Moduli of stable bundles on blown up surfaces

By
Tohru Nakashima

1. Introduction

The aim of this paper is to study the behavior of stable bundles on algebraic surfaces under the blowing-up. Stable rank 2 bundles on blown up surfaces have been considered in [FM], [B] and the relations between the moduli spaces were analyzed. In this paper we shall treat the higher rank case.

Let X be a smooth projective surface defined over an algebraically closed field k and let H be an ample divisor on X. Let $\pi: \tilde{X} \rightarrow X$ be the blow up of X at l distinct points $p_{i}(1 \leq i \leq l)$ and let E_{i} be the exceptional divisors. We define a divisor H_{n} on \tilde{X} by the following

$$
H_{n}=n \pi^{*} H-\sum_{i=1}^{l} E_{i}
$$

Then for sufficiently large n, H_{n} is ample.
We denote by $M_{H}\left(r, c_{1}, c_{2}\right)$ the moduli space of H-stable vector bundles of rank r on X with Chern classes c_{1}, c_{2}. On \tilde{X}, we consider two types of moduli spaces. Put $\tilde{c}_{1}=\pi^{*} c_{1}$ and $\hat{c}_{1}=\pi^{*} c_{1}+\sum_{i=1}^{l} a_{i} E_{i}$ where $1 \leq a_{i} \leq r-1$. For large n we have moduli spaces of H_{n}-stable bundles $M_{H_{n}}\left(r, \tilde{c}_{1}, c_{2}\right)$ and $M_{H_{n}}\left(r, \hat{c}_{1}, c_{2}\right)$. Then our main result is the following

Theorem 1. (1) For sufficiently large n, there exists an open immersion

$$
\phi: M_{H}\left(r, c_{1}, c_{2}\right) \hookrightarrow M_{H_{n}}\left(r, \tilde{c}_{1}, c_{2}\right)
$$

defined by the pullback.
(2) Assume that $M_{H}\left(r, c_{1}, c_{2}\right)$ has a universal family \boldsymbol{E}. Then there is a scheme $G \boldsymbol{E}$ over $M_{H}\left(r, c_{1}, c_{2}\right)$ whose fibers are the products of Grassmann varieties and we have an open immersion

$$
\bar{\phi}: G \boldsymbol{E} \hookrightarrow M_{H_{n}}\left(r, \widehat{c}_{1}, c_{2}\right) .
$$

This theorem generalizes the results in [B], [FM] to higher rank bundles. Unfortunately unlike these works we don't have an explicit lower bound for n.

Received March 11, 1991, Revised January 22, 1993

In the rank two case, we also obtain the following result concerning the generic smoothness of the moduli spaces.

Theorem 2. Assume that char $k=0$. For given c_{1}, there exist integers n_{0} and c_{0} such that
(1) $M_{H_{n}}\left(2, \tilde{c}_{1}, c_{2}\right)$ is good for all $n \geq n_{0}$ and $c_{2} \geq c_{0}$;
(2) If $c_{1} . H$ is odd, then $M_{H_{n}}\left(2, \hat{c}_{1}, c_{2}\right)$ is good for all $n \geq n_{0}$ and $c_{2} \geq c_{0}$.

For the difinition of the goodness, see $\S 3$.

2. Stable bundles on a blown up surface

Let X be a smooth projective surface defined over an algebraically closed field k. We shall consider the stable bundles on the blow up $\tilde{X} \rightarrow X$ at l distinct points p_{1}, \cdots, p_{l}. We fix an ample divisor H on X. Then for sufficiently large $n, H_{n}=n \pi^{*} H-\sum_{i=1}^{l} E_{i}$ is an ample divisor on \tilde{X} where $E_{i}=$ $\pi^{-1}\left(p_{i}\right)$ are the exceptional divisors. For given $c_{1} \in \operatorname{Pic} X$ and $c_{2} \in \boldsymbol{Z}$, we denote by $M_{H}\left(r, c_{1}, c_{2}\right)$ the moduli space of H-stable rank r vector bundles E on X with $c_{1}(E)=c_{1}, c_{2}(E)=c_{2}$. Similarly we define $M_{H_{n}}\left(r, c_{1}^{\prime}, c_{2}^{\prime}\right)$ for $c_{1}^{\prime} \in \mathrm{Pic}$ $\tilde{X}, c_{2}^{\prime} \in \boldsymbol{Z}$.

Definition. For fixed $r, c_{2}^{\prime} \in \boldsymbol{Z}$ and $c_{1}^{\prime} \in \operatorname{Pic} \tilde{X}$, a polarization H on X is said to be ($r, c_{1}^{\prime}, c_{2}^{\prime}$)-suitable if there exists an integer n_{0} such that for all $n \geq$ n_{0}, every vector budle E with the invariant ($r, c_{1}^{\prime}, c_{2}^{\prime}$) is H_{n}-stable if and only if E is $H_{n_{0}}$-stable.

We note that if $r=2$, the suitablity of H is equivalent to the condition that for sufficiently large $n_{1}, n_{2}, H_{n_{1}}$ and $H_{n_{2}}$ are equivalent in the sense of Qin [Q].

Proposition 2.1. Every polarization H is (2, c $\left.c_{1}^{\prime}, c_{2}^{\prime}\right)$-suitable for arbitrary $c_{1}^{\prime}, c_{2}^{\prime}$.

Proof. We shall exploit the theory of chamber structures of Qin. For details we refer to [Q]. Let r_{0} be the smallest real number such that for all $r \geq r_{0}, H_{r}$ is ample. Assume that for arbitrary integer $k>0$, there exist integers $n(k)_{i}>k(i=1,2)$ such that two polarizations $H_{n(k)_{1}}$ and $H_{n(k)_{2}}$ are not equivalent. Then we would obtain a strictly increasing sequence $\{r(k) \mid k=1$, $2, \cdots\}$ of real numbers $r(k)>\min \left(n(k)_{1}, n(k)_{2}\right)$ such that each $H_{r(k)}$ lies on the wall $W^{\zeta(k)}$ defined by some $\zeta(k) \in \operatorname{Num}(\tilde{X}) \otimes \boldsymbol{R}$. However, this obviously contradicts the following

- Claim. If r is a real number such that H_{r} is ample and lies on some wall W^{ζ}, then either for all $r^{\prime} \geq r_{0}, H_{r^{\prime}}$ lies on W^{ζ} or

$$
r \leq \sqrt{l\left(4 c_{2}^{\prime}-c_{1}^{\prime 2}+1\right)} .
$$

To prove the claim, we write ζ as $\zeta=a \pi^{*} M+\sum_{i=1}^{l} b_{i} E_{\mathrm{d} i}$. Then $0=H_{r} . \zeta=$ $\left(r \pi^{*} H-\sum E_{i}\right) .\left(a \pi^{*} M+\sum_{i=l}^{l} b E_{i}\right)=r a M . H+\sum b_{i}$. Hence we have $\Sigma b_{i}=$ $-r a M . H$. If $a M . H=0$, then $\sum b_{i}=0$ and hence $H_{r^{\prime}} . \zeta=0$ for arbitrary $r^{\prime} \geq$ $r_{0} a M z H=0$, then $\sum b_{i}=0$ and hence $H_{r^{\prime} .} \zeta=0$ for arbitrary $r^{\prime} \geq r_{0}$. This leads to the first possibility. Assume that $a M . C \neq 0$. By definition of W^{ζ} we have

$$
-\left(4 c_{2}^{\prime}-c_{1}^{\prime 2}\right) \leq \zeta^{2}=a^{2} M^{2}-\sum b_{i}{ }^{2}<0 .
$$

If $M^{2}>0$, then we have

$$
\begin{aligned}
-\frac{\left(4 c_{2}^{\prime}-c_{1}^{\prime 2}\right)}{a^{2} M^{2}} & \leq 1-\frac{\sum b_{i}{ }^{2}}{a^{2} M^{2}} \\
& \leq 1-\frac{\left(\sum b_{i}\right)^{2}}{l a^{2} M^{2}} \\
& =1-\frac{r^{2}(M \cdot H)^{2}}{l M^{2}} \\
& \leq 1-\frac{r^{2} H^{2}}{l} .
\end{aligned}
$$

Here, the second inequality follows from the Schwarz inequality $\left(\Sigma b_{i}\right)^{2} \leq$ $l\left(\Sigma b_{i}{ }^{2}\right)$ and the third one from the Hodge index theorem. Therefore we obtain

$$
\begin{aligned}
r & \leq \sqrt{\frac{1}{H^{2}}+\frac{l\left(4 c_{2}^{\prime}-c_{1}^{\prime 2}+1\right)}{a^{2} M^{2} H^{2}}} \\
& \leq \sqrt{l\left(4 c_{2}^{\prime}-c_{1}^{\prime 2}+1\right)}
\end{aligned}
$$

Thus we are done in this case. If $M^{2} \leq 0$, then

$$
-\left(4 c_{2}^{\prime}-c_{1}^{\prime 2}\right) \leq-r^{2} a^{2}(M \cdot H)^{2}
$$

This yields $r \leq \sqrt{4 c_{2}^{\prime}-c_{1}^{\prime 2}}$, hence the proof has been completed.
Proposition 2.2. For given c_{1}, c_{2}, there exists an integer n_{0} such that for all $n \geq n_{0}$, the following hold:
(1) For any $E \in M_{H}\left(r, c_{1}, c_{2}\right), \pi^{*} E$ belongs to $M_{H_{n}}\left(r, \tilde{c}_{1}, c_{2}\right)$ for all $n \geq n_{0}$;
(2) If $\widetilde{E} \in M_{H_{n}}\left(r, \tilde{c}_{1}, c_{2}\right)$ satisfies $\tilde{E}=\pi^{*} E$ for some bundle E on X, then E is H -stable;
(3) If H is $\left(r, \tilde{c}_{1}, c_{2}\right)$-suitable, then for any $\tilde{E} \in M_{H_{n}}\left(r, \tilde{c}_{1}, c_{2}\right),\left(\pi_{*} \tilde{E}\right)^{\vee \vee}$ is H-semistable. If furthermore $c_{1} . H \not \equiv 0\left(\right.$ mod $\left.r^{\prime}\right)$ for any r^{\prime} with $r^{\prime} \mid r,\left(\pi_{*} \tilde{E}\right)^{\vee \vee}$ is H-stable.

Proof. Let E be a rank r vector bundle on X with $c_{1}(E)=c_{1}, c_{2}(E)=c_{2}$.

Assume that E is H-stable and let $F \subset \pi^{*} E$ be a subsheaf of $\mathrm{rk} F=r^{\prime}$. We write

$$
c_{1}(F)=\pi^{*} M+\sum_{i=1}^{l} b_{i} E_{i}
$$

We choose m_{0} so that

$$
H_{0}:=m_{0} \pi^{*} H-\sum_{i=1}^{l} E_{i}
$$

becomes ample and for $n \geq m_{0}$ we get an ample divisor $H_{n}=\left(n-m_{0}\right) \pi^{*} H+H_{0}$.
We have to show the existence of n_{0} such that ($\left.r^{\prime} \pi^{*} c_{1}-r c_{1}(F)\right) . H_{n}>0$ for all $n \geq n_{0}$. If we put $\delta=\left(r^{\prime} c_{1}-r M\right) . H$ and $n^{\prime}=n-m_{0}$, this condition can be rewritten as

$$
\begin{equation*}
n^{\prime} \delta>\left(r c_{1}(F)-r^{\prime} \pi^{*} c_{1}\right) \cdot H_{0} \tag{*}
\end{equation*}
$$

for sufficiently large n^{\prime}. Pushing down the inclusion $F \hookrightarrow \pi^{*} E$, we have $\pi_{*} F$ $\rightarrow E$. Since E is H-stable, we conclude $\delta>0$.

On the other hand, for fixed ample divisors H, H_{0} we have

$$
\sup \left\{c_{1}(F) . H_{0} \mid F \hookrightarrow \pi^{*} E, E \in M H\left(r, c_{1}, c_{2}\right)\right\}<\infty
$$

since $M_{H}\left(r, c_{1}, c_{2}\right)$ is of finite type ([M]).
Therefore we conclude that there exists an integer n_{0} depending only on the given invariants and ample divisors, such that (*) holds for all $n^{\prime} \geq n_{0}$. Thus (1) has been proved.

Next assume that $\tilde{E}=\pi^{*} E$ for some bundle E on X and led $F \hookrightarrow E$ be a subsheaf with $\operatorname{rk} F=r^{\prime}$. Then we have an inclusion $\pi^{*} F \hookrightarrow \tilde{E}$ and hence by H_{n}-stability of \tilde{E},

$$
\frac{c_{1}(F) \cdot H}{r^{\prime}}=\frac{c_{1}\left(\pi^{*} F\right) \cdot H_{n}}{n r^{\prime}}<\frac{c_{1}(\tilde{E}) \cdot H_{n}}{n r}=\frac{c_{1}(E) \cdot H}{r} .
$$

This proves (2).
Finally assume that H is $\left(r, \tilde{c}_{1}, c_{2}\right)$-suitable and let n_{0} be an integer such that every $\tilde{E} \in M_{H n_{0}}\left(r, \tilde{c}_{1}, c_{2}\right)$ is H_{n}-stable for all $n \geq n_{0}$. Let $F \hookrightarrow\left(\pi_{*} \tilde{E}\right)^{\vee v}$ be a coherent subsheaf of rank r^{\prime}. Letting $\delta:=\left(r^{\prime} c_{1}-r c_{1}(F)\right) . H$, we shall show $\delta \geq 0$. We have a homomorphism

$$
\pi^{*} F_{\mid U} \hookrightarrow \pi^{*}\left(\pi_{*} \tilde{E}\right)_{\mid U}^{\vee v} \cong \tilde{E}_{\mid U}
$$

where $U=\tilde{X} \backslash \cup E_{i}$. For sufficiently large integers b_{i}, the above morphism extends to an inclusion

$$
\pi^{*} F \hookrightarrow \tilde{E}\left(\sum_{i=1}^{l} b_{i} E_{i}\right) .
$$

If we let $Z=\sum_{i} b_{i} E_{i}$, we get a subsheaf $\pi^{*} F(-Z)$ of \tilde{E}. Since \tilde{E} is H_{n}-stable for all $n \geq n_{0}$, we have

$$
n \delta>\left(-r^{\prime} \pi^{*} c_{1}+r \pi^{*} c_{1}(F)-r^{\prime} Z\right) \cdot H_{0}
$$

It folows that $\delta \geq 0$ and hence $\pi_{*} \tilde{E}$ is H-semistiabe. If $c_{1} \cdot H \not \equiv 0\left(\bmod r^{\prime}\right)$ for any $r^{\prime} \mid r$, semistability implies stability and hence (3) follows.

Theorem 2.3. For sufficiently large n, the pull back map defines an open immersion

$$
M_{H}\left(r, c_{1}, c_{2}\right) \hookrightarrow M_{H_{n}}\left(r, \tilde{c}_{1}, c_{2}\right) .
$$

Proof. The above proposition shows that for sufficiently large n, there exists a morphism $\phi: M_{H}\left(r, c_{1}, c_{2}\right) \rightarrow M_{H n}\left(r, \tilde{c}_{1}, c_{2}\right)$ which is defined on closed points by the correspondence $E \mapsto \pi^{*} E$. This morphism is clearly injective. Moreover, by Lemma 5.8 in [FM] ϕ is also an open immersion. Therefore the theorem is proved.

Next we consider stable bundles E on \tilde{X} with $c_{1}(E)=\hat{c}_{1}=\pi^{*} c_{1}+\sum_{i=1}^{l} a_{i} E_{i}$ where $1 \leq a_{i} \leq r-1$. Let S be a scheme and let \boldsymbol{E} be an S-family of rank r vector bundles E on X with $c_{1}(E)=c_{1}, c_{2}(E)=c_{2}$. We define a scheme $G \boldsymbol{E}$ over S as the following fibered product:

$$
G \boldsymbol{E}=G r\left(a_{1}, \boldsymbol{E}\right)_{\mid x_{1} \times s} \times{ }_{s} \cdots \times_{s} \times G r\left(a_{l}, \boldsymbol{E}\right)_{\mid x_{l} \times s} .
$$

Here $G_{r}\left(a_{i}, \boldsymbol{E}\right)$ is the Grassmann variety of quotient bundles with rank a_{i} of E^{\vee}.

Let $\psi: G \boldsymbol{E} \rightarrow S$ and $w_{i}: G \boldsymbol{E} \rightarrow G r\left(a_{i}, \boldsymbol{E}\right)_{\mid x_{i} \times S}$ be the natural projections. On $\tilde{X} \times G \boldsymbol{E}$ we have the restriction map

$$
(\pi \times \psi)^{*} \boldsymbol{E}^{\vee} \rightarrow \oplus_{i=1}^{\downharpoonright}(\pi \times \psi)^{*} \boldsymbol{E}_{\mid x_{i} \times s}^{\vee} \otimes \mathcal{O}_{E_{i} \times G \boldsymbol{E}}
$$

Also we have the natural surjection

$$
\oplus_{i=1}^{l}(\pi \times \psi)^{*} \boldsymbol{E}_{\mid x_{i} \times S}^{\vee} \otimes \mathcal{O}_{E_{i} \times G E} \rightarrow \underset{i=1}{\stackrel{l}{\oplus}}\left(\pi \times \psi_{i}\right)^{*} Q_{i \mid x_{i} \times s} \otimes \mathcal{O}_{E_{i} \times G E}
$$

where Q_{i} is the universal quotient bundle for $\operatorname{Gr}\left(a_{i}, \boldsymbol{E}\right)$. Let \boldsymbol{K} be the kernel of the composition of these maps. Then we obtain the following exact sequence on $\tilde{X} \times G \boldsymbol{E}$:

$$
0 \rightarrow \boldsymbol{K} \rightarrow(\pi \times \psi)^{*} \boldsymbol{E}^{\vee} \rightarrow \underset{i=1}{\dagger}\left(\pi \times \psi_{i}\right)^{*} Q_{i \mid x x_{i} \times s} \otimes \mathcal{O}_{E_{i} \times G E} \rightarrow 0
$$

It is easy to see that K is locally free. Taking the dual of this sequence and using the isomorphism $\mathcal{E} x t^{1}\left(\left(\pi \times \psi_{i}\right)^{*} Q_{i \mid x_{i} \times S} \otimes \mathcal{O}_{E_{i} \times G E}, \quad \mathcal{O}_{\tilde{X} \times G E}\right) \cong\left(\pi \times \psi_{i}\right)^{*}$

T. Nakashima

$Q_{i \mid x_{i} \times S}^{\vee} \otimes \mathcal{O}_{E_{i} \times G E}$, we have the following exact sequence

$$
0 \rightarrow(\pi \times \psi)^{*} \boldsymbol{E} \rightarrow \widehat{\boldsymbol{E}} \rightarrow \oplus_{i=1}^{\stackrel{l}{i}}\left(\pi \times \psi_{i}\right)^{*} Q^{\bigvee} \mid x_{i} \times s \otimes \mathcal{O}_{E_{i} \times G \boldsymbol{E}} \rightarrow 0
$$

$\hat{\boldsymbol{E}}$ is a family of rank r bundles \widehat{E} on \tilde{X} with $c_{1}(\widehat{E})=\pi^{*} c_{1}+\sum_{i=1}^{l} a_{i} E_{i}, c_{2}(\widehat{E})$ $=c_{2}$ which are obtained from extensions of the form

$$
0 \rightarrow \pi^{*} E \rightarrow \widehat{E} \rightarrow \oplus_{i=1}^{l} \mathcal{O}_{E_{i}}(-1)^{\oplus a_{i}} \rightarrow 0
$$

where E is a member of S. Following [B], we call $\hat{\boldsymbol{E}}$ the standard family associated with S. Any rank r vector bundle \widehat{E} on \tilde{X} with $c_{1}(\widehat{E}) . E_{i} \neq 0(\bmod$ r) can be normalized so that $c_{1}(E)=\pi^{*} c_{1}+\sum_{i=1}^{l} a_{i} E_{i}\left(1 \leq a_{i} \leq r-1\right)$ after tensoring by appropriate line bundles. We have

Lemma 2.4. Let \hat{E} be a normalized bundle. Then the following conditions are equivalent
(1) Êbelongs to a standard family;
(2) $\hat{E}_{\mid E_{i}} \cong \mathcal{O}_{E_{i}}(-1)^{\oplus a_{i}} \oplus \mathcal{O}_{E_{i}}^{\oplus r-a_{i}}$ for $i=1, \cdots, l$.

Proof. (1) \rightarrow (2): If \hat{E} is a member of a standard family, there is a vector bundle E on X with $c_{1}(E)=c_{1}, c_{2}(E)=c_{2}$ and an exact sequence on \tilde{X}

Restricting this sequence to E_{i}, we obtain

$$
0 \rightarrow \mathcal{I}^{1} \operatorname{or}^{1}\left(\mathcal{O}_{E_{i}}(-1)^{\oplus a_{i}}, \mathcal{O}_{E_{i}}\right) \rightarrow \oplus_{i=1}^{r} \mathcal{O}_{E_{i}} \rightarrow \widehat{E}_{\mid E_{i}} \rightarrow \mathcal{O}_{E_{i}}(-1)^{\oplus a_{i}} \rightarrow 0
$$

Since $\mathscr{I}^{\operatorname{or}^{1}\left(\mathcal{O}_{E_{i}}(-1), \mathcal{O}_{E_{i}}\right) \cong \mathcal{O}_{E_{i}} \text {, we obtain the sequence }}$

$$
0 \rightarrow \mathcal{O} \oplus_{E i}^{\oplus r-a_{i}} \rightarrow \widehat{E}_{\mid E_{i}} \rightarrow \mathcal{O}_{E_{i}}(-1)^{\oplus a_{i}} \rightarrow 0 .
$$

Since the above sequence splits, it follows that $\hat{E}_{\mid E_{i}} \cong \mathcal{O}_{E_{i}}(-1)^{\oplus a_{i}} \oplus \mathcal{O}_{E_{i}}^{\oplus r-a_{i}}$.
$(2) \rightarrow(1)$: Let \tilde{E} be the kernel of the projection $\widehat{E} \rightarrow \mathcal{O}_{E_{i}}(-1)^{\oplus a_{i}}$. Then we have

$$
0 \rightarrow \tilde{E} \rightarrow \widehat{E} \rightarrow \mathcal{O}_{E_{i}}(-1)^{\oplus a_{i}} \rightarrow 0 .
$$

As before we see $\widehat{E}_{\mid E_{i}} \cong \bigoplus_{i=1}^{r} \mathcal{O}_{E_{i}}$ for each i, so there is a vector bundle E on X such that $\tilde{E}=\pi^{*} E$. Pushing down this sequence to X, we have $E \cong \pi_{*} \widehat{E}$ and hence dualizing (**), we obtain

$$
0 \rightarrow \hat{E}^{\vee} \rightarrow \pi^{*} E^{\vee} \rightarrow \underset{i=1}{\oplus} \mathcal{O} \oplus_{E_{i}}^{a_{i}} \rightarrow 0
$$

Thus \hat{E} belongs to a standard family.
The following can be proved similarly as in Proposition 2.2.
Propostion 2.5. There exists an integer n_{0} such that for $n \geq n_{0}$ the followin hold:
(1) For every $E \in M_{H}\left(r, c_{1}, c_{2}\right), \hat{E}$ belongs to $M_{H_{n}}\left(r, \hat{c}_{1}, c_{2}\right)$;
(2) If H is $\left(r, \hat{c}_{1}, c_{2}\right)$-suitable and \hat{E} is a normalized H_{n}-stable bundle, then $\left(\pi_{*} \hat{E}\right)^{\vee v}$ is H-semistable. If we assume furthermore $c_{1} . H \equiv 0\left(\right.$ mod $\left.r^{\prime}\right)$ for any $r^{\prime} \mid r$, thcen $\left(\pi_{*} \widehat{E}\right)^{\vee v}$ is H-stable.

If $M_{H}\left(r, c_{1}, c_{2}\right)$ is a fine moduli space, we can construct a standard family $G \boldsymbol{E}$ associated with a universal family \boldsymbol{E}. Then we have the following

Theorem 2.6. Suppose $M_{H}\left(r, c_{1}, c_{2}\right)$ has a universal amily \boldsymbol{E}. Then for sufficiently large n, we have an open immersion

$$
\widehat{\phi}: G \boldsymbol{E}\left(r, c_{1}, c_{2}\right) \leftrightharpoons M_{H_{n}}\left(r, \widehat{c}_{1}, c_{2}\right) .
$$

Proof. In view of the above proposition, $\widehat{\phi}$ is well defined and injective. The argument in te rank 2 case in [B] shows that this is an open immersion.

3. Generic smoothness of moduli spaces

In what follows we shall always assume char $k=0$. We study the images of ϕ and $\hat{\phi}$ defined in the previous section. In particular, we shall give some sufficient conditions for these images to be dense. These yield results concerning the generic smoothmess of the moduli space.

Definition. Let D be a divisor on a polarized surface (X, H). For given $c_{1} \in \operatorname{Pic} X$ and an integer c_{2}, the moduli space $M_{H}\left(r, c_{1}, c_{2}\right)$ is called D-good if generic $E \in M_{H}\left(r, c_{1}, c_{2}\right)$ satisfies $H^{2}(\operatorname{ad} E(-D))=0$ where $\operatorname{ad} E$ denotes the adjoint bundle of E. If $D=0$, we simply say good. This condition is equivalent to saying that every component of $M_{H}\left(r, c_{1}, c_{2}\right)$ is generically reduced and has the expected dimension.

Recall that a rank r vector bundle $E=\underset{i=1}{\oplus} \mathcal{O}\left(a_{i}\right)\left(a_{1} \leq \cdots \leq a_{r}\right)$ on P^{1} is called rigid if $a_{r}-a_{1} \leq 1$. The following follows from Proposition 2.2, Lemma 2.4 and Proposition 2.5.

Lemma 3.1. For sufficiently large $n, \tilde{E} \in M_{H_{n}}\left(r, \tilde{c}_{1}, c_{2}\right)$ belongs to Im ϕ if and only if $\widetilde{E}_{\mid E_{t}}$ is rigid for all i. The same result holds for $\bar{\phi}$ if H is $\left(r, \bar{c}_{1}\right.$, $\left.c_{2}\right)$-suitable and $c_{1} \cdot H \equiv 0\left(\bmod r^{\prime}\right)$ for any $r^{\prime} \mid r$.

Lemma 3.2. Let X be an algebraic surface and let C be a smooth rational curve on X. Assume that a vector bundle E satisfies the conditions $c_{1}(E) . C \leq$

0 and $H^{2}(a d E(-C))=0$. Then E can be deformed to a bundle which is rigid on C.

Proof. We note that for a bundle F on \boldsymbol{P}^{1} with $\operatorname{deg} F \leq 0, F$ is rigid if only if $F \cong \mathcal{O}(-1)^{\oplus a} \oplus \mathcal{O}^{\oplus b}$. Let \mathscr{M} be the local moduli space of E. For a fixed F, let S_{F} be the subset of \mathcal{M} consisting of E^{\prime} such that $E_{1 c}^{\prime} \simeq F$. Then by the deformation theory of Brieskorn, if \mathcal{M} induces a versal deformation of F, we have codim $S_{F}=h^{1}($ End $F)$. Since the condition $H^{2}(\operatorname{ad} E(-C))=0$ implies that the restriction map $H^{1}(\operatorname{ad} E) \rightarrow H^{1}\left(\operatorname{ad} E_{\mid C}\right)$ is surjective, \mathscr{M} induces a versal deformation of $E_{\mid c}$. If we denote by S the subset of \mathscr{M} consisting of bundles which restrict to nonrigid bundles on C, it is easy to see that codim $S>0$ and hence the claim is proved.

Let K_{X} and $K_{\tilde{X}}$ denote canonical divisors of X and \tilde{X}, respectively.
Proposition 3.3. Assume that $K_{x} . H<0$. Then for sufficiently large n, Im ϕ is dense in $M_{H_{n}}\left(r, \tilde{c}_{1}, c_{2}\right)$. The same result holds for $\widehat{\phi}$ if H is $\left(r, \hat{c}_{1}\right.$, $\left.c_{2}\right)$-suitable and $c_{1} . H \not \equiv 0\left(\bmod r^{\prime}\right)$ for any $r^{\prime} \mid r$.

Proof. We note that $H^{0}\left(K_{\tilde{x}}+E_{i}\right)=0$ for all i. So we have Hom (E, $\left.E\left(K_{\tilde{X}}+E_{i}\right)\right)=H^{0}\left(\right.$ End $\left.E\left(K_{\tilde{X}}+E_{i}\right)\right)=H^{0}\left(\operatorname{ad} E\left(K_{\tilde{X}}+E_{i}\right)\right)$. If $n \gg 0$, the assumption $K_{x} . H<0$ implies that $c_{1}\left(E\left(K_{\bar{x}}+E_{i}\right)\right) \cdot H_{n}=c_{1}(E) \cdot H_{n}+h\left(n K_{x} \cdot H+l+1\right)<$ $c_{1}(E) . H_{n}$, hence we have $H^{2}\left(\operatorname{ad} E\left(-E_{i}\right)\right) \cong H^{0}\left(\operatorname{ad} E\left(K_{\bar{x}}+E_{i}\right)\right)^{\vee}=0$ by stability. Thus from Lemma 3.2 and the openness of stability, it follows that E can be deformed to an H_{n}-stable bundle which is rigid on every E_{i}. Therefore the proposition is an immediate consequence of Lemma 3.1.

Corollary 3.4. $M_{H_{n}}\left(r, \tilde{c}_{1}, c_{2}\right)\left(\right.$ resp. $\left.M_{H_{n}}\left(r, \hat{c}_{1}, c_{2}\right)\right)$ is good if and only if so is $M_{H}\left(r, c_{1}, c_{2}\right)$ under the same assumptions as in the above proposition.

Proof. The first case is obvious. In the second case, the claim follows from the fact $G \boldsymbol{E}$ is a fibration over $M_{H}\left(r, c_{1}, c_{2}\right)$ whose fibers are the products of Grassmannians $\operatorname{Gr}\left(a_{i}, r\right)$.

In the rank 2 case, following result is known ([O, Corollary 2.2]).
Proposition 3.5. For fixed c_{1} and D on a polarized surface $(X, H), M_{H}(2$, c_{1}, c_{2}) is D-good for sufficiently large c_{2}.

As an application of this, we obtain
Theorem 3.6. Assume that n is sufficiently large. Then
(1) $M_{H_{n}}\left(2, \tilde{c}_{1}, c_{2}\right)$ is good for sufficiently large c_{2};
(2) If $c_{1} . H$ is odd, $M_{H_{n}}\left(2, \hat{c}_{1}, c_{2}\right)$ is good for sufficiently large c_{2}.

Proof. Let M denote either $M_{H_{n}}\left(2, \hat{c}_{1}, c_{2}\right)$ or $M_{H_{n}}\left(2, \hat{c}_{1}, c_{2}\right)$. Applying Proposition 3.5 to \tilde{X} and the exceptional divisors E_{i}, we see that for every i
and for generic $E \in M, h^{2}\left(\operatorname{ad} E\left(-E_{i}\right)\right)=0$ for $c_{2} \gg 0$. On the other hand, the same proposition applied to X and $D=0$ shows that $M_{H}\left(2, c_{1}, c_{2}\right)$ is good for $c_{2} \gg 0$. Therefore the claim follows as in Corollary 3.4.

Let $\Delta=2 r c_{2}-(r-1) c_{1}^{2}\left(\operatorname{resp} \hat{\Delta}=2 r c_{2}-(r-1)\left(\pi^{*} c_{1}+\sum_{i=1}^{i} a_{i} E_{i}\right)^{2}\right)$ be the discriminant of a bundle E with $c_{1}(E)=c_{1}, c_{2}(E)=c_{2}$ (resp. a bundle \hat{E} with $\left.c_{1}(\hat{E})=\pi^{*} c_{1}+\sum_{i=1}^{i} a_{i} E_{i}, c_{2}(\hat{E})=c_{2}\right)$.

Lemma 3.7. Assume that H is $\left(r, \hat{c}_{1}, c_{2}\right)$-suitable and $\bar{\Delta} \leq(r-1) \sum_{i=1}^{i} a_{i}{ }^{2}$ $+2 r-1$. Then for sufficiently large n and $\hat{E} \in M_{H_{n}}\left(r, \hat{c}_{1}, c_{2}\right), \pi_{*} \hat{E}$ is locally free and $R^{1} \pi_{*} \widehat{E}=0$.

Proof. Both $\left(\pi_{*} \hat{E}\right)^{\vee v} / \pi_{*} \hat{E}$ and $R^{1} \pi_{*} \hat{E}$ are torsion sheaves supported by finite sets of points. Let $l_{1}=$ length $\left(\left(\pi_{*} \widehat{E}\right)^{\vee \vee} / \pi_{*} \widehat{E}\right)$ and $l_{2}=$ length $\left(R^{1} \pi_{*} \widehat{E}\right)$. It is easy to see that $c_{1}\left(\left(\pi_{*} \widehat{E}\right)^{\vee v}\right)=c_{1}$. By the Riemann-Roch theorem, we have

$$
\begin{aligned}
\operatorname{ch}\left(\left(\pi_{*} \widehat{E}\right)^{\vee v}\right) & =r+c_{1}+\frac{1}{2}\left(c_{1}^{2}-2 c_{2}\left(\left(\pi_{*} \widehat{E}\right)^{\vee v}\right)\right) \\
& =r+c_{1}+\frac{1}{2}\left(c_{1}^{2}-2\left(c_{2}-l_{1}-l_{2}\right)\right) .
\end{aligned}
$$

Therefore $c_{2}\left(\left(\pi_{*} \hat{E}\right)^{\vee v}\right)=c_{2}-l_{1}-l_{2}$ and hence we obtain

$$
\Delta\left(\left(\pi_{*} \widehat{E}\right)^{\vee v}\right)=\widehat{\Delta}-(r-1) \sum_{i=1}^{l} a_{i}^{2}-2 r\left(l_{1}+l_{2}\right) .
$$

By Proposition 2.5, $\left(\pi_{*} \widehat{E}\right)^{\vee v}$ is H-semistable for sufficiently large n. Since Bogomolov's inequality implies $\Delta\left(\left(\pi_{*} \widehat{E}\right)^{\vee \vee}\right) \geq 0$, it follows that if $\hat{\Delta} \leq(r$ $-1) \sum_{i=1}^{l} a_{i}{ }^{2}+2 r-1$, then we have $l_{1}=l_{2}=0$ and the proof is complete.

As a corollary to the proof of the above lemma, we obtain the following sharpened Bogomolov's inequality for normalized H_{n}-stable bundles on \tilde{X} (cf. [B, Theorem 10]).

Proposition 3.8. Let H and \hat{E} be as above. Then we have

$$
\widehat{\Delta} \geq(r-1) \sum_{i=1}^{l} a_{i}{ }^{2} .
$$

Finally we obtain the following criterion for $\bar{\phi}$ to be an isomorphism.
Proposition 3.9. Assume that H is $\left(r, \hat{c}_{1}, c_{2}\right)$-sutable for $\hat{c}_{1}=\pi^{*} c_{1}+\sum_{i=1}^{t}$ $(r-1) E_{i}$. If $l(r-1)^{3} \leq \hat{\Delta} \leq l(r-1)^{3}+2 r-1$ and $c_{1} \cdot H \equiv 0$ ($\bmod r^{\prime}$) for any $r^{\prime} \mid r$, then $\widehat{\phi}$ is an isomorphism.

Proof. Let \hat{E} be a member of $M_{H_{n}}\left(r, \hat{c}_{1}, c_{2}\right)$. For each $1 \leq i \leq l$, let $\widehat{E}_{\mid E_{i}} \cong$ $\underset{j=1}{\underset{\sim}{\oplus}} \mathcal{O}\left(a_{i j}\right),\left(a_{i 1} \leq \cdots \leq a_{i r}\right)$. Consider the following exact sequence

$$
0 \rightarrow \tilde{E} \rightarrow \hat{E} \rightarrow \mathcal{O}_{E_{i}}\left(a_{i 1}\right) \rightarrow 0 .
$$

By our assumption and Lemma 3.7,

$$
R^{1} \pi_{*} \mathcal{O}_{E_{i}}\left(a_{i 1}\right)=H^{1}\left(\boldsymbol{P}^{1}, \mathcal{O}\left(a_{i 1}\right)\right) \otimes \mathcal{O}_{p_{i}}=0
$$

Thus we obtain $a_{i 1} \geq-1$. Then it can be easily seen that $\widehat{E}_{\mid E_{i}}$ are rigid for all i. By assumption and Proposition 2.5, it follows that \hat{E} belongs to Im $\bar{\phi}$. Thus we conclude that $\widehat{\phi}$ is surjective, hence an isomorphism. This completes the proof.

As an example, we shall consider the moduli of bundles on the blown-up projective plane. We recall that a coherent sheaf E on a smooth projective surface X is called exceptional if $\operatorname{Ext}^{1}(E, E)=0$. If X is \boldsymbol{P}^{2} and H is $\mathcal{O}(1)$, then an H - stable torsion free sheaf E is exceptional if and only if $\Delta(E)=r^{2}$ -1. Such sheaves have been studied extensively by Drezet and Le Potier (cf. [DL]). They proved that every stable exceptional sheaves are locally free and they are determined up to isomorphism by their slopes $\mu=c_{1} / r$. Let \mathcal{S} be the set of rational numbers which are slopes of stable exceptional bundles. Theorem A in [DL] gives the complete description of \mathcal{S}.

By Theorem 2.3, Theorem 2.6 and Proposition 3.3, we obtain
Proposition 3.10. Let \tilde{X} be the blow up of \boldsymbol{P}^{2} at l distinct points and let E_{i} be the exceptional divisors. If $c_{1} / r \in \mathcal{S}$ and $1 \leq a_{i} \leq r-1$, then for sufficiently large n we have
(1) $M_{H_{n}}\left(r, \tilde{c}_{1}, c_{2}\right)$ is a reduced one point;
(2) $M_{H_{n}}\left(r, \hat{c}_{1}, c_{2}\right)$ has a component isomorphic to $\prod_{i=1}^{i} G r\left(a_{i}, r\right)$.

> Department of Mathematics
> Tokyo Metropolitan University

References

[B] R. Brussee, Stable bundles on blown up surfaces, Math. Z., 205 (1990), 511-565.
[DL] J. M. Drezet and J. Le Potier, Fibrés stables et fibrés exceptionnels sur P_{2}, Ann. Ec. Norm. Sup., 18 (1985), 193-244.
[FM] R. Friedman and J. Morgan, On the diffeomorphism type of certain algebraic surfaces II, J. Differ. Geom., 27 (1988), 297-369.
[M] M. Maruyama, On boundedness of families of torsion free sheaves, J. Math. Kyoto Univ., 21 (1981), 673-701.
[O] K. O' Grady, Algebro-geometric analogues of Donaldson's polynomials, Invent. Math., 107 (1992), 351-395.
[Q] Z. Qin, Equivalence classes of polarizations and moduli space of stable locally free rank two sheaves, Preprint.

