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Compactness in Boltzmann's equation via Fourier integral
operators and applications. II

dedicated to the memory of Ron DiPerna

By

P. L. LIONS

I. Introduction

This w ork is the continuation of Part I  [51] where a  general introduction
to Boltzmann's equations (and kinetic models) can be found together with the
main goals of th is  s e r ie s .  In  particular, w e keep th e  sam e notations than  in
[51] and we recall briefly the Boltzmann's equation

(1) J .f  + v  V if=Q (f , f ), x N v  E RN t >0
at

where 2 and the solutions f=f  (x , v , t) are  always assumed to be nonnega-
tive on R.Z, x [O, co )  and the so-called collision term  Q ( f, f) introduced by L.
Boltzmann [11] and J. C. Maxwell [58], [59] is given by

Q (f, f) =Q+ (f, f) — Q-  (f, f),

Q+ ( f, f) = f I rolv* f s ,_‘ dco B (v—v * , w)f' r *  ,

iQ-  ( f, f) = f i e civ* I s ,_, do) B (v —v * , w)f f * =fL  (f) ,

L  (f ) =A :f , ,

and A (z) = is , --B (z, co) d co (z c RN ) , f* =f (x, v ,  t) , f '=f (x , v ,  t) , f '* = f (x, 14,
t) , v'= v — (v — v*, w) w, v'*=v*+ (y  — v , (O w . Here and everywhere below,
we denote indifferently by a  • b o r  (a, b) the usual scalar product of a, b ERN  .

T he so-called collision kernel B  tha t en ters the  bilinear operator Q i s  a
given function on RN Ns - 1 .

 W e  sh a ll a lw a y s  assum e (at least) that B  satis-
fies

(5) B E L '  x SN
-

i )  for any compact set K of R N ,
(6) B (z, co) depends only on IA and I (z, (0)

Communicated by Prof. T. Nishida, July 1,1993
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(4)
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{

(1+1212) - 1 ( f RA (v)dv) --4 0
aslzI— >+ co, for all RE (0,  0 0 ) .

And we will not recall these assumptions in all that follows.
A classical example is given by the so-called hard-spheres model where

(8) B (z, co) ( z  co) h
Another physically interesting example -  tha t corresponds to  soft forces with
an angular cut-off -  is given by b (0) I zIr with cose= I (z, (0) 41 - 1 ,  Y = 1 — 2 (N
— 1) (s  — 1) - 1  a n d  s  is  th e  exponent o f the  interm olecular potential (s > 1) .
T he above assumptions a re  satisfied a s  soon a s  b (0) (cose) N - 1  E  LI  (0, 7r /

a n d  s > 1  + 2
N — 1 
N + 2 •

W e next recall the notion of renormalized solutions of (1) a s  introduced
in  R. J. DiPerna and P . L . L ions [25] , [26] . First, we com plem ent (1) with
an initial condition

(9) f it= o= fo  in

where f o ( 0) is given on RZ, and satisfies

(10) f dx dv f  (t) (1+ w(x) 4- M2 ' l o g  f (t) I) < OE) •

Here and everywhere below, w is  a  (weight) function that satisfies

(11) co_ 0, (1+w) 1 /  2  is  Lipschitz on R', e- a) E LI (RN)

(It was shown in  [51] th a t  (11) implies that w —* +00 as Ix' +00) .

W e then say that f  E  C ( [0  , cc') ;  L I (W i ) )  is  a  renormalized solution of
Boltzmann's equation (1) corresponding to the initial condition (9) if f  satis-
fies

(12) su p  f  f R" dx dv j(t) (1 -  F ( x )  +M 2 ±Ilog f  (t)I) < c  0  ,
tero,T1

Q
 ( " )  E L ( 0  ,  0 0 ; L i  (R i

x
sf X K) );1+f

Q+ ( f , f )   EL 1 ( 0 ,  T; L l (WI x K) ) ,1+f

( 1 3 )

for all T E  (0 , )  and for any compact set K of R,". In addition, we request
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that

(14) (1 -F y  •  V x )151(b) =.13'(f )Q (f , f ) in 2 1'(10`',, x (O, 0 0
) )

for all S E  ( [0 , 0 0 ) ; R ) such that P'(t) ( 1 + t) is  bounded  on [O ,  0 0 ). The
final property we also require is

(15) fo
T

dt f d X  f f d V d V * f d (1 ) B(Fr* — ff*) log f f  <  + 0 0

R " ff *
for all TE (O, °()) •

It w as show n i n  [25] tha t there  a lw ays ex ists a t least one renormalized
solution of (1) with the initial condition (9). Additional properties are avail-
able such as conservation of m ass (locally) and momentum (globally) and an
entropy inequality (shown in  R.J. DiPerna and P.L. Lions [ 2 6 ] ) .  And, in fact,
we shall derive in section IV more properties satisfied by the solutions we can
b u ild . A s  recalled in the Introduction of Part I  [51] , th is  existence result is
essentially a  consequence o f  th e  s tab ility  o f  renormalized solutions under
weak L i  convergence.

W e have shown in  P a rt I  [51] tha t for arbitrary sequences o f renormal-
ized solutions of (1 )  w ith  uniform  natura l bounds (see  (12) a n d  (15)) , the
nonlinear operator Q+  is  a lw ay s re la tiv e ly  com pact (for the convergence in
m e a su re ) . And we applied this compactness (and in fact regularity) result to
a  new proof of the convergence in L1 (s trong ly ) to  a  pure  Maxwellian equilib-
rium in the case of a periodic box.

Here, we use this result to establish the  following fact: if f n  i s  a  sequence
of renormalized solutions of (1 ) w ith uniform  natural bounds and  if the  cor-
responding initial conditions Po' converge strongly in  L ' ( R )  to some fo then,
extracting a  subsequence if  necessary, P  converges in C ([O, ;  L I  (R,Z))
( V T E (O, 0 0 ) )  to  a  renormalized solution of (1 ) corresponding to the initial
condition f o. The precise statement is given in section II and is proven in  sec-
tion  III. F o r  obv ious reasons, w e  say  tha t th is  re su lt show s tha t the re  is
propagation of the (strong) L i  convergence in Boltzmann's equation.

Such a  result is then applied in section IV to the  derivation of new prop-
e rtie s  o f the  so lu tions o f B oltzm ann 's equation. M ore precisely, we obtain
new  differential inequalities satisfied by all sm ooth solutions of Boltzmann's
equation and the propagation of the strong 12 convergence allows us to  check
that the weak solutions w e build also satisfy these inequalities. In fact, we do
not show that any renormalized solution satisfies them but tha t the approxima-
tion procedure used i n  [25 ] not only yields the  defining properties of renor-
malized solutions but also these differential inequalities.
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Finally, we deduce from these new properties a  uniqueness statement: we
show  th a t if  there  ex ists a  strong so lu tion  o f ( 1 )  (say  a  bounded solution)
satisfying (9) then any weak solution (i.e. renormalized solution satisfying the
differential inequalities shown in section IV) coincides with the strong one.

Further applications of the compactness results shown in  P art I  [51] and
here will be given in Part III: details can already be found in the Introduction
of Part I.

L et us now conclude this Introduction by making a  few comments on the
results show n in  th is  p a p e r .  F irs t  of all, the propagation of the strong con-
vergence in  L' (Rg) shows th a t if  initially  there are no oscillations, then  no
oscillations can  appear spon taneously  during  th e  e v o lu tio n . T h is  type  o f
questions has become a  s tanda rd  issue  fo r nonlinear evolution problem s (of
hyperbolic type...) beginning with the w orks by  L . T arta r [65] , [66] on com-
pensa ted  com pactness. H ow ever, i n  m a n y  e x a m p le s  s u c h  a s  nonlinear
(hyperbolic) conservation law s, th e  e x is tin g  re su lts  a r e  slightly different
since they show tha t no oscillations can appear o r  even persist even if oscilla-
tions are present initially -  see  L . T artar [66], R. J. DiPerna [22], [23] , G. Q.
C hen [18], P. L. Lions, B. Perthame and E. Tadmor [56] , [57], P. L. Lions, B.
Perthame and P . E . Souganidis [56] ... A nd it w as show n in P .L . L ions [52]
that this phenom enon o f immediate damping (for t> 0 )  of oscillations is not
true  for Boltzmann's equation -  w hile it holds for o ther collision models such
as the  Landau's m odel [52] . T his is  w h y  o u r re su lt is  in  fact closer to  the
resu lts show n o n  Vlasov-Poisson system s in  R . J . DiPerna a n d  P . L . Lions
[31 ] -  see  a lso  [51 ] -  and of course to  the  much simpler case of L' contrac-
tive evolution equations such as, for instance, scalar conservation laws.

W e a lso  w an t to  poin t ou t th a t th e  uniqueness "weak solution =  strong
solution" show n in  sec tion  V  i s  a  c lassica l substitu te  to  a  true uniqueness
s ta te m e n t. And one can observe a  striking analogy w ith the  sta te  of the art
o n  three d im ensional incompressible Navier-Stokes equa tions. Indeed , the
global existence re su lt o f w eak solutions show n i n  [25] can  be  seen  as the
analogue for Boltzmann's equation o f  th e  pioneering w ork o n  Navier-Stokes
equations by J. L eray  [47] , [48] , [49] . A nd the uniqueness of "Leray solu-
tions" is not know n except fo r som e results w hich show  that w eak solutions
are equal to a  strong one  (in  a  sense to be made precise) whenever the latter
exists: examples of such results can be found in  R. Tem am  [67] . Let us also
mention that results of a similar type for hyperbolic systems of nonlinear con-
servation laws can be found in R. J. DiPerna [24].

II. Propagation of strong I ) convergence in Boltzmann's equation

A s  explained in  the  In troduc tion , w e  co n sid e r  a  sequence (P i)  ofn

(nonnegative) renormalized so lu tions o f (1 ) corresponding to a  sequence of
(nonnegative) initial conditions ( f We assume uniform natural bounds
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on fg i.e.

(16) suP f f R „,f g 11 - Fcb(x)±1v1 2+110 g f  dx  dv<00
n  1

We also assume similar bounds on I '

(17) s u p  s u p  ff fn(t)+0)(x)+Iv12-Filogricoil d x d ,< 0 0 ,
12.'"tE  [0,T]

and

(18) sup f dt f  d x f  f  d v d v * f  do) • B(f — f n f l)log  f  f  * < 00
n s - - fn f l

for all T E  (0 , 0 0 ).
Let us reca ll (once more) that the existence of such a  sequence r  given a

sequence poi satisfy ing (16) was shown in  [25] , [26] . In  fact, only the case
(x)=1x1 2 was considered in  [25], [26] in which case one can even take T =

+ co  in  (17) a n d  (18), while the easy modifications of the arguments of [25],
[26] needed to allow a  general w satisfying (11) are explained in  Part I  [51].

Next, we observe th a t th e  bounds (16) a n d  (17) imply, extracting sub-
sequences if  necessary, that f g  (resp. f n )  converges weakly in  1,1 

( R 2 N
 ) ( resp.

(RZ, x (0 ,  T ) )  for a ll T E  (0, °°) )  to some f o 0 (resp. 0) which satis-
fies (10) (resp. (12)).

A nd w e recall tha t it w as show n i n  [25] , [26] that f  is  a  renormalized
solution of (1) corresponding to the initial condition fo (i.e. f  sa tisfie s  (9)) .
W e may now state our main result

Theorem 11.1.I f  P o i converges in L' (R 2 N )  to fo, then f n  converges to f  in
C ([0 , 7 ] ; L i  (R.Z) ) for all T E  (0, 0 0 ).

Remarks. i) T h e  sa m e  re su lt h o ld s  f o r  th e  Boltzm ann's equation in  a
periodic box i.e. when P o

i , f n  ( a n d  thus f o, f )  a re  assum ed to  be periodic in
each x i ( I  w ith  a  fixed period T  E (0, 0 0 ). In  tha t case, the weight
w  is  no m ore necessary a n d  all integrations in  x  in  th e  assumption a re  res-
tricted to i r =  f i liv=i [ 0 ,  T i]

ii) L e t u s  reca ll tha t it w as show n in  P . L . L ions [52] tha t if f i T t >f in
Lioc(RZ x (0, co)) then necessarily f 1 .

0 in  LI ( w / o .) • T his fact combined
w ith  th e  above resu lt show s th a t th e  strong  convergence in LI (R.g) prop-
agates both forward and backward in  tim e . O ne  might suspect that such a re-
ve rsib le  p ropagation  o f L ' convergence is  r e la t e d  to  t h e  angular cut-off
assumption we are  making on the collision operator Q and that without angu-
lar cut-off the  strong Ll convergence is automatic for t>0 (without any furth-
er assumption on f g  like the strong convergence assumption made in the above
resu lt) as it is  the case for the so-called Landau model (see P. L. L ions [52]).
Of course, th is rem ains h ighly  speculative since very  little  is know n on the
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Boltzmann's equation without angular cut-off.
Theorem 11.1 is proved in the next section by, in fact, two slightly diffe-

ren t argum ents. We conclude this
f

 s e c t i o n  by recalling a  few known facts on
such sequences of solutions (i n) n>1. F irs t  of all, it w as show n in  [25] that
we have for all R, TE  (0 ,  0 0 )

iQ± (f n , f n ) (1±f n ) - 1  is weakly relatively compact in
L l  (E x (IvI<R) x (0, T )),

L (P i ) = A *o f n ( =  f  fi t ,,x  s , ,f n (x, v, t) B (v—  v*, al) d11,4 CO)I

(21) Q+ (f n , f n ) —>Q+ ( f, f) in measure on  (Ixl<R) x IvI<R) x (0, T)

for all R, TE  (O, 00) .
The assertions (19) and  (21) then imply that, in order to prove Theorem

11.1, we may assume without loss of generality that we have

(22) Q+ (fn, f n )  71
)  Q + ( f, a.e. 112 N  x (0 ,  0 0 )

and for a ll 5 E (0 , 1]

(23) (2±(f n ,f n ) (1+ f  n ) RQ k  weakly in L l  (W. X (IvI<R) T))

    

for all R, T E  (0,  0 0 ) , where RQ k  are tw o nonnegative measurable functions

in L i (E X (IvI<R) x (0 , T ) )  for all R ,  T  (0, 0 0 ) And we set RQ± =RQi

Also, 
f n 1 a re  obviously bounded m easurable functions on R 2 N x

1+f n 1 + f n

(0, 00 )  (a n d  f  na l s o  i n h e r i t s  o f  th e  V  bounds sa tisfied  by  f  "  since
1-1-fn

fn
0   Therefore, in order to prove Theorem 11.1, we may assume

l + f n

without loss of generality that we have

(24)
fn

T weakly in L. -  (R ri, X (0, c o ) )  (weak*)
1±f n  n

and

1 (25) 13' weakly in /7 (RZ, x (0 , 00)) (weak*).
1+f n  n

(19)

(20)
L  (f) in Llx  ( l v i  <R ) x (0 , T )) .

And the main compactness result (Theorem 11.1)  in  P a rt I  [51] is

1  
We use the awkward notation IT because /3'(t) =  1 ± t i f  S(t) =

l o g ( 1  ± t ) .
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Next, we remark that 13 ( f  n) =log (1 + j ')  is  bounded  in LP (RZ, X  (0 , T ))
for a ll 1 < 0 0  , T E  ( 0 ,

 0 0 )  and th a t 0 ( f n )  f  • Therefore, once more
without loss of generality, we may assume that w e have

(26) (f  Ti> s weakly in L n (RZ X  (0, T))

for all 1_.<p<00, T E  (0, c o ) .  In addition, since f  g converges in  L 1 (R 2 ')  to f o,
we deduce easily that p ( f 8) a lso  converges in L 1 (R2 N )  to p ( f . ) .

Furtherm ore, th e  functions (t —> 
1 -  F t

)  a n d  (t log (1 t) ) -  resp.

1 
1 +t

)
( t — > -  are concave on [ 0 ,  c o )  - resp. is convex on [O , c o )  - .  Hence,

we deduce from standard functional analysis facts the following inequalities:

—   1  
(27) 1  - F f  

=  ( f )

and

(28) <  f   = y (f) , lo g  (1 +f) cp •

III. Proofs

W e shall give two proofs of Theorem 11.1. T h e  f irs t one is slightly sim-
pler but the  second one show s a  b it m ore clearly how  th e  "calculus and  no-
tion" o f  renormalized solutions allows to deduce Theorem  11.1 f ro m  the main
compactness result shown in  P art I  [51] nam ely (2 1 ). In  fact the first proof
will use the fact that we already know from [25] that f  is a  renormalized solu-
tion o f  (1) while the second one will show directly that f n converges in L1.

Proof 1. From the definition of renormalized solutions, we have

(29)
( 1 - F y  •  17f3)13(f =_  (1 -

F f  n )  —
1Q + (fn  f n ) + f n ) (fn  f  n )

in ' (1111  x (O, 00) ) .

Therefore, if we let n go to co and we u se  (26) a n d  (23), we deduce

(30) (1 ± v  .  7 ) 3 =  R Q +  — R Q - in D' (RZ, x (0 , 00)) .

N ext, w e  observe  t h a t  (1 + f n ) - 1 Q — ( f n ,  f  '1)  =  ( f  n )  L  (f  n ) .  This
1±f 7'

observation combined with (20), (23) and  (24) implies that we have

(31) R Q - T L  (f ) .
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Indeed, we have

f n L ( f )  —  i+ f n
n fn L ( P +

1 - 1- f n  I
L ( f n) — L ( P 11 - Ff"

I l f
-Fn f n IL (f n ) L (f )

O f n )  — 1, (f )I •

f n
Hence  IL ( f n ) L  (.6 ) in L 1 (E X  (Id  <R ) X (O, T ) )  for all R, T E

l+f n
(0, 0 0), while, for a ll (pe Lc° (ft,/,̀ I x (Iv I <R) x (0, T ) (extended by 0 to R X
(0, 00)), (f) (RZ, X (0, 00)) and thus in view o f  (24)

fn
L  (PO dxdvdt PO dxdvdt .

f R . , x (0 , . , 1 - F
f n L " x (0 ,0 . ,

TL (

And this completes the proof o f  (31).

Next, we consider (1+1") -
1Q+  ( f n , f n )  and w e claim  that (22), (23) and

(25) imply

(32) RQ+ =13'Q+ (f,

Indeed, it is of course enough to show  (32) on DR X  (0, T )  for any fixed R , T
E  (0, 00) where DR

= 1(x, v) Ivi . W e then use Egorov theorem to
deduce that for each E>0, there exists a  measurable set E C D R  x  (0, T )  such
that measx,v,t(E) E  and Q+  (fn , fn ) converges uniformly to Q+ (f, f) o n  (DR  X

(0, T ) )  (1 E '.  In addition, since Q +
1

(1 .1 )  E L I  (DR X  (0, T ) )  ( f  is  a renormal-

ized solution of (1)) , we may assume without loss of generality that Q+  (f ,
E Li  ((DR  X  (0, T )) n Ec) . Hence, in particular,

(1 - Ff n ) — 1Q+  ( f  n , f  ") dx dv dtinocom fox(om nE (1± f  n ) — 1 Q+ (f n, f n ) dx  dv  dt
R

,

(1 + f n ) - 1 Q+  (f,f p o  (0,T)

where E- 0 , and  we deduce from (25)

s'Q+ (f ,fox(o,i)nE d x d v d tlim f  ( 0 , 7 )
(1-f -fn) - 1 Q+  (f n , f n) dx  dv  dt .

R c n D„ x 

In  particular letting E go to  0, we deduce that is' (f , E  L  (DR  X  (0, T)) .
Next, we have for all ç. EL -  (R ri,x (O, 0 0 ) )  supported in DR X  (0, T)

f ( +f n
)

 
- 1 Q+ (f",fn ) — fi'Q+ ( f , f ) I  dxdvdt1
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(fn , fn\) 8"Q+ (f , d x d v d t

+ IL O  ( l+f n ) —1 1Q+  f  n f  n ) — Q+ (f, dxdvdt1

- d i E ,0Q+ (f , (1+f 1 _ $i dxdvdt1 .

The third integral goes to 0 as n goes to  +00 for each fixed (> 0  in  view of
(25) (recall that Q+  (f, EL' (Ec n (DR X (0 , T ) ) )  and so does the second in-
tegral in  view of the uniform convergence of Q+ (fn , fn ) to  Q ± (f, f) on .È  n
Supp (0) Finally, the  first integral can be made, uniformly in n, arbitrarily

small as E  goes to 0 because o f  (23) and of the integrability of B'qf (f, f) on
Supp (c,b). And the claim  (32) is shown.

Next, we combine (30), (31), (32) with the inequalities (27) a n d  (28) to
deduce

(g t +v •  4 3 (f) (2+(1, f) i
f
± f

(33)
= S'(f)(1 (f, .1") in O' x  (0, 00)) .

On the other hand, we already know from [25] that B(f) satisfies

(34) (l + v  14 3 (f) =13'W Q(f, f )  in D' (KZ x (0 , 0 0 )) .

This is really w here w e use the knowledge that f  is  a lso  a  renormalized solu-
tion  o f  (1 ) (an d  th e  w eak L ' stab ility  resu lt show n i n  [25]) . Comparing
(33) a n d  (34) we deduce

(35) w + v(a Vx) [i3— )3(.f)] in Tv (RZ, x (0 , cx))) .

In fact, we know a bit m ore since  (30) im plies that aaiSt +v • Vx13eL l (Rix'r

X (Iv I <R ) x  (0 ,  T ) )  fo r all R, T E (0 , 0 0 ). In addition, the bound  (17) im-

p lie s  th a t su p  ffe,,g(1+0)(x)+ 1v12)  dxdv < œ  for all T E  (0, co) . These
0 5 t  T

two facts allow to check by easy arguments that BE C ( [0, ; ( R ) ) .  We

next remark that Sit=0=R(fo) on R 2 N . Indeed, ( 
a 

 +v  vx )s (fn ) is boundedat
in  L' (W I X <R) X (0 ,  T ) )  (for all R, T E  (0 , 00)) and this is enough to
ensure that s (fn) converges uniformly o n  [0, T ] in  a  "negative enough" local
Sobolev sp ace  (in  fact Wi-osx'l  (R 2 N )  for s > 1 )  .  O f course, the lim it is  S  and
th u s  a t-0  is  the  limit of ( f )

 w h ic h  converges in L ' to f3 ( fo ) O u r  claim is
then  show n. F urtherm ore , /3 ( f )  also  belongs to  C ([0 , 0 0 ) ; (R2 N ) )  and
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P ( f ) 1 0 = s ( f . )  on R2 N . In other words, 43— /3(f) C  ( [0, 00 ); L 1 (R2" ) )  and

(13- P(P )1 ,0= 0 on R ' .  This combined with (35) yields easily

(36) 13.1:3(f) a.e. on R2N X [0, c o )  .

Comparing with (28), we deduce that 7-3=13(f) or in  other words

(37) log (1 +fn)7>log (1 -I-f) weakly in LP (R 2 N  X (0 , T ) )

for all 0 0 , T E  (0 , c o ), while f f  weakly in .1,1 (R 2 N  X (0, T ) )  for all T
E (0 , c c )  .

We can now conclude by a more or less standard argument observing that
(t —> log ( 1 + t)) is  s tr ic tly  concave on [O , co ) . In d eed , w e  have on one hand
for all TE (0, co) fixed

(38) limfitmx(0,„ log ( i + ' 1 ) d x d v d t f Rl o g  (1+f) dxdvdt .2 x (0,T)

On the other hand, for all M E (0, co), w e can find 11 = v(M) >0 such that

fn + f l  > 1
1 °g 0 +  2  )

1log (1-kfn ) +-2-log (1+f) + —f .

Hence,

fR „ x ( o m [fn— fl dxdvdt

fn +  (1 (4 ,> M )± 1 (f> M ))  dxdvdt +

1+  f  x (0 ,7 ) [log (1 -Ff n
2
+ f ) 2

1 log (1 +fn ) —  log  (1 +f) 1 dxdvdt

Therefore, because o f  (37) a n d  (38),

lim
n  L 2 N . ( 0 ,  T)If '2 

f  dxdvdt

fR „ x  (0 m (fn+f) (lv„>m)+1(t>m) dxdvdt

Cn (logM) - 1

fo r som e C >0 independent of M >  0, n 1 .  T h is  last inequality  is  a  conse-
quence of the bound (17).

In conclusion, we have shown for all TE (0, co)

(39) fn- 4f in Ll (R2 N  x (0, T ) )  .

There only rem ains to show that the convergence is uniform  in  t E [0, 7 ] fo r
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all TE  (0,  0 0 ) In order to do so, w e first observe that we may assume with-
1f .  out loss of generality that f n a n d  th u s  1 + f converge a.e. on R 2 N  x [0 ,

n '  l + f n

00) respectively to f ,  1 +
1 ,  

1
4 1 . Hence, IT = 1+

1
 f  Y  =  1 f:F f  a n d  thus for

a ll  a E (0 , 1], (1+ 8 fn) -

a f n) — 1 Q± (f n 9 f  =  RQ± T h is  com bined w ith (23) im p lies tha t (1 - 1-
fn )-1  Q t (fn ,

 , n\J  )  converges (strongly) in L lx I<R ) x  (0 ,  T ) )  (for all
R, TE  (0, c°) ) to (1 +  a f ) - 1Q± (f, f). Hence, for all R, TE  (0 ,  0 0 ), we have

(40) (1-1-v • 17 x) 1/33 (fa) — Pa ( P I  0  in L I  (R ixs' X (Iv' <R )  X  (O, T ) )

while because o f  (39) a n d  (17)

(41) Sa (fn) — 13 6 (f) - ,', 0  in L l (R.rt, x , .

(42) tNPTI f fRmilx1+1,4„11313(fn)+ $ b ( f ) I  dxdv 0 as R +00 .

I t  is  th e n  a n  easy exercise  to  check th a t  (40) - (42) imply that $ 6  ( f n )
Ti > 195(f) in L I (R 2 N )  uniformly in t E [0, 7 ] f o r  a ll T E (0 ,  0 0 )  and for a l l  a
E (0 , 1 ]. We may now conclude since because o f  (17),

s u p  s u p  i f  if n  — Pa (f n )i ,85 (.6 Idxdv 0 as - - *0+te[0,71 R"

(And w e refer to  [25], [26] where similar arguments are made).

Proof 2. General convergence properties o f  renormalized soiutians. The
second proof we want to make consists in establishing a general fact on renor-
malized solutions of firs t-o rder linear equa tions. More precisely, we consider
a sequence (g") n> of solutions of

ag  n
(43) +a( y) • 17„ gn = Gn — ang n  in IEV x (0,at

w here T E (0, 00) , k  1, a  is  a  given vector field satisfying fo r example for
some C>0

(44) la (x) — a (Y) I —y1 for all x, y E R".

W e could consider a s  well vector fields a depending on t o r  even less regular
ones using the  theory developed i n  [29] . W e assum e in addition tha t gn E
C( [0 , T ]; (1e) ) , gn (0) =g'ô, G", an satisfy

(45) 1gn (t)It E [0, T] , n is relatively weakly compact in I: (R"),

1Q±  (fn, f n )  converges a.e. on R2 1 ' X [0, 0 0 )  t o  (1+
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(46)
for all R E  (0 , c o ) , Gn  1(1,,,,, R) is relatively w eakly compact in

L l  N g ' <R) X  ( 0 ,  T)),

Gn  is  a  nonnegative measurable function and converges a.e. on
(47)

x (0, T ),

E L i  NY' < R) X (0 , T )) ,
(48)

an  converges in L i  ((ly1 <R) x (0, T)) , for all R E  (0 , co ),

(49) 0  converges in L i  (R").

T h is  setting contains clearly the situation w e a re  studying fo r the  Bolt-
zmann's equation: take indeed T arbitrary, k= 2N, y = (x , $ ) , a (y) = ( $ , 0) ,
gn f n , G n Q +  (f n , f n ) , an  = L ( f n ) . T h e n  (17) im plies (45) , (19) implies
(46) , (21) im plies (47) , (20) im plies (48) a n d  (49) is assum ed to  hold  in
Theorem Hi Hence, Theorem 11.1 follows from the following result.

Of course, w e need to explain the  meaning o f  (43) since Gn  a n d  angn do
not necessarily belong to Lloc. W e assume th a t  (43) holds in  renormalized
sense (see [29] ) i.e. that we have for all REC- (R, R) such that IT ECO°

(50) ( *  +a (y) • 171)/3 (9n ) = [13' (9n ) Gn] — an  L69 n )g n ]  in ' (Rk x (0, T)).

Since g (gn ) = 0 when gn  is  large, /3' (gn ) Gn  E L L  because o f  (46) while fiv (gn ) .
gn is bounded and thus an ((tit' (gn )g n ) E L C

Theorem III. 2. Under th e  assum ptions (45) -  (49) , g n  converges in
C ([0, T]; (R k ))

Proof. W e a re  going  to  show  th a t g n  i s  a  C auchy sequence in  C ([O,;
(R")). I n  f a c t ,  (45) im plies that it is enough to show  that gn i s  a Cauchy

sequence in  C ([0, 7] ; L i  (ly <R ))  f o r  all R E  (0, 00). A nd because o f  (44)
the equation (43) has finite speed of propagation and we may assume without
loss of generality that gn, gg, a'2, G n a re  supported in  a  fixed s e t  (Igl-Ro) X  [0,
7] fo r  g ' 2, a n , Gn )  -  we can always multiply (43) by a  cut-off function (1)(y, t)
equal to 1 o n  (Igl R) X  [0, T ], vanishing for l a r g e  uniformly in tE [0, 7]

and solution of ( a ç b + a  (u ) • V  0 = 0 )... T hen  (46) a n d  (48) are now globalat -
in y  and all integrals below in y  or (y , t ) are  in  fact taken o n  (1g1 R0) or on
(1y1 R0) X [0 ,.

W e first prove Theorem 111.2 in the case when an = '0 . In order to  do so,
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we introduce /31 E Co*  (R) , such that 0 (1(39' 1 on R, 131 (t) t  o n  [ - 1, +1],

( 1) (t) —= 0 if  Iti 2  and we set Sm =M,8 1 ( )  for 1. We then write for

all n, m

(51) (gt ± a  (y) V  y )  ISM (g n) ISM (g  n i)}  — G n (pm) (g n) _ G m (r ) ,  (gm)

Therefore, we have for some C O  independent of m, M 1

S U P 1 I S M  ( e )  — ISM  (gm ) Ilv(Rk)
[0,T1

ĉIIgo_ g o IL (R )+ c f  d t  fR, dylGn (r )  (9n ) Gm  (r )  ' (gm) i

Next, we claim that Gn is bounded in  L l  a n d  thus G EL I where G  is the
pointwise limit of G n . The second part of the claim follows from the first one
since O .  The L I bound is easy: indeed, we integrate the equation satisfied
by ir  (9n) and we find for all M 1

f 1 sm Gn dy dt Clel 

where 0 is independent of M .  The Ll bound follows upon letting M  go to
+co.

We then use Egorov's theorem in  order to bound the second part of the
right-hand side o f  (52) . F o r  all c> 0, there exists a  measurable se t E  c
( ( I I  -‹R o) X  [0, 7 ] )  such that meascum (E) and Gn converges uniformly to
G on Er n ((ly1 R0) X  [0, 7 ] ). Next, because o f  (46),

S U P f  dt dyGn16.1,,m)1E=com( E
n 2 1  0

(53)
as c —> 0+ , for all M_1.

In addition, since G E L', we have

(54) supf G1 (16,.1 30 d y d t= a (M) —> 0 as M + œ .
n21

We now combine (52), (53) a n d  (54) and we deduce

(55)
sup (9n) — RA I (gm ) did — 9ôn Il,"”

tE[O,T]

+CCOm (E) - EC 8  (M ) +C  fE,IG n  G 1+IG m  GI dy dt .

Hence, letting n, m go to + 0 0  a n d  c go to 0+, we obtain

(56) lim sup 11Pm  (gn ) — 13 m  (gn ) (10 (M) .
tE[O,T]

(52)
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Furthermore, because o f  (45), we have

(57) sup  sup  lign Pm (9n)11D ( "—q) as M— >+ oo.
1? 1 tE[O, T1

And we reach the desired conclusion combining (56) a n d  (57).

W e now  turn to  the  general c a se  (an  SO) W e  f i r s t  in t r o d u c e  ht ,  h E
C ( [0 , T];1, 1)  solutions of

ah: 
a t + a  • 7„ h;:- = (an ) +  in  D' (Rk X (o, T)) ,

4 1 ,7 = 0  on le
(58)

and

( 5 9 )
l ahw 

a t +a • 7, h,7 =

h 0---- 0 on Rk

— (an ) -  in  V (R k x (0 , T)) ,

A nd we se t hn = h; + .  Since, obviously, h,t, h; w e also have h" 0 on
x [0, 7 ] a n d  hn EC ( [0 , 7] ; L ') solves

ah. (60) + a  •  7„ hn =a n in (R X (0 , T )).at
Then, because o f  (48) , h , h;,-  a n d  thus hn converge  in  C ( [0 , 7 ] ; L' (RIO) .
W ithout loss o f  generality, w e m ay assum e th a t  hn converges a.e. o n  Rk x
(0, T) .

W e then introduce r = g n e . . ,  dn = Gn ehn a n d  w e rem ark that, since 0  _ehn

(45) still holds with gn in place of gn• In addition, (47) holds for G- n and
4  =  It-0 converges a.e. w h ile  W I -141  w hich converges in LI  s o  (49) also
holds for 4 .  W e next claim that gn (E c  ([0 , 7 ] ;  L ') )  is  a  renormalized solu-
tion of

(61) at + a  •  7, = dn in R k x (0 , .

W e now prove the claim  ( 6 1 ) .  Of course, if G'1 EL' th e n  (61) is  an  easy
exercise o n  linear equations in  d is tr ib u tio n s  se n se . In  o rd e r  to  sh o w  (61)
w e first observe th a t  e n E  C ( [0 , 7] ; L ') (recall that hn - .0 )  so lves (in  dis-
tribution sense) because o f  (60)

(1 - Fa • 7,)e hn =a nehn i n  R k x (0 , T ) .

And thus we have for all M _.1 (in distributions sense) on IV x (0, T ) .

( t + a  •  17 1‘) fe h n P M  (gn)
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= (Pm ) '(g n ) Gn +e h nan(g '1) — gn (i3m )'(gn)1

Therefore, for all SEC -  (R , R )  such that IT EC', we have

(

— +a • G" )1S(e n nSm (g n ) ) )a
(62)

_ 13, (ehn i3m (g n)) (13M) , (g n)Gn p, (ehn 13M (g n)) a n (gn) g n (13M) , (f i n) l e hn

We first study the second term of the right-hand side o f  (62): since ti'm  (gn ) —
gn (PM ) (a n ) and IT (eh nPm  (an ) )  are  non  zero  respectively when Ign i M  and
len nSm  (gn )1 C0 hence Ign1 M, e?'1M C o.
Then, on this set, Wm  (an) —9n (131")' (gn)1 CM (for some independent of
n M 1 ) .  And thus, in conclusion, we have

liT(e nnigm  (gn ) )a n( g n ) — gn ' ( g n ) l e n n i ,

and in particular

(63) supl1/3'(ehngm (an )) an ISM  (gn ) _gf l  (PM )  (an )I eh n ilL, 0  a s  m— >+ co.

Using (63), we are going to prove that we have for all CE (O, 0 0 )

(64) su p f  dydt 1
n 1

0 e . g , 0 d n  + 0 0 ,

a n d  in  particular that 1 (ieng,„ )G- n  E  L I-. Indeed, w e g o  b a c k  to  (62)
choosing /3 in  such a way that IT g =1 o n  [ — C , +0 . We then
integrate (62) with respect to y  and t and we u se  (63) to find

f dydt 1 . g.„1 0 1( ig „,, m ) dn f d y d t  (eh sm (an)) (e )  (WI )

A nd (64) follows upon letting M go to + 0 0 .

We may now complete the  proof o f  ( 6 1 ) .  Indeed, we let M go to + 0 0  in
(62) . Clearly, /9 (ehni3m (an )) ,  (ehng.) =/3 (a-n )  a s  M +  0 0 . The second
term of the right - hand side goes to 0  (see ( 6 3 ) ) .  Finally, (61) holds because

IS' (ehn (gn)) (Pm) '(an) —  (ehngn)

0 as M + 0 0g"1 2c0)
1

(mIg^12A4)
± 1

(le"fi co)
1

(ig l A o l
d n

in view o f (64).

O nce (61) is established, we wish to deduce from th e  proof we already
m ade in  the  case  when an 0  the convergence in C ([O,;  L ' )  of g- n. In
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order to  do so, there only remains to show th a t  (46) holds w ith On, 4-n replac
ing respectively G", gn• T his will be achieved by showing that G" (1 + Ign i) - 1

E L ' and  i s  in  fact w eakly relatively com pact in L'. I f  i t  i s  the case, then
(46) holds since we have for all R E  (0, co)

"Gn ,  D \   G n  0 (1+R) n--g n i —  (1+R) i +
e h .

Next, we are going to deduce our claims on Gn (1+ igni) -
1 u s in g  (5

0 01)
- 

- 171:h 

conve-

nient choices of /3. First of all, we consider for M  1, TM  (t) =  f
t  1  

0Ai (s)ds

where Om E  ( R )  is even, 0 d),vi 1 on R, 1 o n  [ — M , ± M ].  We then
apply  (50) with S= TA, and we find integrating over y  and t

G "  
tl ())11,,,—<CJ 1-4-I g n1 lelsm dYdt< f 1 nl_ 

lu
1I g n 1 ptEstuo,n lirm

s in ce  r log (1 +1t1) I tl. Letting M go to  + 0 0 , we see that G n  
1- Fign — •

Next, we show that we have

"(65) supf 1(10, G  
) dy dt 0 as M— >+ 00 .-

n 2 1
" -1- h ig I

1Indeed, we now choose in  (50) f3 given by Tr (t) =  fo  + I d   om (s) • OR (s) ds

where (pmEcT(R) is even, eV(t) =0 if di 'PM ( t)  =1 if M-11-1 and we
always take R > M . We then obtain exactly as we did before

 f d y d t C  s u p  Ilrf v(gn )ii •M- 1 Ig"1 tet0,71

1 We then let R go to  + 0 0  and  we obtain easily, setting rm ( s ) =
.1: lom (s)ds,

supf 1( " dydt supf dydt +C sup sup 117-m (gn )Ilv .I ĝI 1+

G  
VI (191 M -1 ) te (0,71

This bound proves (65) since, on one hand, the first term  goes to 0 as M goes
to  + 00 because o f  (48) a n d  (45) , while, on  the o ther hand, the second term
goes to  0 because o f  (45) an d  th e  fa c t th a t Irm  (t) I 1  

( I t 1 ,
 i ) log (1 + i)

Finally , (65) a n d  (46) imply that Gn (1+ ig n i) - 1  is relatively weakly com-
pact in L' since we have obsviously for a ll M e  (0, 00)
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0 (1+191) (1+ M) Gn1 6 ,1, 31) ± Gn 1(19.1, m ) (1±ig n 1) - 1

In conclusion, w e have shown that e=gneh. converges in  C ([0 , ; L') .
A nd w e a re  going to u se  th is  information to complete th e  proof o f Theorem
111.2. W e recall that eh n ( . 1 )  converges in C ([0, ; L i ) .  A n d  we write for
all KE (0, 00)

[i gni+ Igml] [1 (1ĥ1 10 + 1 (1e110]± K l e h " +2 Ign.14110

Hence, for all KE (0, 00)

lim  s u p  lIgn 2 s u p  sup ic)IgnIdydt) +
n,m  te [0,7] n ,m  tE [0, T1 "

±2sup s u p  ( f
n  .  rE Loa')

(19.1 K )Ig n i dy dt) .

And we conclude letting K go to  +00 in view o f  (45).

IV . Dissipation inequalities

In  th is section, we wish to explain how the  strong L.' convergence shown
in  the  preceding sections allow s to  derive further informations on the global
weak solutions built in  [2 5 ], [2 6 ]. These properties take the form of specific
differential inequalities that seem to be new even for smooth solutions of Bolt-
zm ann 's equations. T h is  is why we begin by considering a  model example of
such inequalities a n d  d e riv e  it  fo rm a lly . Then, w e justify  th is exam ple for
strong solutions by introducing the general class of differential inequalities we
c a n  o b ta in . And finally, we state and prove the existence of global renormal-
ized solutions satisfying all these inequalities.

T he  model case  o f the  differential inequalities w e w ish to obtain is de-
rived formally a s  fo llow s. L et f  be a  "nice" solution of Boltzmann's equation
(1): by "nice", we mean a  bounded solution in C ([0 ,  o e ) ; L i (Rm .\ \) )  decaying
fast enough a s  I (x, y )  I goes to ±  0 0 . W e then consider te st functions g  that,
tem porarily, we m ay assum e to be sm ooth i n  (x, y, E  R2N >< [0 oo■) with
compact support in IVN  X [0 ,T ] where T  is arbitrary in  (0, 0 0) . Later on, we
shall consider much more general test functions. W e then set on R2Nx [0, co)

(66) E (g) = + v  1 7 ,, 9 — Q (g , g )} .

Obviously, E (g) is bounded, with compact support on R 2N X  [O, 7 ] f o r  a ll TE
I(0 , 0 0 )  -  notice indeed that V , vf*E Supp g  (t) e  [0 , T D  im p ly  v  IC I

C (T)
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Next, we u se  (1) a n d  (66) to write

{t-± v  • vx}(f—g)=Q(f,f)—Q(g, g ) ( g )

and thus

(67) ild - v  •  Fr I ( f —g )  = Q ( f — g ,  +Q (g,f —g) —E(g)

where for all functions cp , 0 , Q(0, 0) is defined by

(68) Q ( (p, 0) -=  fi r dv* dco B(ço'0'* —  (p0*).

Then, w e w ish to  w rite  an  equation fo r  If —g I: in  doing so, we u s e  (67)
and thus appears a  term equal to sign (f — g) at least when f —g does not vanish.
We neglect the  ambiguous definition o f s ig n  (f — g ) on  the  se t w here  (f — g)
vanishes and we shall see later on how to justify this decision (assume for the
moment th a t  (f — g ) has zero measure for in s ta n c e ) . Then, formally, (67) im-
plies

(69)
oat ±v • vr 1 Ef —g I =sig n ( f— g)Q  (f— g ,

± sign ( f — g) Q  (g, f — g) — E (g) .

W e w ant to integrate this equation w ith respect to y  and  we observe that we
have

f i e civ sign ( f — g)Q (f—g,

= i  f x 
dvdv*f dco B[sign (f— g) (f f

f f R X R
 dvdv*fscho B =0.

Here, we use the change of variables ( ( ) , v*) , V*) , V *)) which for
each co E  SN - I  i s  a n  isom etry. C om bining (69) a n d  (70) , w e obtain the  fol-
lowing (macroscopic) differential inequality on RN x  (0 , co)

gt ( f i e lf—gldv)+div x ( f Ry lf — gldn)

(71)

L dv sign ( f — g) {Q (g, f — g) — E (g)).

Let us observe a t th is  stage that f  enters a t m ost linearly  the  inequality
(71) and thus m akes sense if f E  C ( [0  , 0 0 ) ; L  (R ,Z )) a n d  is then w ell
suited for the global weak solutions built i n  [25 ] , [26 ] . B ut before we dis-

(70)
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cuss in more details this point, w e first w ant to justify (71) by a slightly more
rigorous argument tha t will, in particular, take care of the discontinuity of the
sign function.

W e then introduce a  class denoted by B  of smooth "absolute-value like"
functions namely B = l a c  (R; , a (0) = 0, la' (t)I 1 on R, a' (t) =sign (t)
for Iti large[ and we need to incorporate a (t) = Iti in  th is  c la s s .  I n  order to
do so, we extend B  as follows - th is is on ly  one possible choice among many
technical ones - : B =  Ia E C (R; ,  a is  Lipschitz, C1 except a t t finite num-
ber of points, a has at each t E R  left and right derivatives, a (0) = 0, I  (t)I

a.e. on R, a' (t) = sign (t) for Id large[ . If aEB , we define a ' (t ) at each
o f  th e  discontinuity po in ts t i  by im posing a n  a rb itra ry  v a lu e  in  [a ' (ti_)
a ' (ti+)]: in th is way, we define in the case when a (t) -= Id, sign functions (i.e.
a ') w here  sign  (0 ) i s  a  fixed b u t a rb itra ry  v a lu e  in  [—  1, ± 1] . A nd we
shall show  t h a t  (71) holds fo r  a ll these  sign  functions. W e begin  by  con-
sidering a in  B  and  we follow the  derivation o f  (69) - (71) replacing It' by
p (y) - 1  a (tp (y)) where p  is  a positive weight - function whose properties will
be determined later o n . T h e n , we find instead o f  (69), (70), (71)

{1 ± v  •  I7x  [p (y ) - la(p(y ) (f— g))]

(72) = a'(p (v) ( f — g))Q (f—g, f)

+a' (p (v) (f—g)) IQ (g, f — g) — E (g)i

fR dv (P  ( v )  ( f - 9))Q (f — 9, f)

f f R  
dvdv*B  da)(cr f) ± ( f ' - 9 ) ± f

+  f dvdv* B dw(a') -  (f '—g') - f

f dvdv L B dw a' ( f —g)f* .

Therehore, we have (setting p '=p  (0 )

(73)fR dv a' (P ( )) ( f — g))Q (f — 9, f)

f f R,,, dvdv fs , d w  (f-9 ) ±f * [a '(p '(f  '— g'))+ — a'(p(f— g))]

+ f  L A y dy *B  d w  ( f - 9) - .4 [a"(P '(f '— g1) - + a '(p (f— g ))]

In particular, since Id ' on R, we deduce

f i
(74)

dv (P (v) (f — 9)) Q (f — g,

dvdv * B  d w  ( f — g ) +1-
* [1 — a '(p (f— g ))] - 1-

e+f f., dvdv* B  dw  (f— g)-.4 [1+a '(p (f— g))].
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We denote by R+ , R_ respectively the two terms in  the  right - hand side of
(74 ). Let us observe th a t 1— a' (p (f — g)) . 0, 1+a' (p(f —g)) >_ 0 and that
by assumption 1— a ' (p (f —g ))] =0  i f  (f — g)p> 0 is  large enough while 1+
a' (p (f —g)) =0 i f  (f —g)p <0 is  large e n o u g h . In other words, the integrals
defining R+  and  R_ are taken on a set g iv e n  b y  f  p (v) - 1 1 for some to
E (0, 0 0 )  which depends only on a .  And we deduce from (72)- (74)

If-v • Gri l l  [P(v) - 1 a(P(v) (f —9))]t

a'(p (v) (f— g)) IQ (g, f —g) — E +R++ R.

We may now choose p satisfying the  following requirements: p E C (RN ) ,
p(v) >0 in RN, and p satisfies

1 1 , ,(76) A * — e C (  )  a n d  [A *—] 11+Ivr) — —> 0 a s  M '± œ .

Recall that A  (z) = B (z, 0)) do) and tha t w e assum e (7) . A n d  (7) im-

plies the existence of such functions p: indeed, le t  xn c Cô (R N ) , 0 2c„
Xn' 1 on  ill,' . 1/1 . Then, because o f  (7), (A * Xn) (1 + M 2 ) E  Co (RN ) . We
then set Mn= maxie ilA *Xnl (1+11,12 )  - 1 1 and  D o =  n>iXn (1 +Mn) - 1 2- n. We
have clearly D E CO (RN ) , * (1 + IV 12 )  E Co (RN ) , 0 on R N . There-
fore, p= 0 - 1  sa tisfies the conditions mentioned above a n d  (76) in particular.
Let us also mention a few examples: first of all, in the hard spheres model i.e.
B(z, ce)) =I (z, (0)1, we find A  (z) -=colzI for some c0>0 and we may take p= 0 -

1

w here 0> 0 on RN, 0 E C (RN ) , f  (iv + 1) dv < 00. Also if A E Li  (RN )

then we can take p= 0 -
1 w here D>0 on RN, E C (RN) ,ÇP is bounded on RN.

W e next explain how (75) yie lds (71) w ith an  a rb itra ry  ( in  [ - 1 , +1])
normalization for s ign  (0). Indeed, we can find a k E B such that a'k (0) = so
fixed i n  [— 0 , 0 ]  and a t  (t) =  sign ( t )  i f  It I 1/k fo r  a ll k  1. Let us
observe tha t a' k (t) 7 sign (t ) for a ll t *  0 while a' k (0) = s o .  In addition, we

see that the intergrals R+ , R_ are then defined o n  a  se t  11.f +,P(v)-1F and

th a t ilf - 91- P ( y )  'a t  ip (y) (f . 9 )1  I W e m ay then let k go to  ±  0 0  in

(75) and we recover (71) provided of course w e show tha t R+ = R_=1?'
go to 0. But th is is the case since we have in view o f  (76)

IR , RI 1 _1f dvdv*A (v — v*)f* P (v )  - 7*,  O.

(75)

A similar procedure shows th a t (75) holds in fact for all aEB.

All these considerations show  that "nice" so lu tions (i.e. bounded w ith a
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fa s t enough decary a t in f in ity )  o f  B oltzm ann's equations satisfy (75 ) (and

th u s  (71) for all aEB, p satisfying (76) and for a ll test functions g. In fact,
in  order to be totally rigorous, we need now to explain and detail the class of
test functions. W e thus introduce a  class A of admissible functions g

A =  ig EC ([0 , co) ;LT (RZ)) , glv1 2 E L-  (0 , T; (R ) ) ,

(77) A*191 
+ Iv12 

EL 1 (0 , T;L -  (ItZ)),

t +v • Vx  g E L' (11Z, x (0, T ) )  for all TE  (0 , 00)1

Observe in particular that, if g EA , w e have for a ll TE (0, 0 0 )

IQ-  (g,g)I<IgI (A *01) = {1g1 (1v12 +1)} { (1±1v12) —1 (A *191) } E Li (Rg, x (0,T))

L IQ + (g, g )Id v  fi c 9 + (Igl, WI) dv= fR,Q- (Igi, ICI) dv

=  f w ig (A* Ig I) dv E L 1 (WV' X (0, T )) .

Therefore, (75) makes sense as soon as f E C ([0,
T; (R11; ) ) (V T E  (0, 0 0 ) ) .  In  all that follows, we sim ply say that f  satis-
f ie s  (75) i f  (75) holds for a ll a E  B , g E A, p (> 0) E C (RN )  satisfying (76).
And we prove the

Theorem IV .1 . Let f o ( 0) satisfy (10), then there exists a renormalized
soiution f&C( [0 , 0 0 ) ; L l  ( R ) )  of  Boltzmann's equation (1) corresponding to the
initial condition (9) which satisfies (75).

Sketch of Proof. We only need to follow the construction m ade in [25], [26]
of a renormalized so lu t io n . Indeed, in  [25], we approximated (1) by solving

a f  n
(78) Jot + , •  Glvfn =Qn(f n , f n ) in RZ, x (0, ca),f n it=o=fg

where

f  dmin(fo, ne-F.r2+1e12) 2 —* (27rn-1)-N /2e
 --1--(x2+1V 2) + 

1
 e 2

lx12-F M2 

(for example...),

Q n ((p ,(p )
=

 ( . 1:dv* ,(10) Bn(v — v*, (0) ((,DV * —  (p(p*)).

(1 + 1—  f  ldv) - 1  a n d  B,, E C-  (R N  X SN - 1 ) , Bn 0 depends only o n  lz I andn R^,

I (z, (0) I, vanishes for . 1/n, for IzI n, 1z • (01 7+1z1, o n  Iz • col —1+,-)1z1

a n d  (7) holds uniformly in n, Bn , , , B  in 1,1 ((lzI R ) X  SN - 1 ) (V R E (0, o e ) )

oo) ; L i  (RV,'rv )) f iv12  L -  (0 ,
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A s  show n i n  [25] , (78) is  un ique ly  so lvable  and  adm its sm ooth solutions
(w ith fa s t decay at infinity) . Furtherm ore, th e  s tru c tu re  o f  this truncated
equation is essentially the  same as the  one  o f (1) . In particular,  f '  satisfies
(75) with Q, E, R + , R_ replaced respectively by

Qn (g ,fn— g) =(1+1+- Lf ncly) •  I L d v *  fs dcoBn [g n — g)
a g --

En (g )=6 -
t
- -Fy • G'x g)—(1+ 1

nf i e  f  ncly)
1

 • if  d y *  f  do) B„[g —gg * ]1RN sN-

RI.= [ f fie dv dy * f  1 3 d c o ( f n — g) + v [1 —  ce (p (f n —g))]1(1+ —

1  

f  f  ndy ) 1
s'- ' n R"

R != [ f fi v,dy dy* f , -,nBnclw(f n — g) - 11[1 — a'(p ( f n — q))]1(1 - -
1  

f  f  ncly) 1
s R"

Next, the  proofs m ade in Part I  [51] and in section III apply and in  par-
tic u la r  (17) , (18) hold and, extracting a  subsequence (still denoted by  j '1)  if
necessary, f '  converges in  C ([0 , T ] ; L I (RZ)) ( V T E  (0 ,  o c>) )  to some f
w hich is a  renormalized solution of (1) corresponding to (9) . We may then
pass to  the limit in  (75) choosing a in B .  O nce (75) holds for all aeB, one
can then check that it a lso  holds fo r all a cB  by  an approximation argument
that we detailed above (in the case when a (t) =sign (t)).

W e have thus show n how  certa in  d ifferentia l inequalities like (75) or
(71) can be obtained. W e now wish to explain how differential equalities can
be obtained for m ore general c lasses of functions a n d  h o w  it  is  possible to
combine this idea with the idea of renormalized so lu tions. L e t u s  also empha-
size  th e  fa c t th a t the form ulations w e  sha ll ob ta in  u s e  in  fac t th e  entropy
bounds and more importantly the entropy dissipation bound (15).

All the equalities we shall derive are of course obtained from (1) by mul-
tiplying it by appropriate quantities exactly like an  equation is formulated in
the sense of distributions by multiplying it by CZ,' func tions. W e thus have to
define a convenient class of multipliers that we denote by: in  belongs to  if

m= 9(x, t)cr'(p(y) ( x ,  y , 6 — g (x, y, 6 }) +iir( f(x, y, t) — g (x, y, 6)9(x, y,

w here ço E Co° (R i
x
v  x  [0, 0 0 ) )  ,  e Cô° (RZ, x [0 , c o ) )  , g E  A, p  C (RN ) > 0

sa tisfies (76), a, E CI  (o r more generally admit left and  right derivatives on
R, a re  differentiable except at a  finite number of points w here a', fir a re  de-
fined by an  arb itrary  value between the left and  the  right derivatives) , a (0)

(o) = 0, a ' and IT are  bounded, a'(t) is  constant for t >0 large and finally
13' satisfies for some C O

(79) iT(t) I C  ( 1 +t) - 1 / 2  f o r  t . O.

In fact, we could allow more general multipliers ni by requiring less reg-
ularity on 9, c,b, a, and by considering functions S that can depend on x, y, t.
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These extensions however a re  rather technical and  w e sk ip  them  since it is
not clear that they really add new informations.

F irst of all, we have to define < 
at 

+v  •  17 f, m >. T h i s  is easy and we

simply set

<:+v • 17
x f, m >=<(4±v • 1 7x)[ 1

17,a(P(f — 9) ) ] ,  9>

-1-< (-1± v  • Vx )13(f—g), 0>+ <-:+ v  -  Vg, a'(p(f— g)) 9 9 d- i3V - 9)0>

or in other words

<f-Fv • Vx f, m>at
1 0(,0 

(80) = dt f w ,dx dv 1—
 —p a [p (f — g ) ] (  +v  •  G's

— 1 3 ( f  g) ( aa9t ±v  • v x  0 ) ± 1 ± v  •  v x g ) [a ' (P (f —g) )  5c)

+13'(f— g)0]—  fRAx d v rp a(p(f0 - 90)) 9+ 13(fo—g0)01,

where f 0 =f1 t- 0, g o =g1 t =0 o n  R2 N . Recall that f , g E C (  [0 , 0 0 ) ; ( 1 1 ,rv )  )  .  In
view o f the  properties satisfied  by 0 , 0 , g, a, 13, a ll th e  integrals w ritten in

(80) make sense: let us only observe th a t  i
p  a (p 113 (f — g)

f — 91 for some and le t us recall that we assume th a t  (12), (13) and
(15) holds while giv12 EL

00

 (0, T; (R,P,vv)) (V  T E  (0, ()°))

W e then have to define <Q ( f, ,  m >. U s in g  the simple change of vari-
ables [(v, v*) — > (V, V*)] we set

< Q (f, f), cpa '(p (f— g))>  =  fo
- d t fi e d x  (x ,

•  i fw dv fi v d v*fs ,J10) Bff * ice(p'(f '—g ')) — a'(p(f— f))1 .

And we claim that Bff* (a' ( p '  ( f —  (p  ( j"  — g)))E L l(W x R x R .Z x
(0, T ) )  fo r all T E  (0 ,  0 0 ) . Indeed, since a' is  constant say  for

t0 >0, we have

B f f*Ia'(P'(f '— g')) —  a' (p (f — g ) ) ) I f f* „00} .

Then, on the one hand

1B f f*1 ( j._,,, to/p) Blq[f* - Fto B

and for all T E  (0 , 00)

(81)



452 P. L. Lions

f o d t  fi e d x  f  fRA v d v *  f  d c o  B(Ig f * - Fi f * )
s—

= f d t  f  d x d v  (A * Ig l+ A  * (-1 ) ) f
0 R

dt f dxdv (1+11)1 2)f < + co .
0 R " "

On the other hand, we use the entropy dissipation bound (15) to deduce

1B

where D =  B  (f '* — f f* )  lo g f  ( W . "  x x x (O, T ) )  for all T E
f f*

(O, 0 0 ). Next, we have for all TE  (O, 0 9 )

d t  f  d x  f  f  
="

d v d v *  is _da) B f Y * 1(
RLT

 dt f dx f f R „dvdv* f cico B ff* 1(
12." s'-' I — g to/p)

w h e re  w e  u se d  o n c e  m o re  th e  s ta n d a rd  c h a n g e  o f  v a r ia b le s  [(y, y * ) — >
(V , y'*)] . O ur c la im  is then  show n since  th e  la s t in teg ra l is  f in ite  a s  we
already proved.

There remains to define < Q (f, f) ,  (  f  — 9) 0> . We simply write

<C1 ( f ,  f) ,  S'(f —g)(1)>

= fordt f „ , , d x  fR A v dv* dwo if Y * — ff*1 (f— g).

And we claim that B1 (1 , R) If 'f '* —ff* 1 13' (f — g) E L ' (It l
x
v x )< S 1 x (O, T ))

for all R, TE  (O, co) . W e  firs t rem ark  tha t w e  have for all K>1

f ' f ' .-* 1 (f f * - F  lolgK (f Y '4c —f f * ) l o g f—
f :*i

(82)

hence

1  
(83) f  f '* — ff* i (I( —1)ff*+ 

lo g K  
( f  '* + f f* )  log f

f f*

We then choose K = e 113' (f - g )1 and  we deduce from (83)

B1 (1,1 R) If (f— g) I
- BIL (id ioff*I3 '( -f— g) [e15'(f-g)i —1] +D

where D, because o f  (15) , belongs to L i (R x x SZ- 1  x (O, T ) )  for a ll TE
(0, 0 0 ). Finally, we have since 13' is bounded and sa tisfies (79)

B i * I R ' ( f  — e) I— 1 1

/0/P1 log2D

(82)

f * lolgK ( f  ' * — ff * )log f—
f i c

*
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CB1 (1 „ )1f*I13' ( f — 9)12

CB1 (t., 29f14,d- CB1
(I
,1„ ) (1+ (f— g)) - 1 ff * 1 v , 2 0

CB1 v , 2,11.
* ±CB1

(I
„1„ ) (1± f  /2)) - i f f *

CBgf* ±CB1 (Ha *

where C denotes various positive constants.
W e already showed before that B gf * c  ( I t l

x
v  x x x (0 , T )) (V T

E  (0, 0 9 ) )  and we conclude the proof of our claim  observing that we have be-
cause o f  (7) for some C O

B1,, , w dv d
f  ‘,„,,„), • d - _  * =  f  ( A  *1 (1IsR )) f *dv *

(1±1v12 )f dv.

W e have thus define GQ (f, ,  m >  fo r  all m ultipliers m E M .  A nd we
sim ply say that the Boltzmann's equation (1) holds fo r a ll m C M  is w e have
for all m CM

(84) <
at 

H- v • f ,  m  >  =  <  ( f ,  , m>

Exactly as we proved Theorem IV.1, we can prove the

Theorem IV .2 . Let 0 satisfy (10) , then there exists f  E  C ( [0 ,;

L 1 (1t ) )  satisfying (9) , (12), (13), (15) and (1) for all m EM.

Remarks, i)  In addition, f  satisfies the following properties (see [25], [26])

(85) J dxdv vk f is independent of for all 1

T
dxdv f  logf (t) ± -

1

4 f  ds f  d x  f  d v d v *  f
f R " 0 R "

dw

(86)

i i )  If we take a'=1, g 0, 13 * 0  and thus m  =  (x , t), the  equality  (84)
implies

a(87) f  dx  dv )± div x (L , f v  dx  dv )= 0

i.e. the local convervation of mass.

• B (f y '* —ff *) lo fRf f : ,,dxdv fo logfo.r

iii) W e can check easily that if we take /3 0 and  a A  (or A )  then  (84)
can be rew ritten in  such a  w ay  tha t it y ie lds (75) and th u s  (84) y ie lds (71)
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as  a  very particular c a se . L e t u s  detail this particular example: we thus take
a(t)=Itl a n d  (84) implies

f dx dv)+div x ( f w , f v dxdv)

(88) —fRm( + v  •  17x  g)sign ( f— g)d v+  f  f RAv dv*

• f B d off* isign ( f  '—g ') —sign ( f— g)is--
T h e n  w e  w r ite  (a n d  th is  is  a llo w e d  in  v iew  o f  th e  integrabilities shown
above)

f fR  
dvdv* fs , B choff*Isign ( f  '—g') — sign ( f — g )1 =

f f io ,dvdv * f B dco[(f — g )f*+ g f* ] isign ( f  '—g') — sign ( f —g)[

= 1  fR"dvdv*fsN ,B dui f* f —g) sign ( f

+ f  f i t z v d v d v * f  B dco sign ( f — g ) [ g y ' * — g f* ] .s—

O bserving that (f —g) sign (f ' —g') — (f —g) 0 , w e then see that (80) yields
(71).

iv) In  view  o f  th e  "uniqueness" result show n in  th e  nex t section, it  is
quite  clear that (71) (o r  (75), o r  (88) ...) can be used as a  definition of weak
solutions of B oltzm ann's equation. T h is no tion  o f solutious-which could be
called dissipative solutious-can be used in  many contexts like Fluid Mechanics
models and we shall come back to this issue in future publications.

v) If w e restrict the class M  of multipliers to the case a=0, g  =0 so that
m = 0  (x, v, ,  w e see that (84) implies that f  is  a  renormalized solution.
In fact, using the entropy dissipation bound (15), we are able to allow a more
general decay on g  nam ely (79) instead o f  dB' . C(1-1-t)

V .  Weak solution.strong solution (when it exists)

We begin with a  general uniqueness result:

Theorem V .1  Let T>0, fEC ( [0, 7]; I) (Rg, ) )  with fivl E L  (Rgx (0, T))
satisfy (71) on lt,lrg x (0, T ) for all g  A .  L e t  fE C ( [0 , T]; L 1 (R )) s a tis fy

(89) A * [f] E L 1 (0, T; (it )) Iv[f E  (R i . I,vv x (0 , T ) ) ,
and

(90) H-v Vxf =QV ,f7 ) a.e. on ItZ, x (0, .at
Then, if fir=0=-•fit-o a.e. on RV:1„, .f- f  on ItZ,X [0, T].
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Remarks. i )  Notice that Q-  (VI, = *VI) VI EL' (R Z  X  (0 , T ))
a n d  th u s  w e  h a v e  a ls o  Q+  (If I, Lf I) . In  p a r t ic u la r ,  (90) im plies that

(

f +v • G'x f) EL 1 (R,Z, X (0 , T)) .at
ii)  In practice, the condition (89) essentially means that A E L ' (RN )  and

f E L i  (0, T; L" (K v
v )) . More precisely, if  these tw o conditions are satisfied

then A*IfIEL 1 (0, T; (K ) ).

Proof o f  Theorem V .1. W e cla im  that w e can  take  g  m f  i n  (71) . Let us
observe tha t th is is  no t au tom atic  since  the conditions imposed on f  d o  not
quite imply that f E A . Once this claim  is proven, Theorem V.1 follows easily.
Indeed, using (71), we find

(91) cci fielf — A d v±d ivx (fR yl.f — fidx) J i e dv sign ( Q (J  f — f- ) .

Indeed, E  (f ) = 0 . Next, we observe that we have

f i e dv sign ( f Q (J, f — J) J R ,dv 1Q+ (IA, If— fl) +Q—  (IA, If— A)1

= 2fR „civ Q—  (IA, If— A) = 2.1:dv (A *IA) If * I All, (R, v ) f,lf—Adv.

Inserting this estimate in  (91), we find

d
d

t.f R ,I f —Adv ± d iv x (fR y[f — A d x )a  ( t )  fR idv

in (R';' x (0, T))

where a (t) =1IA *I EL' (0, .

Since iv ilf — 11 E L i (Rz, x (0, T)) , we deduce easily from this differential
inequality the following inequality

f R „I dv a (t) f I f f l d x  d v  in (0, T ) .

A nd w e conclude easily  using Gronwall's lemma since f  —J E  C ( [0 , ;
L i  (R Z ) )  and f It=o= A=0 a.e. on R 2Z  •

Therefore, we only have to  show th a t  (71) holds with g -=-f. To this end,
we introduce gn = (v ) f  where On  E Co' (RN ), ç1i = 1 o n  (Iv , 0 _cp„
Then, it  is  e a sy  to  check tha t g n E A, g n 7,->f in  C ( [0 ,; (R ) ) .  F u r t h -
ermore, we have in view o f  (90),

E(g n ) =Q (On f, On !) (f, f.)  on RZ X (0 ,.

Hence, we have easily
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f R ,IE (9n) Idy 2f 1,,,,,dvdv*A (v—v*)i (on") oho conp co—pv,opol
< 2 f IA* [ (1 —  On) VI] dy  +2 fR ,(A  *VI) (1—  On )lildv

— v*) n) *)[f(v*)11.f (V ) Idv dv*+

2 1111 *OIL- (L  (1 —  On) [tidy).

The second term goes to 0 as n goes to + co in C ([0, 7 ] ; L l (R ) ) . The first
term  also goes to 0 as n goes to+  00 (in L' (R i

x
v  X  ( 0 ,  T ) )  by th e  dominated

convergence theorem  since (1 — On) (y*) A 7■0 and A  (y — Y*) If (vi) lit (v)
L' (R X  R x (O, T ) )  .  In conclusion, w e m ay apply  (71) with g  =g n  a n d  we
let n go to +  0 0 . Then E (gn ) T, 0 in L l  (Rg, X (O, T)) , g n  converges to f  in  C
([0, 7 ] ; L l (Re)) and our claim  is shown provided we pass to the limit in the

two terms that remain i.e. f  ylf — gni dv and sign (f —g ) Q f —gn) . For
le

the  first term, this is easy since v I f  — 9 1 Y lf  — 91 a.e. on  R.,,v x (O, T )  while

Iv n11. IV I (111+ f l)  E L'( O ,  T ) )  .  The second te rm  is a bit more

delicate because of the discontinuity of the s ign  func tions. In fact, in view of
the uniqueness proof made above, we do not really  need to  obtain (71) and it
is  enough  to  show  th a t  Q±  (19 nI, n  I) converges, as n goes to c o  , to
Q±

 ( IA, If — 11) in LI  (R11
, ` 'y  x (O, T ) )  .  Indeed, we have

LIQ ± (IgnI, 1 f — gnI) (ICI. If — g1)1 dv

f  f R Avdv *  A (v — v*)11g n(v*) (f — g (v)1 f  (v*) (f — p  ( 011

and we argue as we did before for E (g,i )  in order to complete the proof of our
claim and thus of Theorem V.1.

W e have seen in  the preceding section existence results of weak solutions
f  o f  (1) that m eet the  requirements imposed in  Theorem V.1. Of course, the
regularity informations imposed on .7 a re  not know n in  general. Such exist-
ence results are  known only in very particular regim es: w e refer to [13] , [14]
a n d  [16] (...) fo r com plete lists o f references that provide interesting exam-
p les o f  su c h  re g im e s . L et us m ention tw o exam ples (on  which we present
more or less standard proofs) namely existence results locally in  t (i.e. for T >
0 small enough) and global ones fo r "not too la rg e  in itia l d a ta " . W e do  not
claim the results which follow are original but they illustrate the preceding re-
sult and the proofs are simple and short enough to be included here.

Proposition V.1 i) Let f o O , fo E f l  L - (R11,'L) , folv12 E (R ) .  W e
assume that A E  L ' (R N ) and we set T * = 2 1A IlL

 ( R n )
 IV° (R:g) . Then, i f  T E
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(0, T), there exists J E  C (  [0  , 7 ] ; (R g,)) (11. -  (0, T ; L  (R e)) such  tha t f

It=o=fo, fivi 2 EL —  (0 , T; (R ) )  and (90) holds.
i i)  Let fo satisfy for some Co O, a,b>0, (x o , v o ) E  R2 N

(92) O fo • Coexp 
(  Ix - 2 ax012  I v —vo I2 \ (27c )_N(a to –N /2

We assume that A E Lq (R N ) for some q E  (
N

N
—  l '

±  co ) and that we have

N  N
(93) C (}e) (ab) -1/2 (b)--277C1--Y

<  ( I  (1+ Cf 2 ) -A d o .) 'A w here p= 
q - 1

Then, there exists f  E  C ( [0, OED ; (R e ) )  n Lc° (0, T ; L "' (R e ) )  for a ll T E
(0 , co), such that f it=o=f o, (90) holds and
(94)

0 ( t ) e x p (  Ix — v2ta— x012 I v - 2:01 2 ) /27r\)  N  (ab) - N 7 2

where C (t) ( 0) EC 1 ([0 , c°))

Remark. T h is  result provides exam ples of solutions f  o f  (90 ) that
satisfy the conditions listed in  Theorem V .1 . In  particu lar, their uniqueness
follows from Theorem V.1 which also shows the uniqueness of arbitrary weak
solutions (at least o n  [0, 7 ] )  satisfying (71).

Sketch of proof of Proposition V .1: W e only explain how one can obtain L " a
priori estimates in  the case of i )  and the bound  (94) in  the case of ii) . The
existence then follows from  tedious and  (m ore  o r le ss)  s tanda rd  approxima-
tion o r fixed points arguments.

In the case i) , we just observe that we have for all t O

If( t )  _11f011,„„)( f ,

IIfoII + 2 f  ' Of (s) .0

Hence, for all t E [0, T*)

(t) (1 —211AIIL.( R n Il.f011L-( R w t)
2„.“-01In  th e  ca se  ii)  , w e set f = c (t) (27r) - N  (ab) N /2 e x p —Vtf

2a

where C(t) will be determined in such a  way that we have
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(95) (j; .1) on Ri% x (0, 00) .

; • ;Indeed, observe th a t  
a t

 4 -y  • 17,j CC- 1 f  and tha t, if f  so lves (1) , w e have

(recall that f . . - 0 )  f d -y f7 ,1 - Q+ ( f , f ) .  W e may thus expect that th e  se t  10

on Rf,,x [0, 00) to  be "invariant by the solution operator of the Bolt-
zmann's equation" a s  soon a s  (95) h o ld s .  A nd  because o f  (92) , we expect
(94) to hold if  (95) holds and C(0) =Co.

W e next rem ark that j : is  , for all 0, a  Maxwellian in  y  and thus (see
[13] for instance) Q+ ( j  f -) Q + Therefore , (95) holds if  we
have

(96) C ± 
 2 b  LIC2  (27r) - I v  (ab) - N 1 2  s u p  { A  * [exp —vt — x012 Iv — v012 )11

2a(x,v)ER" v

Next, we observe that w e have on R2 N

A  *exp - vL-x012 iv -2 16)0 12 ) )

A p(
 Ix _

II IL * , (f  exp f lv—v°12)1dlY) t 2a 2b

A Lae) 
(27rab  yi 

± b t
2
) .

P

Therefore, if we choose C E C I  ( [0  , co )  )  satisfying C(0) = C o and

7 b )2 p(97) =C2 (2r) (ab) AL (R9 
(2 

( a ± b t 2 ) - f P  on [0 , co )

th e n  (96) holds. W e conclude observing that the condition (93) is precisely
the condition that ensures that (97) admits a  (uniquie) solution on [0 , co).
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