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1. Introduction

1.1. Problem. L et K  b e  a  totally real algebraic num ber fie ld  of degree
n > 2, 0 K

 th e  r in g  o f  integers o f  K, ■91
4" th e  se t o f all to tally  positive elements

of o„, Et, the totally positive unit group of K  and (p i ( i =  1 , 2, ..., n) the distinct
embeddings of K  into R .  W e embed K  into R" (considered a s  column vectors)
by identifying each element a  o f  K  w ith t(9 1 (a), cp2 (a), ,  (p(Œ)). B y  th is  e m -
bedding, E  acts on the cone R", consisting of all vectors with positive entries. A
set of vectors v 1 , v2 , v , .  e  R" generates an open polyhedral cone C (v,, v2 , ..., v,.):

0 1 1 i, V 2 , •  •  •  ,  V r )  = R + 1 ,2  +  •  •  •  +  R+Vr • (1)

If v 1 , v 2 ,  • . . ,  v , .  a r e  linearly independent, C(v 1 , v2 , ..., v ,.) is called  an open
simplicial cone of rank r. Shintani [3] proved a  theorem which states that there
is  a  fundamental domain for the  action of E -i c  o n  R ,  w h ich  is  a  finite union
of open simplicial cones of various ranks generated by elements v i k 's  o f  o :

D  =  U v j2 ,  •  •  •  Vir(i)) (disjoint.) (2)
j e J

Here, the term fundamental domain is used in the strict sense:

=  U  eD (disjoint.) (3)

His proof itself gives a theoreticaly effective method to find such a  fundamental
d o m a in . H ow ever, it is a lm ost impossible to  execute  h is m ethod unless the
degree n is small. Therefore, fundamental domains are actually known only for
the case of n = 2  [3 ] an d  th e  ca se  o f  n  =  3  [4 ]. T h e  purpose of this paper is
to present an efficient m ethod to  find  a  fundamental domain o f  th e  form (2),
applicable to  the case of number fields of higher degrees.

1.2. Method and result. O ur method can been seen as a  so rt o f a  general-
ization of the positive continued fraction expansion of Hirzebruch (see [3]), which
works only in  real quadratic fields. I n  this context we regard the Hirzebruch's
continued fraction expansion as computation o f  a  sequence of adjacent integers
on the boundary of the convex hull of oi

+
c  w here K  is a  real quadratic field. I n

the  general case, we firstly study the structure of the boundary o f  th e  convex
hull of the set oZ in Theorem  8. H ere w e replace the adjacency between integers
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by adjacency between hyperpolyhedras on the boundary; two integers are adjacent
if  a n d  only if  th e  two edges, which a re  t o  th e  "right" o f  those integers, are
adjacent in the quadratic case. Then, our algorithm to construct a  fundamental
domain for the action of E,+, on Rn+  is given in Theorem  11. Unlike the original
m ethod o f S h in tan i, it w o rks w ithou t know ing  a  s e t  o f  generators o f  Ek
beforhand. It rather gives u s  a  se t o f  generators o f Ei'c a s  a  by-product. W e
remark that our algorithm viewed as an algorithm for determining the unit group
can be thought of as a "positive" version of the generalized Lagrange algorithm
of B uchm ann [1]. The similarity becomes clearer if we modify the Buchmann's
algorithm in  the  following way, although the modified algorithm is slower than
the original graph theoretic version: attach a n  abstract simlex to each minmal
subset, consider elements of a m inim al set as vertices of the simplex, glue them
to form a complex, compute a  non-associated maximal connected family of sim-
plices on that complex and then one has enough information of the unit group.

2. Preparation

W e will give some notations and terminologies which will be used in  this
paper together with those introduced in  §1  and  we also recall some basic facts.
W e  n o te  th a t so m e  terminologies differ from  standard  ones fo r  th e  sake  of
simlicity of the argument on the topic dealt with here.

2.1. Unit theorem. We use Dirichlet's unit theorem in the following form:

Proposition 1. The totally  positive unit group E k  o f  K  has the following
properties.

(i) Let k  be an integer such that 1 < k  < n. Then, there is a unit ek

such that

SO < cp,(4) < 1 for i k  ,

11 < (Pk(ek) •
(4)

(ii) The group E l
+, a c t s  on R V R , and h as  a  fundamental domain whose

topological closure is compact in the natural topology.

2.2. Convex sets. A  subset B  o f  R " is  ca lled  convex  if the segm ent
connecting arbitrary two points of B  is contained in  B .  The convex hull B  of
a  se t S  is  the  smallest convex set containing S , i.e., the  set of all points of the
form t  p  +  t2 p2  + • •• + tr pr w ith  a positive integer r, positive real numbers t 1 ,
t 2 , t r  su c h  th a t t ,  + t 2  + • • • + t, = 1  and  po in ts  p i ,  /32 , p r o f  S. A
hyperplane TE is called a support hyperplane of a convex set B  provided

(i) The hyperplane TE contains a  boundary point of B  and
(ii) It divides R" in to  the disjoint union of a closed half-space which com-

pletely contains B  and an open half-space which is disjoint w ith B.
The following fact is well known.
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Proposition 2. Let p  be  a boundary point of a convex set B  in R". Then,
there ex ists a support hyperplane i t  o f  B  contaning the point p.

2.3. F aces. We denote by ri the topological closure of a set B  in R". Let
B be a convex set. Then, the intersection F of the set T3 and a support hyperplane
of B  is called a face of B.

Definition 3. Let B  b e  a convex set in W . T h e n  a face P  of B  is called
a hyperface of B  if the dimension of P  is  n — 1. and a face E  of B  is called a
hyperedge of B  if the dimension of E  is  n — 2.

Definition 4. T w o distinct hyperfaces P  and P ' o f a  convex set of the
dimension n  are called adjacent a t  a hyperedge E  if P  and P ' contain E.

Clearly, any hyperface can have a t  m o s t  one hyperface adjacent a t  a single
hyperedge.

Definition 5. A family .F of hyperfaces of a convex set is called connected
if an arbitrary pair of distinct hyperfaces P, P' e .F• has a sequence P = P i ,  P2,
. . . ,  Pk =  P ' of hyperfaces in a., such that Pi and Pi + ,  are adjacent for i = 1, 2,

Let D nP i ' r • • • , P r  be points in  R". T hen  w e deno te  by  P(p i , 132 , p ,)  the
convex hull of n nPi,1> r 2 5  • • •  Pr• If the set P(p i , p2 , pr ) has the dimension n — 1,
it is called a convex hyperpolyhedra. In this case, we denote by n(p i , p2 , p„)
the unique hypeplane containing points n nPi '1> • • • 9 P r •  W e finish th is  section
by defining the notion of open faces.

Definition 6. Let P-  = P(Pi, P2 ,  • • • Pr) be  a face of a convex set B .  Then,
the set P° = P°(p i , p2 , , p„) is defined by

(i) P°  = P if P  has the dimension 0  or
(ii) P° = tipilt 1 , t 2 , t, e R+ , E'i=1 t i =  1} otherwise.

The set P° is called an open hyperface spanned by n nPi '1, • • • , pr•

3. Theorems

3 .1 .  The family of hyperfaces. Let A  b e  a finite set of points in R ,  SA
the union o  U  A , BA  the convex hull of S, A A  the boundary set of BA and 9A

the family of all hyperfaces of B A . The set A is called an  auxiliary set and its
elements are  called auxiliary points for the reason which will be stated before
Theorem  15. W e om it the subscript A  when the set A  is  e m p ty . F o r brevity,
elements of SA are called S A -points.

The following lemma is fundamental:

L em m a 7. Let n  be  a  support hyperplane o f  BA . Then, the hyperplane i t
has an equation of the form

c i x , + c 2 x 2  + • • • + c„x„ = 1 (5)
where c i , c 2 , c 0 . Moreover, BA  is contained in the closed half-space
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c i x , + c 2 x 2  + • • • + cx„ > 1. (6)

This further im plies that there are at most f initely  many S A -points on any  segment
on AA .

P ro o f . L et N  be  the map defined by

N: t(x i , x 2 , x„) e x,x2... x„ e R, (7)

and set a = min (N(A)U ° )  =  min (N(A)U {1}) > 0. T hen , the  se t SA is contained
in  the  convex set

a. (8)

T h is im plies that a ll boundary po in ts  o f B A  and , in  particu la r, a  po in t p =
P2, • • • , on 7r are contained in  R",. W rite the equation of n:

c i x , + c 2 x 2  + •••c„x „= c (9)

and assume tha t the  se t BA is contained in the half-space

c ,x , + c 2 x 2  + • • • c„x„ C . (10)

O n  th e  o ther hand , one  h as  a  un it e k fo r  1  <  k  < n  a s  stated in Proposition
1. Applying inequality (10) to sufficiently higher power of ek ,  one sees that c k 's
are non-negative and that c < 0 if one of ck 's is z e r o .  However, applying equation
(9) to the point p E R'.1. mentioned after (8), one has that

c i p, + c 2 p2 + ••• +c„p„= c . (11)

O ne sees that c  is  positive because some of c k 's  m ust b e  non-zero . Therefore,
all of ck 's  and c are positive. O ne gets the desired form of equation by dividing
coefficients of equation (9) by c. The last assertion is proved by observing that
the support hyperplane rr of BA  a t  the m iddle  point of a  segm ent a  h a s  the
form (5) and  tha t 7T contains a.

Using this lemma, we show that BA  has a  similar structure to bounded convex
bodies.

Theorem 8. T he set B A , A , and  gA  hav e the following properties:
( i ) the  set B A  is  a  closed se t in  R" and each f ace  o f  B A  is  o f  the  form

P(Pi, P 2 5  •  •  •  •  p r )  with SA -points p i , p 2 , pr;

(ii) there are at most f initely  many faces of  BA intersecting a given bounded
set;

(iii) the set LIA i s  a union of  all hyperfaces o f  BA;
( i v )  the set AA  f orm s a  system of  representatives f o r R", /12+ ;
( y ) there are  exactly  two hyperfaces containing a  given hyperedge;
(vi) the fam ily  gA  is connected and
(vii) the set LIA  is uniquely decomposed into a union of all open faces of BA.

P ro o f . Let p be a boundary point of B A . Then, there is a support hyperplane
iv contaning p  of the  form (5) by Proposition 2 and Lemma 7. We denote by
it  the hyperplane defined by
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c ,x , +  c 2 x 2 + • • • + c„x„ = 1 +  t (12)

Clearly, one can find a  small positive real number t  such that the set

1  <  x ,  +  c 2 x 2 + • • • + c„x„ < 1 + t (13)

does not contain S A -points because the hyperplane it, together with all of coordi-
nate hyperplanes enclose a bounded set. L e t  D DP i '1> • • • , P r  be  a ll o f SA -points
on i t  a n d  P  th e  convex se t P  =  P (p i , p 2 , p r ). Assertion (i) follows if one
shows p  e  P .  Take a n  arbitrary point p '  in  B A  which is close to  p. Then, p'
can be written as

P' =  t i p i  +  t2 p2 + • • • + t,.p,. + tr+11;',.+1 + • " + tr'Pe (14)

where nr  r + 1 ,  P r + 2 ,  •  •  •  ,  P r  are SA -points outside it and t, , t 2 ,  . . . ,  tr a r e  non-negative
real num bers such that t ,  + t 2 + • • • + tr . =  1 . F ro m  th is , o n e  sees that there
are positive real numbers s , s ', a  po in t q  o n  P  and  a  po in t q '  in the opposite
side of the hyperplane l c ,  t o  th e  orig in  such  that p '  =  s q  +  s q ' .  T his further
im plies that p '  i s  on  the  segm ent connecting a  p o in t  o n  P  a n d  a  p o in t o n

n Rn+ . Hence, the  po in t p '  is  in  M  =  P (p i , p 2 , p „  q i , q 2 , q „ )  where q i

is  the intersection of i t  a n d  th e  i- th  a x is . T h e  p o in t  p  m u st lie  in  M  since
p '  can be chosen arbitrary  close t o  p  a n d  M  is  c lo se d . T h is  together with
i t  fl M  =  P , implies that p  is  in  fact o n  P , proving assertion (i).

L e t M  b e  a  bounded set. W e assume, without loss o f generality, that M
is  of the form

M  = V(x l , x 2 , ..., x,,) e WI+  lx , +  x 2 + • • + x„ < (15)

where m is a positive in teg e r. Let P  be a hyperface of BA  intersecting M . T hen ,
by  assertion (i), P  can be w ritten a s  P  =  P (p i , p 2 , ,  p r )  with SA -points p i ,  p 2 ,
. . . ,  p r . The assumption on  the  shape of M  guarantees that at least one of p t 's,
say p = p i ,  is contained i n  M .  There are  at most finitely many such p's since
M  is bounded . Observe tha t the segments P (p , p i )  are on AA  an d  o n e  sees that
assertion (ii) follows if one shows that there are at most finitely many S A -points
q 's  such  tha t segments P (p , q ) 's  a re  on  A A .  Suppose contrary, that there are
infinitely m any such q's. D raw  a  small sphere E  a t  p  and  look  a t  the set of
intersections of P (p , q)'s and tha t sphe re . Then, there is a n  accumulating point
p c o  o n  E  of those intersection points since Lemma 7 guarantees that there are
at most finitely many S A -points on a  segm ent in  A A .  B y Proposition 2, there
is a support hyperplane  i t  o f  B A  containing p  th e  fo rm  (5 ). L et c' >  1  be
a constant such that the hyperplabe defined by

c,x i  +  c 2 x 2 + • • • + c„x„ =  c' (16)

does not intersect E .  W hen q  is  in  the opposite  side o f n ' t o  the origin, the
intersection of P (p , q )  a n d  E  i s  in  the  se t p (p , 21 „ ) where q ;  is  the
intersection of n '  and  the  i- th  ax is . O n  the  other hand there are  finitely many
SA -points in  the  region
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c, x, + c2 x 2 + • • • + c„x„ c ' .  (17)

Thus, p  m ust contact P(p, g,, g, ,  g ) .  This together with the  definition of
it ' implies that p  a n d  g  m ust coniside. B ut g  m ust differ p  b y  the  radious of
E .  This contradiction proves assertion (ii). Assertion (iii) follows from assertion
(i), (ii) and that z 1 „ has the dimesion n — 1. Assertion (iv) follows from Lemma
7. Assertion (v) follows from assertion (i) and (ii). Assertion (iv) guarantees that
a  given pair of points on 4 ,  can be connected by a  pass y on .61,, which does not
intersect any face of dimension lower than n — 2 except at the given initial and
terminal p o in ts . Applying this statement to the barycenters of given hyperfaces
P  and  P', one sees that there is a  sequence P, P ,  P 2 ,  .  ,  Pk  =  P ' such that
each successive pair P .  a n d  13

1 + 1  i s  adjacent by  tak ing  a s  P i ' s  th e  hyperfaces
through which th e  pass y  goes in  o rd e r . Assertion (vi) is  p ro v e d . Assertion
(vii) follows from (1).

O n  th e  other hand , w e have the  obvious ac tion  of E;," o n  th e  family of
subsets of R7, defined by e e E l

+,: G c R —+ eG = leplp e Two subsets G and
G ' of R I are called associated if there is a  un it e  in  E l

+,  such that G = eG', and
a  fa m ily  F  of subsets o f R" is called non-associated if no pair of distinct sets
from gi; are associated. W hen the auxiliary set is empty, the group E i+, acts on
B = Bo,  o n  LI = z 1  and o n  th e  family o f a ll support hyperplanes of B .  Thus,
the group E l+, also acts on  the  family g  = g o . This action has the  following
properties:

Theorem 9. A ssume that the auxiliary set A  is  em pty . Then, one f irstly  has
that g decom poses into f initely  m any  E i

+
c orbits. S econdly , le t ./11 be a maximal

connected non-associated family o f  hyperfaces o f  B . T h e n , .41 is f inite and is  a
system o f  representatives for the action of  E .  L a s t l y ,  let g  be the fam ily  o f  all
hyperedges contained in  exactly  one hyperface in  di. Then, there is ex actly  one
unit E(E ) 0  1  in  E,+, such  that e (E )E  eg . T he group E,+, is generated by  those
units le(E)IE e 61.

P ro o f  B y  a sse rtio n  ( iv )  o f  Theorem  8 ,  A  is t h o u g h t  o f  a s  RWR + .
Proposition 1 says that there is a compact closure Do o f  a  fundamental domain
of the action of El,' on the set A .  Let .110  b e  the family of all hyperfaces which
intersect Do . Then, the family .110  is finite by assertion (ii) of Theorem 8. This
implies that any non-associated family of hyperfaces is finite, i.e., .61 decomposes
into finitely m any E -o rb its . Thus, th e  first assertion is  p ro v e d . N ow , it is
c lear that there  is a m axim al connected non-associated family di.  T h e  family
.41 is finite by the first assertion . T o  see  tha t d i is  a  system of representatives,
w e  p ic k  u p  a n  arbitrary hyperface P  from  g  a n d  a  hyperface P ' from  di.
Assertion (vi) of Theorem 8 guarantees the existance o f  a  sequence P, = P, P2,

P„ = P' in  which successive hyperfaces a re  ad jacen t. W e will shorten this
sequence by substituting P ,  by  a n  associated hyperface while k > 1  a s  follows.

PFirstly, we substitute P ' by-a k d i-1  if P k - 1  belongs to .  If  th is is no t the case,
there must be the associated hyperface P" of Pk _1  in  J I  from the maximality of
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d t .  Let s  b e  the  un it which transfers Pk - ,  to  P " .  W e substitute P  by eP, P'
by P" and the sequence P 1 ,  P 2 5,  P k  by the sequence ePi, EP 2, • • • 8 1 3k-i.
obviously get a  shorter sequence in  either c a s e . Repeating these procedures, we
will finally reach to a  sequence o f length 1, i.e., the  associated hyperface in  dl
of the original P .  This proves that the family .11 is a  system of representatives.
This argument also proves the last assertion except the uniqueness of e(E). Let
E  be a  hyperedge in  & and assume tha t a  u n it E e EZ carries E  to  a  hyperface
eE which also belongs to &  Further, le t P  b e  the  hyperface in  .41 containing
E  and P' the hyperface in  .11 containing 6 E . Then, e- 1 13 ' m ust be  the adjacent
hyperface to P at E .  Thus, the hyperface P' is determined as the unique represen-
tative in  d i  o f  th e  orb it of the adjacent hyperface o f P  a t  E .  Therefore, the
condition eE e e uniquely determines the unit e(E) = e.

In fact, Theorem 9 is  the key to  the construction of a fundamental domain
for the action of EZ  o n  R", a s  follows:

Theorem  10. L et ./11 b e  a m ax im al connected non-associated fam ily  of
hyperfaces of  B , D, the union of  all hyperfaces in .11 and .11 0  th e  fam ily  of  all
open faces contained in D ,. T hen, one can f ind a subfamily Mg of  Jr such  that
the union

Do =  U  F (disjoint) (18)
Fe leg

is  a  fundam ental dom ain f or the action o f  E it on  A . M oreov er, one h as  the
fundamental domain D for the action of  Ek  on  R .  def ined by

D = R + Do (19)

=  U  R F (disjoint) (20)
Fe

where, R + F's are open poly hedral cones. The fundamental domain D has a decom-
position into an  disjoint union o f  open sim plicial cones.

Pro o f . The theorem follows from Theorems 8 and 9.

3.2. Effectivity. F or speaking of the effectivity, we assume that a  generator
Œ of K  over Q  is given by its minimal equation, that a  basis fi l = 1, )32 , ...,
of the integral ring of integers is given by a set of polynomials in  a  and  that the
following operations are effective:

(i) the basic operations of real numbers to the desired precision (i.e. addi-
tion, subtraction, multiplication and division),

(ii) the exact basic operations of algebraic integers (i.e. addition, subtraction,
multiplication, test for divisibility and division in the divisible case.)

Now, we present the following algorithm for finding a  fundamental domain and
later fill in  the  details o f th a t algorithm.

Theorem  11. The following algorithm effectively leads to a fundamental do-
main D for the action of  E,+,  o n  R"+:



1064 Ryotaro Okazaki

• Firstly, find out one particular hyperface of  B by the method to be described
in Proposition 15.

• Secondly, using the method to be described in Proposition 14, successively
search for adjacent hyperfaces which are adjacent to one of  the hyperfaces
so f ar found and associated to none of  the hyperfaces so f ar found. We
surely reaches to a m axim al connected non-associated family if o f  hyper-
faces in finite steps.

• Thirdly, divide the hyperfaces (found in the second step) into open faces,
then select maximal non-associated family of  f aces from those.

• Lastly, we divide the faces (found in  the  third step) into open simplices
to find a  family 9 ' o f  simplices on  4  spanned by 4-points. Now, the
union D = U , „ 9 ,  11,0- is  the desired form o f  a fundamental domain.

Furthermore, let 6' be the family of  all hyperedges which are contained in exactly
one hyperface of  .11. Then, there exists exactly one unit e(E) 0 1 of  K  such that
e(E)E belongs to 6', an d  th e  totally positive un it group E k  is generated by
le(E)IE E 61.

P roo f. The effectivity of the  first and the second steps will be proved by
Propositions 14, 15 a n d  th e  fac t tha t non-associatedness o f hyperfaces can be
checked by computing quotients of their vertices. T h e  th ird  and  fourth steps
are no doubt effective. Therefore, Theorems 9 and  10 guarantee that the repeti-
tion in the second step terminates and  tha t the set D  is  a  fundamental domain
for the  ac tion  of E,+, o n  K .  W e  note th a t the faces found in  th e  third step
are not always simplices so that the last step is neccessary. The second assertion
is  a  p a rt o f  Theorem 9.

Lemma 1 2 . L et P = P(p 1 , p2 ,..., p r )  be a  hyperface o f  BA  and assum e that
vectors p i , p2 , p n  are linearly independent. Then, points pi , p2 , p n _ i  are
contained in  a hyperedge of  BA  if  an d  only i f  all determinantsID D1, 2 ,  •  •  •  P n - 1 ,  P il

f o r i = n, n + 1, r are simultaneously non-negative or non-positiv e. Moreover,

i f  P i ,  p 2 ,  • • •  5 P n - 1  are  contained i n  a  hyperedge E, then one  has that E =
P(P1(1 ), Pl(2 ) ,  •  •  •  •  Pi(e ))  where 1(i)'s are  all of  indices such that the  determinants
11)1> P2 ,  • • • P n - 1 ,  P t ( i) I  =

P roo f. W e note tha t r  m ust be greater than o r  equal to  n for P  to  b e  a
hyperface. Then the  proof of this lemma is obvious.

Remark. The above mentioned algorithm seems very slow since the number
of integers o n  a  hyperface can be very large as it is observed in  th e  example
of §3 .3 . In fact, w e can traverse faces of co-dimension one from one  o f them
fo r  any finite convex body, b y  a  sim ilar m ethod to  L em m a 13. The latter
method seems faster but unfortunately the author is unaware of the time complex-
ity  of the  algorithm described in  Lemma 13. Therefore, the  author decided to
avoid detailed descrip tion  of the  la tter m ethod w hich requires a  little  more
complicated data structure of recursive n a tu re . H ere w e just mention th a t the
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combinatoric complexity of the former is  the most time consuming in  the  above
mentioned example.

L et p i ,  nr 2 , •  •  •  , p n  be linearly independent vectors in R .  W e  d e n o te  b y
7rt = P2. .... p,) the hyperplane containing tn n D,  1 , ,  2 5 3 5  •  •  • 5  pn• When 7r,
does not pass through the origin, we denote by c, = c,(p : n1, r 2 9  •  •  • 5  p n )  the normal
vector o f  7r, su c h  th a t it, =  { p e R I(c,, p) = 11. W h e n  c ,  consists of positive
entries, we denote by t o., =  t.(p ,; P2. .... p,,) th e  real number inf { t E R ,  e 127,1.
W e also denote by k(p : P2' •  •  • 5  p n )  the index min fil i-th entry  o f  c,.  is zero}.
Well-definedness o f these numbers are  easily verified a s  fo llow s. L et q i b e  the
intersection of 7r, and the i-th axis for i = 1 , 2 , ... , n . T h e n , gi 's  approach to
the origin a s  t  g o e s  to  0 . But 7rt contains a  point 132 . Thus, the coordinate of
one of q i 's, say, g„, becomes negative at a  small t ,  for otherwise p2  e R .  must
be arbitrary close to  the  o rig in . T h is implies that the coordinate of gk becomes
0  o r g„ diverges a t  certain t  before g,, has a  negative coordinate since coordinate
of g„ is w ritten a s  a  linear fractional function o f t. However, th e  g,, can't be
the origin except at t = 0. T herefore , gk diverges a t certain t  such that 0 < t < 1.
I t  i s  clear, tha t c k b ecom es ze ro  a t  th is  point. W ell-definedness of t o„ a n d
k(p,; p 2 , p , , )  follows since there are finitely many indices k.

Lemma 1 3 .  L e t E  be a hy peredge of  BA  whose SA -points are  known, P  a
hyperface of BA  containing E , P ' the hyperface adjacent to P  at E, p l  a point on
P  which is not on E, p 2 , p 3 , p „  l i n e a r y  independent points on E, p i a  vector
in 12" whose entries are zero except the k = k(p 1 ; 192 , ..., p,)-th entry is the inverse
of  the  k -th  entry of  c i (p i ; p2 , p, )  (i.e., the intersection of  the k -th ax is and
n(Pi, p2 , ...,19 .)) and U  = P(0, spi, P2, p3 , p „)  f or real number s> 1. Then, Us
f o r sufficiently larg e  s  contains a po in t from SA  which does not belong to E.
Moreover, one can effectively determine the m inimum so  o f  such s  and the set
V  = SA  n ( D P Pr,so. .  2 5  3 ,  •  •  •  pn) including a point g outside E provided that A  consists
o f  po in ts  o f  K . T he  se t V  spans the hyperface P'.

P roo f. Proposition 1 says that there exists a  u n it  e e E Z  such that each
component 9 i (e) is less than 1 except 9 k (e) > 1. Taking sufficiently high power
of 8 ,  one finds a n  algebraic integer e ' which is very close to  th e  k - th  a x is . It
is clear, that e ' is contained in  Us f o r  sufficiently large s. W e proved the first
assertion. The last assertion is  clear. F o r the  second  asse rtion , w e adopt the
following algorithm which determines the minimum of s.

• Firstly, compute all integral points within Us fo r  s = 2 , 4 , 8 , ... until an
integral point in  Us — E  is  fo u n d . Let s ,  be the first s  such that Us — E
is found to contain a n  integral point and  q 1 ,  a.29 •• qr, a l l  of integral
point in U s i — E.

• Secondly, compute determinants

q , p 2 Cli5 P 3 q i ,  •  •  . 5 —( 2 1 )

for 1 j  < r' to  the absolute precision of 1/(4mn) with m e Z  such that
m A  o K . Then, one finds a  g  = g , such that
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P2 — q, P3 — 9, • • — ql/lqt, P2 — q, P3 — q, • • • , P. — q (2 2 )

is greater than o r  equal to  1 fo r 1 j  <  r ' (comparison should be done
paying respect to  the  precision).

•  Lastly, compute the intersection p'  o f  rc(q, 102 , 133 , pn )  a n d  th e  k-th
axis. T h e n , th e  number so i s  the quotient of the k-th coordinates of p'
and p i .  Moreover, the point q  E  is  o n  th e  hyperplane n(s o p, 19 2 , p3 ,

p„) and  the  se t V is the union of the SA -point o n  E  and the set of
a ll qi 's  su ch  th a t the quotient (22) e q u a ls  to  1  (comparison a re  done
paying respect to  the  precision).

The first assertion guarantees that this algorithm terminates. On the other hand,
it is clear that this algorithm computes the  desired result if computation could
b e  e x a c t. T hus, w e  on ly  need  to  verify  tha t th e  precision refered t o  in  the
second s tep  is  su ffic ien t f o r  obtaining th e  c o rre c t an sw er. L e t  d  b e  the
discriminant of K .  Then, determinants q ,  p 2 — qi , p3  — q.. ....p,, —q 1 a r e  a pri-
ori know n to  be greater than o r  equal to cl/mn. Therefore, the  precision of
1/4m" is sufficient.

A face F  of BA  is  sa id  to  b e  effectivey determined if a ll of SA -points o n  F
is  effectivey determined.

Proposition 14. Assume that the auxiliary set A  consists of  algebraic numbers
o f  K . A n d  le t  P  P h o  o- =  -  1 , r  2 ,  •  •  •  P r )  be a  hyperface o f  B A  whose SA -points are
known. Then, one can effectively list all hyperedges contained in P  by computing
determinants ID(O p R e (2 ) ,  •  •  •  P f (n )1  f o r  all possible injections e: 11, 2, ... , n1
11, 2, ... , r l, as stated in  Lemma 12.

L et E  be a  hyperedge contained in P  and P ' the hyperface adjacent to P at
E .  A nd assum e that p 2 , ,  p n a re  independent points on E  and that p i  is
on P — E. Then, by Lemma 13, one can effectively determine P'.

P roo f. The proof is obvious.

T o  find  one  hyperface from  which we can com pute successive hyperfaces,
w e fake th e  m ethod of P roposition 14 by adjoining auxiliary points t o  S  to
form a  "known" hyperface.

Proposition 15. One can effectively find a  basis fi", = 1, ,6, ,  fin'  o f  oK

consisting o f  totally positive integers. S et y i =  ng/tr g  f o r 1 < i < n and  A i =
{ y i+ i, Y i+ 2 , •  •  •  Y n }  f o r  0  i n ,  (in particular, A „ = 0 .)  Then, the s e t  P, =
P (y l , y 2 ,  . . . ,  y n )  is a  hyperface of  B A , such that SA n =  A o . One can inductivly
an d  effectively define P i 's which are  hyperfaces of  B A 's a s  follows: O ne can
effectively determine a  hyperedge Ei P i — ly i + ,1 by Lemma 12 and the adjacent
hyperface P i + , o f  P i a t  E. by Lemma 13. In  particular, P„ is  an  effectively
determined hyperface of B .

Proof. The first assertion is verified by recalling that each algebraic integer
can be com puted to  th e  precision o f  1/2. The second assertion is proved by
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th e  fac t th a t th e  hyperplane it: x 1 + x 2 + • • • + xn n  contacts the  convex set
x i  x2 ... xn >  1 , w hich contains all totally positive integers, at Yi = 11, 1, ..., 1).
N ote tha t 13,0  = 13,, 1 . T he third and  the  fourth assertions are clear.

3.3. E xam ple . F o r  a  demonstration o f Theorems 9  a n d  11, we give the
following example. L et C b e  a prim itive 11-th ro o t o f unity, 0  b e  the  sum  of

and  its com plex conjugate. Then 0  has the minimal polynomial

X 5 + X 4  — 4X3 —  3X + 3X + 1 .

We take the field Q(0) as K .  Then, the field K  is a  totally real number field of
degree 5 and  has the discriminant 14641. O ne can take

1, 0, 0 2 , 0 3 ,  B4

a s  a  basis for ()K . C o m p u ta tio n  shows th a t one c a n  ta k e  d i to  b e  the  family
consisting of the following 9 hyperfaces:

2 3, as, cca, aio),

P( 1 55 (X95 OE105 CX115 1 1 2 )5

P( 1 15 1 25 CX35 C455 Œ8, Œ 9)

P (Œ 1, Œ 5 , 1 85 1 95 (X105 OE16) ,

P ( CX25Œ35Œ55Œ75Œ85 2 1 0 )5

P( 1 55 2 75 1 105 °1 135 C( 145 Œ 18)5

P (Œ 85 2 95 1 105 1 125 1 135 06 1 9 )

P ( 1 85 OE95 OE105 OE155 1 165 Œ17)5

19(Œ25Œ45 Œ 5, Œ 6, C475 C( 85 1 95 1 105 CX125 1 13 )

where a :s  are  given as follows:

a l  = — 1 — 30 + 50 2  + 0 3 — ,

Œ2  = — 1

a 3 =  —  1

— 40

— 40

+ 0 2 + 50 3

+ 40 2 + 30 3

+ 20 4  ,

,

Œ4  =  2 0  —  +  3 0 3 +  2 0 4  ,

a s  =  0 2 ,

a6  =  0 2 + 20 3 +  Q4,

a 7 = 20 2 +  0 ,

Œ8 = 1 — 20 — +  2 0 3 +  ,

a9 = 1 — 20 2 + 0 ,
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Ctio = 1

,

cx1 6  = 2 - 30 +  0 ,

cx1 7 = 3 - 20 - 30 2 + 0 3 + 8 ,,

(xis - 3 + 110 + 50 2 - 40 3 -  2 0 ,

cx1 9  =  4 - 40 2 +  0 .

I t  tu rn s  o u t  tha t the re  a re  too m any lower dim ensional faces to  lis t up
here. Therefore, w e only list association between hyperedges. Association be-
tween hyperedges within the  family g  of Theorem 9 are  as follows:

P(Œ4, /6 , /1 3 , / 1 2 )  =  ri7 P(Œ5 , cx99 ccio, o )

P ( / 2 , / 4 ,  / 8 , 1 9 )  =  /1 4 M /5 , 1 10' 1 11 , /1 2 )

P (1 2 , / 5 , 1 6 , /7 )  =  il3 P (Œ 9 , /1 0 , /11 , 1 12)

P ( / 7 , / 8 , /1 0 , 1 13) =  i110P(/5 , 1 9 , /11 , /1 2 )

P ( / 5 , /109  /12 , / 1 3 )  =  1111 M / 1 , / 8 , / 9 , Œ 1 6 ),

P(Œ15 (x85 1 1 6 )  =  1/9P(Œ 55 0( 105 0( 135 c4 18) ,

P ( / 2 , /79  /8 , / 1 3 )  =  /7 4 N /5 , 1 101 Œ145 Œ18)5

P (/2 , / 4 , / 6 , / 1 2 )  =  r i6 P ( / 3 , / 7 , / 8 ,

P ( /4 9  1 8 , /1 2 , /1 3 )  =  1 2 P (Œ 2 , Œ 3 , /5 , / 7 )

P ( / 2 , / 5 ,  c(6, cci2) = 112P(ot8, czio, Œ13, 0(19),

P(Œ2,cz6, /7 , /1 3 )  =  q 3P(Œ 9, /10 , /1 2 , 1 19) ,

19 (CX5, c(75Œ185 1 1 4 )  =  ?18P(Œ8, c( 9, 1 10, oc19)

P(Œ3,as, ot7, aim) = niP(Œs, /12 , /1 3 , 1 19)

19 ( /4 , /8 , / 9 , / 1 2 )  =  n12P(0(1, /2 , / 3 , / 5 )

P ( / 2 , 1 3 , / 7 ,  / 8 )  =  n 3 P ( 1 9 , /1 0 , /1 5 , 1 16)9

P (/1 , / 2 , /5 9  /9 ) =  P /2 P ( 1 10 , /1 6 ,

P (/5 , /7 , /1 0 , /14) =  778P(Œ 8, Œ 9, /10,115)9

1 11 =  1 +  0  -  2 0 2 -  0 3 +  0 4  ,

/1 2  =  1

oc1 3  =  1

+  20

+ 20

-  202

+ 0 2

-  03 + 04  ,

Œ1 4 = 1 + 50 + 602 - 20 3 - 20 4  ,

5 =  1 0  -  50 - 1202 + 20 3 + 304
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Maio, 1 12 , 1 135 a 19) = 1111 13 (as, a9,a15,a 16),

P(as,  a 9 ,  a12, 06 19) = 1.112P(ai, CX3 ,  2 5 ,  2 10 )

P ( 1 5 , 1 7 , 1 13 , 1 1 8 )  =  n 1 1 P ( 2 1 ,  1 3 ,  2 8 ,  2 10)

P ( 2 2 ,  2 4 ,  2 6 ,  2 8 ,  2 1 3 )  =  n7P(oc1, as, 2 9 ,  1 10 , / 1 6 )

P ( 2 2 , 1 4 , / 5 , 1 9 ,  2 1 2 )  =  g 5 P ( 1 7 , 1 10 ,  1 13 , / 1 4 ,  2 1 8 )

P ( 1 5 , a6, 2 7 , 1 12 ,  2 1 3 )  =  / 1 1 1 P ( 2 1 ,  2 2 ,  2 3 ,  2 8 ,  2 9 )

where ;i t 's  are given a s  follows:

' l i =  - 2 50+  110 2 + -  3 0 4 ,

172 =  0 2

113 =  20 2 +

/ / 4  =  1 -  20  - 0 2 +  20 3 +  0 4  ,

15 =  1  -  2 0 2 +  0 4 ,

/1 6  =  1  +  20  - 20 2 -  0 3 +  04  ,

117 = I + 20 + 02,

118 = 1 + 50 + 60 2 - 2 0 3 - 2 0 4  ,

/19 =  2  -  30 + o ,

Ilio  =  2  +  0,

= 3 + 110 + 50 2 -  4 0 3 -  20g ,

//12 =  4  -  4 0 2 +  0 .

One can check that units 1 1 2 ,  • • • ,  7/12 are  written a s  products of powers of

/12 = 0 2 ,

=  (0 - 1) 2 (0 + 1) 2 ,

n, = (61 + 1)2,

rho =  0 + 2 .

Moreover, one has the identity n2 /10 1 0 (02 -  3 ) 2 =  1 .  This implies that the group
E,+, is generated by square units. Thus, th e  un it group E K  o f  K  is generated
by
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0, 0 + 1, — 1, 02  — 3 .

T h is  i s  consisten t w ith  a  r e s u l t  in  [2].
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