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On local integrability conditions
for nowhere-zero complex vector fields

By

Haruki NINOMIYA

§1. Introduction

Let X be a nowhere-zero complex vector field, with C* coefficients, in an
open set 2 in R"*!, We shall say that X is locally integrable at a point P in Q if
the homogeneous equation

(1.1) Xu=0

has C! solutions u,, u,, ..., u, in a neighborhood U of P such that du; A du, A
“ Adu, #0in U (cf. Lewy [5], Treves [12] and Jacobowitz-Treves [4]). When
X is locally integrable at every point in Q, we shall say that X is locally integrable
in Q. It is evident that X is locally integrable in Q if X = X or X is real
analytic in Q. But Nirenberg [9] gave a vector field in R? which is not locally
integrable at the origin; he proved that the equation

ou/fot + it(1 + té(t, x))0u/ox =0

admits the only constant C' solutions in every neighborhood of the origin where
#(t, x) is realvalued, even with respect to ¢t and satisfies certain elaborate condi-
tions. We note that d/0t + it(1 + té(t, x))0/0x is a non-solvable operator. Now,
we may assume that X locally takes the following form:

X=0/ot+i) alt,x)0/ox;, x=(xy,...,x,)€R"
IS

where all the a’(t, y) are realvalued. Then, it is said that X satisfies the solvability

condition (#) at P if there exists a neighborhood w such that for every £e R"

and every x, € R" the function t — ) a/(t, x0)¢; does not change sign in the set
j=1

{te R*;(t, xo) € }. From Treves [13], it follows that X is locally integrable at

P if X satisfies (#) at P. Considering these results, particularly we are concerned

with the non-solvable vector fields in R* of the following form:

3/t + ia(t, x)d/0x
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where af(t, x) is a realvalued C® function having the property: ta(t, x) > 0 for
t #0. Throughout this paper the operator d/0t + ia(t, x)0/0x having this prop-
erty shall be denoted by L. It becomes into the subject whether L is locally
integrable at a point on the x axis. There are a few results on local integrability
of L ([8], [9], [10] and [12], for example) Now we shall state our results.
First, we set the following definition:

Soaa(t, x) = the odd part of f(t, x) with respect to ¢t and
Jeven(t, X) = the even part of f(t, x) with respect to t for a function f{(t, x).

A domain D in {(t,x);teR,xeR} is called a flag domain if Dc
{(¢, x);t > 0} and 0D is a simple closed curve such that 0DN{(t, x);t =0} is a
line with positive length.

Now, as a necessary condition for L to be locally integrable, we get the
following

Theorem A. If, for every neighborhood U of a point P on the x axis, there
is a flag domain D in U such that either d[D N {a.,(t, X) > 0}] constituting of
a finite number of rectifiable Jordan curves or 0[D N {a.,..(t, x) < 0}] constituting
of a finite number of rectifiable Jordan curves is included in D, then L is not
locally integrable at P.

Namely, it is necessary that there exists a neighborhood U of P such that
no flag domain D in U satisfies that either d[D N {a,,.,(t, x) > 0}] constituting of
a finite number of rectifiable Jordan curves or 0[D N {aeq(t, x) < 0}] constituting
of a finite number of rectifiable Jordan curves is included in D.

We see that Nirenberg’s example does not satisfy this necessary condition.

We note that the condition above is not a sufficient one; because the follow-
ing theorem holds: let ¢ be a positive constant and both of {a,} and {b,}
(n=1,2,....) positive sequences decreasing to 0 such that a, > b, > a,,, for every
ne N. Let both of {a,} and {b,} (n=1,2,....) be negative sequences increasing
to 0 such that a, < b, < a,,, for every ne N. Then we set V,, W,, V, and W,
(ne N) as follows:

Vi={txs0<t<cb <x—xy<a,},
Ve={tx30<t<c b <x—x5=a} (k=23,...),
W={tx;0<t<cau<x—xo<b} (i=12..),
Vi={(tx);0<t<cb=x—x,>a;},
W={txx0<t<cbhzx—xoza} (k=23,..),
W ={(t x);0<t<ca >x—x >Db} (j=12..).

Theorem B. Assume that a..,(t,x) is nonnegative. If a.en(t,x)=0 in

8

V;UV; and ag,(t, x) >0 in () W;UW,, provided that at least one of
i=1 =1

J
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f j Aeyen(t, x)dtdx
W,

lim
n—w b, —a,.y
and
jj Aeyen(t, x)dtdx
lim £ W :
oo apey — b,

is a positive constant, then L is not locally integrable at P(0, x,).

One can easily check that there is a neighborhood U of P such that no
flag domain in U satisfies the condition of Theorem A under the assumption of
Theorem B. .

From the facts above, we know that the form of existence of supp d..., affects
the local integrability of L; in case of non existence of supp a.,.,, we have an
affirmative result (cf. [7], [8]):

Theorem C. Assume that a.,.,(t,x) =0. Then L is locally integrable at every
point on the x axis.

Furthermore we obtain the following

Theorem D. Let P(0, x,) be a point on the x axis and B(t, x)

t

{1 —a(t, x)}/{1 + a(t, x)} where a(t,x)=1+ iJ‘ a,(s, x)ds.
0
Assume that P(t, x) can be extended as a C° function B(t,, x,) which is defined

in a neighborhood U, of the origin where
t
t, = f a(s, x)ds and X, =X—Xq.
0

Moreover, assume that the following conditions hold:

() suplBe,, x| < 1.

(i) sup|B(ty, x,)IC, < 1
where p is a fixed exponent such that p > 2 and C, stands for a positive constant
satisfying

ITgll, < C,ligl,  for ¥geL,(R?)

where

Tg(z) = 2ni)™ f{g(C) —9@}/[¢ - 27}did]  and

z=1ty +ix;.

(iii) PB(ty, x,) has a distributional derivative B.(ty, x,) e L
Then, L is locally integrable at P.

p*
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We remark that, when a,44(t, x) vanishes of finite order, Theorem C follows
also from Theorem D.

We note that, generally, for every point P on the x axis there exist a
neighborhood U of P and a function ue C'(UN{t = 0}) such that Lu = 0 and
du#0in UN{t 2 0}.

Finally, we shall refer to existence of a certain relation between local solvabil-
ity and local integrability; it does not seem that both of them have a relation
each other. But, we claim that there exists a certain connection under the
assumption that solutions mean C*®: for simplicity, let X be a nowhere-zero
complex vector field in R2 Setting X = 9/dx, + b(x,, x,)0/0x,, we see that X
is locally integrable at a point P if and only if the inhomogeneous equation
Xu = b, has a solution in a neighborhood of P (see Ninomiya [7], Hormander
[3], and Treves [12] and [14]). Differently from two dimensional case, the
situation in case of three more dimension vector fields X becomes more compli-
cated and we shall find that there is a certain link between local solvability and
local integrability.

§2. Proof of Theorem A

Assume that L is locally integrable at P. We use the method of Nirenberg
[9]. Let u, be a C! solution of Lu; =0 in a neighborhood U of P(0, x,) such
that du, # 0. Then, (du,/0x)(0, xo) #0. Let 6, be Arg(du,/0x)(0, x,) and c a
constant such that 0 <c < m/2. Set u= e %y,. Then, u is a C' solution of
Lu =0 in U such that both of Re du/ox and Im du/éx are positive at P. There-
fore we may assume that both of Re du/dx and Im du/dx are positive in U,
contracting U if necessary.

Then, we may suppose that there exists a flag domain D in U such that
O[D N {@e,en(t, x) > 0}] constituting of a finite number of rectifiable Jordan curves
is included in D.

Furthermore we can assume that DN {a..,(t, x) > 0} is an open set w ob-
tained by removing a finite number of simply connected domains or multiply
connected domains that are disjoint each other from a simply connected domain
Q surrounded by a rectifiable Jordan curve.

Now, from Lu =0, we have

2.1) OUygq/0t + iGoqq(t, X)O0UGq/0X = —igyen(t, X)Oeyen/OX in U.
Hence, it follows that
(2.2) OUogq/0t + iagqq(t, X)O0Uyga/0x = 0 in DNQ°.

By our assumption ta(t, x) > O for ¢t # 0, we see that a,q4(t, x) > 0 for t > 0.

Now we note that u,44(0, x) = 0. Therefore, applying uniqueness theorem
(Ninomiya [6], Strauss-Treves [11] or Zuily [16]) to (2.2), we see that u,uq(t, x)
vanishes identically in DN Q°.

Now, we have the following
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Theorem 2.1 (Ninomiya [7]). Assume that b(t, x) is realvalued C*, odd with
respect to t and positive for t > 0. Then, there exists a C' solution v = v(t, x) of

(23) Ov/dt + ib(t, x)0v/ox =0
in a neighborhood of every point on the x axis such that dv/dx # 0.

This proof will be given in the appendix. From Theorem 2.1, the equation
(2.4) 0v/0t + iay4(t, x)0v/0x =0

has a C! solution v = v(t, x) in a neighborhood of P such that dv/dx # 0. Then,
we can assume that, from the beginning, v satisfies (2.4) in U and that both of
Re dv/0x and Im dv/0x are positive in U. Then, from (2.1), we have

(25) (6v/6x) {auodd/at + iaodd(t’ x)aodd/ax} = (60/6):){ - iaeven(t’ x)aueven/ax}

in U. Hence we have

(2.6) j (0V/0x) {Otoga/0t + iagqq(t, X)OUeq/0x}dtdx
Q

= J (00/0x) { — i@gyen(t, X)OUgyen/Ox}dedx .
Q
One can easily verify that the lefthand side of (2.6) =
J d{uggedv} =0 because of u,yy =0 on 0Q.
Q

Therefore,

j (00/0x){@eyen(t, X)OUgyen/Ox}dtdx = 0.
Q

But this contradicts the fact that
Im [(0v/0x) {@cvenOUeyen/0X}]

= Qeyenlt, X)* {Re Oug,n/0x - Im dv/0x + Im du,,.,/0x - Re dv/0x}

is positive in w = 2. Q.E.D.

§3. Proof of Theorem B

Assume that the contrary holds. Then we can assume that there exist a
neighborhood U of P and C! functions u and v such that

(3.1) Lu=0.
(3.2) O0v/0t + iay44(t, x)0v/0x = 0.
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(3.3) Re Ougyen/0x, Im Oug,.,/0x, Re dv/dx and Im dv/0x are positive in U.
(3.4) U vuvuw,uw,cuU.
n=1

By the same way as the previous section, we can conclude that u,,, vanishes

0
identically in U V,UV,. And by the same way as the previous section, we have
n=1

(35) J‘J‘ d {uodddv} = J‘J‘ (av/ax) { - iaeven aueven/ax} drdx
w, w,
and
(3.6) Jf d{uygqdv} = fj (00/0x){ — iG¢yen Ol gyen/0x } dtdx n=12...).

Therefore, from uyq =0 on IW,\{t = c}UdW,\{t = c} for every ne N, we
obtain

b,

3.7 J Uoaalc, x)(Ov(c, x)/dx)dx =UJ (00/0x){Aeyen OUeyen/Ox } dtdx
Apy W,

and

(3.8) Jam Uoaa(c, x)(Ov(c, x)/0x)dx| = UJ (00/0x) {AeyenOUeyen/Ox} dtdx | .
b, w;,

Hence there exist suitable positive constants M and m such that

(39) Md,,(b" - an+l) 2m J‘J‘ aeven(ta x)dtdx
Wo
and
(3.10) Mo (@ — b)) Zm ff Aeyen(t, x)dtdx
Wi
where
o, = max |ugeqe(c, x)|
8,+1SxSby
and
o, = max [uggq(c, x)| .
bpSxsapn.y

As the other case can be also shown, we suppose

jJ\ Agyen(t, x)dtdx
w"b =K>0.

n — Qnty

lim

n—w
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Then, from (3.9) and lim a, = 0, we obtain:

0=2mK >0.
This is absurd. Q.E.D.

Appendix

We shall prove Theorem 2.1. First, we easily see that the following lemma
holds:

Lemma 4.1. Let A(t,x) be a realvalued C* function such that A(t,x) =0

for t 2 0. Then, there exist a neighborhood U(P) of P and a positive constant
C such that

(i) |A,(t, x)| £ C /AL, x);
(ii) J A (s, x)ds <CU A(s, x)ds

Next, let us consider a mapping (t, x)—»(tl,xl) defined by

2
i U(P), = UP)N{t = 0}.

t
t, = f b(s, x)ds and Xy =X—Xq, provided t = 0.
0

F gives a homeomorphism from U(P), onto F(U(P),); t is expressed as t =
t(ty, x;). Let a function c(¢,, x,) defined in F(U(P),) be

c(ty, x,) =J ib.(s, x)ds + 1
o

t(ty,xy)
= if be(s,x; + xp)ds + 1.

0

Next we set C(ty, x;) = c(|t;], x,); C(ty, x,) is defined in a neighborhood of the
origin. Then we have the following

Lemma 4.2 (Ninomiya [6]). There exists a neighborhood V of the origin
such that C(t,, x,) € CY(V).

Proof of Lemma 4.2 ([6]). It holds that

Jt b.(s, x)ds — j’, b.(s, x")ds = J’ b.(s, x)ds + J' {b(s, x) — b(s, x)}ds .
(1] 0 t V]

Let t and ¢’ be nonnegative. By virtue of Lemma 4.1, taking a smaller neighbor-
hood U(P) of P if necessary, we have

t t t
J b.(s, x)ds — f b.(s, x')ds J b(s, x)ds
0 0 t

t t 1/2
< Cl{ ‘[ b(s, x)ds — f b(s, x')ds| + C,t'|x — x’l} + Cyt'|x — x|
0

0o

<c

1/2 t
+ f |bx(s’ x) - bx(s’ X/)|ds
0




906 Haruki Ninomiya
1/2
< C4{ + |x — x'I}

in U(P), where C; (i=1,2,3,4) denote positive constants. Let (t,,x,;) and
(t;, x;) be in F(U(P),). Then, we have

J, b(s, x)ds — Jl b(s, x')ds

0 0

IC(ty, xy) — Clty, X)) < Co{lty — 3] + [x; — x|}
in F(U(P),). From this, it clearly follows that
C(ty, x;) € CM2(V)
where V = F(U(P),)U{(t;, x,); (—ty, x,) € F(U(P),)} .
By virtue of Lemma 4.2, we obtain the following
Theorem 4.3. There exists a C'*'2(V,) solution z = z(t,, x,) of
i0z/0x, + C(ty, x,)0z/dt, =0
with dz # 0 in a neighborhood V, of the origin.

Theorem 4.3 follows from a classical result on the Beltrami equation. Now,
let us define a function h = h(t, x) by

h(t, x) = z(jl b(s, x)ds, x — x0> .

0
Let (¢, x) be in F7'(V,,) where V= V,N{t; 20}. Then,
hx(ta x) = b(t’ X)Z,l(ll, xl)

and
t
hx(t’ X) = zr,(tl’ xl) f bx(sa X)dS + le(tl’ xl) .
0

Hence it follows that

Ah(t, x) = Oh/ot + ib(t, x)0h/0x

= b(t, x)[ile(tl, X))+ {J' ib.(s, x)ds + l}z,l(tl, xl)]
V]

= b(t, x)[iz,, (1, x1) + c(ty, x1)z,, (£, %1)]
= b(t, x)[idz/0x, + C(t,, x,)0z/0t,] =0.

Finally, let us define a function u = u(t, x) by u = h(|t], x). We can easily
verify that Au(f, x) = 0 and du # 0 in a neighborhood F~!(V, )UF™(V,,)- of P
where F71(V,,)_ = {(t, x); (—t,x) e F"'(V,,)}. Q.E.D.
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Remark 1. From the proof above the following is easily known: for every
point P on the x axis, there are a neighborhood U(P) of P and a function
ue C'(U(P),) such that Lu =0 and du # 0 in U(P),.

Remark 2. From Ahlfors [1], we see that the following theorem holds:

Theorem. There exists a C' solution v = v(t,, x,) satisfying the Beltrami
equation

0v/0z = udv/oz (z =ty + ix,)

in R? such that |0v/0zZ|* — |0v/dz|? > O under the following assumptions:

(i) u is a measurable function with ||ul, < k < 1.

(i) p is a fixed exponent such that 2 <p and kC, <1 where C, is a constant
stated in Theorem D.

(i) u has a distributional derivative u, such that p,eL,.

Using this theorem, Theorem D is proved as follows: the assumptions of
Theorem D admit an application of the theorem above to conclude that the
equation

/0% — B(t,, x,)0v/0z =0
has a C' solution v in a neighborhood U,(cU,) of the origin such that
|0v/0Z|? — |0v/0z|* > 0.

Then we shall define u = u(t, x) by

u(t, x) = U(J' a(s, x)ds, x — xo) .
0

Then it holds that, in a neighborhood of P,
Lu(t, x) = a(t, x)(1 + o)(dv/0zZ — Bav/az) =0 with du/ox #0.
Theorem D is thus proved.

Remark 3. As is already stated, one can verify that the assumption of
Theorem D is satisfied when a.,., =0 and a,4(t, x) vanishes of finite order on
t = 0. Naturally Nirenberg’s example does not satisfy the assumption of Theorem
D; in more details, we can verify that the condition that B(t, x) is extended as
a continuous function of ¢; and of x, in a neighborhood of the origin is violated.
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