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Filter-regular sequences
and

multiplicity of blow-up rings
of ideals of the principal class

By

Ngô V ia  TRUNG

1. Introduction

Let R be a graded algebra generated by finitely many elements of degree
1 over a field k and I  a  homogeneous ideal of R .  Recently J. Herzog, B.
Ulrich and this author [HTU] computed the multiplicity of the associated
graded ring gri(R), the Rees algebra R[R], and the extended Rees algebra
R[R, V I in terms of the degrees of the generators of I  when I  generated by
a d-sequence of R .  We had to require that the degrees of the elements of the
d-sequence are non-decreasing, and we were able to give an explicit represen-
tation of the associated graded rings of these blow-up rings with respect to
some refinement of the adic filtration of their maximal graded ideal, from
which the multiplicity formulas followed.

In this paper we will compute the multiplicity of gr A R), R[It], and R [it,
t- - 1 ] when I  is a  homogeneous ideal of the principal class, that means I  is
generated exactly by ht(/) homogeneous elements, where ht(/) is the height
of I. Our main tool will be an extended version of the notion of filter-regular
sequences. This notion originated from the theory of generalized Cohen-
Macaulay rings [CST], and it has proven to be useful in many contexts [Br],
[SV], [T 2 ].  One can easily show that if the field k is infinite, an assumption
which does not cause any problem in computing the multiplicity, then every
homogeneous ideal of R  can be generated by a  homogeneous filter-regular
sequence. For the definition and some basic properties o f filter-regular
sequences we refer to Section 1 of this paper. Unless otherwise specified we
will denote by e  the multiplicity of a given local ring with respect to the
maximal ideal or of a given graded ring with respect to its (uniquely deter-
mined) maximal graded ideal.

For the associated graded rings we will use the associative formula for
multiplicities to derive in Section 2 the following formula
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e(grf(S))=Ee(SIP)e(JSo; So)

which holds for any ideal J of the principal class of an arbitrary local ring S,
where runs all associated prime ideals of J . with dim R/p=dimR/J and e(JSp;
SO denotes the multiplicity of the local ring Sp with respect to the parameter
ideal /Sp. This result is similar to a result of M. N a g a ta  [Na, (24.7)] which
he also called the associative formula. In particular, it implies that e(gr j (S ))
5 e (S IP  and that e(gr j (S ))= e (S IP  if and only if a ll the local rings S,, are
Cohen-Macaulay rings.

Using the notion of filter-regular sequences and results of M. A uslander
and D. Buchsbaum on the multiplicity of parameter ideals [AB] we can then
deduce the following multiplicity formula for the associated graded ring of an
arbitrary homogeneous ideal I c R  of the principal class:

e(gri(R ))— ar-ane(R),

where al, •••, an are the degrees of the elements of a homogeneous minimal
basis of I. This formula had been proven before for Buchsbaum and Cohen-
Macaulay graded algebras [H TU ], and we are in fact inspired of the indepen-
dence of this formula upon the order of al, •••, an.

To deal with R [it ] and R[it, t - ']  we have to impose, as for the case of
d-sequences [H T U ], the condition that the degrees of the elements of a
filter-regular sequence generating I  are non-decreasing. Then we can rough-
ly estimate the associated graded rings of the Rees algebras with respect to
some refinement of the ad ic  filtration of their maximal graded ideal. When
I  is an ideal of the principal class, this estimation is good enough for the
computation of the multiplicity of R [ I t ]  and R[lt, 1' ].

Our main results concerning the Rees and extended Rees algebras can be
formulated as follows: Let I  be a homogeneous ideal of the principal class of
R .  Assume that I  is generated by a homogeneous filter-regular sequence xi,
•••, x,, with respect to I  which satisfies the condition ai < •• • < an, where a,:=
d e g x , .  Then

e (R [It ])= (1 +  a i.••  a  )e(R) ,

e(R [It, t - 1 ])= (1+Xar•-a1)e(R ) ,

where 1 is the largest integer for which ai=1 (1=0 and ai—ai=1 if a,>1 for
a ll i =1,•••, n).

Unfortunately we do not know whether the additional condition on the
generation of I  can be dropped. However, this condition is automatically
satisfied if R belongs to the large class of generalized Cohen-Macaulay rings,
e.g. if R is a Buchsbaum ring [H TU , Example 3.1 and Example 3.2], or if I is
generated by homogeneous elements of the same degree. The proofs for the
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multiplicity formulas of R [ I t ]  and R[it, t ' ]  will be found in Section 3 and
Section 4, respectively. In Section 3 we will also show that the multiplicity
of the symmetric algebra of an ideal of the principal class (not necessary
homogeneous) is always equal to the multiplicity of the Rees algebra, an easy
but less known fact.

It is worth to mention that the above formulas for the multiplicity of R[It]
and R[/t, t ']  bear some resemblance to those found by J. K. Verma and D.
Katz [V1], [V2], [KV] in terms of the mixed multiplicities of the maximal
graded ideal m of R  and I. Mixed multiplicities was first imtroduced by B.
Teissier and J. J. Risler [Te] for two m-primary ideals and in this case they
can be interpreted as the multiplicity of general elements or, due to D. Rees
[R ], of joint reductions. These interpretations suggest a  probably close
connection between mixed multiplicities and filter-regular sequences.

Acknowledgement. The author wishes to thank J. Herzog for raising
his interest in this subject and for many valuable discussions. He is also
grateful to the referee who pointed out many mistakes and the fact that
Theorem 2.2 can be deduced from a result of Nagata.

1. Filter-regular seguences

Let S  be an arbitrary noetherian commutative ring with unity and J an
ideal of S .  A sequence zi,•--, 2., of elements of S  is called filter-regular with
respect to J if z 4 0  for all associated prime ideals lz) J of (zi, •--, 2,_1), i=1 ,
•— ,n . Originally, the notion of filter-regular sequences is introduced with
respect to the maximal ideal of a local ring [CST] or with respect to the ideal
generated by the elements of positive degree of a graded ring [T2].

It is easily seen that if Zi, z n  is a filter regular sequence with respect to
J, then zz, • • • , Zn form a filter regular sequence in the factor ring S:=S/(zi,
z - i )  with respect to the ideal JS , 1=1, n .  Moreover, Zi,•••, Zn is  also a
filter-regular sequence with respect to any ideal contained in J.

R em ark. The property of being a filter-regular sequence is not permuta-
b le , For instance, put S=k[x, y ,  z ]:=k [X , Y , 4 1 (X Y  , X Z ) , J =(x , y ,  z).
Then x +y, z  is a filter-regular sequence with respect to J, but z ,  x +y  not.

The following characterization of filter-regular sequences shows that this
notion is a generalization of weak-sequences and hence of d-sequences. For
more details on these sequences we refer to [Hu], [SV], and [T i].

For i =1, •••, n  we set

j i =U

Note that Ji is equal to the intersection of all primary components of Cal, •—,
zi_i) whose associated prime ideals do not contain J.
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Lemma 1 .1 . Z i , • • • , Zn is  a filter-regular sequence with respect to J  if  and
only if

( z i , • • • ,  z , - 1 ) :

P ro o f  ( )  By definition, 2 ,  is not contained in  any associated prime
ideals of J .  Hence (z1, z ,_ 1 ) :  z ,g  j , : i = 1 , - - , n .

( )  Let 0 4 j  be an associated prime ideal of (z i, •••, z ,_1 ). Then

((z i, • • • , zi-i): z,)So Ç J , S o =  (z i, • z i_ i) S o.

This occurs only if z ,  is a unit of So because PS, is also an associated prime
ideal of (z i, z 1-1)S o . Hence z 4 P ,  as required.

Corollary 1.2. Let Z i ,  • • ,  Zn be a filter-regular sequence with respect to J.
If  Z i ,  ,  z n E J ,  then

J 1=U 7z =i(z i,•••, , i = 1 ,• • • ,n  .

Proof. By definition,  Z i ,  • • , zim is also a filter-regular sequence with
respect toi for all Thus, by Lemma 1.1, U7,1=1(zi, •••, z i m ç f i .  On
the other hand, since z i  J ,  we also have Jig  U 7 n = i ( z i ,  • • •  z i - i ) :

From the above characterization of filter-regular sequences we obtain the
following result which will play a crucial role in the computation of the
multiplicity of Rees algebras.

Lemma 1.3. L et z i , • • • ,  z n E f  be a filter-regular sequence with respect to J.
Fo r any form f  in the polynom ial ring S [ T 1 , • • • , T n ]  which vanishes at z i , • • • ,

Zn, the coefficients of all terms of f  with the highest degree in  T n  are contained
in in.

P ro o f  Put y ,=z itz n  for all i = 1 ,  • • •  ,  n - 1 .  Since z n E f ,  we have

•••, z ,-1)S[zn - 1 ] .

By Lem m a 1.1, this implies ((z1 , •••, z ,-1 ): z ,)S [zn - 1 ]=(z i, •••,

Hence Z i ,• • • ,  zn_i and therefore y i , ••-, Y n-1  form a regular sequence in S [z n - 1 ].

Write f  in the form f =  f o +  f iT n +•• •+ f r T n r ,  where f i E S [ T i , • • • , T n _ 1 ]  with deg
.f = d e g j r + r f r  * 0 .  Since f • , zn) =  0 , we have

f o (y i , y n - i ) + A ( y i , y n - i ) - F - • • • + f r ( y i , y n _ 1 )= 0  .

From this it follows that f r (y i ,  • • • ,  Y n - i )E (Y i ,  • • • ,  y n _ i )deg 1 r+ 1 . Therefore, all
coefficients of f r  are contained in (y l, ••• , yn_i)S[zn - 1 ]. But

(3)1, y n _ o s [ z n ]  n S = •" ,  z n - i . ) :z n m  
= In

by Corollary 1.2. Hence all coefficients of f r  are contained in in.
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R em ark . Lemma 1 .3  is an extension of the following statement used in
[ H T U ,  Proof of Lemma 1 .2 ]. Let z n E J  be a  d-sequence of S  and f  a
form of the polynomial ring  SE T1,T n ]  which vanishes at 21 , •••, zn . Then
the coefficients of all terms of f  with the highest degree in  T n are contained
in  (z i, •  ••, z n - i) : z n .  In  fa c t, w e have  (z i, •  • •, Z n-i): z n = U •••, z n _ i): znm

[Hu].

Now we want to consider homogeneous filter-regular sequences. Let R
be a graded ring generated by finitely many forms of degree 1  over a local ring
whose residue field is infinite. Let I be an arbitrary homogeneous ideal of R.
We will show that I can be generated by a homogeneous filter-regular sequence
with respect to I.

Let a i a 2 < • • •  an be the degrees of the elements of an arbitrary homoge-
neous minimal basis of I  arranged in non-decreasing order. It is well-known
that the sequence al, ••• , an does not depend upon the choice of the minimal
basis, and we call it the  degree sequence of I.

Lemma 1 . 4 .  L et I be  an arbitrary homogeneous ideal o f  R  with degree
sequence ai a2 _ <---  an. T here ex ists a homogeneous m inim al basis xi, « , x n
of  I such that x i, •••, xn is a filter-regular sequence with respect to  I and deg
x ,= 1 = 1 ,  • • - ,  n .  Moreover, if  ai=•••= an, then the initial form s of  xi,
•••, xn in the associated graded ring g rI(R ) also form a filter-regular sequence
with respect to the ideal generated by the elements of positive degree of gri(R ).

Proof . Set a= an . Let I a  denote the ideal generated by the homogeneous
elements of degree a in I. It is obvious that /c , and I  have the same radical.
Since any homogeneous minimal basis of I  has at least an element of degree
a, la is not contained in m / ,  where m  denotes the maximal graded ideal of R.
Since Rim is an infinite field, there exists an element x i E  /a with deg xi= a
such that x i l l 3  for all associated prime ideals I  of R  and x i  r n / .  Clearly,
the ideal /  : = I / ( X i )  of R :=R 1 (x i)  has the degree sequence a i  •  •  •  a n _ i .  By
induction on n  w e m ay assum e th a t I  is generated by a  homogeneous
filter-regular sequence .T 2 , • • • , . tn  with respect to I  and deg a n - , F i .  Let
X2, • • •, xn be homogeneous elements of R  whose images in R are .-x2 , •••, It
is easy to check that xi, • •-, x n  is a  filter-regular sequence with respect to I
which generates I  and d e g x ,  = i =1 ,• • • ,n .

Let Z i , • • •, Zn denote the initial forms of xi, • • •, x n in G : = g r i ( R )  and G+ the
ideal generated by the elements of positive degree of G .  If  a i= • • • = a n = a ,
then / =  /a. For any associated prime ideal G + of ( z i ,  • • • ,  z - i ) ,  the ideal
generated by all elements of I  whose initial forms in  G belong to P  do not
contain I. Therefore, we can choose sci so that Z avoids all prime ideals P,
i = 1 , • • • , n .  In this case, Z i,•  •  • , z n is  also a filter-regular sequence with respect
to G+.

R em ark. In general there does not exist a  homogeneous minimal basis
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xi, •••, xi, for I  such that xi, •••, xi, form a filter-regular sequence with respect
to  /  and degxi <••• <degxn. For instance, put S =k [x , y, z ]:=k[X , Y, Z ]
I(X Y  , X Z ), I= (x 2 + y 2 , z). Then any homogeneous element of degree 1 in /
must be divisible by z which belongs to the associated prime ideal (y, z) /  of
R.

L em m a 1.5. L e t xi, •••, x i, be an  arbitrary homogeneous filter-regular
sequence w ith respect to I. Pu t J1:=U;72=1(xi,•••, xz-i): Jm There exists a
homogeneous element X I such that J,: x= J, and xJzg(xi,•••, x,-1) f o r all i
=1, •••,n.

Proof. First, since every associated prime ideal 1:1 of J, do not contain /,
we can find a homogeneous element XI such that x g p  for all such 1). As a
consequence, jz: x = J , .  Now one only needs to replace x  by a sufficiently
higher power of x  in order to get the relations xj, g (xi,

We conclude this section by showing that homogeneous filter-regular
sequences behave well with respect to the multiplicity.

Lem m a 1.6. L et x  be a homogeneous filter-regular sequence with respect
to an ideal I of  R  with h t ( I )> 2 .  Set a: = d e g x .  Then

e(RI (x))= ae(R )

P ro o f  Set J:= U72=10: /m. Then J  is the intersection of all primary
components of the zeroideal o f R  whose associated prime ideals do not
contain I. Since ht(/) the zeroideal o f R  and J  share the same d-
dimensional primary components, d :=d im R  . Therefore e (R )=  e (R IJ ). On
the other hand, the definition of filter-regular sequences says that x  is not
contained in all associated prime ideals of J .  As a consequence, dim RAJ, x )

d —1 =dim R1(x) and we obtain e(RI (J , x))= ae(RIJ)= ae(R ). L e t  be an
arbitrary associated prime ideal o f ( x )  with dim R/o=d—  l. Then /
because dim R //< d— 2. By the definition of J, JR=0 and therefore xR,,=(J,
x )R „ .  This implies that (x )  and (J, x )  share the same (d —l)-dimensional
primary component associated with 13. Hence using the associative formula
for multiplicities we obtain e(R I(x))= e(R I(J , x))= ae(R ).

2. Multiplicity of the associated graded ring

First we will derive a general multiplicity formula for the associated
graded ring of an arbitrary ideal of the principal class of a local ring.

For any local ring S  we will denote by e (S ) the multiplicity of S  with
respect to its maximal ideal and by e(J; S) the multiplicity of S with respect
to an ideal J with /(S/J)< 00.

Lem m a 2.1. L et S  be a  local ring and J  an arbitrary  ideal o f  S  with
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l(S IJ )<cc . Then

e(grj (S))= e(J; S) .

Proof. S e t  G:=gr j (S) and let G+ denote the ideal generated by all forms
of positive degree of G .  Then G+ is a reduction of the maximal graded ideal
of G .  By [NR] this implies that e(G) is equal to the multiplicity of G with
respect to the ideal G +. But the latter is exactly e(J; S).

T hero rem  2 .2 . L e t S be a local ring  and  J  an  arbitrary  ideal of  the
principal class o f  S .  Then

e(gr,(S))=Ee(Slo)e(JS,; Sp),

w here runs all associated prim e ideals o f  J w ith dim  SII:)= dim  SIJ.

Proof. S e t  d:=dimS and n:=ht(J ). T hen  d im  SIJ = d — n. Consider
the representation:

grj (S )=A I(J, Q),

where A:= S[Ti, • • , Tn] and Q is the ideal of all forms of A  vanishing at a
fixed minimal basis Zi, Z n  o f  J . By the associative formula for multiplic-
ities we know that

e(grf (S ))=Ee(A 1P)1(A pl(J, Q)Ap) ,

where P runs all d-dimensional associated prime ideals of (J, Q ).  Note that
dim A/JA=dimS/J+ n = d .  Then P is also an associated prime ideal of JA.
Hence P must be of the form l A  and

e(AIP)=e(Slp)

for some (d— n)-dimensional associated prime ideal 0  of J . It rem ains to
show that

l(A p/ (j, Q )A p)= e(JSp; S,)

and that every ideal of the form 0A with dimS/0= d — n is an associated prime
ideal of (J, Q ).  Note that 4, •••, zn is a system of parameters of S .  Then

Zn are analytically independent in S„ [ZS]. This means that the coefficients
of any form of Q are contained in 0. Therefore QgpA and 10A  must be an
associated prime ideal of (J, Q ).  Now we look a t the local ring S .  Then

grJsp(S) =Au/(T, Q)Av ,

w here  A o = SA 7i, T d .  Since JS, is  0S ,-p rim ary , 0A p is the o n ly  d-
dimensional associated prime ideal of ( j, Q )A ,. Thus, for P=0A , we have
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e(gr,s,(S,))=. e(A nIPA )l(A pl(J, Q)A p)= l(A pl (J , Q)A p)

because e(A n IPA ,)=e(S ,10S ,)=1. On the other hand, e(gr./.9„(S0))=e(TS0; Sp)
by Lemma 2.1. Hence l(Apl (J , Q)Ap)= e(JS,; SO, as required.

R em ark . Theorem 2.2 can be deduced from the following result of M.
Nagata [Na, (24.7)] which he also called the associative formula:

Let S  be a local ring and Q=(xi, •••, xd) a parameter ideal of S,
S .  Put J-(xi, ••-, .xn), n d  fixed. Then

e(Q; S )=Ee(S1p)e(JS n ; S n),

where 0 runs all associated prime ideals 0 of J  with dim S/0= d - n.
To see this one has to apply Nagata's result to the local ring T  of gr j (S )

at its maximal graded ideal and a minimal reduction of the maximal ideal of
T  which contains the  in itia l forms of the  elements of J  in  grj ( S ) .  Other
details are left to the readers.

T he  above multiplicity formula provides a  c lose  relationship between
e(grj (S )) and e(SIJ) because

e(S IJ)=Z e(S I)l(S ,IJS ,),

where ip runs all associated prime ideals of J with dim S/0-=dimS/J.

Corollary 2.3. L et S  be a local ring and J an ideal of  the principal class
o f  S .  Then

e(gri (S))_e(S1J)

an d  e(grj (S ))=e(S 1J) i f  an d  only  i f  S , is  a Cohen-M acaulay  ring for all
associated Prim e ideals t■ o f J  with dim S/0=dimS/J.

Proof. S ince JS , is a  parameter ideal of S n , we have

e(JS,; l(S,IJS,) ,

and e(JS ,; S ,)= l(S ,IJS ,) if and only if  S , is a Cohen-Macaulay ring.

In the following we will use the notion of filter-regular sequences in the
computation of the multiplicity of gri ( S ) .  N ote that without restriction J
may be assumed to be minimally generated by a filter-regular sequence with
respect to J.

Lem m a 2.4. L et J  be an  ideal of  the principal class of  a local ring S .
Let Z i,•-, z n be a f ilter-regular sequence with respect to J which m inimally
generates J. Then

e(gr,(S))=e(SI(J,,,  Zn)) ,
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where Jn:=U 77,=1(zi, ••• , zn-i):

P ro o f  Set d: =dim S .  If n =d , J is a parameter ideal of S  and we have
to show that

e(grj (S ))= l(SI(Jn, Z n ) ) .

By Lemma 2.1, e(grj (S ) )=e (J; S ) . Let ni denote the maximal ideal of S .  By
the definition of filter-regular sequence, z q 0  for all associated prime ideals 0
* In  of (zi, •••, z,_i). Therefore, by a double application of [AB, Corollary 4.81!
we have

e(J; S )=l(S IJS )— •• • , ••• , 2 ,1 ) ) -  e(zn,S; S ,

where S :=S /(z i, z n _ i) . Note that

znrEiznr + I g=  S/((zi, zn-i): Z r  zn)=-Sl(Jn, Zn )

for r  la r g e .  Then

e(z ng; ST ) = /(S /(Jn, zn)) .

Hence e(grj (S ))= l(S I(Jn, zn)), as required. If n <d , we use the formula

e(grj (S ))=Ee(S 10)e(JS ,; S ,)

of Theorem 2.2, where 0 runs all (d — n)-dimensional associated prime ideals
of J .  Since JS , is a  parameter ideal of S,„

e(JS ,; S ,)= l(S ,I(Jn, zn)S ,) .

It is easily seen that Jn and (zi, •••, zn_i) have the same r a d ic a l .  So ,/(Jn, Zn)
= , / j .  Hence (A , Zn) a n d  J  share the  same (d — n)-dimensional associated
prime ideals, and we obtain

e(grj (S ))=Ee(S I)l(S pl(Jn, z n)S ,)= e(S I(Jn,  Zn))

by the associative formula for multiplicities.

Finally we will use  the  above result to compute th e  multiplicity of a
homogeneous ideal of the principal class.

Theorem 2 .5 .  L e t  R  be a  graded algebra generated by  f initely  m any
form s of  degree 1 over a field. L et I be a homogeneous ideal of  the principal
class of  R  and ai, ••• , an  th e  degrees o f  th e  elem ents o f  a  homogeneous
m inim al basis o f  I. T h e n

e(gri(R ))= ar-ane(R ) .

Proof. B y Lem m a 1.4 we may assume that / is generated by a  filter-
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regular sequence xi, •••, xn and a, = d eg x  i= 1 , • • • , n . By Lemma 2.4,

e ( g r I (R ) )=  e (R I ( J n ,  x n ) ) ,

where In is the ideal U ;-1 (xi, xn-i): Note that In  is the intersection of
all primary components of (xi, •••, xn-i) whose associated prime ideals do not
contain I. Then x n  is a non-zerodivisor of Jrn, whence

e (R I ( J n ,  x n ) )= a n e (R I J n ) .

Since the minimal prime ideals of (xi, xn-i) do not contain I, (x i, ••• , xn-i)
and J7, share the same isolated primary components. By the associative
formula for multiplicities, this implies

e(R IJ  n )= e(R 1 (x i, • • •  , x n_ i))= a1 ---a n_ ie(R ) ,

where the latter equality follows from Lemma 1.6. Summing up we will
obtain

e (g r  I (R ))=  a i•  •  a n e (R ) .

3. Multiplicity of the Rees algebra

Let R = G 7 -0 R , be a  graded ring generated by finitely many forms of
degree 1 over a local ring R o .  Let I  be a graded ideal in R  and xi, •••, x n  a
homogeneous minimal basis of I. Let A denotes the polynomial ring R[ T1,

T n] in n  variables over R .  If we map x , t  to  T „ i= 1 , •••  , n , we obtain a
representation for the Rees algebra:

R [It]=  A IQ  ,

where Q  is the ideal generated by all forms vanishing at xi, •••, xn.
Let M  denote the ideal of A generated by Ti, •••, T n and the elements of

degree 1 of R .  As in [HT1.1], to compute the multiplicity of R [it] we use the
following refinement of the M -adic filtration of A. First we note that A =
@ Ah is  a  N " 1-graded ring with A n:=R a o Tial••• an )E N "1 .
Define the following degree-lexicographic order on N :

(ao, an)<C80, ign)

if the first non-zero component from the leftside of

i=o i=o ao— go, • • •, an — den)

is negative. Set g h A :=e )n , nAn , . Then g := ( 9 - nA)nEN' , 1 is a filtration of A
which is finer than the M-adic filtration. Indeed, we have M '=g h ,A  with hi:

0, i)  for all
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For every polynomial f E A  we denote by f *  the initial term  of f  with
respect to the above order, i.e. P = f h , if f  f h  and h t :=minthlf h*Ol.
Let Q * denote the ideal of A  generated by all elements f * ,  f E Q .  Set

.1.1:=U,72-1(xi,•••, x i ) :  jm ,

P:=(JiTi,•••, JnTn) .

Lemma 3 . 1 .  Assume that xi, ••-, xn is a filter-regular sequence with respect
to  I and degxi < ••• <  d eg xn . Then Q *gP•

P ro o f  Let f  be an arbitrary element of Q and r  the degree of f  in T .
If r = 0 ,  f E R [ T ,  •  • • ,  T a — i ]  and we get P E P  by induction on n .  If r > 0 ,  f  =
g+ hTnr, where g G A  has degree in Tn less than r  and h R [T 1 , • • • ,  Ta-i]. B y
Lemma 1 .3 , the coefficient of all terms of h belongs to J .  H ence w e m ay
assume that the degree of f *  in  Tn is less than r ,  i.e. f *  =  g * .  By Lemma 1.5,
there exists a homogeneous element x E /  such that f , :  x = J ,  for a ll i =1,•••,
n and x in g  (xi, -•-, xn -i).  Then xh =x ig i+ -••+xn -ign -i for some polynomials

••• , gn -IE R [T i, ••• , T n - i ] .  Now consider the polynomial

e = x f  — [(x iT n — x nT i)gi + • • • + (Xn—I Tn —  X nT n— agn— l]T n r  1

= x g +  X n (T ig i+ • • •+  T n — ign — l)T n r  1  .

It is obvious that e is obtained from x f  by replacing the part xhTnr by terms
whose orders are higher than that of xf* (degxn>degx, for a ll i =1 ,••-, n -1 ).
Hence e * — x f* .  Since e E Q  and the degree of e  in  T n  is less than r ,  by
induction we may assume that e * G P .  S o  P E P : x = P ,  as required.

R e m a rk . (1 )  When I  is generated by a  d-sequence, J , = (x i, • •• ,  x,
for a ll i=1 , •••, n  [H u ]. Since every element x ', with x E (x i, • • • , x ,_ 1 ) : x , is
the initial term of a linear form of R [ T1, • - • ,  7 1  vanishing at xi, x„ we can
conclude that Q* = P .  This equality is basic for the study of R [ I t ]  in [ H T U ]
and has been proven by a slightly different method.
(2 )  Lemma 3.1 will be also applied to the associated graded ring g r i(R ) in the
proof of Lemma 4.1. That is the reason why till now we work over a graded
algebra over a local ring.

From now on let R  be a graded algebra generated by finitely many forms
of degree 1  over a  f ie ld . Then M  is the maximal graded ideal of A .  Since
9" is a finer filtration of the M -a d ic  filtration, we have

e (R [I t ] )= e (A lQ * ) .

To compute e (A IQ * ) we shall need the following lemma.

Lemma 3 .2 .  Let Q1 Q2 be two homogeneous ideals of A. Suppose that
Qi is contained in all primary components V  of Q 2 with dimAIV =dimAlQ2.
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Then

e(A1Q1)=e(A1(22) .

P ro o f  From the assumption we deduce that dim A /Q i=dim A /Q 2 and
that Qi, Q2 share the same primary components V  with dimA/V—dimA/Q2.
Therefore, applying the associative formula for multiplicities we obtain

e(A 1Q1)=Ee(A IV )=e(A lQ2).

Theorem 3 .3 .  L et I be a homogeneous ideal of the principal class which
is minimally generated by a filter-regular sequence x l,• • • ,x n . Put az =degx ,
and suppose that a i<• • • <a n .  Then

e(R [It])=(1+ nElai•••a,)e(R ) .

P ro o f  Set xi_i)R, i=1 ,- • ,n ,  and

L :=(hT 2, • • In T 7 2  )  •

Then L  is the ideal generated by the initial form of the relations
Hence L g Q * . We will see that e(A IL) has the same multiplicity formula as
above. It is easy to check that the ideal L  has the following decomposition

L = • • • ,  T n )  •
i=1

Since dimR//, =dimR — i+1  for a ll i 1, n, every component of the above
decomposition has dimension d +1, while the sum of every couple of them has
a smaller dimension. Thus, using the associative formula for multiplicities
we obtain

e (A IL )=i e (A l T1+1 • • • , Tn))= e (R IL )  .i=1 ' 

By Lemma 1.6, e(R IL )= ai•••ai_ie(R ) for a ll i =1 , ••• , n . Hence

e(A  L)= (1 + f lE- 1  ai• • • a )e(R) .,=1

It is also clear that every (d +1)-dimensional primary component of L must be
of the form (q, T1+1, •••, Tn) for some primary component q of I, with dimR/q
=dim R —  i+1, i=1, •••, n .  Let denote the associated prime ideal of cf.
Then I because dimR//=dimR —  n < d im R h .  Therefore J1R,=(U72=1I,:
Im)Rp=111?,. From this we deduce that q  Q J ,.  On the other hand, the ideal
P=(./1 •••, i n T n )  has the following decomposition

P = n7=v1, T o n ( 7 - 1 , • • • •  TO •
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So P  is contained in all (d+1)-dimensional primary components of L .  But
Q *  P  by Lemma 3.1. Therefore, by Lamma 3.2, we obtain

e(A1Q*)-- -= e(A IL) .

Since e(R [It])=  e(A IQ *), the conclusion is now immediate.

In the following we will show that the multiplicities of the Rees algebra
and the symmetric algebra of an ideal of the principal class (not necessarily
homogeneous) are e q u a l .  For an ideal J  in a ring S we will denote by Sym(J)
the symmetric algebra of the ideal J.

L em m a 3 .4 . L et S be a local ring and J  an  ideal of  the principal class
in S. Then

e(Sym(J))= e(S[Jt]) .

Proof. Suppose that J  is minimally generated by the e le m e n ts  z , ,z n .
Set B := S [T i,••• ,T d . Let Q i re s p . Q2 denote the ideal of all forms resp.
linear forms of B vanishing at Zi, ••, Zn. T h e n

S [Jt]—B/Q1 ,

Sym(J)=-BIQ2.

By Lem m a 3.2 we only need to show that Q 1 is contained in  all prim ary
com ponents V  o f Q2 w ith  d im B /V = dim S ym (J). Note t h a t  S [Jt, 1/z,]=
S[1/z1][t]. Then

Q1B[1/zi]= Q2B [1/zd

for a ll i =1,•••,n . From this it follows that Q1= Q2 or Qi= Q2 n U for some
ideal U of B whose associated prime ideals contain J . Since

dimB/Qi + 1 ,

d im B /U  d im B /JB  = d im S /J  n=dimS

w e conclude that dim B/Q 2=dim S+1 and tha t Q 1 and Q2 share  the same
primary components V with dimMV=dimS +1.

C oro lla ry  3 .5 . L et I be a homogeneous ideal of  the principal class as in
Theorem 3.3. Then

e (S y m (I))= (1 +  a r  a ,)e (R ) .i=1

N ow  w e w ill apply the above results to generalized Cohen-Macaulay
graded algebras. R ecall that R  is called a generalized Cohen-Macaulay ring
if R,, is Cohen-Macaulay and dim  Rho+ht(0)=dim R for all prime ideals #:)*
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ni of R, ni being the maximal graded ideal of R .  For instances, this is the case
if R  is a Buchsbaum r in g . See [CST] and [T3] for more details on the theory
of generalized Cohen-Macaulay rings.

It is well-known that i f  R  i s  a  generalized Cohen-Macaulay graded
algebra, every homogeneous system of parameters of R  is filter-regular with
respect to ni. Therefore, any sequence xi, • • •, X n  of homogeneous elements of
R  which minimally generates an ideal I  of the principal class is filter-regular
with respect to I ,  and we may assume that d e g x i  • • •  degxn.

Corollary 3 .6 .  (cf. [HTU, Example 3.1 and Example 3.2]). L et R  be a
generalized Cohen-Macaulay graded algebra and IC R  a homogeneous ideal of
the principal class w ith the degree sequence ai an. T h e n

e(R [It])=e(S y m (I))=(l+ nX :ai.••ai)e(R).

R em ark . For a local ring  (S ,  ni) a n d  a n  arb itrary ideal JC S  w ith
positive height, J. K. V erm a [V 1], [V 2] has found the following multiplicity
formula:

e(S[Jt])= dE l  e.(trILT) ,i=o

where e1(m1J) denotes the ith  mixed multiplicity of tri and J and d =d im S . It
is known that eo(in1J)= e(S ) and e1(m1J)=- 0 for i > /, where 1 is the analytic
spread of J  [K V ]. If J is an m-primary ideal, e1(m1J) is the multiplicity of an
ideal generated by d — i elements from n i and i  elements from J  chosen
sufficiently general [Te] or of a joint reduction of d — i copies of n i and i
copies of J [R ].  For the situation of Theorem 3.3, this suggests that probably
e,(m / )=ar-a,e (S )  and that one may find another proof for Theorem 3.3 by
the theory of mixed multiplicities. Unfortunately, for an arbitrary ideal J,
there is at present no interpretation for mixed multiplicities like those in [Te]
or [R].

4. Multiplicity of the extended Rees algebra

Let R  be a graded algebra generated by finitely many forms of degree 1
over a field and I  a  homogeneous ideal of the principal class of R .  To
compute the multiplicity of the extended Rees algebra R [/t, t - 1  we will
follow the approach of [H TU ] and Section 3.

Let J i = R [  • • • ,  Tn, U] be a polynomial ring over R  in n +1 variables
and Q the ideal of A generated by all forms of R[T1,--, Tn] vanishing at xi,
• • •, xn and the relations xi— UT1,--, xn— UTn. It is well-known that the
extended Rees algebra R [/t, t - '] of the ideal /=(x,, • •-, xn) has the presenta-
tion
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R[It , A I Q

Lemma 4 . 1 .  Assume that xi, , xn is a f ilter-regular sequence with respect
to I .  S e t

•  , X n -1 ):I m  .

For any  polynomial f E  Q, the coef f icient of  all term s of  f  w hich have the
highest degree in  Tn and which are not div ided by  U  is contained in In.

Pro o f . Using the substitutions T,U -> x, whenever it is possible, we can
transform every polynomial f  of A to a polynomial g of the form g=g1+ Ug2
with giE R[Ti, • • • , Tn] and g 2 E R [U ] .  If f E Q , then g E  Q  to o . In this case,

g(xit , •• • , xnt, t - ' ) =gi(xit , ••• , xnt)+ t' g2(t - 1 ) =0 ,

hence g 2 = 0  and g=  g i is a polynomial of  R E T 1 , • • • ,  7 ; 1  vanishing at xi, •••, xn.
If we do the substitutions with preference to T U  x n ,  the terms of g with the
highest degree in  Tn are exactly the terms of f  which have the highest degree
in  Tn and which are not divided by U .  Now we only need to apply Lemma
1.3 to get the statement.

Let a denotes the maximal ideal (ni, T1, • • ,  Tn, U ) of A .  As in Section
3, to compute the multiplicity of R [it , r i ]  with respect to a we introduce a
refinement g  of the a - a d i c  filtration of A .  First we note that A = C )A h  is
a N 2 -graded r i n g  w ith  A h:=R a o T n a " U ' l ,  h = ( a o ,  • • • ,  an + i) E N n " .

n+1
For every term f h we call the sum L',-oa, the total degree of f . Define the
following degree-lexicographic order on

(ao, • • • , an+i)<(Ro, ••-, Rn+i)

if the first non-zero component from the left side of

ao—  go, • • • , an+1 - 8n+i)i=0 i=o

h  _  . = 2  h t -A  h fis negative. S et g  c}1- (4 -) Then g := (g h A )h .N n + 2  is a filtration of
A which is finer than the .5 l1 -a d ic  f iq ra t io n . Notice that this filtration induces
the filtration g  on R[T1, ••• , Tn] introduced in Section 3.

For every polynomial f E A  we denote again by f *  the initial term of f
with respect to the above order and b y  Q *  the ideal of ,A  generated by all
elements f* , f E  Q. T h e n

e (R [It , t - 1 )=  e (,A I Q *) .

We shall estimate Q *  by an  ideal 9  of A  which is defined as follows.
Let I be the largest integer for which degx 1=1, 1=0 if deg x > 1 fo r a ll i 1,
•••, n. If / <  n, set
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T 1 + 1 U , • • • ,  T n U ,  1 + 2 1 '1+2, • • .In Tn)

where J i= •••, xi_i): 
j m

 i =  / +1, n , and if 1= n,

9  =K A  ,

where K := U ;7 , , , ( I n I '+  I n 1 +1 ): xnm

Lemma 4 .2 .  A ssume that xi, •••, xn is a filter-regular sequence with respect
to  I and d e g x i  • •  •  d e g x n .  Then Q* .

Proof. L e t  f  be an arbitrary element of Q . I f  1=  n , we may assume
that f  is not divided by U and that !  is quasi-homogeneous with respect to the
weight w :  w (  =  • - •  =  w (  T / )= 1 ,  w (U )= — 1 .  Then f = f o + f i U +. + fs Us
for some homogeneous forms f , E R [ T i ,  • ,  Tn] with d e g f , = d e g f o +  i= 1 ,•••,
s ,  f o * O .  Since all elements xi, x n have degree 1, we may further assume
that all coefficients of f ,  have degree d — i for some positive integer
Under these assumptions the total degree of every term of fiL P  is equal to that
of fo  plus i. Hence we have f* — fo * .  Since the polynomial f o + f i - F•-•+ fs

E g .vanishes at xi, • ••, x n, fo(xi, •••, xn) i d e f 0 + 1

L e t  i , •••, .tn  denote the initial
forms of xi, •••, x n in the associated graded ring g r i (R )  and fo  the image of fo
in (R //)[ ••-, T a t  Then h  is  a relation of the elements Xi, • • • ,  X Y . By
Lemma 1.4 we may assume that these elements form a filter-regular sequence
of g r I ( R ) .  Then we can apply Lemma 3.1 to deduce that (  f o ) * c (

nT.), where J,  = Ù771=1 •••, If the coefficient of fo* does not
belong to I, ) = (  h )* .  Since /I g ••• g In, the coefficient of fo* belongs to /
or, more precisely, to the zero-graded piece [ J ,,]0 . It is easily seen that [ J
= K / I .  Hence the coefficient of fo* belongs to K , and we obtain f*— f0 *E 9 .

If / < n , let r  be the degree of f  in T n . If r=0, fE R [ T i ,  • • •, U ] and
we have f* c 9 by induction on n. If r  > 0 , we write f  = g+ h T n r , where g is
a polynomial of A whose degree in Ti, is less than r  and h E R [  ••-, Tn-i,
U ] .  By Lemma 4.1 the coefficient of all terms of h which is not divided by U
belongs to the ideal ./n. Hence we may assume that the degree of f *  in Ti, is
less than r  and h=  hi+ Uh2 with hi cJ n R [ •••, Tn_i] and h2c ./?[ •-•, Tn-1,
U ] .  By Lemma 1.5 there exists a homogeneous element x c  /  such that J,: x
= J i  for a ll i= 1 ,• • • ,n  and x Jn c (x i,  •••, x,,-i). Then x h 2 =x ig 1 +-•+x n - 1gn-1
for some polynomials of '• •  g n - i e R [T 1 ,  « , It follows that

X hT n— (x iT n —  x nT i)g i + • • + (Xn—i T n  x n T n - i ) g n - i

+ x n Tim+•••+xnTn_ign_1— (xn—  TnU)xh2+ xnxh2.

Consider the polynomial

e — xf — [(x iT n —  Xn V g 1 + • • •  +(x n — iT n —  X nT n-1) gn-1

—(x,,— TnU )xh2]Tnr
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= xg + X n(T ig l+ • X h2)T nr 1 .

It is obvious that e is obtained from x f  by replacing the part xhTnr by terms
whose orders are higher than that of x f * (degxn degx , for a ll i =1 ,••-, n -1
and deg xi, > 1 ) .  Therefore e * =x f * .  Since eE  Q  and the degree of e  in Tn
is less than r ,  by induction we may assume that e*E P. So we obtain f * E

Theorem 4 .3 .  L et I be a homogeneous ideal of  the principal class which
is minimally generated by a filter-regular sequence xi, ••• , xn. Put a, = degx,.
Suppose that ai ••• an. T h e n

e(R [It, t - 1 ])=(1+X ai•••ai)e(R ) ,

where 1 is the largest integer f o r which ai=1  (1=0 and a r  a i = 1  if  a,>1 for
all i =1, ••• , n).

Proof. I f  /=n , let b be an integer such that K =(InIb - 1 + I ): xnb. It is
easy to check that

(KTnb , Q *  gK il

where the latter inclusion follows from Lemma 4 .2 .  Since (KTn b , I)= K
( Tn, I )  and dim ,A /K A = d+ 1> d= dim A 1( Tnb , I) , w e can apply Lemma 3.2
and obtain

e(R[It , t - 1 ])= e(A l Q*)= e(A  IK A )= e(R IK ) .

With the notation of the proof of Lemma 4.2 we have

R/K---gri(R)/(Jn, •••, .tn )=gr1(R )1(.1  n , .tn )

where Xi, .fn may be assumed to be a filter-regular sequence with respect
to the ideal (ii, •••, Xn) of g r i ( R ) .  By Lemma 2.4 and Theorem 2.5,

e (g ri(R )1 (f  X -• n))= e(gri(R))= e(R) .

Summing up we will obtain e(R[It , t - 1 ])= e(R ), as required.
If /< n, set

± :
-

(
11 +1 , T 1 +1 U  ,  • • •  ,  T U ,  1 1 +2 7

'
1+2, •• • , I T )

where / = (x , / +1, •••, n + 1 .  It is clear that 1 ' is the ideal gener-
ated by the initial terms of the relations x,T,—  x,T, and x,—  T,U, whence
g  Q * .  It is easy to check that 1 ' has the following decomposition

_C=(I i + i , Tn)n 1(111(Ii, T 1+ 1, Tn,



682 N . V . T rung

Every component of this decomposition has dimension d +1 ,  bu t the  sum of
every couple of them has a  smaller dim ension. Therefore, using th e  as-
sociative formula for multiplicities we obtain

e(,-X I -E)= e( ,A1(11+1, T1+1, ••• , Tn))+ e(A  
I ( I ,

 T i+1, « , T n, U ))i=t+i

=e(R III+1)+ e(R Ili) .1=1+1

B u t  e (R IL )= al•••a,_ ie (R )  f o r  1=1, ••-, n  by Lem m a 1 .6  (e (R IL )=e (R )) .
Hence

e ( iq l . .E )=(1 +X ac ••ai) e (R ) .

Moreover, every (d  +1)-d im ensional primary component of L  must be either
of the form (q, T1+1, • • • , Tn) or of the form (q , T 1+1, • • • , T n, U) for some primary
component q of 11+1 with dimR/q=dimR — / or of L  w ith dim R /q= dim R -
+1 ,  i=1 +1 ,• • • ,n ,  respectively. W e have seen in the proof of Theorem 3.3
that such a primary ideal q must contain Ji+i resp. L .  On the other hand, the
ideal 9  T 1 + 1  U, •••, TnU,J1+2T1+2, •• • , .In T n) has the following decompo-
sition

2 =u ,,i, T1+1, ••• , Toni
 l + 1  (I i,T n ,  U )  .

So it is clear that 9  is contained in  a ll (d +1 )-d im e n sio n al primary compo-
nents of Z .  But Q *  g 2  by Lemma 4.2. Therefore, by Lemma 3.2, we obtain

e ( il I Q *)= -C) .

Since e(R [It , e(,,q I Q *), the conclusion is now immediate.

Like in the case of Rees algebras we immediately obtain the following
consequence of Theorem 4.3.

Corollary 4 .4 .  (cf. [HTU, Example 3.1 and Example 3.2]). L et R  be a
generalized Cohen-Macaulay graded algebra and  I I R  a  homogeneous ideal of
the principal class with the degree sequence a1<••• <an . T hen

e(R [It , t - 1 )=(1 +X ai•• •  ai)e (R )  ,

where 1 is the largest integer f o r which ai=1 , 1 =0  if  a > 1  f o r  all i=1 , n.

Remark. F o r  a  lo c a l r in g  (S, m ) a n d  a n  arb itrary ideal J gm 2 w ith
positive height, D. Katz and J. K. V erm a [KV, Proof of (3.7)] have found the
following multiplicity form ula for the  extended Rees algebra in  terms of



Filter-regular sequences 683

mixed multiplicities:

e(S[Jt, C T = e(R )+X

Compared with Theorem 4.3, this suggests again a close connection between
mixed multiplicities and filter-regular sequences as we have mentioned at the
end of Section 3.
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