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On hyperplane sections of reduced irreducible
varieties of low codimension

By

Jurgen HERZOG, Ngô V ia  TRUNG * and Giuseppe VALLA

1. Introduction

Let X  be an  arithmetically Cohen-Macaulay variety (subscheme) of
codimension 2 in Pi =Pn(k ), where k  is an algebraically closed field. L e t  I
= I ( X )  denote the defining ideal of X  in the polynomial ring R= k[xo, • • • , xn].
By the Hilbert-Burch theorem we may assume that I  is minimally generated
by the maximal minors of an r-1  b y  r matrix (gz,) of homogeneous elements
of R .  Let al, a, be the degree of these generators. Then I  has a minimal
free resolution of the form

r-1 (9 0 )  r
O > R(— bi)— >  R(— a,) — > I— ,  0  ,

i=1 1=1

where b1, •••, br_1 are positive integers with E b ,= E a,. Put u„= b,— a,. We
have degg„ = u,,„ if u„ >0 and g0 =0  if u„ <O. Under the assumptions ai <•-•
< a, and bi< ••• b r _ i ,  the matrix ( u )  is uniquely determined by X , and it
carries all the numerical data about X .  One calls (u ,,)  the degree matrix of
X  [5].

In [24] Sauer proved that an arithmetically Cohen-Macaulay curve in P 3

is  smoothable if and only if  u11-E2 0 for i =1 ,  •  ,  r — 2. A t a  first glance
Sauer's result is surprising in so far as smoothability should solely depend on
the Hilbert function of the curve (which of course is determined by the degree
matrix but not vice versa). However, as observed by Geramita and Migliore
[13], this numerical condition of the degree matrix can indeed be expressed in
terms of the Hilbert function of C.

On the other hand, as noted in  [13], Sauer ([24]) proved, though not
explicitly stated, that a matrix of integers u ,= b,— az , where <ar and

• b r _ i  are two sequences of positive integers with E a, =E b ., ,  is  the
degree matrix of a smooth arithmetically Cohen-Macaulay curve in P 3 if and
only if u,,+2> 0 for i =1, •••, r — 2. Here the reference to the stronger numeri-
cal invariant, the degree matrix, is indispensible, since the Hilbert function
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only recognizes smoothability.
Inspired by this observation, Chiantini and Orecchia [7] have shown that

a collection of points in P 2 is a hyperplane section of a smooth arithmetically
Cohen-Macaulay curve in  P 2 if and  only if its degree matrix satisfies the
condition u,1+2> 0 for i =1, • , r — 2. This numerical condition is for instance
satisfied if the points are in uniform position; see the discussion before Cor. 3.7.
Thus the result of Chiantini and Orecchia is a certain converse to a theorem
of Harris which says that a generic hyperplane section of an irreducible curve
is a set of points in uniform position (see [15] and [16]).

In this paper we shall extend these results as follows.

Theorem 1.1. Let XOEFIn be a reduced arithmetically Cohen-Macaulay
variety of codimension 2 with degree matrix ( u ) .  Then X  is a hyperplane
section of a reduced irreducible arithmetically Cohen-Macaulay normal variety
ycpn-+-1 of codimension 2 i f  and only if u,,+2>0 for i=1 , ,  r —2.

For example, the numerical conditions of the theorem are satisfied if one
of the hypersurfaces of least possible degree passing through X  is irreducible.
This will be shown in 3.5.

Our method of proving 1.1 is different from the one of [24] and [13] (where
linkage theory is employed). First we consider generic r-1 by r matrices
( x )  whose entries are either zero or indeterminates and satisfy the condition
x i,* 0  for i j—  2. Then we specialize such a  matrix to obtain a  reduced
irreducible arithmetically Cohen-Macaulay normal variety Z  in a space Pm,
m > n, whose section with an n-space is X .  Finally we descend from Z  by a
Bertini type theorem to a reduced irreducible arithmetically Cohen-Macaulay
normal variety Y Œ P ' such  that X =  Y Fl P n . This method has the advan-
tage to work as well in the Gorenstein case.

A result similar to 1.1 has been obtained by Mei-Chu Chang [4] for n.<4
when X  is projectively Cohen-Macaulay.

Now let X c Pn be an arithmetically Gorenstein variety of codimension 3.
By [2] and [29], the defining ideal 1=1(X ) of X  is minimally generated by the
2r-pfaffians of a skew-symmetric 2r+1 by 2r+1 matrix (g,,) of homogeneous
forms of R .  Let ai < • • • < azr+i be the degree of these generators of I. Then
I  has a minimal free resolution of the form

( p i f )

0 >  R ( c )- - -> C )i 7.-11- 1 R (  b  R (  a . ; ).—  I  > 0 ,

where c
1

=—
r

(ai + • • • + a2, +1), b,= c—  a,. If we put u—  c— a— a,, we have deg

g„,=uz„, if u„ >0 and g,, =0 if u,, <O . As before, the integer matrix (u„,) will
be called the degree matrix of X .  With the method described above we obtain
the following results which characterize the degree matrix of smooth arithme-
tically Gorenstein curves in P 4  and hyperplane sections of reduced irreducible
arithmetically Gorenstein varieties of codimension 3.



hyperp lane sections 49

Theorem 1.2. A  matrix of  ( u  u ) of  integers as above is the degree matrix
of  a smooth arithmetically Gorenstein curve in Pel if  and  only if  ui; >0 f or all

j  with i + j=2 r+4 .

Theorem 1.3. L et X c P n  be a reduced arithmetically Gorenstein variety
of  codimension 3 with degree matrix (u u ). Then X  is a hyPerPlane section of
a  reduced irreducible arithmetically Gorenstein norm al variety  y Œ p n + 1  o f

codimension 3 if  and  only i f  u u >0 f o r all i, j with i + j =2r +4.

Similarly as in case of codimension 2 varieties we show (Cor. 5.1) that
the equivalent conditions of the theorem are satisfied if one of the hypersur-
faces of least possible degree passing through X  is irreducible.

The proofs of 1.1 resp. 1.2 and 1.3 will be found in Section 3 resp. Section
5. In Section 2 we deal with generic height 2 perfect prime ideals and their
specializations. In Section 4 we list, for a fixed integer r>  2 ,  all integers
which occur a s  th e  degree o f reduced irreducible arithmetically Cohen-
Macaulay schemes of codimension 2 whose defining ideals a re  minimally
generated by r  elem ents. F inally in Section 6 we compute a  Griibner basis
for generic height 3 Gorenstein ideals and deduce from this a formula for the
degree of arithmetically Gorenstein varieties of codim ension 3. We also
compute the minimal free resolution of the ideal generated by the leading
terms of a generic height 3 Gorenstein ideal.

2. Generic height 2 perfect prime ideals and specializations

Let us first explain why the degree matrix ( u )  of an  arithmetically
Cohen-Macaulay reduced irreducible variety of codimension 2 satisfies the
condition u,1+2>0 for a ll i.

We prefer to use the algebraic language, and hence have to consider
homogeneous perfect ideals / c R --k [x o , •—, x n] of height 2. Their degree
matrix is defined as in the introduction. Note that the assumptions ai<•••<
a, and b1<-•• < br_i imply that z,c,.,< ust for a ll i_<s and t <j.

Lemma 2.1 (cf. [13], p. 3142 ). Let I ER = k[xo, • , xn] be a height 2 perfect
homogeneous ideal w ith degree matrix  ( u „ ) .  Suppose that I contains tw o
forms of  degree ai and a2 (the least Possible degrees) having no common factor.
Then uu+2>0 f o r all

P ro o f  Without restriction we may assume that the two forms of least
possible degree are the elements f i and f2 of a minimal homogeneous basis
• • • ,  f r  of I, and that f ,  is the maximal minor of an r - 1  b y  r  matrix (g ,)  of
homogeneous forms obtained by deleting the i-th  column, i =1, r. Let
(u ,)  be the degree matrix of ( g „) .  If u , + 2 0 for some t =1, r —2, we have
u0 <0, and therefore g = 0  for a ll i t and t +  2 . Thus, the minor of the
last r — t —1 rows and columns of (g ,) is a factor of both maximal minors fi
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and /2, a contradiction.

It is obvious that any height 2 homogeneous prime ideal contains two
forms of least possible degree having no common factor (any form of least
possible degree of a prime ideal is irreducible). Therefore, the degree matrix
o f  any arithm etically Cohen-Macaulay reduced irreducible variety of
codimension 2 and of all of its proper hyperplane sections (they have the same
degree matrix) satisfies the condition ui,+2 >0 for a ll i.

One can obtain arithmetically Cohen-Macaulay varieties of codimension
2 with a given degree matrix (u„) which satisfies the condition ui,+2 >0 for i
=1,•••, r-2 by specializing the generic cases. A  generic case is given by an
r — 1 by r matrix (x d ) whose non-zero entries are indeterminates and which
satisfies the condition xi,*0 for We shall use induction on r to show
that the ideal generated by the maximal minors of such a matrix is a perfect
prime id e a l. In order to make the induction hypothesis accessible we have to
modify these cases a little b it as follows (cf. [1, Lemma 2] for a similar
argument).

Lemma 2.2. L et A  be a Cohen-M acaulay  norm al dom ain. L et (4 )  be
an r - 1  b y  r  m atrix  such that X = tx ,: i> j—  2 } is  a  s e t  o f  algebraically
independent elements over A  an d  4 E A  i f  i <  j - 2 .  L e t I  b e  the  ideal
generated by the maximal minors of  (4 ) .  Then height 1=2 and A [X ]I I  is
a Cohen-Macaulay normal domain.

P ro o f  We prove the assertion by induction on r .  If r 3 , the statement
is trivial because then the entries of (x„) consist of algebraically independent
elements. I f  r >3, w e start w ith a  general observation. Let xst be an
arbitrary element of X  w ith  s  t —2, and consider the matrix (4 )  whose
entries belong to the ring A [X , xV], and are given by

, { x s ,  if i=s
x u =

xitxs; if i * s  .

It is obvious that the ideal /A [X , x V ] is generated by the maximal minors of
the new matrix (4 ) .  Since x;t =0 for a ll i * s , and since x'st =x st is a unit in
A[X , xV], the ideal /A[X, xs- d  is as well generated by the maximal minors of
the r - 2  b y  r - 1  submatrix (y , )  of (4 )  obtained by deleting row s and
column t.

Now we choose x stE Z ={ x o, x12, x13, x24}. Let X ' be the set of all ele-
ments of X  in row s and column t of (x ,),  and denote by B  the ring A [X ',
x V ].  Then B  is  a Cohen-Macaulay domain, A [X , x V ]=B [ Y ] and /A [X ,
xV] -=/B[ Y ] where Y j  —21. Note th at Y  is again a set of alge-
braically independent elements over B, and that yi, E B for i< j - 2 .  Thus we
may apply the induction hypothesis, and conclude that A [X , .x,t1]//A [X ,

B[111IB[17 ] is a Cohen-Macaulay normal domain, and that /A [X , x V ] is a
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prime ideal of height 2. Moreover, /A [X , .x.Wt1] does not contain any element
of X '.

We use these informations to deduce hat / has the required properties:
Since / is the ideal of maximal minors of an r -1  by r matrix, its height is

Suppose it is less than 2. Then there exists a prime ideal 13 containing
/ with height 13<2, and so 13A[X, x V ]=A [X , x V ] since height /A [X , x ']= 2 .
This is true for any xst Z .  Therefore it follows that 13 contains the ideal
(Z ) which is absurd since height(Z)=4. (For this part of the proof it would
have sufficed that Z  contains two elements.) We conclude that height 1 =2,
and hence by [19] the ring A[X]/I is Cohen-Macaulay, and / is an unmixed
ideal.

Next we claim that / is a prime ideal. Indeed, suppose there exist two
different minimal prime ideals 13, and 132 of I . S in c e  /A [X , x V ] is  prime
ideal, it follows that for any xstE Z  we have xstE131 or x8tE132. None of the
two prime ideals can contain all x t ,E Z  since their height is two. Thus we
may assume that xiiE131 and x124131. But then xiiE131A[X, ./.21] =/A[X,
xi'], a contradiction.

It remains to show that A[X]/1 is normal. For this it suffices to prove
that A[X]/I satisfies the Serre condition R I . Let 13D1 be any prime ideal
with height(13//)=1. Then, since height $=height / +1=3 < height(Z), there
is an element xste Z  not belonging to 13, and hence (A[X]//)13 may be consid-
ered as the localization of the normal ring A[X, .x.s- t1 ]//A [X , xWt1]. Therefore
it is regular, as desired.

Following [16] we call a homogeneous ideal / of a polynomial ring Z [X ]
over the ring Z  of integers a  generically  (perfect, resp. Gorenstein, resp.
normal) prime ideal if height/=height(/A[X]) and A[X]/IA[X] is a (Cohen-
Macaulay, resp. Gorenstein, resp. normal) domain for any (Cohen-Macaulay,
resp. Gorenstein, resp. normal) domain A.

With this notation, 2.2 has the following consequence.
Corollary 2 .3 .  Let (x ,,) be an r-1  b y  r m atrix  su c h  th at the non-zero

entries form  a set X  of algebraically  independent elem ents over Z  and .n., ±0
for j - 2 .  Let I be  the ideal of Z [X ] generated by  the maximal m inors of
(z.,). T hen I is a height 2 generically  p e rf e c t  normal Prime ideal.

The following lemma describes the transfer of generic properties. We
refer the reader to a survey on the widespread literature on this subject in [3],
Chapter 3. The proof of the next lemma follows the patterns of [27].

Lemma 2 .4 .  Let I  b e  a generically  (perfect, resp. Gorenstein, resp. nor-
m al) hom ogeneous prime ideal of a polynomial ring Z[X ]—  ,  x n ] .
Let S  be a N oetherian commutative ring w ith unity  w hose Jacobson radical
contains a  regular sequence ai,••., an such that S I (al,  ,  a n )  i s  a (Cohen-
M acaulay , resp. Gorenstein, resp. normal) domain. Let J  denote the ideal
generated by the elements 9(f), f  E I, where ço is the ring homomorphism from
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Z [X ] to  S  induced by  th e  m ap x,[—>az, i=1,••., n. T hen S IJ  is  also  a
(Cohen-Macaulay, resP. Gorenstein, resP. norm al) domain.

Proo f . Since height(/)=height(/Zp[X]) for an y  prime number p, the
ideal I  does not contain any non-zero element of Z ; therefore / •-,
Put 13= (ai, a n ) .  Then Jg_13. Since 13 is contained in the Jacobson radical
o f S , it suffices to show th at the associated graded ring gr$ 1,(S I I )  i s  a
(Cohen-Macaulay, resp. Gorenstein, resp. normal) domain (see e.g. [21, (2.1D)],
[20, Theorem 4.11], and [6, Section 3]). Let A  be the ring S/13. B y the
assumption on al, • ,  an, gr$(S) -=- 11,[X ] and A is  a (Cohen-Macaulay, resp.
Gorenstein, resp. normal) domain. In the following we will identify  g r ( S )
with A [X ] . Let I*  denote the ideal of A[X] generated by the leading forms
of J . Then gr13(5/J) —= A [X ]/ I* . By the generic property of I  we need only
to show that /*— /A[X]. Since I  is a homogeneous ideal, this follows once
we know that height(/*)=height(/A[X]). To prove the latter equality, it is
sufficient to show that height(/*)<height(M [X]). Let K  denote the quotient
field of A . We have

height(/*)< high(/*K [X )

Since 13n is a primary ideal for all n>_0, the order of any element of / with
respect to the 13-adic filtration remains the same when passing to the 13Sradic
filtration. Hence /*K[X ] is the ideal of the leading forms of the elements of
JS$ in grw v (S 13)= -K [X ]. This implies

height(/*K[X])=height(JSI3)

(see [12, Kap. II, § 3]). But

height(JS13)<height(/)=height(/A[X])

by the superheight theorem of Hochster [17, (7.1)], and hence we obtain height
(/*)<height(/A[X]).

C orollary 2 .5 . L et (g,.7) be an  r —1 by r  matrix of  homogeneous elements
of  a polynomial ring S  over a f ield k which satisfies the following conditions:
(i) g„ * 0  f or 2,
(ii) T he elements g„1 *0  form  an  S -regu la r sequence,
( i i i)  The f actor ring s/13 is  a (norm al) Cohen-M acaulay  dom ain, where q3
denotes the ideal generated by the elements
Suppose moreover that the ideal J  generated by the m axim al minors of  (g,,) is
homogeneous. Then SIJ is a (norm al) Cohen-Macaulay domain.

Proo f . Let rn denote the maximal graded ideal of S .  By 2.3 and 2.4, the
local ring (S/J),„, is a (normal) Cohen-Macaulay dom ain. Since J  is a homoge-
neous ideal, th is is equivalent to  saying that S/J i s  a (normal) Cohen-
Macaulay domain (see [20] or [6, Section I]).
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Remark 2.6 . The condition x„*0 (resp. g„*0) for i j - 2  of 2.3 (resp.
2.5) can not be weakened. For instance, the ideal generated by the 2-minors
of the matrix

( x  y  0 )
u V  w

is not a prime ideal.

3. Lifting height 2 perfect ideals

There is an easy way to construct, for a given arithmetically Cohen-
Macaulay variety X  of codimension 2 in Pn whose degree matrix satisfies the
condition u„+2>0, a  reduced irreducible arithmetically Cohen-Macaulay
variety Y of codimension 2 in a larger projective space PmDPn such that X
=  Y  P n

To see this let us introduce the following terminology. We say that a
homogeneous ideal ICR =k[xo,•••, xn] can be lifted to an ideal Jc S=k[xo,
•••, xm], m> n, if there exist linear forms Yi, •- , yr of S, r =m— n, such that R

y r) and /" .=- (J, v .-•, Yr)/(Yi, •••, Y r ) •  Geometrically, this means
that the variety defined by I  in P n is the intersection of the variety defined by
J  in Pm  with a  n-space.

Lemma 3.1. A ny height 2 perfect ideal I C R = k [X 0 ,— ,  X n j  whose degree
matrix (u u ) satisfies the condition u„+2 >0 can be lif ted to a height 2 perfect
prime ideal J E S = k[xo, «, x,,,[ fo r  som e integer m> n such that SIJ is  a
normal domain.

P ro o f  Let (gu ) be a Hilbert-Burch matrix of I  having the degree matrix
(u u ). For every ui;  >0, we introduce new indeterminates bu, C0
and put

G0= x u 0P - 1 + y1 g " - - 1  + +  gu

For u , 0 we put G =0 . Since uu+2>0, G„*0 for all Let S be the
polynomial ring over R  in all indeterminates x u , y,, a u , bu , c u . It is obvious
that the elements G0  form a regular sequence of S .  From the fact that the
normality of a ring A  is transfered to all rings of the form A[x, y]1 (ax + by
+ c), where x, y are indeterminates and a, b, c is a regular sequence of A ([26,
Korollar 4.4]; see also [18] for a homogeneous version of this result), we can
successively deduce that SM3 is a normal Cohen-Macaulay domain, where 13
denotes the ideal generated by all Gu . Let J be the height 2 homogeneous
ideal of S generated by the maximal minors of the matrix (G„,). Then I  can
be lifted to J since the Gu  specialize to g, for all i and j; moreover, by 2.5, S/J
is a normal Cohen-Macaulay domain.
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One can easily derive from 3.1 Sauer's characterization of the degree
matrix of smooth arithmetically Cohen-Macaulay curves in P 3 .

Corollary 3.2 ([13], Theorem 4.1). L et a i< - - - a r  and b i< •••< br_ i be two
sequences of positive integers and put u u = bi— a;  f or all i  and j .  The matrix
( u u )  is the degree matrix of  a smooth arithmetically Cohen-Macaulay curve in
1213 i f  an d  only  i f  uii+2>0 for i 1 ," ,  r — 2.

P ro o f  By 2.1, we only need to prove the sufficient part of the statement.
Let I  be the height 2 perfect ideal generated by the maximal minors of the
matrix ( g u ) with

g j j

0 if u 0 0.

By 3.1 we can lift I  to a height 2 perfect prime ideal J  in a polynomial ring
S= k[xo, •••, .x.] such that S/J is a normal domain. Let Yc Pm be the arith-
metically Cohen-Macaulay normal variety defined by J. T h ere  is  a  Bertini
type theorem on hyperplane sections of normal varieties [11, Theorem 5.2]
according to which there is a linear subspace P 3 of Pm such that X = Y n ./3 3

is  a  smooth arithmetically Cohen-Macaulay cu rve . Of course, X  has the
same degree matrix as Y , namely (u u ).

To prove 1.1 we need a  Bertini type theorem dealing with hyperplane
sections passing through a fixed linear space.

Lemma 3 .3 .  Let J  be a p e z f e c t  homogeneous Prime ideal in a polynomial
ring S  over k  such that S I J  is a norm al dom ain. A ssum e that there are r >
2 linear forms xi, ••• , xr of  S  such that I= ( ,  ,  xi, •-• , xr) is a reduced ideal with
height /=height 1+  r. For a general linear form  x  in (xi, ••• , xr), the ideal
( J ,  x )  is a perfect prim e ideal and S I ( J ,  x )  is normal domain.

P ro o f  We only need to show that S/(J, x )  satisfies Serre condition RI.
Let( J ,  x) be an arbitrary prime ideal of S  which corresponds to a singular
point of Spec(S/(J, x ) ) .  W e have to  show that height $/ (J , x ) By
Bertini's theorem on singularities (see [30] for char(k)=0 and, e.g., [28,
Lemma 3.5 (ii)] for char(k) 0) we know that $ in z ,  w here C  is the
defining ideal of the singular locus of f .  If $  I , there is an associated prime
ideal $' of I such that $  q 3 '.  Since I is a reduced ideal with height /—height
J+  r, the local ring (S/J)13,  is regular. From this it follows that (S/(J, x))13, is
a lso  regu lar. T hus, $ '* $ ,  an d  we obtain height $/(J, x)—height $//
+height //(j, x) height $/$'+ r —1>2. If $ we have

{ 4 "  if u u  >0 ,

height $ / (J , x) height (C, x )/ (J, x)—height x)/C+height Z/J —1 .
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Since S/J satisfies the condition RI, height C / J  2 .  We distinguish two cases:
in the first case there exists no associated prime ideal of C  of minimal height
containing (xi, •••, x n ) .  Then, by the general choice of x, h e igh t(,  x)/C > 0,
and thus height $ / ( J ,  x )  2. In the second case such an associated prime
ideal C : ex is ts . Then, since / ,  it follows as above for $  that height C I ( J ,
x )  2 ,  and this implies that height CY./ 3. Hence height $/(J, x)__ height
C / J - 1 = h e i g h t  C ' / J - 1 >  2 ,  as required.

Remark 3 .4 .  The assumption that (J , xi, •—, x r) is a reduced ideal can
not be removed in 3.3. For instance, let J  be any height 2  homogeneous
perfect prime ideal in R= k[xo, xi, x2, x3] such that R/J is normal and e (R I J )
> 1 .  We may assume that h e ig h t( J , xi, x 2 )= h e ig h t J+  2 = 4 .  Since e (R IP )=
1 for any homogeneous prime ideal P  of R  with height P = 3 ,  the ideal (J , x)
is never prime for any general linear form x  in (xi, x2).

Now we are able to prove the first main result of this paper.

Theorem 3 .5 .  Let I be a height 2 perfect reduced homogeneous ideal I in
the polynomial ring R =  k[xo, ••• , xn]. A ssume I is m inim ally  generated by
forms of  degree ai, a r ,  ai < a2 • • • < an  an d  has degree matrix ( u u ) .  Then
the following conditions are equivalent:
(i) uu+2>0 for r —2.
(ii) I can be lif ted to a height 2  perfect prime ideal J  in S=k[xo, • •• , xn+i] such
that S I J  is a normal domain.
(iii) I can be lif ted to a height 2  perfect prim e ideal.
(iv) I can be lif ted to a height 2  perfect ideal which contains an  irreducible
form  o f  degree a i.
( y )  I can be lif ted to a height 2  perfect ideal which contains a form  of  degree
al and a form  o f  degree a2 with no common factor.

P ro o f  The implications (ii) (iii) (iv) (v) are obvious, (v) (i) follows
from 2 .1  and 3.1. It remains to show that (i) (ii). First, by 3 .1 ,  /  can be
lifted to a height 2 perfect prime ideal f c  S'=k[xo, • • •, xm] for some integer m

n  such that S'/J' is a normal domain. We may assume that r  =  m -
i?"- - S'/(x,z+i, • • •, x . )  and  /=- (J', x,z+i, • • •, x.)/(xn+i, • • x . ) .  Then = ( / ' ,
xn+i, •••, x . )  is  a reduced ideal with height =height J'+  r .  Applying 3.3
successively, we can find r —1 linear forms, say xn+2, • • •, xm, such that (J', xfl+2,
•••, xm) is a perfect prime ideal and S'/(J', xn+2, •-•, x . )  is a normal domain.
Let J  be the ideal ( r ,  X n +2 , X m )I(X n +2 , X m ) of the ring S=k[xo, •••, xrz+i]=
S '/(X + 2 , x . ) .  Then J  is a  height 2 perfect prime ideal of S  and S t/  is
normal domain. It is obvious that / can be lifted to J .

Theorem 1.1 is just the equivalence (i)< >(ii) of 3.5. In particular, we
obtain the following result of Chiantini and Orecchia.

Corollary 3.6 (cf. [7]) .A  collection X  of points in P 2 is a h y p e rp  lane section
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of  a projectively norm al curve in P 3 if  an d  only if  the degree matrix (u u ) of
X  satisfies the condition uii+2>0.

Conditions (iv) and (v) of 3.5 can be easier checked than condition (i) in
certain situations. Recall that a set X  of points in P 2 is in uniform position
if all subsets of X  with the same cardinality have the same Hilbert function,
and that the general hyperplane section of any reduced irreducible curve in .13 3

is a collection of points in uniform position [15]. Since the defining ideal of
any collection of points in uniform position in P 2 has an irreducible form of
the least possible degree [22, Remark 1.21, the equivalence (ii)< > ( iv )  implies

Corollary 3.7 (cf. [7]). Every  se t o f  points in  uniform  position in P 2

arises as a hyperp lane section of  a projectively norm al curve in P .

Remark 3 .8 .  (1) In spite of 2.1 and the equivalence (i)< > ( v )  of 3.5, one
may ask whether a  height 2 perfect reduced ideal I  whose degree matrix
satisfies the condition 741+2>0 always contains two forms of least possible
degree having no common factor. The answer is negative. Consider, for
example, the ideal I=(x , yv—  zu)n(y—  u, a— v) which is generated by the
2-minors of the matrix

(2) Without the assumption I  being a reduced ideal, conditions (0, (iii), (iv),
(v) of 3.5 are still equivalent. W e do not know whether this assumption can
be removed in 1.1 and 3.5.

4. The Hilbert function and multiplicity
of height 2 perfect homogeneous prime ideals

In the following we will determine all possible degrees of reduced and
irreducible arithmetically Cohen-Macaulay varieties of codimension 2 and
their hyperplane sections.

Let Ic R =k [x o , xn] be a height 2 perfect homogeneous ideal which is
minimally generated by r elem ents. Let A be the degree matrix of I.
For convenience we set

u i = u i i  a n d  vi=

for a ll i. By [5, Prop. 1] the multiplicity of Rh is given by:
r -1

e(RII)— u i (v i + • - • + v r -1 ) .

Note that the integers u i  and vi completely determine the matrix ( u u ) ,  since
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for all i, j, s and t we have
(a) u u + ust= uit +

Conversely, suppose we are given positive integers u,, v, for i = 1 , ••• , r
—1, satisfying the conditions
(b) u > v ,
(c) uz+i vz.
Then these integers determine the degree matrix A=(u,,,) of a height 2 perfect
homogeneous ideal, where we set u , and 14.+1= v, for i =1, •••, r 1, and
where the other coefficients of A  are defined via (a). In  view of this fact we
set

r -1
e (A )= u i ( v i + • • • +  v r - i )  ,

and

i(A )=  al= vi+ • • • + .

It is now clear that the possible multiplicities e(R II) range over all integers
e(A ) where A is an r-1  b y  r  matrix arising from the u, and v, described as
above. In particular, any integer d ( ) occurs as a multiplicity of a height
2  perfect homogeneous ideal which is minimally generated by r  elements.
To see this one just chooses the r -1  b y  r  degree matrix

/ 1  1

1 1
u  1 /

where u = d  —( )+ 1 .  On the other hand it is clear from the formula for e(A )
that we always have

e (R II)> ( r ) .
2

The lower bound for e(R II) becomes sharper if we take into account the
initial degree a i =  v i + • • •  v r _ i  of I; cf. [9] and [5].

Lemma 4.1. e(R II)> ()+ (a i—  r +1 )(r +1 ).

P ro o f  If r=2, I  is a complete intersection, and hence e(RII)=a1a21
+ ( a l - 1 ) 3 .  If r  > 2 ,  we denote by B the r-2 by r-1 matrix obtained from
A by deleting the first row and column. We have

e(RII)=e(A )= uiai+ e(B ) .
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By induction we may assume that

e(B)(r —1
2

vi— r . +2)r .

Since ui we obtain

r
e(A) v iai+

( - 1 )
r +2)r

2

( r=vial+ — r+1+(ai— r+2)r— vir
2

)+ (ai— r+ 1)(r+ 1)
2

There is a further constraint for the degree matrix of a height 2 perfect
homogeneous prime ideal. By Corollary 3.2, we have to add

(d ) vi+ vi+i — >0

to the conditions (a)—(c).

Theorem 4.2. L et Er denote the set of  all positive integers which occur
as  th e  multiplicity o f  height 2 Poject hom ogeneous prim e ideals w ith r
generators. Then

E3={nENIn>3}\14,

and

rE r= nE N 1 n> \ +1, —{ ) r r  + r - 2 ,  r  + r ,  r  + 2 r
2 2 '  2 2 2

f o r r >3.

The theorem shows that the additional requirement that / be prime gives,
for r >3, the extra gaps ()+1, •••, ()+  r — 2, ()+  r, ()+2r in the sequence of
possible multiplicities.

Proof  o f  4 .2 .  Let C denote the set of all r —1 by r degree matrices A
= ( u )  whose elements u, and v, satisfy the conditions (b), (c) and (d).

W e  have Er={ e(A ): A E C } .  I f  i(A )=r —1, then
Using (b), (c) and (d) it is easy to check that A  has the following form
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/u 1

A (u)=
1 1

1 1 /

for some integer u > 0 . Similarly, if i(A )= r , we deduce that A must be one
of the following matrices:

/ u  1

B i(u)= . .

2 2/

u  1

B (u)=

 

2 2
2 •

       

/u  + 1  2
2 •

•Br-i (u )=

  

for some positive integer u, where the dots stand for 1, and where the first
number 2 in the matrix B i(u) (1=2, r —2) appears in the (r — i)-th row.
We have

(1) e(A (u))=()+(u — 1)(r — 1)

(2) e(B ,(u))=()+ ur + 1,  1=1, r  —1.

By 4.1, i(A )= r -1  o r  r  if  e (A )<( )+2 (r +1 ) . Hence using (1) and (2) we
can compute all numbers ( +2r of E r and obtain the following values (i ),
( ) + r — 1, ( ) + r +1, • • • , ( )+2r — 1 and, if r= 3, ()+ 2r — ()+ 3(r — 1)= 9.
Moreover, from (2) we know that E r contains the numbers ( ) + 2 r +1, ••-, ()
+3r — 1. Hence, to complete the proof, we only need to show that E r contains
all integers >()+3r.  F o r  this we give a list of degree matrices A E C such
that e(A ) covers all arithmetical progressions a(r +1)+ b of the integers ( )
+ 3 r .  In the following list, the first column gives the degree matrix A , the
second column the number e(A ) and all possible numbers u:

r=3:
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(u 2 2 ) 4 u + 4 ,u > 1

( u 13 3 )
4 u + 9 ,u > 0

2

(u
) 4u+6, u>13 2

3

(u 3 1
) 4u+3, u>2

T=4:

2 \

(u
2 1

2 2/
5u+10, u>1

/u 2 \
3 2 5u+11, u>1

\ 2 1/

/u 1 \
2 2 5u+12, u>0

\ 2 2/

2 \

( 1
2 2

2 1/
5u+8, u>1

1( u
2 2) 5u+14,u > 0

3 2

r>4:

2 \
2 2

( u
2 • u ( r + 1 ) + ( l+ r - 2 ,

2 u>1

• ./



u(r+1)+( r )+ 2 r  , u > 0
2

u(r+ 1)+ ( r )-k r  , u > 1
2

u(r-1-1)+( r )-E r+ 1 , u > 1
2

u(r+ 1)+ ( r )+ 2 r— i, u > 0
2

/

\
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/u 1
2 2

2 •

\ 2

( u 2
2

• •

\ 2 2/

2
2

2 2

\ 2

1

2 2

2 2
2 •

-\

\

Here the first number 2 appears in the 14h row, 2 i r - 3

u  1 \

  

2 2

2  2 /

u(r+1)+( r )-E r+ 2 , u > 02

  

The proof of 4.2 is now complete.

As a by-product of the above proof we obtain the following description of
the case when I  contains a form of degree r-1  (the least possible initial
degree).

Lemma 4 .3 . L et I  b e  a  height 2 pof ect homogeneous prim e ideal in a
polynom ial ring R  ov er k  w hich is m inim ally  generated by  r 3 elements.
Suppose that I contains a f orm  of  degree r — 1 . Then
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e (R II)=()+ u (r — 1 )
2

f or some integer it O, and I is generated by one form  of  degree r-1, an d  r
—1 form s o f  degree u+r — 1.

From 4.2 we immediately obtain the following upper bound for the
minimal number of generators, v (/) of I.

Corollary 4 .4 .  Let I be a height 2  perfect homogeneous prim e ideal in a
polynomial ring R  over k  with e ( R I I ) = d .  Suppose that d = ( ) + i ,  r 2 and
0 < i r  — 1 .  T hen v ( I ) ‹ r — 1  i f  i =0, r - 1  a n d  v ( I ) < r  i f  i =0, r — 1.
Moreover, these bounds are sharp.

Remark 4 .5 .  For the larger class of height 2 perfect homogeneous (not
necessarily prime) ideals of multiplicity d = ( ) + i ,  r 2  and 0 < r — 1, the
bound is always v (I)< r. (Compare this result with the main Theorem in [8].

5. The degree matrix of height 3 Gorenstein ideals

Let IcR =k [x 0 ,--- , x n ] be a height 3 Gorenstein homogeneous ideal. By
the structure theorem of Buchsbaum and Eisenbud [2], there exists an integer
r  such that I  is minimally generated by the 2 r-pfaffians of an 2r+1 by 2r
+1 skew-symmetric matrix (g,,) with homogeneous entries. We denote by p,
the pfaffian of the skew-symmetric matrix which is obtained from (g„,) by
deleting the i-th  row and i-th  column. Then /= (I) ••., P 2 r+ 1 )• Let ai,
a 2 r + 1  be the degrees of these pfaffians. Then R II, since it is Gorenstein, has
a self-dual free homogeneous R-resolution

2r+1 ( ( h i )  2r+ 1
R(— c)— >  R(— b1) - - - - - R ( —  a ; )— > R — > 0 .

We may assume that

a1<a2<.•••<a2r+1

and, since the resolution is self-dual, that

b i= c — a i  f o r  i =1, ••-, 2r+1.

The matrix (7,10 ) with u u = bi—  ai =c— ai— a ;  for i, j=1, • • • , 2r+1 is called the
degree matrix of I. It is clear that (uu) is symmetric and that deggu = u u  for
all i, j, (gii = 0, and so may have any degree, say

Note that (u u) satisfies the following conditions:

(a ) u u >ust for a ll i <s  and j< t,
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(b) U + u s t= Ut +

(c) zt o  >0 for a ll i ,  j  with i + j=2 r +3.

The first two conditions are obvious. Concerning (c ), suppose that
tt,2r+3- <0 for some i. Then, by (a), ust <0 for all s i and t 2r +3— i, and
hence gst =0 for the same indices. From this it follows then easily that p i  is
zero, a contradiction.

Conversely, any symmetric matrix (a u )  of integers which satisfies the
conditions (a), (b) and (c), is the degree matrix of a height 3 Gorenstein ideal.
To simplify notation we set

(1) i =1, r

(2) V i - U 1 2 r + 2 - i i =1 ,• - ,  r

(3) W i - U i+ 1 2 r + 2 - i  , • • . ,  r .

Note that the integers u i  and vi determine all other coefficients of the degree
martix (u u ) , and that the integers u i ,  vi and wi are all positive, by (c).

Now let (g u )  be the skew-symmetric matrix with (7, i 2 r + l - i - 9 i 2 r + 2 - 1 -

y v i ,  and g i+ 1 2 r + 2 - i -  U w i  for i =1,•••, r, while ,gii =0 for all other i ,  j  with i < j .
Here x , y, z  are indeterminates. The ideal I  of the 2r-pfaffians of (gii )  is (x,
y, 4-primary. Indeed, P i= e 1+ - ' ,  Pr+1=y ' v r+ • • •  and P2r+1=x ' .
By [2], I  is  a  height 3 graded Gorenstein ideal with relation matrix (go ).
Thus / has degree matrix (u i ; ) , and condition (a) implies that ai <•••< a2r+i,
where ai=degPi for i =1,•••, 2r+1.

Note that

ai= E vi + E wi  , •••, r +1 ,j=1

r  - i+ 1

a r + i =  E  v i +  E  u ,i = 2 ,  • • • ,  r + 1 ,5=1 •=r-i+2

and that
1  2 r + 1

C = -  E a .r

To prove the last equation, we observe that v =c — a i for i =1 ,---, r.
Adding up these equations, we obtain

2 r+ 1

ar+1 =E v i=rc — i Ei=1 i=1 i= r+ 2

and the assertion follows.
The aim of this section is to characterize the degree matrix of homogene-

ous height 3 Gorenstein prime ideals; see 1.2 and 1.3.
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Lemma 5.1. L et IcR=k[xo,••., xn] be a height 3 Gorenstein homogene-
ous ideal w ith degree m atrix  ( u ) .  S uppose that I contains tw o form s of
degree ai and az (the least possible degrees) having no common factor. Then
u0 >0 f o r all i, j with i + j=2r +4, r+1.

P ro o f  Without restriction w e m ay  assume th a t the forms are the
pfaffians p i  and p 2  of the skew-symmetric matrix (g,,). If ut,2r+4-t<0 for
some t =3, r  + 2 ,  we have ui, < 0 and therefore g =  0 for all t and j_>2r
+4— t. Thus, the 2(r +2— t)-pfaffian obtained from (gz,) by deleting the first
t - 1  and the last t -2  row s and columns is a common factor of p i  and p2, a
contradiction.

Proof  of  the necessary part of  1.2 and 1.3. It is obvious that any height
3 homogeneous prime ideal contains two forms of least possible degree having
no common facto r. Therefore, the degree m atrix of any arithmetically
Gorenstein reduced irreducible variety of codimension 3 and of a l l  of its
hyperplane sections (they have the same degree matrix) satisfies the condition
uz.,>0 for i +j=2r+4, i=3, •••, r+1.

To prove the sufficient part of 1.2 and 1.3 we follow the approach of
Section 2 and Section 3.

Lemma 5.2. L et A  be a Gorenstein norm al dom ain. L et (x 0 ) be a 2r+1
by 2r+1 skew-symmetric matrix such that X = {4 ; i+  j < 2 r +4, i< j}  is a set
o f  indeterminates over A  an d  4 E A  f o r i +  j> 2 r+ 4 , i<  j .  L et I  b e  the
ideal generated by the 2r-Pfaffians of  (x 0 ). Then height/=3, and A [X ]I I  is
a norm al Gorenstein domain.

P ro o f  We prove the assertion by induction on r .  If r =1, the statement
is trivial because then the entries of (4 )  consist of algebraically independent
elem ents. I f  r >1, w e start w ith  a  general observation. Let xst b e  an
arbitrary element of X  with s+ t <2r +4 and s< t, and consider the matrix (x

whose entries belong to the ring A[X, .x .Wt1 ], and are given by

, {xstxi, if i = t or j=  t
xstxu — xitxs, —  xi txis if both i, j* t .

It is obvious that the new  m atrix ( x , )  is skew-symmetric and that its
2r-pfaffians generate the ideal /A[X, xs-ti ]. Let (Yi.,) be the 2 r - 1  b y  2 r - 1
submatrix of (4 )  obtained by deleting the rows s, t and columns s, t. Then
(y,,) is also a skew-symmetric matrix. Since the entries of row s and column
s of (4 )  are zero except x'st=x ;s=A t, every non-vanishing 2r-pfaffian of
(4 )  is  the product of A t  with a  2(r —1)-pfaffian of (yz.7 ). Therefore the
2(r —1)-pfaffians of ( y )  also generate the ideal /A[X, xiti ]. Now we choose
xst in the set
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Z =
{ X 14 , X 15 , X 24 , X 25 , X 3 5 }

{ X 1 2 r+ 1 , X 2 2 r+ 1 , X 3 2 r+ 1 , X 4 2 r , X 4 2 r -1 }

{ X 1 2 r+ 1 , X 2 2 r+ 1 , X 3 2 r+ 1 , X 4 2 r , X 5 2 r -1 )

if r= 2 ,
if r= 3 ,
if r> 3 .

 

Let X ' denote the set of all elements of X  in the rows s and t, and denote by
B  the ring A[X', x V ].  Then B  is a Gorenstein normal domain, A[X, x V ]=
BEY] and /A[X, .x . t1 ]=/B [ Y ] where Y={Y=.71i+ j<2 r +4, i < j } .  Note that
Y is a set of algebraically independent elements over B , and that 3)0 E B  for
i+j>2 r +4, 1<]. These two facts (with r  replaced by r —1) remain true for
the matrix (y„) with respect to the indexing of its entries according to their
row and column position (which differs from the given indexing which is
induced by that of (4 ) ) .  Thus we may apply the induction hypothesis, and
conclude that A [X , xV ]//A [X , B [ Y ] l I B [ Y ]  is  a  Gorenstein normal
domain, and that /A [X , x, -t1 is  a prime ideal of height 3. Now the proof
follows exactly the line of arguments of the proof of 2.2, hence we ommit it.

In Section 2 we introduced generic properties of ideals. We refer to this
notion in the following corollary which is a consequence of 5.2.

Corollary 5 .3 .  Let (x„,) be an 2 r+ i  by 2 r + 1 skew-symmetric matrix such
that the non-zero entries x 0 , i< j, form  a se t X  o f  algebraically independent
elem ents over Z  an d  x ,,* 0  f o r i+ j<2 r +4 . L e t I  be the ideal of  Z [X ]
generated by  the 2r-pfaff ians of (xz 1 ). T hen I  i s  a  height 3  generically
Gorenstein normal prime ideal.

Combining 5.3 with 2.4 we obtain the following result on specializations
of generic height 3 Gorenstein prime ideals.

Corollary 5 .4 .  L et (g,,) be a 2 r+ 1  by 2 r+ 1  skew-symmetric matrix of
homogeneous elements of  a Polynomial ring S  over a field k which satisfy the
following conditions:

(i) g0 *0 f o r i+j<2 r+4 , i<j,
(ii) The elements g„,*0 form a regular sequence of S ,
( iii)  The factor ring S113 is  a (norm al) Gorenstein dom ain, where i s  the
ideal generated by the elements gd .

Suppose that the ideal J generated by  the 2r-pfaffians of (g,,) is homogeneous.
Then SIJ is a (normal) Gorenstein domain.

From 5.4 we deduce, similarly as in the proof of 3.1, the following result
which allows to construct, for a given arithmetically Gorenstein variety X c
P n  of codimension 3 with the condition u 0  >O fo r i + j< 2 r+ 4 ,  i< j ,  an
arithmetically Gorenstein normal variety Y  of codimension 3 in  a  larger
projective space such that X  is the intersection of Y with a linear space.

Lemma 5 .5 .  L et I  be a  height 3 Gorenstein ideal in R= k[xo, •• • „rd.
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I f  r= 1  or r 2  and its degree matrix (u „ ,) satisfies the condition zi >0 f o r i
+  j= 2 r +4, i =3, r  + 1 ,  then I can be lif ted to a height 3  G o r en s t e in  prime
ideal J cS = k [x o ,• • - , .x m ]  f o r some integer m > n  such that S I J  is a norm al
domain.

Now we are able to complete the proofs of 1.2 and 1.3.

Proof  o f  the sufficient p art  o f  1 . 2 .  Let ( u )  be the degree matrix a
height 3 Gorenstein homogeneous ideal in some polynomial ring R  over k.
Suppose that uz., >0 for i + j= 2 r  +4, i =3, r  + 1 .  By 5.5 we can lift I  to a
height 3 Gorenstein prime ideal J  in a polynomial ring S = k [x o , •••, such
that S / J is  a normal domain. Let Y c  Pm  b e  the arithmetically Cohen-
Macaulay normal variety defined by J .  Using Bertini's theorem on hyper-
plane sections of normal varieties [11, Theorem 5.2] we can find a linear
subspace P 4 of Pm such that X = Y (-1 P 4 is a smooth arithmetically Gorenstein
curve. Of course, X  has the same degree matrix (1, 0 )  as Y.

Proof of the sufficient part of  1 . 3 .  Let /CR =k[xo, • • • , xn] be the reduced
defining ideal o f X .  Suppose that the degree matrix o f X  satisfies the
condition uz., >0 fo r  i + j= 2 r + 4 .  B y 5.5, I  can be lifted to  a  height 3
Gorenstein prime ideal J'OES'= k[xo, • • •, x.] for some integer m >  n  such that
S'/J' is a normal domain. We may assume that r = m— RL- S' /(x+1, • • •
x . )  and /=- (J', xn-Fi, •••, xm)/(xn+i, •••, xm). Then F = (J ' ,  ••-, x m )  i s  a
reduced ideal with heightr=heightr +  r. Applying 3.5 successively, we can
find r-1 linear forms, say xn+2, •-•, xm, such that (J', xn+2, • «, xm) is a Goren
stein prime ideal and S '/ (J ',  xn+2, •••, xm) is a normal domain. Let J  be the
ideal ( J ' ,  xn+2, • •• , xm)I(xn+2, • , xm) of the ring S = k [x o , • • •, xn+i] =S1(xn+2,
xm ). Then J  is a height 3 Gorenstein prime ideal and S/J is a normal domain.
Let YcPn+ 1 be the arithmetically Gorenstein normal variety defined by the
ideal land  H  the hyperplane xn-Fi =O. It is obvious that X = Y n H.

From Theorem 1.3 and Lemma 5.1 we immediately obtain the following
result.

Corollary 5 .6 . Let X c P n  be a reduced arithmetically Gorenstein vari-
ety of codimension 3. Let H  be a hypersurface o f least possible degree
containing X .  If H  is irreducible, then X  is  the hyperplane section of a
reduced irreducible arithmetically Gorenstein normal variety of codimension
3 in Pn .

6 .  The multiplicity of height 3 perfect homogeneous Gorenstein ideals

The purpose of this section is to give a compact formula for the multiplic-
ity of a height 3 homogeneous Gorenstein ideal in terms of its degree matrix.
We begin with the generic situation: let k  be a field, R  the polynomial ring
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over k  in the indeterminates x,,, l<  i< j<2r +1, and let A =(g1) be an 2r+1
by 2r+1 skew-symmetic matrix with g ,,=z , for all l<  i< j< 2 r  + 1 . Given
< i2 <  <  j .< 2 r  + 1 ,  we let , be the skew-symmetric matrix which is
obtained from A by deleting the i2-th, •••, ir -th column and row of A, and
denote by p „ , , .  „  the pfaffian of

We intend to compute a GrObner basis of / =(1) •••, P2r+1) with respect to
a suitable order of the monomials. First we order the indeterminates accord-
ing to their position in A row by row from the right to the left:

X 12 r+ 1 >  X l2r >  • • •  >  X 12  >  X 227+ 1 >  • • •  >  X 23  >  X 32r+ 1 >

and extend this order to all monomials by the reverse lexicographical order.

Theorem 6.1. The generators p i, • • . ,  P2r+1 form  a G rA ner basis of I.

Proof. We denote by f *  the leading form of a polynomial f . Let us first
compute p , * .  Let i * l ,  2r+1, then

i-1 2r+1
Pi= E(-1Y.rupiii+ E .j=2 j = i + l

Since non of the Ai, contains the variable x12,-+I which is the largest in the
given order, it follows from this expansion that

p i * - ( ±  X 12r+ 1P 1  i2 r+ 1 )
*

 =  ± .X 1 2 r + 1 P t i2 r + 1

and hence
1

p2*, -6., X l2 r + 1 (q 2
*

,  " . ,  q Icr)

where qi= h,1i2r+1 for i=2 , •••, r.
For i =1 , we have pi = E 1 r=1-1 ( - 1YX2iP12i, and so p i* = ± x 2 2 r  h g `+1,2r+1. It

follows by induction that

X 22r+ 1X 32r X i2  r+ 3 - i • • 
•
X rr+ 2  .

Similarly

X l2 r X 2 2 r -1
-

X i2 r + 1 - i
-

X rr+ 1  .

Let J=(pi*, ••., g r + 1 ) .  We conclude that

(1) -(11 Xi+12r+2-i, X i 2 r + l - i ,  X 1 2 r+ 1 ) n (q2*, . • . ,  Or)
i = 1 i= 1

We want to prove that J=/*• The inclusion Jc /* is obvious. To prove the
other inclusion notice that J  is reduced and equidimensional (as may be seen
by induction), so that it suffices to show that e(R IJ)=e(R II*).

In order to compute e(R II*) we observe that e(R II*)=e(S ), where S =



(2r —

if 0< i‹r  — 1

if r<i .<2 r —2.
11§(i)

2
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We reduce S  modulo a sequence of 1-forms, and obtain an Artinian ring,
S .  Then e (S )=e(S 1==l (S1, the length of S .  The degree of the socle of the
Gorenstein ring S  is 2r —2, and the defining equations of S  are of degree r.
From this and the symmetry of the Hilbert function it follows easily that

Therefore e (S )=2 a(z - 2 )+(r -
2
1 1 ) _ E 7i•

On the other hand it follows from the presentation of J  that

e(R IJ)= r 2 + e(R/(q2 * , • -, Or)) .

By induction we may assume that

(Q2* , • ••, e r) =( Q 2 ,  •-, Q2,) *

and so

e(R I(q2*,•••, er))=e(R 1(.72,•••, q2r))= r2 i i2

i=1

Thus, indeed, e (R IP)=e(R IJ) .

Quite generally, for an ideal /, one has height/=height/*; but depthRa*
may be less than depthR//. In other words, if I  is perfect, /* needs not to be
perfect. In our case we have

Proposition 6 .2 .  R II*  has the minimal free homogeneous
2r+1

0 - )  C ) 8 R ( - 0 0 R ( — r- 1 ) 2 7 +1

i=r+2 i=r+2

r )2r+1 _ ,  n RI1*-- +  O.

In particular, I* is perfect, and 12/I* is Gorenstein i f  and only  i f  r=1 .

P ro o f  We proceed by induction on r .  The case r= 1  is trivial. Now
let Jr denote the ideal of the pfaffians •, P 2 r + 1  of A , and b y  /r_i the
corresponding ideal for A l 2 r + 1 .  The proof will be based on equation (1) in the
proof of 6.1:

I r* =K n ,

where K  is generated by a regular sequence mi, m2, m3 with degmi=degm2=
r  and degm 3= 1. Moreover we have K +I7_1=(.1 .7-*_1, m 3 ). Therefore we get
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the exact sequence

0 m3)— > 0

which yields the exact sequence

Cr2
0 - >T 0r4(k , R / (I1, m 3))— >T or3(k , ) )- )

(g i)

T or3(k , R /K )0T or3(k , kg_ i) g2 /
— >Tor3(k, R/(g-i, m3))

We observe that ,e2 is injective : indeed, the exact sequence

7713

0 - - > RI (I1!_1, m3)--> 0

(m3 is kg_I-regular) gives the exact sequence

In 3 flz
Tor3(k, R//:_1) — Tor3(k, R /R-1) - - >Tor3(k, R/(I,-i, m3)) ,

and multiplication by m3 on Tor(k, _) is the zero-map.
Next observe that ,81=0: we have

{ 0  for i * 2 r  + 1 ,
Tor3(k, RIK) i=

k  for i = 2 r+ 1

On the other hand, using the induction hypothesis, we see that Tor3(k, R/(g-1,
m3))2r+1 —0, and thus the conclusion follows.

Now 0=g1a1+ g2a2=g2a2, and since ,e2 is injective, we see that a2=0.
Therefore we obtain the exact sequence

a i
0 - ' Tor4(k, R/(R-1, m 3))--Tor3(k, RIIr*) >Tor3(k , R IK )— > 0 .

Notice that Tor4(k, m3))"=-Tor3(k, Rig-1)( — 1); therefore, the induc-
tion hypothesis implies

k  for i = r+ 2 ,• • • ,2 r+ 1
Tor3(k, R//r*),={

0 otherwise.

Finally, to compute the shifts in the second step of the resolution we note that
R //r  and R//r* have the same Hilbert series. In both cases we use their
resolutions to compute it:

t)= (1 — (2r +1)tr+ (2r + 1)tr + 1
 —  t 2 r+ 1 )/(i — ,
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and
2r+1

HR //,.(t) = (1 — ( 2 r + 1 ) t r + X ( t ) —  E  t 1)/ (1 -t ) 3 .
r=r+2

Here X (t ) stands for the polynomial corresponding to the yet unknown part
of the resolution of R//r*.

The comparison shows that

X (t)=(2 r +1 )tr+ 1 +t .
i=r-12

This completes the proof.

Now we come to the main application of Theorem 6.1.

Proposition 6.3. W ith the notations of (1) in Section 5  we have

e(R II)— ± v i(±  u. i )( ± .

P ro o f  The multiplicity e(R II) is a polynomial function in the entries
of the degree matrix of I. This can be seen if one uses the minimal R-free
resolution of Rh in order to compute e ( R I I ) .  Thus, if we give a (polynomial)
formula for e(R II) in terms of the u,, or (u„ v„ w,) under the assumption that
all u 0 >0, this formula is also valid without this assumption. Without loss of
generality we may therefore assume that all u,, >O.

Consider the (flat) homomorphism ço: k[X]--+ k[X], X={x,,: 1
- _ i< j .< 2 r+ 1 ) .  Let B=(x,Ti) be the image of A  under ça, and let p ,  be the
pfaffian of A, and q, the pfaffian of B i .  Then q ,= so (p ,) for i =1,•••, 2r+1.

We claim that a " • ,  q2r+ 1 is a Grinner basis of /=(a • • • ,  q - +1). I n  order
to prove the claim we employ the following well-known criterion: let 22 be a
generating set of homoeneous relations of qi*, q t r + 1 .  Then qi, q 2 , - + I  is a
Grbbner basis of I ,  if any element of gt. can be lifted to a relation of ql,
a2r+1.

A relation E d / 4 . i*  is called homogeneous if

(a) a i  is a monomial for a ll i,
(b) degaiqi*=dega,q,* for a ll i, j with ai, d i *O.

Here the degree of a monomial is its exponent. The common degree in
(b ) is called the degree of  the relation a=(ai,•••, a2r+1). W e say that the
relation a=(a1 ,- - ,  a2r+i) of qi*, •••, 0,-+1 can be lifted to relation of (qi, •••,
q2r+i) if there exist h, E R , 2r+1, such that:

(1) E1h1q1=0 ,

(2) h i* =ai for a ll i  with ai 0,



hyperplane sections 71

( 3 )  d e g h ,* d e g e > d e g a  for all i with a,=0  (  >in the reverse lexicographical
order).

Note that for any f  E R  which is homogeneous in the usual sense we have
9(f)* =  ço(f*); in particular, qi*=g0(pi*) for i =1, •••, 2r+1.

Since go is  flat we conclude that there exists a  generating set .g2 of
homogeneous relations of qi* , • • • , e r+i such that for each ( a 1 ) E R  there exists
a  homogeneous relation (1)1) o f p i* , P t'd -1  with 9(b,)= a , .  Since (p i* , ••• ,

P r + i ) = ( P i ,  • • •  ,  P 2 r + i ) * ,  we can lift each (b ,) to (1 '0 satisfying (1), (2) and (3).
Then (T(hi), • ••, ço(h2r+1)) is the required lifting for (ai, •••, a2r+i). This proves
the claim.

Now for I*  we have a decom postion corresponding to the one of J in the
proof of 6.1:

i r * - (12iXr-412r+2-1, e i r + 1 -  •  xr2 ir+ 0  n 1 '7_ 1  •
i 1 1=1

Both components have codim  3, and so

e(R II)= e(R Ilr*)= v i(±  u w .)+ e(R Ig-i)

Hence the formula follows by induction on r .
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