The absence of absolutely continuous spectra of 1-dimensional Schrödinger operators

By
Akira NEGISHI

1. Introduction

In [8] B. Simon and T. Spencer have studied Jacobi matrices and Schrödinger operators. They have shown that under some conditions these operators have no absolutely continuous spectrum. Also they have shown that under other conditions there is no negative absolutely continuous spectrum of Jacobi matrices. In this paper we apply these ideas to show that under some conditions there is no negative absolutely continuous spectrum of Schrödinger operators (only in case of one dimension).

In Section 2, we give the main result of this paper. The potential of Schrödinger operator is characterized by having an inferior function which has enumerably infinitely many wells. Roughly speaking, we prove that Schrödinger operator has no negative absolutely continuous spectrum, under the conditions that the distances between wells diverge to infinity faster than logarithmic order.

In Section 3, we show the exponential estimate of spectral projection $P_{(a, b)}$ (H) of Schrödinger operator H for any $a<b<0, a, b \notin \sigma_{\mathrm{PP}}(H)$. This fact is used to show the trace class perturbation in Section 4.

2. Notation and Main Theorem

Definition 2.1. Let T be a compact operator from a Hilbert space \mathbf{H} to a Hilbert space \mathbf{H}^{\prime}, and let $\alpha_{n}(T)$ be eigen values of operator $|T|=\sqrt{T^{*} T}$. Then

$$
\mathbf{B}_{1}\left(\mathbf{H}, \mathbf{H}^{\prime}\right)=\left\{T: \sum_{n} \alpha_{n}(T)<\infty\right\}
$$

is called trace class and its norm is

$$
\|T\|_{\mathbf{B}_{1}\left(\mathrm{H}, \mathrm{H}^{\prime}\right)}=\sum_{n} \alpha_{n}(T)
$$

Notation. In this paper we use

1. $L^{2}=L^{2}(\mathbf{R}), H^{2}=H^{2}(\mathbf{R})$,
2. $\|\cdot\|=\|\cdot\|_{L^{2}}$,
3. $\|\cdot\|_{0}=\|\cdot\|_{\mathbf{B}\left(L^{2}, L^{2}\right)}$,
4. $\|\cdot\|_{1}=\|\cdot\|_{\mathbf{B}_{1}\left(L^{2}, L^{2}\right)}$,
5. $\|\cdot\|_{\infty}=\|\cdot\|_{L^{\infty}}$,
6. for $A, B \subset \mathbf{R}, \mathrm{~d}(A, B)=\inf \{|x-y| ; x \in A, y \in B\}$,
for convenience' sake.
For the subset S of $\mathbf{R}, \chi_{s}(x)$ represents the characteristic function, that is

$$
\chi_{s}(x)= \begin{cases}1 & x \in S \\ 0 & \text { otherwise } .\end{cases}
$$

In this paper we deal with 1-dimensional Schrödinger operaters which have bounded potentials and are essential self-adjoint in L^{2}. We use the same symbol for both a differential operator and its self-adjoint extension.

Here we intoduce the special potential V_{0}. For the sequence $\left\{x_{i}, y_{i} \in \mathbf{R} ; i\right.$ $\in \mathbf{Z}\}$ such that

$$
-\infty \leftarrow \cdots<x_{i-1}<y_{i-1}<x_{i}<y_{i}<\cdots \rightarrow \infty,
$$

we use such notations as

$$
\begin{aligned}
& z_{i}=\left(y_{i}+x_{i+1}\right) / 2, \quad d_{i}=x_{i+1}-y_{i}, \quad w_{i}=y_{i}-x_{i}, \\
& d_{i *}=\min \left\{d_{i-1}, d_{i}\right\}, \quad d_{i}^{*}=\max \left\{d_{i-1}, d_{i}\right\}, \\
& I_{i}=\left[z_{i-1}, z_{i}\right), \quad \chi_{i}(x)=\chi_{I_{i}}(x),
\end{aligned}
$$

and for $v>0$,

$$
\begin{aligned}
& V_{o i}(x)=-v \chi_{\left\lfloor x_{i}, v_{i j}\right.}(x) \\
& V_{o}(x)=\sum_{i \in \mathbb{Z}} V_{o i}(x)
\end{aligned}
$$

Theorem 2.2. Let $H=-\frac{d^{2}}{d x^{2}}+V(x)$ be a self-adjoint operator on L^{2}. Suppose $V(x)$ satisfies following conditions.
(a) V is a real L^{∞} function and $-v \leq V a . e$. on R.
(b) There exist bounded intervals $J_{i}=\left(y_{i}, x_{i+1}\right)$ such that for all $i \in \mathbf{Z}$.

$$
x_{i}<y_{i} \text { and } V(x) \geq 0 \text { a. e. on } J_{i}
$$

(c) d_{i} and $w_{i}(i \in \mathbf{Z})$ satisfy next two assumptions.
(A.1) $\inf _{i \in \mathbb{Z}} d_{i} \equiv d>0$ exists.
(A.2) For any $\varepsilon>0$

$$
\sum_{i \in \mathbb{Z}}\left(w_{i}+d_{i}^{*}\right) \exp \left(-\varepsilon d_{i *}\right)<\infty .
$$

.Then

$$
\sigma_{\mathrm{ac}}(H) \cap(-\infty, 0)=\emptyset
$$

where $\sigma_{\mathrm{ac}}(H)$ is the absolutely continuous spectrum of H.
Remark. Condition (b) and condition (c) are equivalent to the next condition.
(d) There exists the special potential V_{o} that $V \geq V_{o} a . e$. and that V_{o} satisfies the assumptions (A.1) and (A.2).

Example.

$$
\begin{aligned}
& V(x)=\sin \sqrt{|x|} \\
& V_{o}(x)=\left\{\begin{array}{ll}
-1 & (2 n+1)^{2} \pi^{2} \leq|x| \leq(2 n+2)^{2} \pi^{2} \\
0 & (2 n)^{2} \pi^{2} \leq|x| \leq(2 n+1)^{2} \pi^{2}
\end{array} \quad n=0,1,2, \cdots\right.
\end{aligned}
$$

$V_{o}(x)$ satisfies the assumptions (A1) and (A.2), then the operator $-\frac{d^{2}}{d x^{2}}$ $+V(x)$ has no negative absolutely continuous spectrum.

Notation. Set $\lambda=\sqrt{v+1}$. For any operator A we denote the operator $A+\lambda^{2}$ by A_{λ}.

3. Exponential estimate of spectral projections

In this section we will prove the property of the spectral projection which we need to prove Lemma 4.1. To this end we use some lemmas shown next.

Lemma 3.1. ([4] p. 290 (b)). Let $\left\{A_{n}\right\}_{n=1}^{\infty}$ and A be self-adjoint operators on \mathbf{H} and suppose that $A_{n} \rightarrow A$ in the strong resolvent sense. Then

If $a, b \in \mathbf{R} . \quad a<b$ and $a, b \notin \sigma_{\mathrm{PP}}(A)$, then $P_{(a, b)}\left(A_{n}\right) \varphi \rightarrow P_{(a, b)}(A) \varphi$ for all φ $\in \mathbf{H}$.

Lemma 3.2. For any bounded interval $I=\left(x_{0}, y_{0}\right)$, let $w_{i}(x) \quad(i=1,2)$ be continuous functions on I with $0<w_{1} \leq w_{2}$. For real constants a, b_{1}, b_{2} with a $\neq 0$ and $a\left(b_{1}-b_{2}\right) \leq 0$, let $u_{i}(i=1,2)$ be the non-trivial real solutions of equations

$$
\left\{\begin{array}{l}
\frac{d^{2}}{d x^{2}} u_{i}(x)=w_{i}^{2}(x) u_{i}(x) \text { on } I \\
u_{i}\left(x_{0}\right)=a \\
u_{i}^{\prime}\left(x_{0}\right)=b_{i} .
\end{array}\right.
$$

Then

$$
\left\{\begin{array}{l}
0 \leq u_{1}^{(n)} \leq u_{2}^{(n)} \tag{1}\\
\text { or } 0 \geq u_{1}^{(n)} \geq u_{2}^{(n)}
\end{array} \quad(n=0,1,2)\right.
$$

to the point where $u_{1}=0$ or $u_{2}=0$, where the suffices n represent n times derivatives.

Remark. Let u be a non trivial-solution of equation

$$
\frac{d^{2}}{d x^{2}} u(x)=q(x) u(x) \text { on an interval } I
$$

where q is a positive real continuous function.
Then number of elements of $\left(q(0)^{-1} \cup q^{\prime}(0)^{-1}\right) \cap I$ is at most one.
Proof. If $u_{1} u_{2} \geq 0$, then $\left(u_{1}^{\prime} u_{2}-u_{1} u_{2}^{\prime}\right)^{\prime}=u_{1}^{\prime \prime} u_{2}-u_{1} u_{2}^{\prime \prime}=\left(w_{1}^{2}-w_{2}^{2}\right) u_{1} u_{2} \leq 0$, and the Wronskian $u_{1}^{\prime} u_{2}-u_{1} u_{2}^{\prime}$ is non-increasing. Its value at $x=x_{0}$ is non-positive. Hence

$$
\left(u_{1} / u_{2}\right)^{\prime}=\left(u_{1}^{\prime} u_{2}-u_{1} u_{2}^{\prime}\right) / u_{2}^{2} \leq 0
$$

so that

$$
u_{1}(x) / u_{2}(x) \leq u_{1}\left(x_{0}\right) / u_{2}\left(x_{0}\right)=1 .
$$

Then part of inequalities (1) at the case $n=0$ hold. The other cases follow from the equations.

Lemma 3.3. Let $C(x)$ be a bounded continuous function with $0<c_{1} \leq C$ (x). And let $A_{C}=-\frac{d^{2}}{d x^{2}}+C(x)$ be a self-adjoint operator on L_{2}. For any a_{1}, $b_{1}, a_{2}, b_{2} \in \mathbf{R}$ with $a_{1}<b_{1}<a_{2}<b_{2}$, set

$$
\chi_{1}(x)=\chi_{\left\lfloor a_{1}, b_{1}\right]}(x), \quad \chi_{2}(x)=\chi_{\left\lfloor a_{2}, b_{2}\right\rfloor}(x) .
$$

Then

$$
\begin{equation*}
\left|\left(\chi_{1} g_{1}, A_{C}{ }^{-1} \chi_{2} g_{2}\right)\right| \leq C_{1} \exp \left\{-\sqrt{c_{1}}\left(a_{2}-b_{1}\right)\right\}\left\|\chi_{1} g_{1}\right\|\left\|\chi_{2} g_{2}\right\| \tag{2}
\end{equation*}
$$

for all $g_{1}, g_{2} \in L^{2}$ where C_{1} is some positive constant depending only on c_{1} and $C_{1} \nearrow$ ∞ as $c_{1} \downarrow 0$.

Proof. Let $u_{ \pm}$be non-trivial real independent solutions of the equation

$$
\left(-\frac{d^{2}}{d x^{2}}+C(x)\right) u=0
$$

with the conditions

$$
\begin{aligned}
& u_{+}\left(a_{2}\right)=\exp \left(-\sqrt{c_{1}} a_{2}\right), u_{+}^{\prime}\left(a_{2}\right) \leq-\sqrt{c_{1}} \exp \left(-\sqrt{c_{1}} a_{2}\right) \\
& u_{-}\left(b_{1}\right)=\exp \left(-\sqrt{c_{1}} b_{1}\right), u_{-}^{\prime}\left(b_{1}\right) \geq-\sqrt{c_{1}} \exp \left(-\sqrt{c_{1}} b_{1}\right)
\end{aligned}
$$

Then by Lemma 3.2 and its remark,

$$
\left\{\begin{array}{llll}
u_{+}(x) \geq e^{-\sqrt{c_{1}} x} & \left(x \leq a_{2}\right) & u_{+}(x) \leq e^{-\sqrt{c_{1}} x} & \left(x>a_{2}\right) \\
u_{-}(x) \geq e^{\sqrt{c_{1}} x} & \left(x \geq b_{1}\right) & u_{-}(x) \leq e^{\sqrt{c_{1}} x} & \left(x<b_{1}\right) \\
u_{+}^{\prime}(x) \geq-\sqrt{c_{1}} e^{-\sqrt{c_{1}} x} & \left(x \leq a_{2}\right) & u_{-}^{\prime}(x) \geq \sqrt{c_{1}} e^{\sqrt{c_{1}} x} & \left(x \geq b_{1}\right)
\end{array}\right.
$$

Then integral kernel of operator A_{C} is

$$
E(x, \xi)=\frac{1}{\Delta} \begin{cases}u_{+}(x) u_{-}(\xi) & (\xi \leq x) \\ u_{-}(x) u_{+}(\xi) & (\xi>x)\end{cases}
$$

where $\Delta=u_{-}^{\prime}(x) u_{+}(x)-u_{+}^{\prime}(x) u_{-}(x) \geq 2 \sqrt{c_{1}}$
Then

$$
\begin{aligned}
\left(A_{c}^{-1} \chi_{2} g_{2}\right)(x) & =\int_{-\infty}^{\infty} E(x, \xi) \chi_{2}(\xi) g_{2}(\xi) d \xi \\
& =\frac{u_{+}(x)}{\Delta} \int_{-\infty}^{x} u_{-}(\xi) \chi_{2}(\xi) g_{2}(\xi) d \xi \\
& +\frac{u_{-}(x)}{\Delta} \int_{x}^{\infty} u_{+}(\xi) \chi_{2}(\xi) g_{2}(\xi) d \xi
\end{aligned}
$$

Substituting this in the left hand side of (2), we get

$$
\begin{aligned}
\mid\left(\chi_{1} g_{1}, A_{C}{ }^{-1} \chi_{2} g_{2}\right)= & \frac{1}{\Delta}\left|\int_{a_{1}}^{b_{1}} u_{-}(x) \chi_{1}(x) g_{1}(x) d x \cdot \int_{a_{2}}^{b_{2}} u_{+}(\xi) \chi_{2}(\xi) g_{2}(\xi) d \xi\right| \\
\leq & \frac{1}{2 \sqrt{c_{1}}}\left\{\int_{a_{1}}^{b_{1}} u_{-}(x) d x\right\}^{\frac{1}{2}}\left\|\chi_{1} g_{1}\right\|\left\{\int_{a_{2}}^{b_{2}} u_{+}(\xi) d \xi\right\}^{\frac{1}{2}}\left\|\chi_{2} g_{2}\right\| \\
\leq & \frac{1}{2 \sqrt{c_{1}}}\left\{\int_{a_{1}}^{b_{1}} \exp \left(2 \sqrt{c_{1}} x\right) d x\right\}^{\frac{1}{2}}\left\|\chi_{1} g_{1}\right\|\left\{\int_{a_{2}}^{b_{2}} \exp \left(-2 \sqrt{c_{1}} \xi\right)\right. \\
& d \xi\}^{\frac{1}{2}}\left\|\chi_{2} g_{2}\right\| \\
= & \frac{\left\|\chi_{1} g_{1}\right\|\left\|\chi_{2} g_{2}\right\|}{4 c_{1}}\left\{\exp \left(2 \sqrt{c_{1}} b_{1}\right)-\exp \left(2 \sqrt{c_{1}} a_{1}\right)\right\}^{\frac{1}{2}} \\
& \times\left\{\exp \left(-2 \sqrt{c_{1}} a_{2}\right)-\exp \left(-2 \sqrt{c_{1}} b_{2}\right)\right\}^{\frac{1}{2}} \\
= & \left\|\chi_{1} g_{1}\right\|\left\|\chi_{2} g_{2}\right\| \\
4 c_{1} & \exp \left\{-\sqrt{c_{1}}\left(a_{2}-b_{1}\right)\right\} \\
& \times\left[1-\exp \left\{-2 \sqrt{c_{1}}\left(b_{1}-a_{1}\right)\right\}\right]^{\frac{1}{2}}\left[1-\exp \left\{-2 \sqrt{c_{1}}\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.\left(b_{2}-a_{2}\right)\right\}\right]^{\frac{1}{2}} \\
\leq & C_{1}\left\|\chi_{1} g_{1}\right\|\left\|\chi_{2} g_{2}\right\| \exp \left\{-\sqrt{c_{1}}\left(a_{2}-b_{1}\right)\right\}
\end{aligned}
$$

where C_{1} is more than or equal to $1 / 4 c_{1}$. So the lemma is proved.

Lemma 3.4. let we (x) be a continuous function on an interval $I=\left[-x_{0}\right.$, x_{0}] $\left(x_{0}>0\right)$. Set $w_{1}=\inf _{x \in I} w(x), w_{2}=\sup _{x \in \mathcal{I}} w(x)$. For real constants a, b with $a b>$ 0 , let u be a real solution of the equation

$$
\left\{\begin{array}{l}
\frac{d^{2}}{d x^{2}} u(x)=w(x) u(x) \quad \text { on } I \\
u\left(-x_{0}\right)=a \\
u^{\prime}\left(-x_{0}\right)=b .
\end{array}\right.
$$

Then

$$
\begin{equation*}
\left|u^{\prime}(x)\right| \leq C_{2}|u(x)| \quad \text { on } \quad\left[0, x_{0}\right] \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\int_{0}^{x_{0}} u^{2}(x) d x \leq C_{3}^{2}\left(\int_{0}^{x_{0}} u(x) d x\right)^{2} \tag{4}
\end{equation*}
$$

where C_{2}, C_{3} are positive numbers depending only on w_{1}, w_{2} and x_{0}.

Remark. When $a b<0$ and boundary conditions are given at the point $x=x_{0}$, we can show the same estimates in the interval $\left[-x_{0}, 0\right]$.

Proof. Set $u_{i}(i=1,2)$ be real solutions of the equations

$$
\left\{\begin{array}{l}
\frac{d^{2}}{d x^{2}} u_{i}(x)=w_{i} u_{i}(x) \quad \text { on } I \\
u_{i}\left(-x_{0}\right)=a \\
u_{i}^{\prime}\left(-x_{0}\right)=b
\end{array}\right.
$$

Then

$$
u_{i}(x)=a \cosh w_{i}\left(x+x_{0}\right)+b \sinh w_{i}\left(x+x_{0}\right)(i=1,2)
$$

By Lemma 3.2, for any $x \in I$

$$
\begin{align*}
\frac{u^{\prime}(x)}{u(x)} & \leq \frac{u_{2}^{\prime}(x)}{u_{1}(x)} \\
& \leq \frac{w_{2}\left(a \sinh 2 w_{2} x_{0}+b \cosh 2 w_{2} x_{0}\right)}{a \cosh w_{1} x_{0}+b \sinh w_{1} x_{0}} \\
& =\frac{w_{2}\left(a^{\prime} \sinh 2 w_{2} x_{0}+b^{\prime} \cosh 2 w_{2} x_{0}\right)}{a^{\prime} \cosh w_{1} x_{0}+b^{\prime} \sinh w_{1} x_{0}} . \tag{5}
\end{align*}
$$

where $a^{\prime}=a /\left(a^{2}+b^{2}\right)$ and $b^{\prime}=b /\left(a^{2}+b^{2}\right)$. Since the denominator of (5) is not zero when $\left(a^{\prime}, b^{\prime}\right) \in S^{1}$, (5) has supremum which is independent of a and b. Then (3) is proved.

Also

$$
\begin{align*}
& \int_{0}^{x_{0}} u^{2}(x) d x \leq \int_{0}^{x_{0}} u_{2}^{2}(x) d x \tag{6}\\
& \left(\int_{0}^{x_{0}} u_{1}(x) d x\right)^{2} \leq\left(\int_{0}^{x_{0}} u(x) d x\right)^{2}
\end{align*}
$$

The right hand side of (6) and left hand side of (7) are both homogeneous polynomials of order 2 w. r. t. a and b, and the latter is not zero when $a b>0$. So the ratio of them has supremum which is independent of a and b. Then we can complete the proof.

Lemma 3.5. Let $\rho_{\varepsilon} *$ be the mollifier. Then for any $u \in L^{\infty}$ and for any $f \in L^{2}$,

$$
\left\|\left(\rho_{\varepsilon} * u-u\right) f\right\| \rightarrow 0 \quad(\text { as } \varepsilon \rightarrow 0)
$$

Lemma 3.6. Let $H=-\frac{d^{2}}{d x^{2}}+V(x)$ be a self-adjoint operator on L^{2} and let $V(\boldsymbol{x})$ satisfy the next conditions.
(a) $V(x)$ is a real L^{∞} function and $u_{\min } \leq V(x) \leq u_{\max }$ a.e. on \mathbf{R}.
(b) There exists a bounded interval $I=\left(x^{\prime}, y^{\prime}\right)$ such that $V(x) \geq 0$ a.e. on I.

Then for all a, b with $a<b<0$ and $a, b \notin \sigma_{\mathrm{PP}}(H)$, for any positive constant δ_{0} with $16 \delta_{0}<|I|$ and for a subinterval $J=\left[x^{\prime \prime}, y^{\prime \prime}\right]$ of I with $\delta=d\left(J, I^{c}\right)>8 \delta_{0}$, there exists $C>0$ such that

$$
\left\|\chi_{J} P_{(a, b)}(H)\right\|_{0} \leq C \exp \left(-\frac{\sqrt{-b} \delta}{2}\right)
$$

where C depends only on $b, v_{\min }, v_{\text {max }}, \delta_{0}$.
Remark. When I is unbounded, we can show the same estimate of any bounded interval I^{\prime} in I. Then $I^{\prime} \rightarrow I$. We can show the unbounded case. For example if $I=\mathbf{R}$, the estimate shows that $P_{(a, b)}(H)=0$. It means that there is no negative spectrum.
Proof. Set $V_{L}(x)=\chi_{(-L, L)}(x) V(x)$ for $L>0$ and set $V_{L \varepsilon}(x)=\rho_{\varepsilon} * V_{L}(x)$ where $\rho_{\varepsilon} *$ is the mollifier. Then $V_{L \varepsilon}$ is non-negative and continuous on the interval $\left(x^{\prime}+\varepsilon, y^{\prime}-\varepsilon\right)$. And set $H_{L}=-\frac{d^{2}}{d x^{2}}+V_{L}$ and $H_{L \varepsilon}-\frac{d^{2}}{d x^{2}}+V_{L \varepsilon}$. By the resolvent equation, for all $f \in L^{2}$

$$
\begin{aligned}
& \left(H_{L}-\sqrt{-1}\right)^{-1} f-(H-\sqrt{-1})^{-1} f \\
= & \left(H_{L}-\sqrt{-1}\right)^{-1}\left\{\chi_{(-\infty,-L \mid}+\chi_{(L, \infty)}\right\} V(H-\sqrt{-1})^{-1} f, \\
& \left(H_{L \varepsilon}-\sqrt{-1}\right)^{-1} f-\left(H_{L}-\sqrt{-1}\right)^{-1} f \\
= & \left(H_{L \varepsilon}-\sqrt{-1}\right)^{-1}\left(V_{L}-V_{L \varepsilon}\right)\left(H_{L}-\sqrt{-1}\right)^{-1} f .
\end{aligned}
$$

Since $(H-\sqrt{-1})^{-1} f \in H^{2}$ and $\left\|\left(H_{L}-\sqrt{-1}\right)^{-1}\right\|_{0} \leq 1$, then

$$
\begin{aligned}
& \left\|\left(H_{L}-\sqrt{-1}\right)^{-1}\left\{\chi_{(-\infty,-L)}+\chi_{(L, \infty)}\right\} V(H-\sqrt{-1})^{-1} f\right\| \\
& \leq\left\|\left(H_{L}-\sqrt{-1}^{-1}\right)\right\|_{0}\left\|\left\{\chi_{(-\infty,-L)}+\chi_{(L, \infty)}\right\} V(H-\sqrt{-1})^{-1} f\right\| \rightarrow 0 \quad(\text { as } L \rightarrow \infty) .
\end{aligned}
$$

$\left(H_{L}-\sqrt{-1}\right)^{-1} f \in H^{2}$ and $\left\|\left(H_{L \varepsilon}-\sqrt{-1}\right)^{-1}\right\|_{0} \leq 1$, by Lemma 3.5,

$$
\begin{aligned}
& \left\|\left(H_{L \varepsilon}-\sqrt{-1}\right)^{-1}\left(V_{L}-V_{L \varepsilon}\right)\left(H_{L}-\sqrt{-1}\right)^{-1} f\right\| \\
& \leq\left\|\left(H_{L \varepsilon}-\sqrt{-1}\right)^{-1}\right\|_{0}\left\|\left(V_{L}-V_{L \varepsilon}\right)(H-\sqrt{-1})^{-1} f\right\| \rightarrow 0 \quad(\text { as } \varepsilon \rightarrow 0) .
\end{aligned}
$$

So $H_{L} \rightarrow H$ in the strong resolvent sense and $H_{L \varepsilon} \rightarrow H_{L}$ in the strong resolvent sense for all $L>0$. By Lemma 3.1, for all $f \in L_{2}$,

$$
\begin{aligned}
& \left\|P_{(a, b)}\left(H_{L}\right) f-P_{(a, b)}(H) f\right\| \rightarrow 0 \quad(\text { as } L \rightarrow \infty) \\
& \left\|P_{(a, b)}\left(H_{L \varepsilon}\right) f-P_{(a, b)}\left(H_{L}\right) f\right\| \rightarrow 0(\text { as } \varepsilon \rightarrow \infty)
\end{aligned}
$$

then

$$
\begin{aligned}
& \left\|\chi_{J} P_{(a, b)}\left(H_{L}\right) f-\chi_{J} P_{(a, b)}(H) f\right\| \rightarrow 0(\text { as } L \rightarrow \infty) \\
& \left\|\chi_{J} P_{(a, b)}\left(H_{L \varepsilon}\right) f-\chi_{J} P_{(a, b)}\left(H_{L}\right) f\right\| \rightarrow 0(\text { as } \varepsilon \rightarrow \infty)
\end{aligned}
$$

Therefore it is enough to show that for all $f \in L^{2}$ for ε sufficiently small,

$$
\begin{equation*}
\left\|\chi_{J} P_{(a, b)}\left(H_{L \varepsilon}\right) f\right\| \leq C \exp \left(-\frac{\sqrt{-b} \delta}{2}\right)\|f\| . \tag{8}
\end{equation*}
$$

Here ε is fixed to satisfy $8\left(\delta_{0}+\varepsilon\right) \leq \delta$. Since the potential function of operator $H_{L \varepsilon}$ has compact support, the negative spectrum of $H_{L \varepsilon}$ is discrete, and the range of $P_{(a, b)}\left(H_{L \varepsilon}\right)$ has finite dimension. So let $\left\{\varphi_{n}\right\}_{n=1}^{\infty}$ be a complete orthonomal system in L^{2} such that $H_{L \varepsilon} \varphi_{n}=\lambda_{n} \varphi_{n}$ for $1 \leq_{n} \leq N_{L}$ and max (a, $\left.u_{\text {min }}\right) \leq \lambda_{n}<b$, where N_{L} is the dimension of Range $\left\{P_{(a, b)}\left(H_{L \varepsilon}\right)\right\}$.

For any $f \in L^{2}$

$$
\begin{aligned}
P_{(a, b)}\left(H_{L \varepsilon}\right) f & =\sum_{\lambda n \in(a, b)}\left(f, \varphi_{n}\right) \varphi_{n} \\
& =\sum_{n=1}^{N_{L}}\left(f, \varphi_{n}\right) \varphi_{n}
\end{aligned}
$$

Then

$$
\begin{align*}
\left\|\chi_{J} P_{(a, b)}\left(H_{L \varepsilon}\right) f\right\| & =\left\|\sum_{n=1}^{N_{L}}\left(f, \varphi_{n}\right) \chi_{J} \varphi_{n}\right\| \\
& \leq \sum_{n=1}^{N_{L}}\left|\left(f, \varphi_{n}\right)\right|\left\|\chi_{J} \varphi_{n}\right\| \\
& \leq\left(\sum_{n=1}^{N_{L}}\left|\left(f, \varphi_{n}\right)^{2}\right|\right)^{\frac{1}{2}}\left(\sum_{n=1}^{N_{L}}\left\|\chi_{J} \varphi_{n}\right\|^{2}\right)^{\frac{1}{2}} \\
& \leq\|f\|\left(\sum_{n=1}^{N_{L}}\left\|\chi_{J} \varphi_{n}\right\|^{2}\right)^{\frac{1}{2}} . \tag{9}
\end{align*}
$$

Here we define cut-off function $\widetilde{\varphi}_{n}$ of φ_{n} to apply Lemma 3.3 to (9). Considering the remark of Lemma 3.2, there is at most one point x_{n} in the set $\left(\varphi_{n}{ }^{-1}(0) \cup \varphi_{n}^{\prime}(0)\right) \cap I$.

Set

$$
\left(a_{n}^{-}, a_{n}^{+}\right)= \begin{cases}\left(x^{\prime}+\frac{\delta}{2}, y^{\prime}-\frac{\delta}{2}\right) & \text { if } x_{n} \in\left(x^{\prime}, x^{\prime}+\frac{\delta}{4}\right) \cup\left(\left(y^{\prime}-\frac{\delta}{4}, y^{\prime}\right) \quad\right. \text { (case 1) } \tag{case2}\\ \left(x^{\prime}+\frac{\delta}{8}, y^{\prime}-\frac{\delta}{8}\right) & \text { if } x_{n} \in\left[x^{\prime}+\frac{\delta}{4}, y^{\prime}-\frac{\delta}{4}\right] \text { or } x_{n} \text { does not exist. }\end{cases}
$$

Let $\psi_{n}(x) \in C_{0}^{2}(\mathbf{R})$ have the properties that
(i) $0 \leq \psi_{n}(x) \leq 1$
(ii) $\operatorname{supp} \psi_{n}(x)=\left[a_{n}^{-}-\delta_{0}, a_{n}^{+}+\delta_{0}\right]$
(iii) $\psi_{n}(x)=1$ on $\left[\alpha_{n}, a_{n}^{+}\right]$
(iv) $\left|\psi_{n}^{\prime}(x)\right| \leq \frac{c}{\delta_{0}} \quad\left|\psi_{n}^{\prime}(x)\right| \leq \frac{c}{\delta_{0}^{2}}$ for some $c>0$.

Set $\widetilde{\varphi}_{n}(x)=\psi_{n}(x) \varphi_{n}(x)$. Set $\widetilde{A}_{n}=A_{V_{t s}-\lambda_{n}}$ in Lemma 3.3,

$$
\begin{aligned}
\widetilde{A}_{n} \widetilde{\varphi}_{n} & =-\psi_{n}^{\prime \prime} \varphi_{n}-2 \psi_{n}^{\prime} \varphi_{n}^{\prime}-\psi_{n} \varphi_{n}^{\prime \prime}+\left(V_{L \varepsilon}-\lambda_{n}\right) \psi_{n} \varphi_{n} \\
& =-\phi_{n}^{\prime \prime} \varphi_{n}-2 \psi_{n}^{\prime} \varphi_{n}^{\prime}+\psi_{n}\left(H_{L \varepsilon}-\lambda_{n}\right) \varphi_{n} \\
& =-\psi_{n}^{\prime \prime} \varphi_{n}-2 \psi_{n}^{\prime} \varphi_{n}^{\prime}
\end{aligned}
$$

where the last equality follows from the fact that $\left(H_{L \varepsilon}-\lambda_{n}\right) \varphi_{n}=0$.
Since supp $\left(\widetilde{A}_{n} \widetilde{\varphi}_{n}\right) \subset\left[a_{n}^{-}-\delta_{0}, a_{n}^{-}\right] \cup\left[a_{n}^{+}, a_{n}^{+}+\delta_{0}\right]$ and $d\left(\operatorname{supp}\left(\widetilde{A}_{n} \widetilde{\varphi}_{n}\right)\right.$, $\left.\chi_{J}\right) \geq \delta / 2$, setting $C_{1}=-1 / 4 b\left(>-1 / 4 \lambda_{n}\right)$ and applying Lemma 3.3., we get

$$
\begin{aligned}
\left\|\chi_{J} \varphi_{n}\right\|^{2} & =\left(\chi_{J} \varphi_{n}, \chi_{J} \varphi_{n}\right)=\left(\varphi_{n}, \chi_{J} \varphi_{n}\right) \\
& =\left(\tilde{\varphi}_{n}, \chi_{J} \varphi_{n}\right)=\left(\widetilde{A}_{n}^{-1} \widetilde{A}_{n} \tilde{\varphi}_{n}, \chi_{J} \varphi_{n}\right)
\end{aligned}
$$

$$
\begin{equation*}
\leq C_{1} \exp \left(-\frac{\sqrt{-\lambda_{n}} \delta}{2}\right)\left\|\tilde{A}_{n} \tilde{\varphi}_{n}\right\|\left\|\chi_{J} \varphi_{n}\right\| \tag{10}
\end{equation*}
$$

Set

$$
\begin{aligned}
& \chi_{1}^{-}(x)=\chi_{\left(x^{\prime}+\frac{\delta}{2}-\delta_{0, x^{\prime}}+\frac{\delta}{2}\right)}(x) \\
& \chi_{1}^{+}(x)=\chi_{\left(y^{\prime}-\frac{\delta}{2}, y^{\prime}-\frac{\delta}{2}+\delta_{0}\right)}(x) \\
& \chi_{2}^{-}(x)=\chi_{\left(x^{\prime}+\frac{\delta}{8}-\delta_{0, x^{\prime}}+\frac{\delta}{8}\right)}(x) \\
& \chi_{2}^{+}(x)=\chi_{\left(y^{\prime}-\frac{\delta}{8}, y^{\prime}-\frac{\delta}{8}+\delta_{0}\right)}(x)
\end{aligned}
$$

Then

$$
\begin{align*}
\left\|\widetilde{A}_{n} \widetilde{\varphi}_{n}\right\| & =\left\|\phi_{n}^{\prime \prime}+2 \psi_{n}^{\prime} \varphi_{n}^{\prime \prime}\right\| \\
& \leq\left\|\phi_{n}^{\prime \prime}\right\|_{\infty}\left\{\left\|\chi_{i}^{-} \varphi_{n}\right\|+\left\|\chi_{i}^{+} \varphi_{n}\right\|\right\}+2\left\|\phi_{n}^{\prime}\right\|_{\infty}\left\{\left\|\chi_{i}^{-} \varphi_{n}^{\prime}\right\|+\left\|\chi_{i}^{+} \varphi_{n}^{\prime}\right\|\right\} \\
& \leq C_{4}\left\{\left\|\chi_{i}^{-} \varphi_{n}\right\|+\left\|\chi_{i}^{+} \varphi_{n}\right\|\right\} \tag{11}
\end{align*}
$$

where i is decided as the case i. The last inequality follows from Lemma 3.4. (3) and $C_{4}=c\left(1+2 \delta_{0} C_{2}\right) / \delta_{0}^{2}$.

The potential of $H_{L \varepsilon}-\lambda_{n}$ in positive continous on the interval $\left[a_{n}^{-}-2 \delta_{0}, a_{n}^{-}\right.$ $\left.+\delta_{0}\right]$ (or $\left[a_{n}^{+}-\delta_{0}, a_{n}^{+}+2 \delta_{0}\right]$) and x_{n} is not in there for all n. So we can apply Lemma 3.4 and get

$$
\begin{equation*}
\left\|\chi_{i}^{ \pm} \varphi_{n}\right\| \leq\left|\left(\chi_{i}^{\ddagger}, \varphi_{n}\right)\right| \quad(i=1,2) \tag{12}
\end{equation*}
$$

By combining (10), (11) and (12), we get

$$
\begin{aligned}
\sum_{n=1}^{N_{L}}\left\|\chi_{J} \varphi_{n}\right\|^{2} & \leq \sum_{n=1}^{N_{L}} C_{1}{ }^{2} C_{4}{ }^{2} \exp (-\sqrt{-b} \delta)\left\{\left\|\chi_{i}^{-} \varphi_{n}\right\|+\left\|\chi_{i}^{+} \varphi_{n}\right\|\right\}^{2} \quad(i=1,2) \\
& \leq 2 C_{1}{ }^{2} C_{4}{ }^{2} \exp (-\sqrt{-b} \delta) \sum_{n=1}^{N_{L}}\left\{\left\|\chi_{i}^{-} \varphi_{n}\right\|^{2}+\left\|\chi_{i}^{+} \varphi_{n}\right\|^{2}\right\} \quad(i=1,2) \\
& \leq 2 C_{1}{ }^{2} C_{3}{ }^{2} C_{4}{ }^{2} \exp (-\sqrt{-b} \delta) \sum_{n=1}^{N_{L}}\left\{\left|\left(\chi_{i}^{-}, \varphi_{n}\right)\right|^{2}+\left|\left(\chi_{i}^{+}, \varphi_{n}\right)\right|^{2}\right\} \quad(i=1,2) \\
& \leq 2 C_{1}{ }^{2} C_{3}{ }^{2} C_{4}{ }^{2} \exp (-\sqrt{-b} \delta) \sum_{n=1}^{N_{L}}\left\{\left\|\chi_{i}^{-}\right\|^{2}+\left\|\chi_{i}^{+}\right\|^{2}\right\} \\
& =C^{2} \exp (-\sqrt{-b} \delta)
\end{aligned}
$$

where $C=2 \sqrt{2} \delta_{0} C_{1} C_{3} C_{4}$. Combining this inequality and (9) we get (8), and we can complete the proof.

4. Trace class perturbation

Lemma 4.1. Let H be the same operator as in Theorem 2.2 and $H_{i}=-$ $\frac{d^{2}}{d x^{2}}+V_{i}$ be self-adjoint operators in L^{2}, where $V_{i}=\chi_{i} V$. Set

$$
K=\sum_{i \in \mathrm{Z}} \chi_{i} H_{i \lambda}^{-1} \chi_{i} .
$$

Then for all a, b with $a<b<0$ and $a, b \notin \sigma_{\mathrm{PP}}(H)$

$$
\left(H_{\lambda}^{-1}-K\right) P_{(a, b)}(H) \in \mathbf{B}_{1} .
$$

To prove this lemma we show a few lemmas first.
Lemma 4.2. Let $T=-\frac{d^{2}}{d x^{2}}+V$ be a self-adjoint operator where $V=-$ $v \chi_{\left[x^{\prime}, y^{\prime}\right]}$ for $v>0$. Suppose $f \in L^{2}$ and $g \in L^{\infty}$, set

$$
x^{\prime \prime}=\min \left\{\inf \{\operatorname{supp} f\}, x^{\prime}\right\} \quad y^{\prime \prime}=\max \left\{\sup \{\operatorname{supp} f\}, y^{\prime}\right\}
$$

where $x^{\prime \prime}$ is possibly $-\infty$ and $y^{\prime \prime}$ is possibly ∞.
And suppose supp $g \cap\left(x^{\prime \prime}, y^{\prime \prime}\right)=\emptyset$, set $d\left(\operatorname{supp} g,\left[x^{\prime \prime}, y^{\prime \prime}\right]\right)=\delta$. Then

$$
\left\|g T_{\lambda}^{-1} f\right\| \leq C\|g\|_{\infty}\|f\|_{e^{-\lambda \delta}}
$$

where C depends only on v.
Proof. T_{λ} has constant potential in $\left(-\infty, x^{\prime}\right),\left(x^{\prime}, y^{\prime}\right)$ and $\left(y^{\prime}, \infty\right)$. By considering the solutions of each interval and connecting them C^{1}-smoothly, we get

$$
\begin{aligned}
& u_{+}(x)= \begin{cases}A_{1} \mathrm{e}^{\lambda x}+A_{2} \mathrm{e}^{-\lambda x} & \left(x \leq x^{\prime}\right) \\
B_{1} e^{x}+B_{2} e^{-x} & \left(x^{\prime}<x<y^{\prime}\right) \\
e^{-\lambda x} & \left(y^{\prime \prime} \leq x\right)\end{cases} \\
& u_{-}(x)= \begin{cases}e^{\lambda x} & \left(y \leq x^{\prime}\right) \\
C_{1} e^{x}+C_{2} e^{-x} & \left(x^{\prime}<x<y^{\prime}\right) \\
D_{1} e^{\lambda x}+D_{2} e^{-\lambda x} & \left(y^{\prime} \leq x\right)\end{cases}
\end{aligned}
$$

where

$$
\begin{cases}A_{1}=\left(\lambda^{2}-1\right) \exp \left\{-\lambda\left(x^{\prime}+y^{\prime}\right)\right\}\left\{e^{\left.l-e^{-l}\right\}} / 4 \lambda\right. & B_{1}=-(\lambda-1) \exp \left(-\lambda y-y^{\prime}\right) / 2 \tag{13}\\ A_{2}=\exp (-\lambda l)\left\{(\lambda+1)^{2} e^{l}-(\lambda-1)^{2} e^{-l}\right\} / 4 \lambda & B_{2}=(\lambda+1) \exp \left(-\lambda y^{\prime}+y^{\prime}\right) / 2 \\ D_{1}=A_{2} & C_{1}=(\lambda+1) \exp \left(\lambda x^{\prime}-x^{\prime}\right) / 2 \\ D_{2}=\left(\lambda^{2}-1\right) \exp \left\{\lambda\left(x^{\prime}+y^{\prime}\right)\right\}\left\{e^{l}-e^{-l}\right\} / 4 \lambda & C_{2}=-(\lambda-1) \exp \left(\lambda x^{\prime}+x^{\prime}\right) / 2\end{cases}
$$

with $l=y^{\prime}-x^{\prime}$.

Remark. $\quad A_{1}, A_{2}, B_{2}, C_{1}, D_{1}, D_{2}>0, B_{1}, C_{2}<0$.
Then the integral kernel of operator T_{λ} is

$$
E(x, \xi)=\frac{1}{2 \lambda A_{2}} \begin{cases}u_{+}(x) u_{-}(\xi) & (\xi \leq x) \\ u_{-}(x) u_{+}(\xi) & (\xi>x)\end{cases}
$$

Therefore for any $f \in L^{2}$, the solution of equation $T_{\lambda} u=f$ is

$$
\begin{aligned}
u(x) & =\int_{-\infty}^{\infty} E(x, \xi) f(\xi) d \xi \\
& =\int_{-\infty}^{x} u_{+}(x) u_{-}(\xi) f(\xi) d \xi+\int_{x}^{\infty} u_{-}(x) u_{+}(\xi) f(\xi) d \xi
\end{aligned}
$$

At first, assume that $\operatorname{supp}(g) \subset\left(-\infty, x^{\prime \prime}\right]$ and set $g_{0}=\sup \{\operatorname{supp} g\}$ or ∞ if $g \equiv 0$.
then

$$
\begin{align*}
\|g(x) u(x)\|= & \left.\frac{1}{2 \lambda A_{2}}\left(\int_{-\infty}^{g 0}\left(g e^{\lambda x}\right)^{2} d x\right)^{\frac{1}{2}} \cdot \right\rvert\, \int_{x^{\prime \prime}}^{x^{\prime}}\left(A_{1} e^{\lambda \varepsilon}+A_{2} e^{-\lambda \xi}\right) f(\xi) d \xi \\
& \quad+\int_{x^{\prime}}^{y^{\prime}}\left(B_{1} e^{\xi}+B_{2} e^{-\xi}\right) f(\xi) d \xi+\int_{y^{\prime}}^{y^{\prime \prime}} e^{-\lambda \xi} f(\xi) d \xi \mid \\
\leq & \frac{\|g\|_{\infty}}{2 \lambda A_{2}}\left(\int_{-\infty}^{g 0} e^{2 \lambda x} d x\right)^{\frac{1}{2}} \cdot\left\{\int_{x^{\prime \prime}}^{x^{\prime}}\left|\left(A_{1} e^{\lambda \xi}+A_{2} e^{-\lambda \xi}\right) f(\xi)\right| d \xi\right. \\
& \left.+\int_{x^{\prime}}^{y^{\prime}}\left|\left(B_{1} e^{\xi}+B_{2} e^{-\xi}\right) f(\xi)\right| d \xi+\int_{y^{\prime}}^{y^{\prime \prime}}\left|e^{-\lambda \xi} f(\xi)\right| d \xi\right\} \\
\leq & \frac{\|g\|_{\infty}\|f\|}{2 \lambda \sqrt{2 \lambda} A_{2}} \exp \left(\lambda g_{0}\right)\left\{\left(\int_{x^{\prime \prime}}^{x^{\prime}}\left(A_{1} e^{\lambda \xi}+A_{2} e^{-\lambda \xi}\right)^{2} d \xi\right)^{\frac{1}{2}}\right. \\
& \left.+\left(\int_{x^{\prime}}^{y^{\prime}}\left(-B_{1} e^{\xi}+B_{2} e^{-\xi}\right)^{2} d \xi\right)^{\frac{1}{2}}+\left(\int_{y^{\prime}}^{y^{\prime \prime}} e^{-2 \lambda \xi} d \xi\right)^{\frac{1}{2}}\right\} \\
\leq & \frac{\|g\|_{0}\|f\|}{2 \lambda \sqrt{2 \lambda} A_{2}} \exp \left(\lambda g_{0}\right)\left\{\left(2 \int_{x^{\prime \prime}}^{x^{\prime}}\left(A_{1}^{2} \mathrm{e}^{2 \lambda \xi}+A^{2} e^{-\lambda \xi}\right) d \xi\right)^{\frac{1}{2}}\right. \tag{14}\\
& \left.+\left(2 \int_{x^{\prime}}^{y^{\prime}}\left(B_{1}^{2} \mathrm{e}^{2 \xi}+B^{2} e^{-2 \xi}\right) d \xi\right)^{\frac{1}{2}}+\frac{1}{\sqrt{2 \lambda}} e^{-\lambda y^{\prime}}\right\}
\end{align*}
$$

where the third inequality follows from Schwarz inequality and fourth from the fact that for $a, b \in \mathbf{R},(a+b)^{2} \leq 2\left(a^{2}+b^{2}\right)$.

By (13)

$$
\left\{\begin{align*}
\frac{A_{1}}{A_{2}}= & \left(\lambda^{2}-1\right) \exp \left(-2 \lambda x^{\prime}\right)\left(e^{l}-e^{-l}\right) /\left\{(\lambda+1)^{2} e^{l}-(\lambda-1)^{2} e^{-l}\right\} \tag{15}\\
& \leq \frac{\lambda-1}{2} \exp \left(-2 \lambda x^{\prime}\right) \\
-\frac{B_{1}}{A_{2}} & \left.=2 \lambda(\lambda-1) \exp \left(-\lambda x^{\prime}-y^{\prime}\right) /(\lambda+1)^{2} e^{l}-(\lambda-1)^{2} e^{-l}\right\} \\
& \leq \frac{\lambda-1}{2} \exp \left(-\lambda x^{\prime}-y^{\prime}\right) \\
\frac{B_{2}}{A_{2}}= & 2 \lambda(\lambda+1) \exp \left(-\lambda x^{\prime}+y^{\prime}\right) /\left\{(\lambda+1)^{2} e^{l}-(\lambda-1)^{2} e^{-l}\right\} \\
& \frac{\lambda+1}{2} \exp \left(-\lambda x^{\prime}+y^{\prime}-l\right)
\end{align*}\right.
$$

By combining (14) and (15), we get

$$
\begin{aligned}
\|g(x) u(x)\| \leq & \frac{\|g\|_{\infty}\|f\|}{2 \lambda \sqrt{2 \lambda}}\left[\left\{\frac{\lambda^{2}+1}{2}\left(1-\exp \left\{-2\left(y^{\prime}-x^{\prime}\right)\right\}\right)\right\}^{\frac{1}{2}} \exp \left\{-\lambda\left(x^{\prime}-g_{0}\right)\right\}\right. \\
& +\frac{1}{\sqrt{2 \lambda}} \exp \left\{-\lambda\left(y^{\prime}-g_{0}\right)\right\}+\left\{1-\exp \left\{-2 \lambda\left(x^{\prime}-x^{\prime \prime}\right)\right\}\right) \\
& \left.\left.\times\left(\frac{(\lambda-1)^{2}}{4} \exp \left\{-2 \lambda\left(x^{\prime}-g_{0}\right)\right\}+\exp \left\{-2 \lambda\left(x^{\prime \prime}-g_{0}\right)\right\}\right)\right\}^{\frac{1}{2}} / \sqrt{\lambda}\right] \\
\leq & C\|g\|_{\infty}\|f\| \exp \left\{-\lambda\left(x^{\prime \prime}-g_{0}\right)\right\}
\end{aligned}
$$

where $C=\frac{1}{2 \lambda \sqrt{\lambda}}\left[\left\{\frac{(\lambda-1)^{2}}{4}+1\right\}^{\frac{1}{2}} \frac{1}{\sqrt{\lambda}}+\left\{\frac{\lambda^{2}+1}{2}\right\}^{\frac{1}{2}}+\frac{1}{\sqrt{2 \lambda}}\right]$.
When supp $g \in\left[y^{\prime \prime}, \infty\right)$, the same is true by symmetricity. In general case supp $g \in\left(-\infty, x^{\prime \prime}\right] \cup\left[y^{\prime \prime}, \infty\right)$ by hypothesis. Decomposing g into $g_{1}+g_{2}$ with supp $g_{1} \in\left(-\infty, x^{\prime}\right]$ and supp $g_{2} \in\left[y^{\prime \prime}, \infty\right)$ and applying the above argument, we can complete the proof.

Lemma 4.3. Let T be the same operator as before and $\widetilde{T}=-\frac{d^{2}}{d x^{2}}+\widetilde{V}$ be a self-adjoint operator in L_{\sim}^{2}, where \widetilde{V} is real-valued L^{∞} function and $V(x) \leq \widetilde{V}$ (x) a.e. $\quad x \in \mathbf{R}$. Then \widetilde{T} satisfies the same estimate that T satisfies in Lemma 4.2.

Proof. By Kato's inequality, for any $u \in L_{l o c}^{1}$ with $\frac{d^{2}}{d x^{2}} u \in L_{l o c}^{1}$,

$$
\frac{d^{2}}{d x^{2}}|u| \geq \operatorname{Re}\left\{\frac{\bar{u}}{|u|}\left(\frac{d^{2}}{d x^{2}} u\right)\right\}
$$

in the distribution sense.
Then

$$
\left(-\frac{d^{2}}{d x^{2}}+\widetilde{V}+\lambda^{2}\right)|u| \leq \operatorname{Re}\left\{\frac{\bar{u}}{|u|}\left(-\frac{d^{2}}{d x^{2}}+\widetilde{V}+\lambda^{2}\right) u\right\} .
$$

Set $\widetilde{T}_{\lambda} u=f$, then

$$
\begin{aligned}
T_{\lambda}\left|\widetilde{T}_{\lambda}^{-1} f\right| & \leq \\
\widetilde{T}\left|\widetilde{T}_{\lambda}^{-1} f\right| & \leq \operatorname{Re}\left(\frac{\bar{u}}{|u|} f\right) \\
& \leq|f| .
\end{aligned}
$$

Let $u \in H^{2}$, then $f \in L^{2}$. By (13) the integral kernel of operator T_{λ} is positive, then

$$
\left|\widetilde{T}_{\lambda}^{-1} f\right| \leq T_{\lambda}^{-1}|f| .
$$

For any f, g which satisfy the condition of Lemma 4.2 ,

$$
\left\|g \widetilde{T}_{\lambda}^{-1} f\right\| \leq\left\|g T_{\lambda}^{-1} f\right\| .
$$

So we can complete the proof.
Lemma 4.4. Let H be the same operator as in Theorem 2.2 and a,b satisfy the same conditions as in Lemma 4.1 and for any $\alpha, \beta, \gamma \in \mathbf{R}$ with $\alpha<\beta$ and $\gamma>0, \psi_{\alpha \beta r} \in C^{2}$ have the properties that
(i) $0 \leq \psi_{\alpha \beta \gamma} \leq 1$
(ii) $\operatorname{supp} \psi_{\alpha \beta r}=[\alpha-\gamma, \beta+\gamma]$
(iii) $\psi_{\alpha \beta r}=1$ on $[\alpha, \beta]$
(iv) for some $c^{\prime}>0,\left|\psi_{\alpha \beta r}{ }^{\prime}\right| \leq \frac{c^{\prime}}{\gamma}\left|\psi_{\alpha \beta r^{\prime \prime}}\right| \leq \frac{c^{\prime}}{r^{2}}$

Then

$$
\left\|\left(-\frac{d^{2}}{d x^{2}}+1\right) \psi_{\alpha \beta \gamma} P_{(a, b)}(H)\right\|_{0} \leq C\left\|\chi_{\lfloor\alpha-\gamma, \beta+\gamma \mid} P_{(a, b)}(H)\right\|_{0}
$$

where C depends only on v, γ and c^{\prime}.
Proof. Set $\psi=\psi_{\alpha \beta \gamma}, P=P_{(a, b)}(H)$ and $\chi=\chi_{[\alpha-r, \beta+\gamma]}$. Then

$$
\begin{equation*}
\left(-\frac{d^{2}}{d x^{2}}\right) \phi P=-\psi^{\prime \prime} P-2 \psi^{\prime} \frac{d}{d x} P+\psi\left(-\frac{d^{2}}{d x^{2}}\right) P . \tag{16}
\end{equation*}
$$

For all $f \in L^{2}$

$$
\left\|-\phi^{\prime \prime} P f\right\| \leq \sup \left|\psi^{\prime}\right|\|\chi P f\| \leq \frac{c^{\prime}}{\gamma^{2}}\|\chi P\|_{0}\|f\| .
$$

$$
\begin{equation*}
\left\|-\psi^{\prime \prime} P\right\|_{0} \leq \frac{c^{\prime}}{r^{2}}\|\chi P\|_{0} . \tag{17}
\end{equation*}
$$

By the spectral theorem, for all $f \in L^{2}$

$$
\begin{aligned}
\|H P f\|^{2} & =(H P f, H P f)=\left(H^{2} P f, P f\right)=\left(P H^{2} P f, f\right)=\left(H^{2} P f, f\right) \\
& =\int_{a}^{b} \lambda^{2} d P_{\lambda} \leq(\min \{-a, v\})^{2}\|f\|^{2} \leq v^{2}\|f\|^{2} .
\end{aligned}
$$

Then

$$
\begin{aligned}
\left\|\phi\left(-\frac{d^{2}}{d x^{2}}\right) P f\right\| & =\|\psi(H-V) P f\| \leq\|\psi H P f\|+\|\psi V P f\| \\
& \leq\|\chi P H P f\|+v\|\chi P f\| \leq 2 v\|\chi P\|_{0}\|f\| .
\end{aligned}
$$

So

$$
\begin{equation*}
\left\|\psi\left(-\frac{d^{2}}{d x^{2}}\right) P\right\|_{0} \leq 2 v\|\chi P\|_{0} . \tag{18}
\end{equation*}
$$

And for $f \in \operatorname{Ran} P$,

$$
\begin{aligned}
\left\|\psi^{\prime} f^{\prime}\right\|^{2} & =\left(\psi^{\prime} f^{\prime}, \phi^{\prime} f^{\prime}\right)=\left(f^{\prime},\left(\psi^{\prime}\right)^{2} f^{\prime}\right)=-\left(f, 2 \psi^{\prime} \phi^{\prime \prime} f^{\prime}+\left(\phi^{\prime}\right)^{2} f^{\prime \prime}\right) \\
& =-2\left(\phi^{\prime \prime} f, \phi^{\prime} f^{\prime}\right)-\left(\phi^{\prime} f, \psi^{\prime} f^{\prime \prime}\right) \leq 2\left\|\phi^{\prime \prime} f\right\| \psi^{\prime} f^{\prime}\|+\| \psi^{\prime}\| \| \psi^{\prime} f^{\prime} \| \\
& \leq 2\left\|\phi^{\prime \prime} f\right\|^{2}+\frac{1}{2}\left\|\phi^{\prime} f^{\prime}\right\|^{2}+\left\|\phi^{\prime}\right\|\left\|\psi^{\prime} f^{\prime \prime}\right\|
\end{aligned}
$$

Transposing the second term, multiplying both sides by two and applying (18), we get

$$
\left\|\phi f^{\prime}\right\|^{2} \leq 4\left\|\phi^{\prime \prime} f\right\|^{2}+2\left\|\psi^{\prime} f\right\|\left\|\phi^{\prime} f^{\prime}\right\| \leq \frac{4 c^{\prime 2}}{\gamma^{4}}\left(1+v r^{2}\right)\|\chi f\|^{2}
$$

So

$$
\begin{equation*}
\left\|2 \psi \frac{d}{d x} P\right\|_{0} \leq \frac{2 c^{\prime}}{r^{2}}\left(1+v r^{2}\right)^{\frac{1}{2}}\|\chi P\|_{0} . \tag{19}
\end{equation*}
$$

Combining (16), (17), (18) and (19), the proof is completed.

Lemma 4.5. Let $B_{\alpha, \beta}=-\frac{d^{2}}{d x^{2}}+1$ be a self-adjoint operator on L^{2} ($[\alpha$, $\beta]$) with Dirichlet boundary conditions. Then

$$
\left\|B_{\alpha, \beta^{-1}}\right\|_{1, L^{2}([\alpha, \beta])} \leq \frac{\beta-\alpha}{2}
$$

Proof. Since the operator $B_{\alpha, \beta}$ is positive and its eigenvalues are

$$
\lambda_{n}=\frac{n^{2} \pi^{2}}{(\beta-\alpha)^{2}}+1 \quad(n=1,2, \cdots)
$$

the eigenvalues of operator $B_{\alpha, \beta}^{-1}$ are $\frac{1}{\lambda_{n}}$ and then

$$
\begin{aligned}
\left\|B_{\alpha, \beta^{-1}}^{-1}\right\|_{1, L^{2}([\alpha, \beta])} & =\sum_{n=1}^{\infty} \sum \frac{1}{\lambda_{n}} \\
& \leq \sum_{n=1}^{\infty} \frac{(\beta-\alpha)^{2}}{n^{2} \pi^{2}+(\beta-\alpha)^{2}} \\
& \leq(\beta-\alpha)^{2} \cdot \int_{0}^{\infty} \frac{d x}{\pi^{2} x^{2}+(\beta-\alpha)^{2}} \\
& =\frac{\beta-\alpha}{2}
\end{aligned}
$$

Lemma 4.6. Let H be the same operator as in Theorem 2.2 and a, b satisfy the same conditions as in Lemma 4.1 Then for any $\alpha, \beta, \gamma \in \mathbf{R}$ with $\alpha<\beta$ and $\gamma>0$,

$$
\left\|\chi_{[\alpha, \beta]} P_{(a, b)}(H)\right\|_{1} \leq C(\beta-\alpha+2 \gamma)\left\|\chi_{\lfloor\alpha-\gamma, \beta+\gamma]} P_{(a, b)}(H)\right\|_{0}
$$

where C depends only on v, γ and c^{\prime}.
Proof. Let $\psi_{\alpha \beta r}$ be the same as in Lemma 4.4. Then

$$
\begin{aligned}
\chi_{[\alpha, \beta]} P & =\chi_{[\alpha, \beta]} \psi_{\alpha \beta \gamma} P \\
& =\chi_{[\alpha, \beta]} * B_{\alpha-\gamma, \beta+r}{ }^{-1} B_{\alpha-\gamma, \beta+r} * \psi_{\alpha \beta \gamma} P
\end{aligned}
$$

where the first $*$ represents embedding from $L^{2}([\alpha-\gamma, \beta+\gamma])$ to L^{2} and second $*$ represents identifying a function which is in L^{2} and whose support is a subset of $[\alpha-\gamma, \beta+\gamma]$ as a function in $L^{2}([\alpha-\gamma, \beta+\gamma])$.

Then by Lemma 4.4 and Lemma 4.5

$$
\begin{aligned}
&\left\|\chi_{[\alpha, \beta]} P\right\|_{1}=\left\|\chi_{\lfloor\alpha, \beta]} * B_{\alpha-\gamma, \beta+\gamma}{ }^{-1} B_{\alpha-\gamma, \beta+r} * \psi_{\alpha \beta \gamma} P\right\|_{1} \\
&=\left\|\chi_{\lfloor\alpha, \beta]} *\right\|_{\mathbf{B}\left(L^{2}(\alpha-r, \beta+\gamma), L^{2}\right)}\left\|B_{\alpha-\gamma, \beta+r^{-1}}\right\|_{\mathbf{B}\left(L^{2}(\alpha-\gamma, \beta+\gamma), L^{2}(\alpha-\gamma, \beta+\gamma)\right)} \\
& \times\left\|_{\alpha-\gamma, \beta+\gamma} * \psi_{\alpha \beta \gamma} P\right\|_{\mathbf{B}\left(L^{2}, L^{2}(\alpha-\gamma, \beta+\gamma)\right)} \\
& \leq \frac{(\beta-\alpha+2 \gamma)}{2}\left\|\left(-\frac{d^{2}}{d x^{2}}+1\right) \phi_{\alpha \beta \gamma} P\right\|_{0} \\
& \leq C(\beta-\alpha+2 \gamma)\left\|\chi_{[\alpha-\gamma, \beta+\gamma]} P\right\|_{0}
\end{aligned}
$$

Proof of Lemma 4.1.

$$
\left\|\left(H_{\lambda}^{-1}-K\right) P\right\|_{1}=\left\|\sum_{i}\left(H_{\lambda}^{-1} \chi_{i}-H_{i \lambda}^{-1} \chi_{i}+H_{i \lambda}^{-1} \chi_{i}-\chi_{i} H_{i \lambda}^{-1} \chi_{i}\right) P\right\|_{1}
$$

$$
\begin{align*}
& =\left\|\sum_{i}\left\{H_{\lambda}^{-1}\left(-\sum_{j \neq i} V_{j}\right) H_{i \lambda}{ }^{-1} \chi_{i}+\sum_{j \neq i} \chi_{j} H_{i \lambda}{ }^{-1} \chi_{i}\right\} P\right\|_{1} \\
& \leq \sum_{i}\left(\left\|H_{\lambda}{ }^{-1}\right\|_{0} v+1\right)\left\|\left(\sum_{j \neq i, i \pm 1} \chi_{j}\right) H_{i \lambda}{ }^{-1} \chi_{i}\right\|_{0}\left\|\chi_{i} P\right\|_{1} \tag{20}
\end{align*}
$$

$$
\begin{equation*}
+\sum_{i} \sum_{j=i \pm 1} \sum_{k=1}^{3}\left(\left\|H_{\lambda}{ }^{-1}\right\|_{0} v+1\right)\left\|\chi_{j} H_{i \lambda}{ }^{-1} \chi_{i k}\right\|\left\|_{0}\right\| \chi_{i k} P \|_{1} \tag{21}
\end{equation*}
$$

where

$$
\begin{aligned}
& \chi_{i 1}(x)=\chi_{\left[z_{i-1}, z_{i-1}+\frac{d_{i-1}}{8}\right]}(x) \\
& \chi_{i 2}(x)=\chi_{\left(z_{i-1}+\frac{d_{i}}{8}\right)}(x) \\
& \chi_{i 3}(x)=\chi_{\left[z_{i}-\frac{\left.d_{i}, z_{i}\right)}{8}\right)}(x) .
\end{aligned}
$$

First of all in (20) $d\left(\operatorname{supp}\left(\sum_{j \neq i, i \pm 1} \chi_{j}\right), \operatorname{supp} \chi_{i}\right) \geq \frac{d_{i *}}{2}$. So by Lemma 4.3

$$
\left\|\left(\sum_{j \neq i, i \pm 1} \chi_{j}\right) H_{i \lambda}{ }^{-1} \chi_{i}\right\|_{0} \leq C \exp \left(-\lambda d_{i *} / 2\right)
$$

Setting $\gamma=\frac{d}{8}$ and using Lemma 4.6, we get

$$
\begin{aligned}
\left\|\chi_{i} P\right\|_{1} & \leq C\left(w_{i}+\frac{d_{i-1}+d_{i}}{2}+\frac{d}{4}\right)\left\|\chi\left[z t-1-\frac{d}{8}, z i+\frac{d}{8}\right] P\right\|_{0} \\
& \leq C\left(w_{i}+d_{i}^{*}\right) .
\end{aligned}
$$

Then

$$
\begin{equation*}
\sum_{i}\left(\left\|H_{\lambda}^{-1}\right\|_{0} v+1\right)\left\|\left(\sum_{j \neq i, i \pm 1} V_{j}\right) H_{i \lambda}{ }^{-1} \chi_{i}\right\|\left\|_{0}\right\| \chi_{i} P \|_{1} \leq C \sum_{i}\left(w_{i}+d_{i}^{*}\right) \exp \left(-\lambda d_{i *} / 2\right) \tag{22}
\end{equation*}
$$

In (21) when $j=i-1$ and $k=2$, 3 or $j=i+1$ and $k=1,2, d$ (supp V_{j}, supp $\left.\chi_{i k}\right) \geq \frac{d_{i *}}{8}$.

Then

$$
\begin{equation*}
\sum_{i}\left(\left\|H_{\lambda}^{-1}\right\|_{0} v+1\right)\left\|\chi_{i} H_{i \lambda}^{-1} \chi_{i k}\right\|_{0}\left\|\chi_{i k} P\right\|_{1} \leq C \sum_{i}\left(w_{1}+d_{i}^{*}\right) \exp \left(-\lambda d_{i *} / 8\right) \tag{23}
\end{equation*}
$$

When $j=i-1$ and $k=1$ or $j=i+1$ and $k=3$,

$$
\left\|\chi_{i} H_{i \lambda}{ }^{-1} \chi_{i k}\right\|_{0} \leq 1
$$

and by Lemma 3.6

$$
\left\|\chi_{i k} P\right\|_{1} \leq C \frac{d_{m}}{4}\left\|\chi_{\left[z_{m}-\frac{d m}{4}, z_{m+} \frac{d m}{4}\right]} P\right\|_{0} \quad(m=i, i+1)
$$

$$
\begin{aligned}
& \leq C \frac{d_{m}}{4} \exp \left(-\sqrt{-b} d_{m} / 8\right) . \quad(m=i, i+1) \\
& \leq C\left(w_{i}+d_{i}^{*}\right) \exp \left(-\sqrt{-b} d_{i *} / 8\right)
\end{aligned}
$$

Then
(24) $\quad \sum_{i}\left(\left\|H_{\lambda}{ }^{-1}\right\|_{0} v+1\right)\left\|\chi_{j} H_{i \lambda}{ }^{-1} \chi_{i k}\right\|_{0}\left\|\chi_{i k} P\right\|_{1} \leq C \sum_{i}\left(w_{i}+d_{i}^{*}\right) \exp \left(-\sqrt{-b} d_{i *} / 8\right)$.

Combining from (22) to (24), we get

$$
\left\|\left(H_{\lambda}^{-1}-K\right) P\right\|_{1} \leq C \sum_{i}\left(w_{i}+d_{i}^{*}\right) \exp \left(-\min \left\{\frac{\sqrt{-b}}{8}, \frac{\lambda}{8}\right\} d_{i *}\right)<\infty
$$

where the last inequality follows from the assumption (A.2).

5. Proof of Main Theorem

In this section we will apply Pearson's theorem to prove Theorem 2.2.
Lemma 5.1. ([6] p.24). Let A and B be self-adjoint operators and let J be a bounded operator. Suppose that there is a trace class operator C so that $C=$ $A J-J B$ in the sense that for all $\varphi \in D(A)$ and $\psi \in D(B)$,

$$
(C \psi, \varphi)=(J \psi, A \varphi)-(J B \psi, \varphi)
$$

then

$$
\Omega^{ \pm}(A, B ; J) \equiv \mathrm{s}-\lim _{t \rightarrow \infty} e^{i A t} t e^{-i B t} P_{\mathrm{ac}}(B)
$$

exist.
Proof of Theorem 2.2. Since H has no spectra in $(-\infty,-v)$, we can assume that $c \geq-v$ without loss of generality. Set $A=K, B=H_{\lambda}{ }^{-1}$ and $J=$ $P_{(a, b)}(H)$ in Lemma 5.1. By the spectral theorem, $P_{(a, b)}(H)=P\left(\frac{1}{b+\lambda^{2}}, \frac{1}{a+\lambda^{2}}\right)$ $\left(H_{\lambda}{ }^{-1}\right)$. Since $H_{\lambda}{ }^{-1}$ and $P_{\left(\frac{1}{b+\lambda^{2}}, \frac{1}{a+\lambda^{2}}\right)}\left(H_{\lambda}{ }^{-1}\right)$ commute each other, by Lemma 4.1 we can prove that they satisfy the hypotheses of Lemma 5.1 under the conditions of Theorem 2.2. Then

$$
\begin{equation*}
\widetilde{\Omega} \equiv s-\lim _{t \pm \infty} e^{i K t} e^{-i H_{\lambda}^{-1} t} P_{\left(\frac{1}{b+\lambda^{2}} \cdot \frac{1}{a+\lambda^{2}}\right)}\left(H_{\lambda}^{-1}\right) P_{\mathrm{ac}}\left(H_{\lambda}^{-1}\right) \tag{25}
\end{equation*}
$$

exist.
(25) shows that Range $\left(P_{\left(\frac{1}{b+\lambda^{2}}, \frac{1}{a+\lambda^{2}}\right)}\left(H_{\lambda}{ }^{-1}\right) P_{\mathrm{ac}}\left(H_{\lambda}{ }^{-1}\right)\right)$ is unitary equivalent to the subspace of Range $\left(P_{\left(\frac{1}{b+\lambda^{2}}, \frac{1}{a+\lambda^{2}}\right)}(K) P_{\mathrm{ac}}(K)\right)$. So let's consider the operator K.

For any $i \in \mathbf{Z}$ we can regard the operator $\chi_{i} H_{i \lambda}{ }^{-1}$ as the one from $L^{2}\left(I_{i}\right)$ to
$H^{2}\left(I_{i}\right)$. Since $H^{2}\left(I_{i}\right)$ is the compact subspace of $L^{2}\left(I_{i}\right), \chi_{i} H_{i \lambda}{ }^{-1}$ is compact. So by Riesz-Schauder's theorem its spectra are discrete except for the origin, and the set of its eigenfunctions constitutes a C.O.N.S. of $L^{2}\left(I_{i}\right)$.

The function which is gained by embedding the eigenfunction of $\chi_{i} H_{i \lambda}{ }^{-1}$ into $L^{2}(\mathbf{R})$ is an eigenfunction of K. The set of all such functions for all i consists a C.O.N.S. of L^{2}.
Then the absolutely continuous subspace of K is $\{0\}$. So we can conclude that

$$
\text { Range }\left(P_{\left(\frac{1}{b+\lambda^{2}}, \frac{1}{a+\lambda^{2}}\right)}(K) P_{\mathrm{ac}}(K)\right)=\{0\} .
$$

Then

$$
\operatorname{Range}\left(P_{\left(\frac{1}{b+\lambda^{2}} \cdot \frac{1}{a+\lambda^{2}}\right)}\left(H_{\lambda}^{-1}\right) P_{\mathrm{ac}}\left(H_{\lambda}^{-1}\right)\right)=\{0\} .
$$

By the spectral theorem

$$
\text { Range }\left(P_{(a, b)}(H) P_{\mathrm{ac}}(H)\right)=\{0\}
$$

Since a, b are arbitrary with $a<b<0$ and $a, b \notin \sigma_{\mathrm{PP}}(H)$,

$$
\sigma_{\mathrm{ac}}(H) \cap(-\infty, 0)=\emptyset .
$$

Depertment of Mathematics Kyoto University

References

[1] H. L. Cycon, R. G. Froese, W. Kirsch and B. Simon, Schrödinger Operators with Application to Quantum Mechanics and Global Geometry, Berlin, Heidelbelg, New York, Springer, 1987.
[2] T. Kato, Perturbation theory for linear operators, Berlin, Heidelberg, New York, Springer, 1966.
[3] S. Mizohata, The theory of partial differential equations, Iwanami shoten, 1965 (in Japanese).
[4] M. Reed, B. Simon, Methods of modern mathematical physics, Vol. I, Functional Analysis, New York, Academic Press, 1972.
[5] M. Reed, B. Simon, Methods of modern mathematical physics, Vol. II, Fourier Analysis, Self-adjointness, New York, Academic Press, 1975.
[6] M. Reed, B. Simon, Methods of modern mathematical physics, Vol. III, Scattering theory, New York, Academic Press, 1979.
[7] M. Reed, B. Simon, Methods of modern mathematical physics, Vol. IV, Analysis of operators, New York, Academic Press, 1979.
[8] B. Simon, T. Spencer, Trace class perturbations and the absence of absolutely continuous spectra, Commun. Math. Phys., 125 (1989), 113-125.
[9] Yang, L., Semiclassical limit of the spectral decomposition of a Schrödinger operator in one dimension, Math. Scand., 69 (1991), 291-306.

