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Moduli of stable bundles on blown up surfaces
By

Tohru NAKASHIMA

1. Introduction

The aim of this paper is to study the behavior of stable bundles on
algebraic surfaces under the blowing-up. Stable rank 2 bundles on blown up
surfaces have been considered in [FM], [B] and the relations between the
moduli spaces were analyzed. In this paper we shall treat the higher rank
case.

Let X be a smooth projective surface defined over an algebraically closed
field # and let H be an ample divisor on X. Let 7: X — X be the blow up of
X at / distinct points p: (1<:</) and let E: be the exceptional divisors. We
define a divisor H. on X by the following

l
Hn=n7f*H_21Ei .

Then for sufficiently large #, H. is ample.
We denote by Mu(7, ¢i, c2) the moduli space of H-stable vector bundles of
rank » on X with Chern classes c¢i, cz. On X, we consider two types of

l
moduli spaces. Put ¢i=rn*c: and 61=7r*cl+21a,-E5 where 1<a.,<r—1.
&

For large » we have moduli spaces of H,-stable bundles My, (7, ¢1, cz) and
Mu,(7, €1, c2). Then our main result is the following

Theorem 1. (1) For sufficiently lavge n, therve exists an open immersion
@: MH(V, Ci, CZ)"_’MH,.(V. Ci, Cz)

defined by the pullback.
(2) Assume that Mu(r, ci, c2) has a universal family E. Then there is a
scheme GE over Mu(v, ¢, c2) whose fibers ave the products of Grassmann
varieties and we have an open immersion

¢: GE>Mu,(7, &\, c2).

This theorem generalizes the results in [B], [FM] to higher rank bundles.
Unfortunately unlike these works we don’'t have an explicit lower bound for
n.
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In the rank two case, we also obtain the following result concerning the
generic smoothness of the moduli spaces.

Theorem 2. Assume that char k=0. For given ¢\, there exist integers no
and co such that

(1) Mu,(2, &1, c2) is good for all n=mno and c2= cy;

(2) If ci. H is odd, then Mu 2, €\, c2) is good for all n=mno and c2= co.

For the difinition of the goodness, see § 3.

2. Stable bundles on a blown up surface

Let X be a smooth projective surface defined over an algebraigally closed
field 2. We shall consider the stable bundles on the blow up X —X at /
distinct points p1, *--, p.. We fix an ample divisor H on X. Then for

l ~
sufficiently large #, Hn=n7r*H—Z‘,lEi is an ample divisor on X where E;=

77 '(p:) are the exceptional divisors. For given c€PicX and c:EZ, we
denote by Mu(7, c1, cz) the moduli space of H-stable rank » vector bundles E
on X with ci(E)=ci, c2( E)=c.. Similarly we define Mu.(7, ci, cs) for ciEPic
X, aEeZ.

Definition. For fixed 7, s Z and ¢iEPic X, a polarization H on X is
said to be (7, ci, c3)-suitable if there exists an integer #o such that for all n>

no, every vector budle E with the invariant (7, ci, ¢z) is Hyp-stable if and only
if E is Han,-stable.

We note that if » =2, the suitablity of H is equivalent to the condition that
for sufficiently large #., n2, H,, and H,, are equivalent in the sense of Qin [Q].

Proposition 2.1. Every polarization H is (2, ci, c3)-suitable for arbitrary
i, Cs.

Proof. We shall exploit the theory of chamber structures of Qin. For
details we refer to [Q]. Let 7 be the smallest real number such that for all
r =7, Hr is ample. Assume that for arbitrary integer 2>0, there exist
integers #n(k): >k (i=1, 2) such that two polarizations Ha), and Hn), are not
equivalent. Then we would obtain a strictly increasing sequence {7 (k)|k=1,
2, -+-} of real numbers (k) >min(#n(k):, n(k)2) such that each H) lies on the
wall W'® defined by some ¢(k)ENum(X)®R. However, this obviously
contradicts the following

* Claim. If r is a real number such that H, is ample and lies on some wall
W¥, then either for all »' =, H, lies on W*® or

r<viI(dc;—ci?*+1) .
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To prove the claim, we write { as {=ar*M+2i-1b;Ea;. Then 0=H,.{=
(rn*H—2ZE).(ar*M + i}lei)zraM.H+2b,~. Hence we have 21b;=

—yaM. H. 1f aM.H=0, then 2}b,=0 and hence H,.{=0 for arbitrary »'=
reaMzH =0, then 26;=0 and hence H,.f=0 for arbitrary »'=7. This
leads to the first possibility. Assume that aM.C+0. By definition of Wt we
have

—cst— )<= M*—2b<0.

If M?>0, then we have

s A2 2
R
2
<1-{Z8J
—1_ r*(M.H)
IM?
<1_ VZHZ

Here, the second inequality follows from the Schwarz inequality (26:)*<
/(225%) and the third one from the Hodge index theorem. Therefore we
obtain

2
ryf et

<Vi(dcs—ci?+1) .
Thus we are done in this case. If M*<0, then
—(cs—ci)<—r?a*(M.H)*.
This yields » </4c3— ci?, hence the proof has been completed.

Proposition 2.2. For given ci, c2, there exists an integer no such that for
all n=mno, the following hold:

(1) For any EEMu(7, c1, c2), n*E belongs to Mu,(r, 1, c2) for all n=ny;

(2) If EEMu,(7, &1, c2) satisfies E=n*E for some bundle E on X, then E
is H-stable;

(3) If H is (v, &\, c2)-suitable, then for any E€Mu,(r, &1, c2), (mE)"Y is
H-semistable. If furthermore ci..H%=0 (mod »') for any v' with v'|r, (neE)"Y
is H-stable.

Proof. Let E be a rank » vector bundle on X with ci(E)=c1, c:( E)=ca.
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Assume that E is H-stable and let FCx*E be a subsheaf of rk F=#". We
write

l
ao(F)=r*M+ g‘ibl‘Ei .
We choose m, so that
I3
HoizWZoﬂ'*H— Z;Ei

becomes ample and for #=m, we get an ample divisor H,=(n— mo)7*H + H,.

We have to show the existence of #o such that (»'7*c,— rci(F)).H, >0 for
all n=n,. If we put 8=(»"ci:—#M).H and n'=n— m, this condition can be
rewritten as

(*) nw o> (rei(F)—7'n*c1).Ho

for sufficiently large »’. Pushing down the inclusion F—~7z*E, we have 7« F
—F. Since E is H-stable, we conclude 6 >0.
On the other hand, for fixed ample divisors H, Hy, we have

sup{ci(F).Ho|F—n*E, EEMH (7, c1, c2)} <0

since Mu(7, c1, ¢2) is of finite type ([M]).

Therefore we conclude that there exists an integer #n, depending only on
the given invariants and ample divisors, such that ( * ) holds for all #'= .
Thus (1) has been proved.

Next assume that £=7*E for some bundle E on X and led F—E be a
subsheaf with rkF=7". Then we have an inclusion 7*F=E and hence by
H,-stability of E,

a(F).H _ a(n*F).Hy _ cE).Hy _ ci(E).H
v’ nr’ nr v )

This proves (2).

Finally assume that H is (, &1, cz)-suitable and let #o be an integer such
that every EE Mun(7, G1, ¢2) is Hy-stable for all n=>n,. Let F>(mE)"" be
a coherent subsheaf of rank »’. Letting 8:=(»"ci—rci(F)).H, we shall show
0=0. We have a homomorphism

m*Fu—r* (e E)Y = E

where U=X\UE;. For sufficiently large integers b., the above morphism
extends to an inclusion

H*FL’E(EllbIEZ) .



Moduli of stable bundles 575

If we let Z=3:b:E:, we get a subsheaf 7*F(—Z) of E. Since E is Ha-stable
for all n=no, we have

no>(—v'n*ci+ra*c(F)—v'Z).H.

It folows that =0 and hence 7xE is H-semistiabe. If c.. H%=0 (mod #’) for
any #»'|7, semistability implies stability and hence (3) follows.

Theorem 2.3. For sufficiently large n, the pull back map defines an open
immersion

MH(V, Ci, Cz)L’MHn(V, Ci, Cz) .

Proof. The above proposition shows that for sufficiently large #, there
exists a morphism ¢: Mu(#, c1, c2) = Mu(7, T\, cz) which is defined on closed
points by the correspondence E+7*E. This morphism is clearly injective.
Moreover, by Lemma 5.8 in [FM] ¢ is also an open immersion. Therefore the
theorem is proved.

~ l
Next we consider stable bundles £ on X with ci(E)= ¢ =n*c1+ gla;E;

where 1<a;<7r—1. Let S be a scheme and let E be an S-family of rank »
vector bundles E on X with ci(E)=c1, c2(E)=c.. We define a scheme GE
over S as the following fibered product:

GE =Gr(ay, E)iz,xs X s+ Xs X Gr(ai, E)izxs .
Here Gr(a:, E) is the Grassmann variety of quotient bundles with rank a; of
EV.
I:et ¢: GE —S and w:: GE —Gr(a., E)xs be the natural projections.
On X X GE we have the restriction map

l
(71' X ‘/’)*EV _’[_E_Bl(ﬂ'x ¢)*EI\;:1><S®OE.~XGE .
Also we have the natural surjection
l l
2@1(7[ X ¢')*E|§ixs®0 EixGE _’@(ﬂ' X (/’1)* Q i|1,~xs® O EixGE

where Q; is the universal quotient bundle for Gr(a;, E). Let K be the kernel
of the compo§ition of these maps. Then we obtain the following exact
sequence on X X GE:

l
0—K—(rX¢)*EY _’Z@l(ﬂx $)* 0 izixs® O gixce —0 .

It is easy to see that K is locally free. Taking the dual of this sequence and
using the isomorphism & xt'((7X ¢:)*Qizixs® O eixce, O xxcr)=(m X ¢;)*
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0Y%2xs® O eixcr, we have the following exact sequence

_ !
0—(rx¢)*E —FE _’i@l(ﬂ'x ¢:1)* QYzixs® O pixce —0.

~ - ~ -~ [ ~
E is a family of rank » bundles E on X with ci(E)=n*c1+ Z‘,lafEf, c(E)

= ¢, which are obtained from extensions of the form
- l
0—r*E—>F —>_(-=DIOE,(—1)@"’ —0

where E is a member of S. Following [B], we call~E' the standard family
associated with S. Any rank 7 vector bundle £ on X with ci(E).E;#=0 (mod

l
7) can be normalized so that ci(E)=n*c1+ Z}az’Ei(lsdis r —1) after tensor-

ing by appropriate line bundles. We have

Lemma 2.4. Let E be a normalized bundle. Then the following condi-
tions are_ equivalent
(1) Ebelongs to a standard family;

(2) EIE:; OE‘(_l)@at@@%r—a, for i=1,-, 1.

Proof. (1)—(2): If E is a member of a standard family, there is a vector
bundle E on X with ci(E)=c), c2{ E)=c: and an exact sequence on X

() O0=mE—E—@®O0(~1)%—0.
Restricting this sequence to E;, we obtain

0= T or'(Os(—1)%%, 05) =B 05— Eis, = 0s(~ 1) 0.
Since Tor' (O e(—1), Or)= O, we obtain the sequence

0_,@%r—a:_,ElEi_,OEi(_l)Qaai_,O.

Since the above sequence splits, it follows that E|Ei; Oe(—1)®*POgET =
(2) —=(1): Let E be the kernel of the projection £ — O g(—1)®%. Then we
have

0—E—>E—0:(—1)%%—0.

As before we see En=@®7-10p for each 7, so there is a vector bundle Epn X
such that E=7*FE. Pushing down this sequence to X, we have E=m«FE and
hence dualizing (**), we obtain

0—EY —n*EY —@ O —0.
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Thus E belongs to a standard family.
The following can be proved similarly as in Proposition 2.2.

Propostion 2.5. There exists an integer no such that for n=no the
Sollowin hold:

(1) For every EEMu(r, c1, c2), E belongs to Mu(r, &, c2);

(2) If H is (r, &\, c2)-suitable and E is a normalized Hn-stable bundle,
then (¢ E)VY is H-semistable. If we assume furthermore ci. H#E0(mod r’) for
any 7'|r, thcen (e E)"Y is H-stable.

If Mu(7, c1, c2) is a fine moduli space, we can construct a standard family
GE associated with a universal family E. Then we have the following

Theorem 2.6. Suppose Mu(7, ci, ¢2) has a universal amily E. Then for
sufficiently large n, we have an open imwmersion

(};Z GE(?’, C1, Cz)"_'MH,,(V, Ci, Cz) .

Proof. In view of the above proposition, é is well defined and injective.
The argument in te rank 2 case in [B] shows that this is an open immersion.

3. Generic smoothness of moduli spaces

In what follows we shall always assume char £#=0. We study the images
of ¢ and ¢ defined in the previous section. In particular, we shall give some
sufficient conditions for these images to be dense. These yield results con-
cerning the generic smoothmess of the moduli space.

Definition. Let D be a divisor on a polarized surface (X, H). For given
a€Pic X and an integer ¢, the moduli space Mu(7, ci, ¢2) is called D-good if
generic EEMu(r, c1, c2) satisfies H¥adE(—D))=0 where adE denotes the
adjoint bundle of E. If D=0, we simply say good. This condition is equiva-
lent to saying that every component of Mu(7, c1, c2) is generically reduced and
has the expected dimension.

Recall that a rank » vector bundle E=_€£r910(az~) (ei<--<a,) on P'is
called 7igid if ar—a1<1. The following follows from Proposition 2.2,
Lemma 2.4 and Proposition 2.5.

Lemma ?.1. For sufficiently large n, EE Mu,(r, &1, ¢2) befongs to Im¢ if
and only if Es, is vigid for all i. The same result holds for ¢ if H is (v, €1,
c2)-suitable and c.H *#0 (mod r’) for any »’|r.

Lemma 3.2. Let X be an algebraic surface and let C be a smooth rational
curve on X. Assume that a vector bundle E satisfies the conditions c.(E).C<
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0 and H*(adE(—C))=0. Then E can be deformed to a bundle which is rigid
on C.

Proof. We note that for a bundle F on P' with degF <0, F is rigid if only
if F=0(—1)®@0O0®. Let M be the local moduli space of E. For a fixed F,
let Sr be the subset of M consisting of E’ such that E/¢c=F. Then by the
deformation theory of Brieskorn, if M induces a versal deformation of F', we
have codim Sr=/4"'"(End F). Since the condition H*(adE(— C))=0 implies
that the restriction map H'(adE) —H'(adE\) is surjective, M induces a
versal deformation of E\c. If we denote by S the subset of M consisting of
bundles which restrict to nonrigid bundles on C, it is easy to see that codim
S >0 and hence the claim is proved.

Let Kx and Kx denote canonical divisors of X and X, respectively.

Proposition 3.3. Assume that Kx.H<0. Then for suﬁzciently large n,
Im ¢ is dense in Mu,(r, &1, c2). The same result holds for ¢ if H is (v, ¢y,
Ca)-suitable and c.H=*0 (mod v’) for any »'|r.

Proof. We note that H(Kz+E;)=0 for all 7. So we have Hom (FE,
E(Kz+E)=H%End E(Kz+E.;)=H%adE(Kz+E.)). If n>0, the assump-
tion Kx.H <0 implies that ci(E(Kx+E)).Hy=c\(E).H,+ h(nKx. H+1+1)<
ai(E).Hy, hence we have H(adE(—E;))=HadE(Kz+ E;))"=0 by stability.
Thus from Lemma 3.2 and the openness of stability, it follows that £ can be
deformed to an Hax-stable bundle which is rigid on every E.. Therefore the
proposition is an immediate consequence of Lemma 3.1.

Corollary 3.4. Mu (7, C1, c2) (resp. Mu,(7, €1, c2)) is good if and only if
so is Mu(r, c1, c2) under the same assumptions as in the above proposition.

Proof. The first case is obvious. In the second case, the claim follows
from the fact GE is a fibration over Mu(», c1, c2) whose fibers are the products
of Grassmannians Gr(a;, 7).

In the rank 2 case, following result is known ([O, Corollary 2.2]).

Proposition 3.5. For fixed ¢ and D on a polarized surface (X, H), Mu(2,
¢, ¢2) is D-good for sufficiently large c..

As an application of this, we obtain

Theorem 3.6. Assume that n is sufficiently large. Then
(1) Mu,(2, &, c2) is good for sufficiently large cs;
(2) If c.H is odd, Mu,(2, ¢\, c2) is good for sufficiently large ca.

Proof. Let M denote either Mu,(2, ¢\, c2) or Mu,(2, €1, cz). Applying
Proposition 3.5 to X and the exceptional divisors E;, we see that for every 7
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and for generic EEM, h*(adE(—E.))=0 for ¢:>0. On the other hand, the
same proposition applied to X and D=0 shows that Mx(2, c1, ¢2) is good for
¢:>0. Therefore the claim follows as in Corollary 3.4.

~ {
Let AZZVCZ—(T—l)clz(respd=2702—(r—1)(7r*cl+g‘,laiEi)z) be the di-
scriminant of a bundle E with ci(E)=c1, c2(E)=c; (resp. a bundle E with
R . N
CI(E)=7T*Cl+glaz’Ei, C2(E)=CZ).

—~ l
Lemma 3.7. Assume that H is (r, 1, c2)-suitable and AS(V—I)glafz

+2r—1. The;;z Jor sufficiently lavge n and ES Mu(r, 1, c2), mE is locally
free and R'nvE=0.

Proof. Both (mE)YY /s E and Rlﬂ‘*EA are torsion sheaves supported by
finite sets of points. Let /i=length ((meE)YY /e E) and l=length (R'mE).
It is easy to see that ci((m«E)YV)=ci. By the Riemann-Roch theorem, we
have

chl((meE)"™)=r+ e (e 20i(mE)™))

=7+ +% (C12*2(C2— [1 - 12)) .
Therefore c((7«E)¥V)=c2— Li— l» and hence we obtain
A(mE)™)=d—(r—1)Zal—2r(li+1).

By Proposition 2.5, (7+E)"" is H-semistable for sufficiently large n. Since
Bogomolov’s inequality implies A((m«E)¥V)>0, it follows that if A<(»
l
—l)gla,-z+27—1, then we have /i=/=0 and the proof is complete.
As a corollary to the proof of the above lemma, we obtain the following

sharpened Bogomolov’s inequality for normalized Hy-stable bundles on X (cf.
[B, Theorem 10]).

Proposition 3.8. Let H and E be as above. Then we have
jz(r_l)gllazz .

Finally we obtain the following criterion for ¢ to be an isomorphism.

Proposition 3.9. Assume that H is (v, ¢\, c2)-sutable for ¢\=n*ci+Zia
(r —1)E.. 1If [(r=1P<d<I(r —=1*+2r—1 and c.H=*0 (mod »’) for any
¥'|v, then ¢ is an isomorphism.
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Proof. Let E be a member of Mu,(7, &1, c2). Foreach1<i</, let Ez=

,
@O(aij), (an<-+<a.). Consider the following exact sequence
;=

0 —’E —’E - OE,(a“) —0.
By our assumption and Lemma 3.7,
R'1Oelan)=H'(P', 0(ai)Q0,=0.

Thus we obtain ;1= —1. Then it can be easily seen that Es, are rigid for all
i. By assumption and Proposition 2.5, it follows that E belongs to Im .
Thus we conclude that ¢ is surjective, hence an isomorphism. This com-
pletes the proof.

As an example, we shall consider the moduli of bundles on the blown-up
projective plane. We recall that a coherent sheaf E on a smooth projective
surface X is called exceptional if Ext'(E, E)=0. If X is P?and H is O(1),
then an H- stable torsion free sheaf E is exceptional if and only if 4(E)=»?
—1. Such sheaves have been studied extensively by Drezet and Le Potier (cf.
[DL]). They proved that every stable exceptional sheaves are locally free
and they are determined up to isomorphism by their slopes g=ci/». Let S
be the set of rational numbers which are slopes of stable exceptional bundles.
Theorem A in [DL] gives the complete description of S.

By Theorem 2.3, Theorem 2.6 and Proposition 3.3, we obtain

Proposition 3.10. Let X be the blow up of P? at | distinct points and let
E: be the exceptional divisors. If c/rES and 1<a:<vr—1, then for
sufficiently large n we have

(1) Mu (7, €1, c2) is a reduced one point;

l
(2) Mu,(7, €1, c2) has a component isomorphic to I;IlGr(ai, 7).
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