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On local integrability conditions
for nowhere-zero complex vector fields
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§ 1 .  Introduction

Let X  be  a  nowhere-zero complex vector field, w ith C  coefficients, in an
open set Q  in R " ' .  We shall say that X  is locally integrable a t a point P in Q  if
the homogeneous equation

(1.1) X u = 0

has C ' solutions u ,,  u2 , un in  a  neighborhood U of P  such that du , A du, A
•• A du„ 0  in  U (cf. Lewy [5], Treves [12] and Jacobowitz -T reves [4 ]). When
X  is locally integrable at every point in 0 ,  we shall say that X  is locally integrable
in  Q . I t  is  e v id e n t  th a t  X  i s  locally integrable in Q  if  X  = o r  X  is real
analytic in  Q .  But Nirenberg [9 ]  gave a vector field in R 2  w hich is not locally
integrable a t  the origin; he proved that the equation

Ou/at +  it(1 +  tO(t, x))0u/Ox = 0

admits the only constant C ' solutions in every neighborhood of the origin where
cO(t, x) is  realvalued, even with respect to  t  and satisfies certain elaborate condi-
tions. W e note that 0/3t + it(1 + tO(t, x))0/0x is a non-solvable o p e ra to r . Now,
we may assume th a t X  locally takes the following form:

X  = alat i  E aj(t, x)0/0x;  , x  = (x i , , x„) e R"
•

where all the ai(t, x) are rea lv a lu ed . Then, it is said that X  satisfies the solvability
condition (Y) a t  P  if there exists a  neighborhood co such that for every e  R"

t E act,xog i  does no t change sign in the set
j=1

{t e R '; (t, xo )e co}. From  Treves [13], it follows that X  is  locally integrable at
P if X  satisfies (g)) at P .  Considering these results, particularly we are concerned
with the non-solvable vector fields in R 2  o f  th e  following form:

alat + ia(t, x)0/0x
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and every Xo E R " the function
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where a(t, x) is  a  realvalued Cœ' function having the  property: ta(t, x) > 0 for
t 0. Throughout this paper the operator alat + ia(t, x )/ax  having this prop-
erty shall be denoted by L .  It becomes into the subject whether L  is  locally
integrable at a point on the x axis. There are a few results on local integrability
of L  ([8 ], [9 ], [10 ] and  [12], for example). Now we shall state our results.
First, we set the following definition:

Lad(t, =  the odd part of f (t, x) with respect to  t  and

f e „„n (t, x) = the even part of f (t, x) with respect to  t  for a  function f (t, x) .

A  dom ain D  i n  {(t, x); t E R, x e R} i s  c a l l e d  a  f lag dom ain i f  D
{(t, x); t  > 0} an d  aD is  a simple closed curve such that aD f l  {(t, x); t  = 0} is  a
line with positive length.

N ow , as a  necessary condition for L  to  b e  locally integrable, w e get the
following

Theorem A . If , f or every neighborhood U of  a point P on the x  axis, there
is a flag domain D  in  U  such that either arDn {a„, n (t, x) > 0}] constituting of
a finite number of rectifiable Jordan curves or 0[D n {a„, n (t, x) < 0}] constituting
o f  a finite number o f  rectifiable Jordan curves is included in  D, then L  is not
locally integrable at P.

Namely, it is necessary  that there ex ists a  neighborhood U  o f  P  such that
no flag domain D in U satisfies that either a[D n tae „n (t, x) > 01] constituting of
a finite number of rectifiable Jordan curves or a[Dn fa, e n (t, <  01] constituting
o f  a finite number of rectifiable Jordan curves is included in D.

We see that Nirenberg's example does not satisfy this necessary condition.
We note that the condition above is not a  sufficient one; because the follow-

ing theorem holds: le t  c  b e  a positive constant and bo th  o f  {an }  a n d  {b„}
(n = 1, 2, ....) positive sequences decreasing to 0 such that an > b >  a ,  for every
n e N .  Let both of {a } a n d  {b„}  (n = 1, 2, ....) be negative sequences increasing
to  0 such that an < b„' <a 1 fo r  every n e N .  Then we set V,„ W,„ V„' and 14/„'
(n E N) as follows:

V, = {(t, x); 0<  t  < C, b, x — xo < a 1 },

V, = {(t, x); 0 < t < c, bkx  —  x oa „ } ( k = 2, 3, ...) ,

= {(t, x); 0 < t < c, asi + , < x — xo < bi } (j = 1, 2, ...) ,

V; = {(t, x); 0 < t < c, b; x  —  x o  > a}  ,

V,' = {(t, x); 0 < t < c, x — x o ( k  =  2, 3, ...) ,

{(t, x); 0 < t < c, al+ , > x — x o  > bi 'l ( j = 1, 2, ...) .

Theorem B .  A ssume that a n v e n (t, x )  is nonnegative. I f  a „ e n (t, x) 0  in
0 0 OD

U V.0 V' and a„,„(t, x) > 0 in  U W.0 '‘Ar provided that at least one of
J J J

j=1 i=1
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ae v e n (t, x)dtdx
l i M  L

n—000 Un an+1

and

. ffw,  

a„en(t, x)dtdx

R - 0 0 0 a 1  —

is a positive constant, then L  is not locally  integrable at P(0, x0 ).

O ne can easily check that there is a  neighborhood U  o f  P  such that no
flag domain in  U  satisfies the condition of Theorem A  under the  assumption of
Theorem B.

From the facts above, we know that the form  of existence of supp ae v e n  affects
the local integrability o f  L ; in case of non existence of supp ae v e n ,  we have an
affirmative result (cf. [7], [8]):

Theorem C .  Assume that ae v e n (t, x) 0. Then L is locally integrable at every
point on the x  axis.

Furthermore we obtain the  following

Theorem D. L et P(0, xo ) be a point on the x ax is and fl(t, x)

{1 — Œ(t, x)} / {1 + Œ(t, x )}  where a(t, x) 1 + i ax (s, x)ds.
Jo

Assume that fi(t, x) can be extended as a C° f u n c tio n  (t 1 , x 1 ) which is defined
in  a neighborhood U 0  o f  th e  origin where

t, = a(s, x)ds and x, = x — x0 .
Jo

Moreover, assume that the following conditions hold:
(i) sup1f3(t1 , xi )1 <1.
(ii) sup Lfi(t„ x 1 ) C i ! , <  1

where p is a f ixed exponent such that p > 2 and CI,  stands for a positive constant
satisfying

II TgII, Cp p f o r  Vg e Lp (R2 )

where

Tg(z) (27 ri) - ' f {g(C) — g(z)}/[(C — z) - 2 }dCdC and

z = t, + ix , .

(iii) P(t 1 , x 1 )  has a distributional derivative i 2 (t 1 , x 1 ) e L .
Then, L  is locally  integrable at P.
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We remark that, when vanishes of finite order, Theoremaadd(t, C  follows
also from Theorem D.

W e note  that, generally, for every p o in t P  o n  th e  x  a x is  there  exist a
neighborhood U  of P  and  a  function u e C 1 (U fl { t 0})  such that Lu = 0 and
du 0  0  in  U n It 01.

Finally, we shall refer to existence of a certain relation between local solvabil-
ity and local integrability; it does not seem  that bo th  of them  have a relation
e a c h  o th e r . But, w e c la im  tha t there  ex ists a  certa in  connection under the
assum ption that solutions mean fo r simplicity, le t  X  b e  a  nowhere-zero
complex vector field in R 2 . Setting X  = 0/0x 1 + b(x,, x 2 )0/0x 2 ,  w e see that X
i s  locally integrable a t  a  p o in t P  if  a n d  only  if the inhomogeneous equation
X u = bx ,  has a solution in a neighborhood of P  (see Ninomiya [7], HEIrmander
[3 ], and Treves [12] and [14]). Differently from two dimensional case, the
situation in case of three more dimension vector fields X  becomes more compli-
cated and we shall find that there is a certain link between local solvability and
local integrability.

§ 2. Proof of Theorem A

Assume tha t L  is  locally integrable a t  P .  W e use the method of Nirenberg
[9]. L e t  u ,  be a  C ' solution of L u, = 0 in  a  neighborhood U of P(0, x o ) such
tha t du , 0  0 .  Then, (att i /ax)(0, xo )  0  0 . L e t 00  b e  Arg(au,/0x)(0, x o )  and  c  a
constant such that 0 < c < tc/2. Set u = e " 0 ) 14,. Then, u is  a  C ' solution of
Lu = 0 in  U such that both of Re au/Ox and Tm au/Ox are positive a t  P .  There-
fore  w e m ay assume th a t  b o th  of Re au/ax  and Tm eu/ax  are positive in U,
contracting U  if necessary.

Then, w e m ay suppose that there exists a  flag domain D  in  U  such that
a[D n fae v e n (t, >  01] constituting of a finite number of rectifiable Jordan curves
is included in  D.

Furthermore we can assume tha t D n fae v e n (t, >  0 1  is  an open set co ob-
tained by removing a  finite number of simply connected domains o r  multiply
connected domains that are disjoint each other from a  simply connected domain
S2 surrounded by a rectifiable Jordan curve.

Now, from Lu = 0, w e have

(2.1) uo„/at + iao d d (t, x)Ouo d d iax = — iae v e n (t, x)au e v e n /ax in  U .

Hence, it follows that

(2.2) auoddiat + iaodd(t, x)auo d d iax =  0  in  D n Q" .

By our assumption ta(t, x) > 0 for t 0, we see that ao , d (t, x) > 0 for t > 0.
N ow  w e note th a t  uo d d (0, x) a-- 0. Therefore, applying uniqueness theorem

(Ninomiya [6], Strauss-Treves [11] or Zuily [16]) to  (2.2), we see that uo d d (t, x)
vanishes identically in  DnS2`.

Now, we have the following
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Theorem 2.1 (Ninomiya [7]). Assume that b(t, x) is realvalued C2 ,  odd with
respect to t and positive for t > 0. Then, there exists a C 1 solution v = v(t, x) of

(2.3) av/at + ib(t, x)av/ex = 0

in  a neighborhood of  every point on the x  ax is such that ev/ax 0 0.

This proof will be given in the appendix. From Theorem 2.1, the equation

(2.4) av/at + iao d d (t, x)av/ax = 0

has a  C1 solution v = v(t, x) in  a  neighborhood of P  such that av/ax 0  0 .  Then,
we can assume that, from  the  beginning, v satisfies (2.4) in  U and  that bo th  of
Re av/ax and Tm av/ax are positive in U .  Then, from (2.1), we have

(2.5) (3v/ax) latio d d /at + iao d d (t, x)Oo d d /Oxl = (0v/3x){— iae v e n (t, x)Ou„o n /ex}

in  U .  Hence we have

(2.6) (av/ax) {auodd/Ot + iaodd(t, x)auodd/ax}dtdx

= (av/ax){ — iae.(t, x)au„./Ox} dtdx
J Q

One can easily verify that the  lefthand side of (2.6) =

J o
dlu o d d clvl = 0o  

Therefore,

because o f Uo dd 0  on Q .

f (av/ax){a„, n (t, x)aue „„ /ax} dtdx = 0 .
J Q

But this contradicts the  fact that

Tm [(av/ax) fa e v e n aue v e n /axl]

= aoyen(t, x)• {Re aue v e n /ax • Tm av/ax + Irn ueven/ax • Re av/ax}

is positive in co c  Q . Q .E .D .

§ 3 .  Proof of Theorem B

Assume th a t  the  contrary  holds. T hen  w e can  assume that there  exist a
neighborhood U of P  a n d  C1 functions u  and  v such that

(3.1) Lu = 0 .

(3.2) av/at + iao d d (t, x)av/ax = 0 .
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(3.3) Re aueveniax, Im  au„en/ax, Re av/ax and Im av/ax are positive in U.
CO

(3.4) U  17n U U U U . 14/,:
n=1

By the same way as the previous section, we can conclude that no d , vanishes

identically in U U 1/„'. And by the same way as the previous section, we have
n=1

(3.5) d fun d d dvl =
 i f

f w .  (av/ax){ — icte v e n  aue v e n /ax} dtdx

and

(3.6) I f  d lun d d  dvl = (Ovgx){ —  iae v e n aue v e n /Ox}dtdx (n = 1, 2, .. ) .

Therefore, from Uo d d  =  0  o n  a Wn \ {t = cl U 4 ' '\{ t  =  c}  for every n E  N , we
obtain

b .

(3.7) undd(c, x)(av(c, x ) /a x ) d x  =  L. ov iax ) taeven  N even /aX }  dtdxfa, I
and

(3.8)
f

unda(c, x)(av(c, x)/ax)dx ff,o v „x ),a even  eue v e r daxl dtdx

Hence there exist suitable positive constants M and m such that

(3.9)

and

(3.10)

where

Ma n (bn — an+1) m anver,(t, x)dtdx
wn

M (a n + i — b„) aeven(t, x)dtdx

oc„ max I uo d d (c, x)I
a n + 15 x 5 b „

and

anm a x  lun d d (c, x)I .
b , 5 x 5 4 ,

As the other case can be also shown, we suppose

li.m ff,v a,en(t, x)dtdx
LK  >  0 .

n-• co O n —  an+1
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Then, from (3.9) and  lim an = 0, we obtain:
n — . CO

0  _ mK > 0 .

This is absurd . Q.E.D.

Appendix

We shall prove Theorem 2.1. First, we easily see that the following lemma
holds:

L em m a 4.1. L et A(t, x) be a  realvalued C2 function such that A(t, x). 0
f o r t 0. Then, there exist a  neighborhood U(P) o f  P  and a positive constant
C such that
(i) I A x (t, x)1 5 C. \. / A(t, x);

t 1/2
(ii) f  Ax (s, x)ds < C j :  A(s, x)ds in  U(P), U(P) (-1 {t .... 0}.

r

Next, let us consider a  mapping (t, x) —
F x 1 )  defined by

ft ,  =  t b(s, x)ds and x 1 = x — x 0 , provided t 0 .
0

F  gives a  homeomorphism from  U(P), onto F(U(P) + ); t  is expressed a s  t
t(t„ x 1 ). L et a  function c(t,, x 1 ) defined in  F (U (P ),) be

c(t i , x 1 ) = f
t ibx (s, x)ds + 1

J o
to,, x i )

= i bx(s, x, + x o )ds + 1 .
I o

Next we set C(t i , x 1 ) = c(It i  I, x 1 ); C(t i , x 1 )  is defined in  a  neighborhood of the
orig in . Then we have the following

Lemma 4.2 (Ninomiya [6]). There exists a  neighborhood V  of  the  origin
such that C(t,, .X1 ) E C 2 (V).

Proof of  Lemma 4.2 ([6]). It holds that
r t t

f o  bx (s, x)ds — f bx (s, x ')ds =  f bx (s, x)ds + f {bx (s, x) — bx (s, x')1ds .
o r o

Let t and t' be nonnegative. By virtue of Lemma 4.1, taking a  smaller neighbor-
hood U(P) of P  if necessary, we have

r
i t' b x (s, x)ds — f bx(s, x')ds Cl b(s, x)ds

sir 1/2 f t '
+ I bx (s, x) — bx (s, x')1ds

J o J o

j o
t b(s, x)ds — f b(s, x')ds

o

r 1/2
+  C2C IX  —  X ' 11 +  C 3 C 1 X  —  x ' l
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< C4 {
o

b(s, x)ds — b( s, ')ds
}1/2

+ IX -  X' l

in U (P) +  w here Ci ( i  = 1, 2, 3, 4) denote positive  constan ts. L et (t 1 , and
(t'1 , x1) be  in  F(U(P) + ). Then, we have

IC(t i , x i ) — C(ti, x',)1 C4{It i  — til + lxi — X111
1/2

in  F(U(P) + ). From this, it clearly follows that

C(t,, x 1 ) e C 1/2 (V)

where V  = F(U(P) + ) U 1(t1, x 1 ); ( — t1, -X1) E RU(P)+)} •

By virtue of Lemma 4.2, we obtain the following

Theorem 4.3. There exists a C 1 112 (1/0 solution z = z(t 1 , x 1 ) of

i0z/3x 1 + C(t i , x i )eziet i  = 0

with dz 0  in  a neighborhood Vo of  the origin.

Theorem 4.3 follows from a  classical result on the Beltrami eq u a tio n . Now,
le t us define a  function h = h(t, x) by

h(t, x) = z b(s, x)ds, x — x0 ) .
o

Let (t, x) b e  in F 1 (V0 )  where V0 +  =  vo n t i 0 1 .  Then,

x)= b(t, x)z(t 1, x1)

and

hx (t, x) = z i i (t i , x 1 ) i t bx (s, x)ds + z„,(t i , x,

Hence it follows that

Ah(t, x) Ohl& + ib(t, x)Oh/Ox

= b(t, x)[iz x i (t 1 , x 1 ) + { f  ib x (s, x)ds + 1} zt,(ti, x i)]

= b(t, x)[iz x i (t l , x 1 ) + c(t i , x i )z, i (t i , x,)]

= b(t, x)[iaz/Ox + C(t 1 , x i )Oz/Ot i ] = 0 .

Finally, le t u s  define a  function u u(t, x) b y  u -= x). We can easily
verify that Au(t, x) = 0 and du 0 0 in  a  neighborhood F - 1 (V0 + )U F'(V 0 + )_ of P
where F - i (Vo+)- = {(t, x);(—t, x) e (V 0 1 .  Q.E.D.
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Remark 1. From  the  proof above the following is easily known: for every
poin t P  o n  th e  x  axis, there  a r e  a  neighborhood U(P) o f  P  a n d  a  function
u e (U(P),) such that Lu = 0 and  du 0 0 in  U(P),.

Remark 2. From  Ahlfors [1], w e see that the following theorem holds:

Theorem. T here ex ists a  C ' solution v  = v (t x ,) satisfy ing the Beltrami
equation

OE/az = p0v/ez (z = t, + ix,)

in R 2 such  that lav/a21 2  — 10v/azI 2  > 0 under the following assumptions:
(i) it  is  a measurable function with 11g. k  < 1.
(ii) p  is  a f ix ed ex ponent such that 2 < p an d  kCp  < 1  w here Cp  i s  a constant
stated in  Theorem D.
(iii) p  has a distributional derivative pz  such  that pz E L .

Using this theorem, Theorem D  is proved a s  follows: th e  assumptions of
Theorem D adm it an  application of the  theorem  above to  conclude that the
equation

av/af — fi(t 1 , x i )ay/az = 0

has a  C ' so lu tion  y  in  a  neighborhood U1 ( U 0 ) of the  origin such that

av/af12 — iav/azi 2 > o.
Then we shall define u = u(t, x) by

u(t, x) = v(f  a(s, x)ds, x — 0 ) .

Then it holds that, in  a  neighborhood of P,

Lu(t, x) = a(t, x)(1 + tx)(0y/5f — /3y/Oz) =  0  w ith au/Ox 0  .

Theorem D is thus proved.

Remark 3. A s is a lready sta ted , o n e  can  verify  tha t th e  assumption of
Theorem D  is satisfied when a , z „ 0  and  ac,„(t, x) vanishes of finite order on
t = 0. Naturally Nirenberg's example does not satisfy the assumption of Theorem
D ; in m ore details, we can verify that the condition th a t f3(t, x) is extended as
a continuous function of t, and of x, in a neighborhood of the origin is violated.
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