover, we can see, in view of the proof of Proposition 5 in [3], that 9 is not
subpluriharmonic at a if all the eigenvalues of arh are negative at a.

The following lemmas are the criterions of subpluriharmonicity of upper
semi-continuous functions:

Lemma 4. A function 9 with values in R U — 00} defined in a neighbor-
hood V  o f  a is subpluriharmonic at a  if  there exists a  non-singular analytic
curve L  (c  V ) such that a E L  and the restriction çoIL is subharmonic at a.

P ro o f  If 9" çoIL is subharmonic at a, we can take a neighborhood U' (E
vnL) of a so that, for every domain J ' such that aE J' and J'E (/' and for
every harmonic function u' defined in a neighborhood of LI' such that cc'< u'
on DJ', it holds that 9 '(a ) ‹u '(a ) .  We now choose a  neighborhood U  (E  V)
of a so that Un Lc t r .  Let J be a domain such that aE J a n d  JE U, le t  u
be a pluriharmonic function defined in a neighborhood of J such that 0 < u on
aJ, and denote by ZI' the  connected component of zin L  which contains a.
Then J'E U '.  Moreover, u'=u1L is harmonic in a neighborhood of J' and we
have ç"< u ' on 32. Therefore, we obtain ço(a)= ça'(a)‹ u'(a)= u(a), which
proves the subpluriharmonicity of ço at a.

Lemma 5. Let 9 and 0 be two functions with values in R U { — œl defined
in a neighborhood V of a and suppose that ço(a)— 0(a) and 0 on V. T h e n
ço is subpluriharmonic at a if  so is Ø.

P ro o f  If 0 is subpluriharmonic at a, we can take a neighborhood U  (c
V ) of a so that 0 satisfies the condition (*) in  Lemma 3 with respect to U.
Then it is easy to see that 0 also satisfies the condition (*) with respect to the
same U.

Next let D be an open set in Cn and let q be an integer with 1<q<  n . A
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function ço:D -q? U {- col is said to be (q -1)- plurisubharmnic in  D  (in the
sense of Hunt-Murray [5]) if  ÇO is upper semi-continuous on D  and if the
restriction q)1L is subpluriharmonic in D n L  for every a-dimensional linear
subspace L  such that D n L*0 .

0-plurisubharmonic functions a re  plurisubharmonic functions (in the
original sense). (n-1)-plurisubharmonic functions a r e  subpluriharmonic
functions.

The (q-1)-plurisubharmonicity of a function is also a local property.
Moreover, the property is invariant under biholomorphic mappings (see
Hunt-Murray [5] and Slodkowski [8], 1.11).

Let D  b e  a n  n-dimensional complex m anifold . A  function ço:
R U { - 0 9 }  is said to be (q-1)-plurisubharmonic in D if for every coordinate
neighborhood ( U, V=(zz,•••,z2), o f  D ,  the com posite .po W- 1  i s
(q-1)-plurisubharmonic in  gl( U) (c  C )  as a function of (zi, •-•, Zn).

When D is an open set in p ' ,  we have the following:

Lemma 6. Let D be an open set in P n  and let q be an integer with 1<
q < n .  A n  upper sem i-continuous function ço: D-* RU {- œ }  i s  (q -1 )-
plurisubharmonic in D  if  and only  if  çoIL is subpluriharmonic at a for every
aED and for every q-dimensional linear 'subspace L  containing a.

A real valued function ço of class C2 defined in an n-dimensional complex
manifold D is said to be strongly q-convex (and weakly q-convex) in D if its
Levi form aaço has at least n- q+1 positive (and non-negative) eigenvalues at
each point of D  (respectively).

Lemma B ([5], Lemma 2.6). Let ço be a real valued function of class C2

def ined in an n-dimensional com plex  m anif old D . T hen ço i s  (q - 1 ) -
plurisubharmonic, 1<q<n, in D  if  and only if ço is weakly q-convex in D.

3. Pseudoconvex domains of general order

Let D be an open set in an n-dimensional complex manifold X ,  let k be
an integer with 1 < k < n -1  and put E = X \ D . The set D  is said to be
pseudoconvex o f order k in X  if the following condition ( . . )  is satisfied for
every b E E  and for every coordinate neighborhood ( U,(z,•••, Zn)) which
contains b as the origin:

( . . )  If the set

{(zi, z z ) E U ;z i= 0  ( 1 < ik ) ,  0< 1 4  <
i=k+1

contains no points of E  for some r >0, then there exists s >0 such that for
each (,4, •••, z'h) with 14 < s, 1 i < k, the set
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{(zi, u;z,•=z; lzir<r}
i=k+1

contains at least one point of E.
Moreover, we say that every open set in X  is pseudoconvex of order 0.
A  complex m anifold D  is said to be strongly a-convex (and weakly

a-convex) if one  can choose a com pact subset K  (C D )  a n d  a  continuous
function 9  on D  whose restriction 91( ovo is strongly q-convex (and weakly
q-convex) in D \K  so that {pED; go(p)< m}cD for every M R (respectively).

If an  open  se t D  in  a n  n-dimensional complex manifold X  is weakly
a-convex, 1 q  n, then D  is pseudoconvex of order n — q in X . However,
the converse is not valid even if X =  C .

For open sets in Cn, Fujita proved the following:

Theorem C ([3], Théorème 1). Let D be a Pseudoconvex open set of  order
n— q,  1 q  n ,  in Cn and denote by R (z ) the Hartogs radius of  D with respect
to Z n  a t  z =(z i,- - - , z n )E D . Then  th e  function  — logR(z) is (q —1)-
plurisubharm onic in D.

Remark 1. In  [3], Fujita introduced the concept of `pseudoconvex func-
tions of order n— q' and showed that —logR(z) is pseudoconvex of order n— q
in D under the same assumption as Theorem C .  It follows by definition that
a  function is (q —1)-plurisubharmonic if  it  is  pseudoconvex o f  ordr n — q .
Recently, Fujita [4] has proved that the converse is also valid.

4. F u b in i boundary distances of domains in Pn

Let D  be an  open  se t in  Pn and  le t d(p)—infbEaDd(p, h ) be the  Fubini
distance from pE D to the boundary a p . Takeuchi ([9], Théorème I) showed
that if an open set D  in  Pn is pseudoconvex (in the original sense) then the
function —logd(P) is plurisubharmonic in D .  In this section, we shall prove
that if D (c  Pa)  is pseudoconvex of order n— q, 1 q n, then —logd(P) is
(q-1)-plurisubharm onic in D.

We first prove the following:

Lemma 7. L et b  be a fixed point of  Pq , q >1 , and let do(P)=d(P, b) be
the Fubini distance between p and b f or pE  p •

 T h e n  the function —logdo(p)
is subpluriharmonic in Pq\{b} .

P ro o f  It is obvious that — logdo(P) is continuous on Pg\{b}.
Let a(* b) be a point of Pg and let L  be the (complex) line which passes

a  a n d  b. Then we can choose an adm issible inhomogeneous coordinates
•••, zg ) of Pq so that its domain Uo Cg) contains both a and b and L  is

written by z2= ••• =z q  =O.
F or pE uo n L , we denote by di(P) the distance between p  and  b  in  L
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associated with the Fubini metric of L P ')  which is the restriction to L  of
that of Pq . Then di(P)=do(P) for every pE uon L .  If z  and fi are the
zi-coordinates of p and b respectively, it follows that

d1(p)=sin - 1  l z  RI 
■/(1 +10)(1  +10 2 )

Now, the function —logdi is subharmonic at a (* b ) .  Hence the restriction
( — logdo)IL is subharmonic at a and it follows from Lemma 4 that —logdo is
subpluriharmonic at a (* b ) .  Therefore, we can by Lemma 3 conclude that
—logdo is subpluriharmonic in Pq\{b}.

Now we shall prove the following:

Theorem 1. Let D be a pseudoconvex ()Pen set of  order n—  q,1<q<n, in
P n  an d  le t  d(p)=infb.apd(P, h )  be the Fubin i distance f rom  P E D  to  the
boundary  D . T hen the function —logd(P) is (q-1)-plurisubharm onic in D.

P ro o f  Since the function —logd is continuous on D, it is sufficient by
Lemma 6 to show that the restriction ço=( — logd)11., is subpluriharmonic at a
for every aE D  and for every q-dimensional linear subspace L  containing a.
We take a point bE aD  such that d(a)= d(a, b).

Case (a) where bEL .
For pE L, we denote by do(P) the distance between p and b in L  associated

with the Fubini metric of L  (_PQ) which is the restriction to L  of that of P ' 1 .
Then we have do(a)= d(a) and do(P) d(P) for pE D fl L, and hence —logdo(a)
= 9(a) and — logdo(P)< 9 (p )  for PED n L .  Since by Lemma 7 the function
—logdo is subpluriharmonic at a (*b ), it follows from Lemma 5 that 9 is also
subpluriharmonic at a.

Case (,(3) where b oL .
We can take an admissible inhomogeneous coordinates (zi, •••, zn) of Pn

such that its domain U o  (  C n )  contains both a  and b  and the (q +1)-
dimensional linear subspace which includes b and L  is written by z q +2= zq +3=
••• =zn =O. Further, we can by Lemma A choose the coordinates (zi, z n )  as
follows:

(i) The line which passes a and b is written by zi = ••• =zq=Zq+2= • • • =  Z n

=0.
(ii) If a and 8 are the z+-coordinates of a and b respectively, then a=

- f i  and lal<1.
Here the condition (ii) is satisfied if only we take (Zr, •••, zn) so that the

origin is the middle point of the shortest geodesic which joins a and b. Then
the q-dimensional linear subspace L(D a) is written in the form

Z q+1
=

 k lZ i+  •  •  •  +  leq z q + a  (le. E C )  ,  z q +2= • • • = zn=0 .

We put D 0 = D n  Uo and denote by V  the homeomorphism from Uo to  Cn
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which defines the coordinates of U o . Identifying PE Uo with w(p)=(zi, • • • , Z n )

E  C n , we can now regard the set Do as a pseudoconvex open set of order n— q
in C n . Let R(P) be the Hartogs radius of Do with respect to zg +i at PEDo.
T hen  it fo llow s from  T heorem  C  o f  F u jita  t h a t  — logR i s  (q —1)-
plurisubharmonic in Do and hence ( — logR)IL is subpluriharmonic in Do n L.
Here the value R(p) may be +00 for some pE Do n L.

Let p' be a point of Do n L  such that R (Pl< + 0 0 .  Put gr(P')=(zi, •••, 4),
where 4+1= kiz;+ •• • + k g 4 + a and Z +2 =» = 4 = 0 ,  and define the line L(p')
(c Pn ) passing p' by

Zi =  Z 1 , • •  •  24 =  Z ,  Z4+2
=

 • • • =  Zn =  O.

If c is a point of ao. n L (p) (*0) such that the value 12"q' where y  is the
zq +i-coordinate of c, is minimum, we can write R(P)=14+1 —  71. When p'= a,
we can by Lemma 2 take the point b as this c and we have R(a)=21a1.

Since the inhomogeneous coordinates (zi, •••, Zn) of Pn is now admissible,
the Fubini metric ds 2 of Pn is written in the form

us
2 (1+ E7=114 2 )1d4+112  

 — (1 + E7-114 2 + Izq+112 )2

on uo n L (p ') . If we change the parameter Zqi-i to

W = W (.4+0=
.11+E 7.114 2

on u. n L(p'), we obtain

ds 2 = dw 2
(1+ w 2 ) 2

Therefore, it holds that

d(p', c)----sin--1 I  w(4+1) — w(7)I 
(1+ w(41-1)1 2)(1 + w(7)1 2)

and it follows from Lemma 1 that

d(p', c) 2 ta n ' lw ( 4 +1) w ( '' ) 1  — 2 t a n '  R ( P ' )  2 211+ E7=114 2

Since al(p') d(p', c), we further obtain the inequality

(3) d ( P ')  2 tar i R ( P ')  
2.11+E7= 1Z 2 •

When p' = a, it follows that d(a)= d(a, b) =2 tan - l lal and the equality holds in
(3). Thus we have
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1— logR(p)< — log2 - -

2
log(1+ —log tan 

d ( p )  

2

for every pE D o  L with R(p)< +0c, where V(p)--(21,Z n ) .  I t  is  c lea r  th a t
this inequality (4) is also valid for p E p o n  L with R(p)= +0 0. Moreover, the
equality holds for p= a.

To prove the subpluriharmonicity at a of q;=(— logd)1L, let LI be a domain
such that aE J and JcponL, let u be a pluriharmonic function defined in a
neighborhood of ZI and suppose that ço(P)< u(P) on 34. Then it follows by (4)
that

(5)
1

e
-u(P)

( — logR)11.(P)+ log2 + — log(1+12•-1 2) + log tan <02 i=1 2

on 34. Now, the left side of (5) is subpluriharmonic in a neighborhood of J
and hence the inequality (5) is  a lso  va lid  for p = a . I f  w e  note th a t  the
equality holds in (4) for p= a , w e o b ta in  9(a).<u(a), w hich im plies the
subpluriharmonicity of 9 a t  a.

5. q -convexity of domains with C 2 -boundaries in  Pn

Let D be a pseudoconvex open set of order n—q, 1<q<n , in P n  and let
d(p)=infbeaDd(P, h) be the Fubini distance from  p D  to  the boundary ap.
Then by Theorem  1, the function —logd is  (q-1)-plurisubharmonic in D.
Moreover, if we denote by D' the set of all points of D near which d is of class
C2, it follows from Lemma B a t once th a t  —logd is weakly q-convex in D'.
(Note that w e do not assert here the existence of the set D'.)

If an open set D in P n  is pseudoconvex (in the original sense) then —logd
is strongly plurisubharmonic in D  (in the sense of [9], Théorème II). In
particular, it  is, in this case, strongly 1-convex in D'.

For pseudoconvex open sets of general order, we obtain the following:

Theorem 2. Let D be a pseudoconvex open set of  order n—  q ,1<qn , in
P n and let d(P) be the Fubini distance from PED  to the boundary ap. Denote
by D ' (if  it ex ists) the set of  all points of  D near which d(P) is of  class C2 .
Then the function —logd(P) is strongly q-convex in D'.

P ro o f  If we suppose th a t  —logd is not strongly q-convex in D', there
exists a point a of D' and a q-dimensional linear subspace L  (Da) such that
the Levi form of the restriction ço---(-1ogd)1L. has no positive eigenvalues at
a.

W e  t a k e  h e a l )  s u c h  th a t  d (a )= d (a ,b ).  Note t h a t  0<d(a)<71-12
because a E D '.  W e shall distinguish two cases bE L  and bOL and lead a
contradiction in each case.

Case (a) where bEL.

(4)
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W e choose an admissible inhomogeneous coordinates (zi, •••, zn) of Pn so
that its domain Uo ( C n )  contains both a and b and the line M which passes
a and b is written by z 2 =  =zn =O. If p  is any point of uonm and if z and
g are the zi-coordinates of p  and b respectively, we obtain the inequality

(6) solm(P) — logd(P, b ) =  log lz /3 1 
1(1 +1z1 2 )(1 + I 1312 )

where the equality holds for p= a.
Since the right side of (6) is a strongly subharmonic function of class C2

in the subdomain of M  ( -=- P ')  defined by z*g, —118, its Levi form has a
positive eigenvalue at a .  On the other hand, the eigenvalue of the Levi form
of çolm is non-positive at a, and it is easy to lead the contradiction to Lemma
5.

Case (g ) where boL.
We use the same notations as those in Case (R) in the proof of Theorem

1. Then by (4), we have

1 e
-cp)

(7) ( — logR )L (p ) — 1og2--
2

log(1+ ilzi1 2) —  log tan 2

for every pED0 n L where W(P)=(zi, •••, zn). Moreover, the equality holds in
(7) for p= a.

Now, since the Levi form of 9=( — logd)IL has, by assumption, no positive
eigenvalues at a, so does the Levi form of the third term in the right side of
(7). Moreover, all the eigenvalues at a of the Levi form of the second term
in the right side of (7) are negative. Therefore, all the eigenvalues of the Levi
form of the right side of (7) are negative at a and hence the right side of (7)
is not subpluriharmonic at a .  On the other hand, the left side ( — logR)1L of (7)
is subpluriharmonic at a, which contradicts to Lemma 5.

Let D  be an open set in Pn and suppose that the boundary ap is a real
submanifold of class C2 in  I " ,  where aD need not be connected and their
irreducible components may have different dimensions from each other.
Denote by d ( p )  the Fubini distance from P E D  to ap . Then there exists an
open set LI (c P n )  such that aDcZI and d  is of class C 2 on D n4.

Remark 2 .  It is well-known that the function d  is of class C2 near ap if
ar) is a real submanifold of class C 3 in P .  Further, we can prove the fact if
only it is of class C2 . When ap is a hypersurf ace in R ,  see Krantz [6], p. 136.

The following is the direct result of Theorem 2:

C orollary. I f  D  is a pseudoconvex open se t o f  order n— q, 1 q n, in
Pn an d  if  its boundary ap is a real submanifold o f  class C2  in  Pn, then the
set D  is strongly a-convex.
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Remark 3. I) U nder the assumption of the corollary, the real dimen-
sion of each irreducible component of the boundary aD is at least 2(n— q) (see,
[7], Proposition).

2 )  If A is a non-singular algebraic set in Pn whose irreducible compo-
nents are at least (n—  q)-dimensional and if D =Pn \A , then D satisfies the
assumption of the corollary above. Therefore, the corollary includes the
result of Barth [1] asserting that the set D (OEPn) is strongly q-convex.
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