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Compactness in Boltzmann’s equation via Fourier integral
operators and applications. II

dedicated to the memory of Ron DiPerna
By

P. L. LioNs

I. Introduction

This work is the continuation of Part I [51] where a general introduction
to Boltzmann'’s equations (and kinetic models) can be found together with the
main goals of this series. In particular, we keep the same notations than in
[51] and we recall briefly the Boltzmann’s equation

1) %+v- V.f=Q(f.f). 2 ERY, yERY, >0

where N>2 and the solutions f=f(x, v, t) are always assumed to be nonnega-

tive on RZ¥ X [0, o) and the so-called collision term Q (f, f) introduced by L.
Boltzmann [11] and J. C. Maxwell [58], [59] is given by

@ QUN=Q" (N =@ (/).
@ Q@ ()= [ dvef. doBlo—vs O)f fx.

@ (1) = [ dvs [ do B—vs, )f =1L () .
L(f) =A%,

and A (2) = [s-B(z, w)dw ZERY), fu=f(x, v&, t), f=f(x, vi. 1), fx=f(x, v%,

t), v'=v— (v—vx 0) 0, vs=vx+ (v —v4, ®)w. Here and everywhere below,
we denote indifferently by a - b or (a, b) the usual scalar product of a, bER".

(4)

The so-called collision kernel B that enters the bilinear operator @ is a
given function on R¥ X S¥~1. We shall always assume (at least) that B satis-
fies
(5) BELY (K X S¥1) for any compact set K of R¥, B>0,

(6) B(z, w) depends only on |z| and | (z, )],

Communicated by Prof. T. Nishida, July 1, 1993



430 P. L. Lions

A+ ([, AWar) = 0

as|z|—+ 0, for all RE (0, ).

(7)

And we will not recall these assumptions in all that follows.
A classical example is given by the so-called hard-spheres model where

®) B(z, w)=|(z, )| .

Another physically interesting example - that corresponds to soft forces with
an angular cut-off - is given by b () |z|” with cosf=|(z, w)|lz|%, ¥ =1—2(N
—1) (s—1) 7! and s is the exponent of the intermolecular potential (s>1).

The above assumptions are satisfied as soon as b (6) (cos@) ¥ 1€ L' (0, n/2)

N—1
and s>1+2~—N+2 .

We next recall the notion of renormalized solutions of (1) as introduced
in R. J. DiPerna and P. L. Lions [25], [26]. First, we complement (1) with
an initial condition

9) fli—o=fo in RZ}

where f, (=0) is given on RZY, and satisfies

a0 [ [, dzav s Q+ok) +Hol+Hiog f0)]) <co.

Here and everywhere below, @ is a (weight) function that satisfies

(11) 0>0, (1+w)? is Lipschitz on R, e E€L}(RY).

(It was shown in [51] that (11) implies that @ — +©° as lz| —» +0) .
We then say that f€ C ([0, o); L' (R%)) is a renormalized solution of

Boltzmann's equation (1) corresponding to the initial condition (9) if f satis-
fies

(12) sup fj;w dx dv f(t) Q+w(x) +|v|2+|logf(t)|) <400,

telo,T]
Q (£ f) ;o . .
T L 7-eLm(0, o LI RYXK));
(13)

QT (£ ) _ 1PN
——H%!—EL O, T: L"(RYXK)),

for all T€ (0, ) and for any compact set K of RY. In addition, we request
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that
1) (S 7)BO) =B ()QS) in 9'(REX (0, )

for all BEC ([0, ©); R) such that B’ (t) (1+¢) is bounded on [0, ©). The
final property we also require is

(15) j;Tdtj;Ndrfj;M dvdvs LN_I dw B(ff s—ffx)log %( + oo

for all T€ (0, o).

It was shown in [25] that there always exists at least one renormalized
solution of (1) with the initial condition (9). Additional properties are avail-
able such as conservation of mass (locally) and momentum (globally) and an
entropy inequality (shown in RJ. DiPerna and P.L. Lions [26]). And, in fact,
we shall derive in section IV more properties satisfied by the solutions we can
build. As recalled in the Introduction of Part I [51], this existence result is
essentially a consequence of the stability of renormalized solutions under
weak L' convergence.

We have shown in Part I [51] that for arbitrary sequences of renormal-
ized solutions of (1) with uniform natural bounds (see (12) and (15)), the
nonlinear operator Q% is always relatively compact (for the convergence in
measure). And we applied this compactness (and in fact regularity) result to
a new proof of the convergence in L' (strongly) to a pure Maxwellian equilib-
rium in the case of a periodic box.

Here, we use this result to establish the following fact: if /" is a sequence
of renormalized solutions of (1) with uniform natural bounds and if the cor-

responding initial conditions f§ converge strongly in L' (RZ}) to some fo then,

extracting a subsequence if necessary, f” converges in C ([0, T]; L' (RZ))
(VTE (0, ©)) to a renormalized solution of (1) corresponding to the initial
condition fo. The precise statement is given in section II and is proven in sec-
tion III. For obvious reasons, we say that this result shows that there is
propagation of the (strong) L! convergence in Boltzmann’s equation.

Such a result is then applied in section IV to the derivation of new prop-
erties of the solutions of Boltzmann’s equation. More precisely, we obtain
new differential inequalities satisfied by all smooth solutions of Boltzmann's
equation and the propagation of the strong L' convergence allows us to check
that the weak solutions we build also satisfy these inequalities. In fact, we do
not show that any renormalized solution satisfies them but that the approxima-
tion procedure used in [25] not only yields the defining properties of renor-
malized solutions but also these differential inequalities.
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Finally, we deduce from these new properties a uniqueness statement: we
show that if there exists a strong solution of (1) (say a bounded solution)
satisfying (9) then any weak solution (i.e. renormalized solution satisfying the
differential inequalities shown in section 1V) coincides with the strong one.

Further applications of the compactness results shown in Part I [51] and
here will be given in Part III: details can already be found in the Introduction
of Part L.

Let us now conclude this Introduction by making a few comments on the
results shown in this paper. First of all, the propagation of the strong con-

vergence in L' (R%) shows that if initially there are no oscillations, then no
oscillations can appear spontaneously during the evolution. This type of
questions has become a standard issue for nonlinear evolution problems (of
hyperbolic type...) beginning with the works by L. Tartar [65], [66] on com-
pensated compactness. However, in many examples such as nonlinear
(hyperbolic) conservation laws, the existing results are slightly different
since they show that no oscillations can appear or even persist even if oscilla-
tions are present initially - see L. Tartar [66], R. J. DiPerna [22], [23], G. Q.
Chen [18], P. L. Lions, B. Perthame and E. Tadmor [56], [57], P. L. Lions, B.
Perthame and P. E. Souganidis [56].. And it was shown in P.L. Lions [52]
that this phenomenon of immediate damping (for t>0) of oscillations is not
true for Boltzmann’s equation - while it holds for other collision models such
as the Landau’s model [52]. This is why our result is in fact closer to the
results shown on Vlasov-Poisson systems in R. ]J. DiPerna and P. L. Lions
[31] - see also [51] - and of course to the much simpler case of L! contrac-
tive evolution equations such as, for instance, scalar conservation laws.

We also want to point out that the uniqueness “weak solution = strong
solution” shown in section V is a classical substitute to a true uniqueness
statement. And one can observe a striking analogy with the state of the art
on three dimensional incompressible Navier-Stokes equations. Indeed, the
global existence result of weak solutions shown in [25] can be seen as the
analogue for Boltzmann's equation of the pioneering work on Navier-Stokes
equations by J. Leray [47], [48], [49]. And the uniqueness of “Leray solu-
tions” is not known except for some results which show that weak solutions
are equal to a strong one (in a sense to be made precise) whenever the latter
exists: examples of such results can be found in R. Temam [67]. Let us also
mention that results of a similar type for hyperbolic systems of nonlinear con-
servation laws can be found in R. J. DiPerna [24].

II. Propagation of strong L' convergence in Boltzmann’s equation

As explained in the Introduction, we consider a sequence (f")n21 of
(nonnegative) renormalized solutions of (1) corresponding to a sequence of

(nonnegative) initial conditions (f%), ., We assume uniform natural bounds
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on [ i.e.

(16) sup fmef(','Il+w(x)+|v|2+|logf6'“ dx dv<oo

nx1

We also assume similar bounds on f”

(17) sup sup fj;mf”(t)+a)(x)+|v|2+|logf"(t)|l dxdv<oo |

n=1 t€[0,T]

and

(18) s"g?j;rdtﬂwdxfj;wdvdv*j;”_l dw * B(f"’f’;,;—f”fg'k)log %<w

for all T€ (0, o).

Let us recall (once more) that the existence of such a sequence f” given a
sequence f# satisfying (16) was shown in [25], [26]. In fact, only the case
w (x) =|x|* was considered in [25], [26] in which case one can even take T=
+0 in (17) and (18), while the easy modifications of the arguments of [25],
[26] needed to allow a general w satisfying (11) are explained in Part I [51].

Next, we observe that the bounds (16) and (17) imply, extracting sub-
sequences if necessary, that f% (resp. f*) converges weakly in L' (R?) (resp.
L*(R#,x (0, T)) for all TE (0, ©)) to some fo=0 (resp. f=>0) which satis-
fies (10) (resp. (12)).

And we recall that it was shown in [25], [26] that f is a renormalized
solution of (1) corresponding to the initial condition fo (i.e. f satisfies (9)).
We may now state our main result

Theorem II.1. If £ converges in L' (R?N) to fo, then f™ converges to f in
c([0, TT; L*(R%)) for all TE (0, o).

Remarks. i) The same result holds for the Boltzmann's equation in a
periodic box i.e. when f4, f* (and thus f,, f) are assumed to be periodic in
each x; (1 <i<N) with a fixed period T;€ (0, ). In that case, the weight
w is no more necessary and all integrations in x in the assumption are res-
tricted to [1Y=T11%,[0, 7] .

ii) Let us recall that it was shown in P. L. Lions [52] that if f*2f in

Lo (RZ, X (0, ©)) then necessarily f3—fo in L' (R®). This fact combined

with the above result shows that the strong convergence in L' (R%) prop-
agates both forward and backward in time. One might suspect that such a re-
versible propagation of L' convergence is related to the angular cut-off
assumption we are making on the collision operator @ and that without angu-
lar cut-off the strong L' convergence is automatic for t>( (without any furth-
er assumption on f§ like the strong convergence assumption made in the above
result) as it is the case for the so-called Landau model (see P. L. Lions [52]).
Of course, this remains highly speculative since very little is known on the
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Boltzmann's equation without angular cut-off.

Theorem II.1 is proved in the next section by, in fact, two slightly diffe-
rent arguments. We conclude this section by recalling a few known facts on
such sequences of solutions (fs)»>1. First of all, it was shown in [25] that
we have for all R, TE€ (0, )

(19) Q*(F" ") (1+f") ' is weakly relatively compact in
L'(RY X (o] <R) x (0, T)),

) ‘ L(f")=A ’:f”(=f_/;“xs~_,f”(x' vy, ) Bv—vx, w)dv*dw>
5 L(f) in L"(RY¥X (Jo|<R) x (0, T)) .

And the main compactness result (Theorem II.1) in Part I [51] is
(21) Q*(f™, fm—Q* (£, /) in measure on (lx|<R) X[v|<R) X (0, T)
for all R, TE (0, ) .

The assertions (19) and (21) then imply that, in order to prove Theorem
1.1, we may assume without loss of generality that we have

(22) QT —» Q*(f.f) ae. R X (0, )
and for all 8 € (0, 1]

(23) Q*(f" f™ (14+ 8" = RQ¥ weakly in L'(RY X (lv|<R) X (0, T))

for all R, T€ (0, o), where RQ¥ are two nonnegative measurable functions

in LY(RY X (lv|<R) X (0, T)) for all R, TE (0, ). And we set RQ*=RQ% .

n

AN
14" 14f"

Also, are obviously bounded measurable functions on R?M X

n
(0, ) (and I-I—Lf” also inherits of the L' bounds satisfied by f” since

n
0 ST-LFFSJMW)' Therefore, in order to prove Theorem II.1, we may assume
without loss of generality that we have

(24) IJJ; — 7 weakly in L= (R, X (0, 00)) (weak*)
and
(25) 1 - E’ weakly in L= (RZ, X (0, ) ) (weak *).

1+f"

We use the awkward notation ﬁ’ because B’(t) =1L+t if B(t) =log(1+t).
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Next, we remark that B8(f") =log (1+f*) is bounded in L? (RZ,X (0, T))
for all 1<p<oo, TE (0, ) and that 0<B(f") <f". Therefore, once more
without loss of generality, we may assume that we have

(26)  B(f") - B weakly in L"(RZx (0, T))
for all 1<p<oo, TE€ (0, ). In addition, since f# converges in L' (R%) to f,,

we deduce easily that B(f%) also converges in L' (R®) to B(fo).
Furthermore, the functions (t-’ IL-H) and (t—1log (1 +1¢)) - resp.

(t—*l—_li_;> - are concave on [0, ©) - resp. is convex on [0, ) -. Hence,

we deduce from standard functional analysis facts the following inequalities:

Y 1 .,
(27) B Sl—ﬂ—ﬁ (f)

and

@8)  T<{h=7().B < log A+N=B(.

III. Proofs

We shall give two proofs of Theorem II.1. The first one is slightly sim-
pler but the second one shows a bit more clearly how the “calculus and no-
tion” of renormalized solutions allows to deduce Theorem II.1 from the main
compactness result shown in Part I [51] namely (21). In fact the first proof
will use the fact that we already know from [25] that f is a renormalized solu-
tion of (1) while the second one will show directly that f, converges in L.

Proof 1. From the definition of renormalized solutions, we have
a n n\ — n n n\ — _ n n
go (B Ta)BUM = ()7t (1) — ()7 (7 )
in @ (RS % (0, )) .

Therefore, if we let n go to © and we use (26) and (23), we deduce

30 (Z2+v- V.)B=RQ*—RQ" in @ (REX (0, ).

Next, we observe that (1 + f*)'Q=(f* f") = (T+Lf")L (f®) . This

observation combined with (20), (23) and (24) implies that we have

(31) RQ-=7L(J) .
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Indeed, we have

n " _ n n o
J—Hf,,L(f) LlJrf,,L(fH—LHf,, Lm—Lnt,

STy — n
Ty LU —LONSILU =L (]

Hence T_%mlL (fm —L(Hl50in L*(RY X (lv|<R) X (0, T)) for all R, TE

(0, o), while, for all g€ L= (RY X ([v|<R) X (0, T) (extended by 0 to RZY x
(0, 0)), gL (f) EL* (R, X (0, ) ) and thus in view of (24)

t'l _)f _
j;mx(ov w)Hf,,L(f)sbdrdvdt 7 J w0, o T () @ daxdvdt .
And this completes the proof of (31).

Next, we consider (1+f")7'Q* (f", f*) and we claim that (22), (23) and
(25) imply

(32) RQ*=BQ*(f./) .

Indeed, it is of course enough to show (32) on Dg X (0, T) for any fixed R, T
€ (0, ) where Dr= {(x, v) | |x|, Jv|<R}. We then use Egorov theorem to
deduce that for each €>0, there exists a measurable set ECDg X (0, T) such
that measzy,: (E) <€ and Q* (f”, ") converges uniformly to Q* (f, f) on (Dg X

+
(0, T)) NE°. In addition, since Q—l(%[)—ELI (DrX (0, T)) (fis a renormal-

ized solution of (1)), we may assume without loss of generality that Q* (f, f)
€L'((DrX (0, T)) NE®). Hence, in particular,

fmx(o,n A+ (f* f7) dx dv dt
= (1+£") 71Q* (7, £7) da dv dt

T J Dex(0,DNE*

> A+ 7R (1. f) —€n

I Dex0,DNE*

where €,520, and we deduce from (25)

(1471 (f* f™) dx dv dt .

Dy x (0,1

—h <i
»l‘DRX(O,T)ﬂE‘BQ (f. f) dxdvdt_h':n

In particular letting € go to 0, we deduce that BQ* (f, f) EL' (D X (0, T)).
Next, we have for all ¢E€L*(RZ, X (0, o)) supported in DgX (0, T)

|[010+/)-0" (7.0 —BQ* (1.9} dxdvas
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<l [ (1477 71Q% (7, 57) —BQ* (1, 1) daxdoat
+| fEld) A+ 7NQ (£, /) —Q* (/. )| dzdvdl
H [ 6@+ (.0 10471 dzavar].

The third integral goes to 0 as n goes to + o for each fixed €>( in view of
(25) (recall that Q* (f, f) EL'(E°N (DX (0, T))) and so does the second in-
tegral in view of the uniform convergence of Q* (f”, ™) to Q* (f, f) on E°N
Supp (¢). Finally, the first integral can be made, uniformly in %, arbitrarily

small as € goes to 0 because of (23) and of the integrability of EQ* (f, f) on
Supp(¢). And the claim (32) is shown.

Next, we combine (30), (31), (32) with the inequalities (27) and (28) to
deduce

(—aa;+v : VI)B > B (NQ(f.f) — 7+sz, ()

(33)
=R (NQ(f, /) in D (RIX (0, %)) .

On the other hand, we already know from [25] that B(f) satisfies

@) (T4v- R)BN=F QLS in @ REX (0, ) .

This is really where we use the knowledge that f is also a renormalized solu-
tion of (1) (and the weak L' stability result shown in [25]). Comparing
(33) and (34) we deduce

@) (T ) B-BI20in D REX (0, ) .

In fact, we know a bit more since (30) implies that %é-l-v - V,BEL' (RY
X (lv|<R) X (0, T)) for all R, TE€ (0, ®©). In addition, the bound (17) im-
plies that sup fj;m B(1+w (@) +v|>) dzdv <oo for all TE (0, ). These
two facts allow to check by easy arguments that 8€ C ([0, o0); L' (R#)). We
next remark that Sl,—o=8(fs) on R?". Indeed, (%+v + Vo) B(fx) is bounded

in L' (RY X ([v|<R) X (0, T)) (for all R, T€ (0, ©)) and this is enough to
ensure that 8 (f") converges uniformly on [0, T] in a “negative enough” local
Sobolev space (in fact Wigh* (R?) for s>1). Of course, the limit is B and
thus Bli-o is the limit of 8(f%) which converges in L' to B(fo). Our claim is
then shown. Furthermore, 8 (f) also belongs to C ([0, o) ; L' (R?)) and
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B(Hlizo=B(fo) on R¥. In other words, B—B(f) €C ([0, ®): L' (R?)) and
(B—B(/))]i=o=0 on R?. This combined with (35) yields easily

(36) B=B(f) ae. on R¥X [0, )
Comparing with (28), we deduce that BEB(f) or in other words
(37) log (1+f,)—log(1+f) weakly in L*(R#¥X (0, T))

for all 1<p<oo, TE (0, o), while f,>f weakly in L' (R X (0, T)) for all T
(0, o) .

We can now conclude by a more or less standard argument observing that
(t—log (1+¢t)) is strictly concave on [0, ). Indeed, we have on one hand
for all TE€ (0, o) fixed

(38) @ log <1+L;rf) drdvdt < f

R™X (0,T) R 0.1 log (1+f) dxdvdt .

On the other hand, for all ME (0, ), we can find ¥ = ¥(M) >0 such that
Hence,
fR Mmlf,,—fl dxdvdt

Sj;wx(om(fn"‘f) (Lg>mw+1¢>m) drdvdt+

-}-i [log(l-l-u) ——log (1+fa) — 1log (1+f)] dxdvdt .

vV JR*x0,D 2

Therefore, because of (37) and (38),

h,fnj:zz"x(o,nlf”_fl dxdvdt

<lim (futf) Qg>m+1em) drdvdt
” R#x (0,7

<C(logM) !

for some C>0 independent of M>0, n=1. This last inequality is a conse-
quence of the bound (17).
In conclusion, we have shown for all T€ (0, o)

(39) fi—fin L'(R#¥X (0, 7)) .

There only remains to show that the convergence is uniform in t€ [0, T] for
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all TE (0, ). In order to do so, we first observe that we may assume with-

. 1 Zn 2N
_— X
out loss of generality that f, and thus 147, 1+ converge a.e. on R [0,

o) respectively to f, 1+f T+Lf Hence, /?=1L+f 7=T+Lf and thus for
all 6 €(0,1], A+ 8" 'Q*(f™ f") converges a.e. on R*¥X [0, ) to (1+

O fM Q*(f" f") =RQ*. This combined with (23) implies that (1+ &
L Q*(f* ") converges (strongly) in L' (RY X (Jo|<R) X (0, T)) (for all
R, TE(0, ®)) to (1+8f)'Q*(f,f). Hence, for all R, TE (0, ), we have

@) (Gtv- V) Bs () —Bs (N30 in L'RYX (0|<R) X 0, T))
while because of (39) and (17)

(41) Bs (fa) —Bs ()5 0in L*(RZ,X (0, T)) .

(42) Sup - sup f I TR 1Bs (fu) +Bs(f)} drdv — 0 as R—+ 0 .

It is then an easy exercise to check that (40) - (42) imply that B85 (f")
= Bs(f) in L*(R?) uniformly in t€ [0, T] for all TE€ (0, ) and for all &
€ (0, 1]. We may now conclude since because of (17),

sup sup fj;lf —Bs (f") |+ —Bs () ldzdv — 0 as 6 —0,

nZl te 0,71

(And we refer to [25], [26] where similar arguments are made).

Proof 2. General convergence properties of remormalized soiutions. The
second proof we want to make consists in establishing a general fact on renor-
malized solutions of first-order linear equations. More precisely, we consider

a sequence (9”),>1 of solutions of
E n — n__ nan H k
(43) o +a(y)*V,9" = G"—a"" in REX (0, T)

where T€ (0, ), k=1, a is a given vector field satisfying for example for
some C>0

(44) la (x) —a(y)|<Clx—yl for all x, y ER*.

We could consider as well vector fields a depending on ¢ or even less regular
ones using the theory developed in [29]. We assume in addition that g" €

c([o, T]; L*(R¥)), g7 (0) =g3, G", a" satisfy

(45) {g*)te [0, T1, w21} is relatively weakly compact in L' (R¥),
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for all RE (0, o), G" 1(|g~|$R) is relatively weakly compact in
(46)

L' ((Jyl<r) x (0, 1)),

G” is a nonnegative measurable function and converges a.e. on
(47)

R*x (0, 7),

a"€L ((ly|<R) x (0, T)),
(48)

a” converges in L' ((Jy|<R) x (0, T)), for all RE (0, ),
(49) g% converges in L' (R*).

This setting contains clearly the situation we are studying for the Bolt-
zmann's equation: take indeed T arbitrary, k=2N, y=(x, §),a(y)=(§,0),
gr=f" G*"=Q* (f*, f"), a®=L (f"). Then (17) implies (45), (19) implies
(46) , (21) implies (47), (20) implies (48) and (49) is assumed to hold in
Theorem II.1 Hence, Theorem II.1 follows from the following result.

Of course, we need to explain the meaning of (43) since G* and a"¢9” do
not necessarily belong to L},.. We assume that (43) holds in renormalized
sense (see [29]) i.e. that we have for all BEC™ (R, R) such that B’ €C7

60 (2+al) - 7)86) =866~ (8 67" in DR 0, T)).

Since B (9") =0 when g” is large, 8 (9") G" € L}, because of (46) while 8 (97).
g™ is bounded and thus a” ((8' (g™)g9") €L},

Theorem III. 2. Under the assumptions (45) - (49) , g” converges in
c([o, T]; L' (R¥)).

Proof. We are going to show that ¢” is a Cauchy sequence in C ([0, T];
L'(R¥)). In fact, (45) implies that it is enough to show that g” is a Cauchy
sequence in C ([0, T]; L* (ly|<R)) for all RE (0, ©). And because of (44),
the equation (43) has finite speed of propagation and we may assume without
loss of generality that g7, g4, a”, G* are supported in a fixed set (ly|<Ro) X [0,
T] for g*, a”, G*) - we can always multiply (43) by a cut-off function ¢ (y, t)
equal to 1 on (Jjy|<R) X [0, T], vanishing for |y| large uniformly in ¢t€ [0, T]

and solution of (%(té-l-a (y) - V,gb=0>... Then (46) and (48) are now global

in y and all integrals below in y or (y, t) are in fact taken on (ly|<R,) or on
(lyl<Ro) x [0, T] .
We first prove Theorem III.2 in the case when a”=0. In order to do so,
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we introduce B'€Cy (R), such that 0< (8Y)'<1 on R, B*(¢t) =t on [—1, +1],

(BY (1) =0 if |t|=2 and we set ,B”=MB‘(ﬁ) for M=>1. We then write for
alln, m=1

6D (Ztaly) - 7,)BY6M —B" 4™) =G (8¥) (") —G™ () (g™,
Therefore, we have for some C=0 independent of m, n =1, M=1

supll 8% (47) =B (™) ||
[0,T]

(52)
<Olgs =08l +C [ at [ aylcm (8467 =G (8) 6™)]

Next, we claim that G" is bounded in L! and thus G €L! where G is the
pointwise limit of G”. The second part of the claim follows from the first one
since G*=0. The L! bound is easy: indeed, we integrate the equation satisfied
by ¥ (9") and we find for all M>1

fllg'ISM G"dy dt<C

where C>0 is independent of M. The L! bound follows upon letting M go to
+ oo,

We then use Egorov’s theorem in order to bound the second part of the
right-hand side of (52). For all €>0, there exists a measurable set E C
((yl<Ro) X [0, T]) such that measqy, (E) <€ and G converges uniformly to
G on E°N ((ly|<Ro) X [0, T]1). Next, because of (46),

T
sup | - dt j;v dyG"1 <ppple=wu(€)—0

n21
(53)
as € — 0y, for all M2>1.

In addition, since G €L*, we have
(54)  sup [l dydt= 5 () — 0 as M—+oo.

We now combine (52), (53) and (54) and we deduce

sup [1B¥ (9" =B 0™ .o <Cllot =92, e
(55) telo,T]
+Cawu (€) +C 8 (M) +CfEt|G"—G|+|G'”—G| dy dt .

Hence, letting n, m go to +°° and € go to 04+, we obtain

(56) lim  sup 8% (@") —B" @)l SCE (M) .

nm=x tel0,T]
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Furthermore, because of (45), we have

(67)  sup sup lg"—B* ("), @0 as M—+oo.

n21 telo,T]

And we reach the desired conclusion combining (56) and (57).

We now turn to the general case (a"%(). We first introduce h}, h; €
c([0, T]: LY) solutions of

_ah’;l‘- —_ n\+ ; ’ k

o +a -+ Vyht=(@")*in 9 (R¥X (0, T)),
(58

) h#,-1=0 on R*

and

_all’i - n\ — : ’ k

a +a - V,hy=—(@) in? R*¥(0, 7)),
(59)

hili=o=0 on R*

And we set h"=h; +h; . Since, obviously, A}, h; <0 we also have 4" <0 on
R*x [0, T] and h*€C ([0, T]; L') solves

60  Zta- vhr=a"in @ RX (0, 7).

Then, because of (48), hi, hy and thus h" converge in C ([0, T]: L' (R¥)).
Without loss of generality, we may assume that A" converges a.e. on R¥ X
0, 7).

We then introduce " =g"*", G*=G"¢*" and we remark that, since 0<¢”
<1, (45) still holds with g” in place of g”. In addition, (47) holds for G” and
g% =g"|,—o converges a.e. while |g%|<|g%| which converges in L! so (49) also
holds for g2. We next claim that g"(€C ([0, T]; L')) is a renormalized solu-
tion of

(61) a—g;+a- V,0"=C"in R¥X (0, T) .

We now prove the claim (61). Of course, if G"EL* then (61) is an easy
exercise on linear equations in distributions sense. In order to show (61),

we first observe that ¢"” € C ([0, T]: L) (recall that »" <0) solves (in dis-
tribution sense) because of (60)

(%"’a . Vu)eh”=a”e"" in R¥x (0, T) .

And thus we have for all M=>1 (in distributions sense) on R*X (0, T) .

(ita- 7) e
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= (BM) "(g") G"+e"a™ |BM (¢™) —g™ (BM) (9"} .
Therefore, for all B€C” (R, R) such that 8 €C§, we have

(Lta- v,) BB
(62)

BB () (B)67) G B )M (B ) —0" () 67"
We first study the second term of the right-hand side of (62): since B (g”) —
g™ (M)’ (g™) and B (¢"BM (9™)) are non zero respectively when |9”|>M and
le*"8M (g%) | <C, hence |97 =M, "M <C,.

Then, on this set, |8 (") —g” (8¥)’ (g") | <CM (for some C=0 independent of
n>1,M>1). And thus, in conclusion, we have

1B ("B (9™))a™ 1B (") —g™ (B¥) (9"t ™| <Cla"1,s,, .
and in particular

B ("B (g"))a™ 1B¥ (g™) —g™ (BM) "(9™)} ", — 0 as M—-+oo,

€3
Using (63), we are going to prove that we have for all CE€ (0, )
(64) sng?f dydt 1o oG" < + o0,

and in particular that l(le"g”ISC)é” € L'. Indeed, we go back to (62)
choosing B in such a way that >0, =1 on [—C, +C]. We then
integrate (62) with respect to y and ¢t and we use (63) to find

[ 4yt 1ol oG [ vt B84 M) (89 GMGr<c

And (64) follows upon letting M go to + .

We may now complete the proof of (61). Indeed, we let M go to +° in

(62). Clearly, B ("B (g"))—p (*"9g") =B (") as M — +oo. The second
term of the right-hand side goes to 0 (see (63)). Finally, (61) holds because

1B ("B (g")) (BM)"(9”) G"— B’ (*"g™) G|
SC[1(|e"'g"|S2Co)1(MS|g'ISZM)+1(|e"g"|SCo)1(|g'|2M)]Gn — 0as M=+

in view of (64).

Once (61) is established, we wish to deduce from the proof we already
made in the case when a” =0 the convergence in C ([0, T]; L') of §*. In
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order to do so, there only remains to show that (46) holds with G”, §” replac-

ing respectively G” g". This will be achieved by showing that G* (1 +|g”|) -
€ L' and is in fact weakly relatively compact in L*. If it is the case, then
(46) holds since we have for all RE (0, o)

OSG”]'lngR 1+R>W—T 1+R)T|g—|'< (1+R)‘+|E|'

Next, we are going to deduce our claims on G” (1+|9”|) 7 using (50) with conve-
. . . . _ (1
nient choices of 8. First of all, we consider for M2 1, 7y (t) = j; 1—+H¢M (s)ds

where ¢y ECF (R) is even, 0<¢y<1on R, ¢=1o0n [—M, +M]. We then
apply (50) with =71y and we find integrating over y and ¢

G |
T e dudLS f la”l ol lo7) dya+C sup llru(g" (1)l <C

telo,T

Gn
1+g”|

since |7x ()| <log (1+]t]) <|t|. Letting M go to + 0, we see that EL.

Next, we show that we have

Gn
(65) itzl]{)fl(ly,|2M)1+—|£],,| dy dt — 0 as M—+oo .

Indeed, we now choose in (50) B given by 1 ( f ng”(s) ¢Or (s) ds

where ¢¥ €CF (R) is even, ¢M (t) =0 if |t|SM 1, ¢M(t) =1 if M>]t| and we
always take R>M. We then obtain exactly as we did before

fl MS|0|SR)1+| |dy ats flanllM 1<g”| dydtc Sllp ||7lg’(gn) ”L‘ .

t
We then let R go to + and we obtain easily, setting 7 (s) = j; 1—_&|;[ng (s)ds,

G" f M
< n + M.
S,,gll)fl(lﬂ”|2M)1+|gn| dydt< 312111) - 1)|a | dydt +C Snlzlll) tghl)%"T (g )”L
This bound proves (65) since, on one hand, the first term goes to 0 as M goes
to + oo because of (48) and (45), while, on the other hand, the second term
goes to 0 because of (45) and the fact that |y (¢) |<1 log (1 + |¢])
<lth

tl2M—-1)
(4=2m-1 -

Finally, (65) and (46) imply that G” (1+|g”|) ! is relatively weakly com-
pact in L' since we have obsviously for all M€ (0, o)
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0<G"(1+lg") < 1+M)G"1 +G" oy A+l D

(g"l<m

In conclusion, we have shown that §”=g”" converges in C ([0, T]; L").
And we are going to use this information to complete the proof of Theorem
[I1.2. We recall that ¢*" (<1) converges in C([0, T]; L!). And we write for
all KE (0, )

lg"—g™ < [g"|+1g™] [1 s 0 F Loz 1) T — ™|+ Kl —e| 42071 s -

Hence, for all K€ (0, o)

lim sup ||g"—g”‘||L,SZSup sup (f( |g"|dydt) +

nm te(0,T) nm t€l0,T] 5|2 K)

+2sup sup. ( f(wzmlg | dydt) .

n .

And we conclude letting K go to +© in view of (45).

IV. Dissipation inequalities

In this section, we wish to explain how the strong L' convergence shown
in the preceding sections allows to derive further informations on the global
weak solutions built in [25], [26]. These properties take the form of specific
differential inequalities that seem to be new even for smooth solutions of Bolt-
zmann's equations. This is why we begin by considering a model example of
such inequalities and derive it formally. Then, we justify this example for
strong solutions by introducing the general class of differential inequalities we
can obtain. And finally, we state and prove the existence of global renormal-
ized solutions satisfying all these inequalities.

The model case of the differential inequalities we wish to obtain is de-
rived formally as follows. Let f be a “nice” solution of Boltzmann's equation
(1): by “nice”, we mean a bounded solution in C ([0, c); L' (R®)) decaying
fast enough as |(x, v) | goes to + . We then consider test functions ¢ that,
temporarily, we may assume to be smooth in (x, v, t) ER? X [0, ) with
compact support in R? X [0,T] where T is arbitrary in (0, ©). Later on, we
shall consider much more general test functions. We then set on R% X [0, o0)

(66) E(g) = [%M - V29—Q(9, g)].

Obviously, E (9) is bounded, with compact support on R? X [0, T] for all TE
(0, ) - notice indeed that v, v'«E Supp g (t) ¢ € [0, T1) imply |v], |v'|<
c(T).
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Next, we use (1) and (66) to write

[%4’” : Vx} (f=9)=Q(£.)—Ql,9)—E()

and thus

0 _
@ |2t v -0 =000 +QG./~0) ~EG)
where for all functions @, ¢, Q (¢, ¢) is defined by

6 Qe 9= dve [ doBle@—0d).

Then, we wish to write an equation for |f—g|: in doing so, we use (67)
and thus appears a term equal to sign (f—g) at least when f—¢ does not vanish.
We neglect the ambiguous definition of sign (f —¢) on the set where (f—g)
vanishes and we shall see later on how to justify this decision (assume for the
moment that (f—g) has zero measure for instance). Then, formally, (67) im-
plies

[%+v A }lf—g|=sign (F=9)Q(f—9. 1)
(69)

+sign(f—9) 1Q, f—9) —E@)} .

We want to integrate this equation with respect to v and we observe that we
have

[ v sign(~9)Q (=3, /)
(70) :fj;wxm dvdv*j;ﬂ_\dw Blsign (f—g) (f'—g’)f’*—lf_glf*]
gf LR d”d”*ﬂmﬂw Bllf —g1f «—|f—alf+ =0.

Here, we use the change of variables ((v, vx) — (", v’%) (", v’x)) which for

each w €SY! is an isometry. Combining (69) and (70), we obtain the fol-
lowing (macroscopic) differential inequality on RV X (0, o)

alle

< [ v sion(7—0) Q. /~9) —E(g)).

f—g|dv> +dw,( fR vl f—g|dv)
(71)

Let us observe at this stage that f enters at most linearly the inequality

(71) and thus makes sense if f€C ([0, + ) ; L' (RZ)) and is then well
suited for the global weak solutions built in [25], [26]. But before we dis-
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cuss in more details this point, we first want to justify (71) by a slightly more
rigorous argument that will, in particular, take care of the discontinuity of the
sign function. .

We then introduce a class denoted by B of smooth “absolute-value like”
functions namely B= {a€C'(R; R), a(0) =0, | (t)|<1 on R, o (t) =sign (¢)
for |t| largel and we need to incorporate a (t) =|t| in this class. In order to
do so, we extend B as follows - this is only one possible choice among many
technical ones - : B= {a€C (R; R), a is Lipschitz, C* except at ¢ finite num-
ber of points, & has at each ¢t €R left and right derivatives, a (0) =0, |& () |
<1 ae. on R, & (t) =sign(t) for |t| largel. If a€EB, we define & (t) at each
of the discontinuity points ¢; by imposing an arbitrary value in [& (ti-),
a (ti+)]: in this way, we define in the case when a (t) =|t|, sign functions (i.e.
o) where sign (0) is a fixed but arbitrary value in [—1, +1]. And we
shall show that (71) holds for all these sign functions. We begin by con-
sidering @ in B and we follow the derivation of (69) - (71) replacing |t| by
p ) a(tp (v)) where p is a positive weight-function whose properties will
be determined later on. Then, we find instead of (69), (70), (71)

(40 7)) alpe) (7—0)]
(72) = (p() (/=9)Q(f—4.)
+a'(pw) (f—9)) 1Q, f—9) —E@)}.
[ v () (7—9)Q (0.7
<[ [ avavs [ Bdw(@)*(r—a)7%
+[ [ avave [ Baw@)~(r~g) 7w+

+f j;m dvdv fs Bdw a'(f—9)f.

Therehore, we have (setting p’=p ("))
(73)

[ ava (p0) (7~0))Q(r~0.7)
<[ [ avav [ Baw (7~0) e (5 (s =0)) " —a(p(r=0))]
+ [ [ dvave [ B dw (7=0) 7ula /(1 =07+ (p (r=0))].

In particular, since |@'|<1 on R, we deduce
[ do @ (p0) (=)@ (70, )

(74) <[ [ dvivs [ Bdw (r—0) 1 (p(r=0))]+
+ [ [ avavs [ Bdw (—0) Ful1+a (p(—a))].
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We denote by R+, R respectively the two terms in the right-hand side of
(74). Let us observe that 1—a’ (p(f—g)) 20, 1+a (p(f—g)) =0 and that
by assumption 1—a’ (p(f—g))]1 =0 if (f—g)p>0 is large enough while 1+
a (p(f—g))=0if (f—g)p<O0is large enough. In other words, the integrals
defining R+ and R_ are taken on a set given by {|f—g|<to p(v) !} for some t,
€ (0, o) which depends only on @. And we deduce from (72) - (74)

(2+v- vt ) a(p0) (~0)]
(75)

<a'(p) (f—9)) 1Q g, f—9) —E@)| +R++R_.

We may now choose p satisfying the following requirements: p € C (R")
p() >0 in R", and p satisfies

(76) A*%EC(RN) and [A *%] (1+]o]2) -1 — 0 as Jo|—+ oo,

Recall that A (2) =j; B (2, w) dw and that we assume (7). And (7) im- °

plies the existence of such functions p: indeed, let x, € C5 (RY), 0 <y, <1,
x»=1on {lv|<ul. Then, because of (7), (A*yx,) (1+v]?) T€C,(RY). We
then set My=maxg, |4 * xal (1 +[v|®) 7} and @= S ,z1xx (1+M,) 127" We
have clearly @€ Co (RY), (A*®) (1+[v|>) '€Co(RY), ®>0 on RY. There-

fore, p = @~! satisfies the conditions mentioned above and (76) in particular.
Let us also mention a few examples: first of all, in the hard spheres model i.e.

B(z, w) =|(z, w)|, we find A (z) =colz| for some ¢o>0 and we may take p= @}
where @>0 on R, d€C (RY), j;h_(|v|+1) D dyv<oo, Also if A EL'(RY)

then we can take p=® ! where ®>0 on RY, @€C(R"), @ is bounded on R".

We next explain how (75) yields (71) with an arbitrary (in [—1, +1])
normalization for sign (0). Indeed, we can find a € B such that &, (0) =s,
fixed in [—0, +0] and a, (t) =sign (t) if |[t|=1/k for all &> 1. Let us
observe that o', (t) 3 sign (t) for all t#0 while &, (0) =s,. In addition, we

see that the intergrals R4, R_ are then defined on a set {|f—¢| S%p (v) Y and

that || f—9!<p @) ax {p ) (f—9)} |S% We may then let k go to +© in

(75) and we recover (71) provided of course we show that R, =R%, R_=R*
go to 0. But this is the case since we have in view of (76)

1
IRY|, |RY| < fj;m dvdvs A (v—v*)f*?p () ' 0.

A similar procedure shows that (75) holds in fact for all a€B.

All these considerations show that “nice” solutions (i.e. bounded with a
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fast enough decary at infinity) of Boltzmann’s equations satisfy (75) (and

thus (71) for all ®€ B, p satisfying (76) and for all test functions 9. In fact,
in order to be totally rigorous, we need now to explain and detail the class of
test functions. We thus introduce a class A of admissible functions ¢

a=lgec((o, o)L RE)), gk L~ (0, T: L' RE),

Axlg| o -T2
(77) TS LY 0, T; L= (RZ)),

%Zﬂ- V.9€L* RN X (0, T)) for all TE (0, oo)] )

Observe in particular that, if g €A, we have for all T€ (0, )

Q™ (9.0)|<lgl (4 #lg) = ol (bl=4+DI LA+l 7 (4 %)) €L REY X 0,7))
[ o (. 0)lav< [ Q* o, lohav= [ @ (al. loh) av

91 (Axlgl) dv €L (RIX (0, 7).

Therefore, (75) makes sense as soon as f€C ([0, ); L'(RZ)), flv]2€L= (0,

T; L*(R#)) (VTE (0, )). In all that follows, we simply say that f satis-
fies (75) if (75) holds for all a€EB, g €A, p (>0) €C (RY) satisfying (76).
And we prove the

Theorem IV.1. Let f,(=0) satisfy (10), then there exists a renormalized

soiution fEC ([0, ) ; L*(RZ,)) of Boltzmann’s equation (1) coresponding to the
wnitial condition (9) which satisfies (75).

Sketch of Proof. We only need to follow the construction made in [25], [26]
of a renormalized solution. Indeed, in [25], we approximated (1) by solving

18 Lty Vr=Qu(nsn) in REX (0, %), =3
where
fi= [min(fo, ne—%umelz)) * (21nY) -N/ze—%(xum?)] _{_le_J_I_Iil_z st
n
(for example. . .),
@ 0@) = ([ dvx [, dw Baw—vx, @) (90— 00s)).

1+= L f l@ldv) ' and B, €C* (RN X S¥-1) | B,> 0 depends only on |z| and

| (z, w) |, vanishes for |z|<1/n, for |z|>n, |z - w|£;|z|, on |z w|> (1—%) |z|

and (7) holds uniformly in n, B,—B in L' ((|z|<R) X S¥~!) (VRE (0, =)).
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As shown in [25], (78) is uniquely solvable and admits smooth solutions
(with fast decay at infinity) . Furthermore, the structure of this truncated
equation is essentially the same as the one of (1). In particular, f" satisfies
(75) with Q, E, R+, R- replaced respectively by

Q0. /=) =1+ [ ran) | [ ava [ dwBalg’ (77 —0) s—a (7"—0) ]}

E.(g9) _(at +v - VxQ) <1+% f ”dv) {f dv*fsu-.dw B, [glg'*_gg*]]
Ri=|f [ ave [ Baw(=9)*ra-a -1 (1+1 [ )
R*= Uj;mdv dv | ., Bnda)(f"_g)_'f’i[l-—a'(p(f"—g))]](1—% j;ﬂf"dv)—l

Next, the proofs made in Part I [51] and in section III apply and in par-
ticular (17), (18) hold and, extracting a subsequence (still denoted by f") if

necessary, f” converges in C ([0, T]; L' (R%)) (VT € (0, ®©)) to some f
which is a renormalized solution of (1) corresponding to (9). We may then
pass to the limit in (75) choosing a in B. Once (75) holds for all € B, one
can then check that it also holds for all @ € B by an approximation argument
that we detailed above (in the case when a(t) =sign (t)).

We have thus shown how certain differential inequalities like (75) or
(71) can be obtained. We now wish to explain how differential equalities can
be obtained for more general classes of functions and how it is possible to
combine this idea with the idea of renormalized solutions. Let us also empha-
size the fact that the formulations we shall obtain use in fact the entropy
bounds and more importantly the entropy dissipation bound (15).

All the equalities we shall derive are of course obtained from (1) by mul-
tiplying it by appropriate quantities exactly like an equation is formulated in

the sense of distributions by multiplying it by Cg functions. We thus have to
define a convenient class of multipliers that we denote by: m belongs to if

m=@(x, )a’'(p W) {f(x, v, t) =g @, v, )}) +B(f(x, v, t) =g (x, v, 1)) o (x, v, t)

where ¢ €C5 (RY X [0, o)), ¢ ECF (RZ, X [0, )),gEA, pECRN) >0
satisfies (76), @, BEC! (or more generally admit left and right derivatives on
R, are differentiable except at a finite number of points where a’, B are de-
fined by an arbitrary value between the left and the right derivatives), a(0)
=B(0) =0, a’ and B’ are bounded, a’(t) is constant for ¢t>0 large and finally
B’ satisfies for some C=0

(79) 1B ) <Cc1+e)~Y2 for t20.

In fact, we could allow more general multipliers m by requiring less reg-
ularity on ¢, ¢, @, B and by considering functions 3 that can depend on x, v, i.
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These extensions however are rather technical and we skip them since it is
not clear that they really add new informations.

First of all, we have to define <—g§+v « Vof, m>. This is easy and we
simply set

<%+v - Vef, m>=<<%+v . Vx) [%a(lb(f—g))]. 0>

+<(2+v- V)BU—0). 9> +<Ltv - Vg, o (p(7~0)) © +8(F—0) >

or in other words

<%+v s Vefim>

(50) = [ atf gz av{—Lalp(r-0)) (v - 7o)
—8—0) (%40 7. 9)+ % to - Vog) [ (p(s—0) @

+8' (=)0~ [ ax av|Ea(p(1o—00) o+Bio—00) 9.

where fo=fli=0, 90=9l1=0 on R?. Recall that f, g€ C ([0, ©); L' (RZ)). In
view of the properties satisfied by ¢, ¢, g, a, B, all the integrals written in
1

sabG—0)|<cl-al 18G-0)
<C|f—g| for some C=0 and let us recall that we assume that (12), (13) and
(15) holds while glo|2€L>(0, T; L*(RZ)) (VT€ (0, )).

(80) make sense: let us only observe that

We then have to define<Q(f, f), m>. Using the simple change of vari-
ables [(v, v%)— (0", v’%) ] we set

<QUN. oa (=) >= ["ar [ dz (ot 1)
(81)
AL oav [ ave [ g0 Byl (5 (r—07) —a(p (=),

And we claim that Bff« (@’ (p’(f'—g)) —a’(p(f—g))) EL' (RY X R X RZ X
S¥-1x (0, T)) for all TE (0, ). Indeed, since a’ is constant say for ¢>
to>0, we have

Bifde (0 (F—0)) = b U= NI SBFfa L,y peu! -

Then, on the one hand

1
Bff*lu—as:.,/p) SBlglf*_HO B ;f*

and for all T€ (0, )
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detf dx ff dvdv*j; dw B(Iglf*+lf*)
—f dtf dxdv ( A*|g|+A*< ))f<cf dtf dxdv (1+[v]?) f< o0,

On the other hand, we use the entropy dissipation bound (15) to deduce

1

Bffsl i yciyn 2B 1%L, a’St/f’“+10g2D

where D=B (f f "« — ffx) log[—LELl (RYXRE,XSY'x (0, 7)) forall TE
(0, o). Next, we have for all TE (0, o)

T

j; dt fRNdx fj;wdvdv* _/;N-,dw BfF'%l o ycrm=
T

j; dt j;Ndx fj;mdvdv* j;N_ldw Bif«l <

where we used once more the standard change of variables [(v, vs)—
(, v’%¥)]. Our claim is then shown since the last integral is finite as we
already proved.

There remains to define <Q(f, f), 8'(f—g)¢>. We simply write
<Q.1). B (f—9)¢p>

=j:,Tdt Lﬁdr j;mdv dvx f;ﬂ_,B dwd {f f'x—ffxl B (f—9).

And we claim that B1 U %—ff« B (f—9) EL'RYXRE,XxSY1x (0, T))
for all R, TE (0, o©). We first remark that we have for all K>1

(82)

fF e SKffat logK Togt U 1 =t ol
(82) ,
Ff «=K Y «— logk (f'f'*—ff*)logLffL
hence
(83) | F e—ffsl < (K—l)ffﬁ@(ff’*ﬂf*) log iﬂ%

We then choose K=¢¥"Y=2! and we deduce from (83)

rp

Bl <p)

<BL o ffB (f—9) | [#V=#1—=1] +D

where D, because of (15), belongs to L' (RY XRZ X S¥-1x (0, T)) for all TE
(0, o). Finally, we have since 8 is bounded and satisfies (79)

Bl ff+lB (f—g) | # V=21 —1}
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<CB1 (|,,|gk)ff*|ﬁ,(f_g) |2
<CB1 ., ffx+CBY o 1+ (f=0)) Yfal o,

SCB1 g ff+CBL o (14 /2)) “ff
<CBgfs+CBl S

where C denotes various positive constants.

We already showed before that B gf« €L (RY X RZ, X SY-1x (0, T)) (VT
€ (0, %)) and we conclude the proof of our claim observing that we have be-
cause of (7) for some C=0

S Lo [ Blucnssto avav= [ (ax1 ) v,
SCLN(1+|v|2)f dv.
We have thus define <Q (f, f), m> for all multipliers m € M. And we
simply say that the Boltzmann's equation (1) holds for all m €M is we have
for allmeEM

(84) <—g§+v' Vef,m>=<Q(f, f), m>.

Exactly as we proved Theorem IV.1, we can prove the

Theorem IV.2. Let f,=0 satisfy (10), then there exists fE€C ([0, ) ;
L'(RZ)) satisfying (9), (12), (13), (15) and (1) forallmEM.

Remarks, i) In addition, f satisfies the following properties (see [25], [26])

(85) j;wdxdv vk f is independent of ¢ =0, for all 1<kE<N,

7, asf [ vive |
j;mdxd"f logf(t)+4 . ds RNd.r Rmdvdv* SN_Ida)

*B(ff sx—ff+) logﬁfjf%ﬁfwdxdv fo log fo.

(86)

i) If we take @’=1, g=0, B#0 and thus m=¢ (z, t), the equality (84)
implies

(87) %(medx dv)-l-divx(j;m fo dx dv) =0
i.e. the local convervation of mass.

iii) We can check easily that if we take =0 and a€A4 (or A) then (84)
can be rewritten in such a way that it yields (75) and thus (84) yields (71)
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as a very particular case. Let us detail this particular example: we thus take
B=0, a(t)=[t| and (84) implies

%( j; Lfdx dv)+div,( j; . fvdxdv)
(88) =—j;w(%% +v - ng)sign(f—g)dv-l-fj;mdv dvx *
- [...B deyulsion (£ '~g) —sign (f—0)].

Then we write (and this is allowed in view of the integrabilities shown
above)

f g AUV fSN_IB doffx Isign (f'—g") —sign (f—g)} =

[ [ avavs [, B awl(r=a)ss+ara] Isign (r—a) —sign (f—9)]
= [ [ avivs [ B dw sl (—a)sign (s~ ~|s—all +

+ [ [ avavs [, B dw sign (7—0) Lo s—ar].

Observing that (f—g) sign (f'—g") — (f—g) <0, we then see that (80) yields
(71).

iv) In view of the “uniqueness” result shown in the next section, it is
quite clear that (71) (or (75), or (88)...) can be used as a definition of weak
solutions of Boltzmann's equation. This notion of solutious-which could be
called dissipative solutious-can be used in many contexts like Fluid Mechanics
models and we shall come back to this issue in future publications.

v) If we restrict the class M of multipliers to the case @=0, g =0 so that
m=¢(x, v, t) B (f), we see that (84) implies that f is a renormalized solution.
In fact, using the entropy dissipation bound (15), we are able to allow a more

general decay on B namely (79) instead of (|8 (t)|<C(1+4¢t)7Y).

V. Weak solution=strong solution (when it exists)

We begin with a general uniqueness result:

Theorem V.1 Let T>0, f€C([0, T]; L'(R%)) with flul L' (RZX (0, T))
satisfy (71) on RYX (0, T) forall gEA. Let fEC([0, T1; L*(RZ)) satisfy

(89) A*|leL (0, T; L>(RZ)), blfEL'RZE X (0, T)),
and
90 L V=G ) ae n REX (0, T) .

Then, if flico=fli=0 a.e. on RZY, f=F on RZYX [0, T].
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Remarks. i) Notice that @~ ([f], If]) = (4 *|f]) [/l L' (RZ X (0, T))

and thus we have also Q* (1, If]) . In particular, (90) implies that
(Z+v - v.f)er ®zx 0, 7).

ii) In practice, the condition (89) essentially means that A €L!'(R") and
feL (0, T; L~ (R%)). More precisely, if these two conditions are satisfied
then A*|fl€L'(0, T; L~ (RZ)).

Proof of Theorem V.1. We claim that we can take g =fin (71). Let us
observe that this is not automatic since the conditions imposed on f do not
quite imply that fEA. Once this claim is proven, Theorem V.1 follows easily.
Indeed, using (71), we find

o0 L r=favtaiv( [ olr—7laz)< [ av sign —PQU ).

Indeed, E (f) =0. Next, we observe that we have

[ sign —DQU.r~P < [av1@* (A L= +@~ (. L~
=szatv @ (A 1= =2j;Ndv @xAlr—A<la *lﬂ“Lw(Rmm)j;N'f_ﬂdv.

Inserting this estimate in (91), we find

4 | =fav+aive( [ olr—Adz)<a ) [ lr—Ado
in @ (RYX (0, T))

where a (t) =4 *| fll|,« g, EL' (0, T) .

Since v|| f—Al€L* R, % (0, T)), we deduce easily from this differential
inequality the following inequality

alJ.

And we conclude easily using Gronwall’s lemma since f— f € C ([0, T]:
Ll(Rfr%)) and f|t=0:f|l=0 a.e. on Rf:AzI) .

Therefore, we only have to show that (71) holds with ¢=f. To this end,
we introduce g, = ¢, () f where ¢, €Cy R"Y), ¢,=1 on (Jv|<n), 0<¢, <1.
Then, it is easy to check that g, €A, g,~f in C([0, T]; L' (RZ)). Furth-
ermore, we have in view of (90),

E@n) =Q(¢nf, ¢uf) —Q(f, /) on R X (0, T) .

Hence, we have easily

f—fldx dea(t)fj;sz—ﬂdx dvin® (0, 7T) .
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[ Ip@wlav<z [ [ dvdved 0= (@0f) ©0) (0 ©) —F 0 F)]
<z2[ ax[a—g) A Favt+2 [ (a*lA) (- g Aav

<2[ [ 4G—ve) A=) @ [F e 76 |dv dust

P2 ([, 1= 90 ).

The second term goes to 0 as n goes to+oo in C([0, T]; L*(RY)). The first

term also goes to 0 as n goes to+ oo (in L' (R¥ X (0, T)) by the dominated
convergence theorem since (1 — ¢,) (vx) A0 and A (v —v4) |f s [ @) |€

L'(RY¥XR X (0, T)). In conclusion, we may apply (71) with =g, and we
let n go to+ . Then E(g,)— 0 in L* (R, X (0, T)), g, converges to f in C
([0, T]; L*(RZY)) and our claim is shown provided we pass to the limit in the
two terms that remain i.e. j;ﬁvlf—g,,| dv and sign (f—9.) Q (gn, f—9»). For
the first term, this is easy since v|f—g.|l>v|f—g| ae. on Ryp X (0, T) while
vl f—gal[<lol (f1+1f]) €L (RZ X (0, T)). The second term is a bit more

delicate because of the discontinuity of the sign functions. In fact, in view of
the uniqueness proof made above, we do not really need to obtain (71) and it
is enough to show that Q* (|9, [f —g.|) converges, as n goes to+ oo, to

Q*( A, | f—/) in L*(RZ% X (0, T)). Indeed, we have

Q% g, 1f=94D) —@* (gl |/ —9D)| dv
Sfj;mdvdv* AW—v:)|19:(vs) (f—92) @) =[Fwx) (f=1) @)]

and we argue as we did before for E (g9,) in order to complete the proof of our
claim and thus of Theorem V.1.

We have seen in the preceding section existence results of weak solutions
f of (1) that meet the requirements imposed in Theorem V.1. Of course, the
regularity informations imposed on f are not known in general. Such exist-
ence results are known only in very particular regimes: we refer to [13],[14]
and [16] (..) for complete lists of references that provide interesting exam-
ples of such regimes. Let us mention two examples (on which we present
more or less standard proofs) namely existence results locally in ¢ (i.e. for T>
0 small enough) and global ones for “not too large initial data”. We do not
claim the results which follow are original but they illustrate the preceding re-
sult and the proofs are simple and short enough to be included here.

Proposition V.1 i) Let 0=0, /b€ L'NL*RZ), folv[? €L (RZ). We
assume that A €L' (RY) and we set T«=2]A "u ®" IIFo ||L.. ®y - Then, if TE
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(0, Tx), there exists FEC([0, T); L*(RZ%)) NL=(0, T; L= (RZY)) such that f
li—o=fo, flVIPEL=(0, T; L*(RZ)) and (90) holds.
i) Let fo satisfy for some Co=0, a,b>0, (xo, v)) ER?

02) 0 o <Cuexp( LT =0 (o) v gy e

We assume that AELI(RN) for some g€ (-N]I—l,-i-w) and that we have
N N
(:0"-'4 "L'(RZN) (ab) -2 (b) “2qa” 2

w -1
S(j; (1+ 02)_%da) p% wheve p=;1—3—1 .

(93)

Then, there exists f€ C ([0, ) ; L' (RZ)) N L= (0, T; L= (RZ)) for all TE
(0, ), such that f|i—o=fo, (90) holds and
(94)

]2 2
OSfSC(t)exp(—Lr vzta x| _Iv 2;20| )(zn,)—N(ab)—N/z

where C(t) (20) €C* ([0, o)) .

Remark. This result provides examples of solutions f of (90) that
satisfy the conditions listed in Theorem V.1. In particular, their uniqueness
follows from Theorem V.1 which also shows the uniqueness of arbitrary weak
solutions (at least on [0, T]) satisfying (71).

Sketch of proof of Proposition V.1: We only explain how one can obtain L™ a
priori estimates in the case of i) and the bound (94) in the case of ii). The
existence then follows from tedious and (more or less) standard approxima-
tion or fixed points arguments.

In the case i), we just observe that we have for all =0

t
1,y O <ol + [ 100 Pl gy
t
<oy 2 17y I s
Hence, for all t€ [0, Tx)

"f"L“"(Ri'L) (t> S (1 o 2" A "L‘ (RY) ”f‘)"L“’(Ri'j,)t) _1||f°||L"(R§%) '

- — — 2
In the case ii), we set f=C (t) (2m) ¥ (ab) “¥"%exp [— (|Lvt7:ro| +

2a

_ 2
E—Zb%—'—ﬂ where C (t) 20 will be determined in such a way that we have
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(95) CC=Q* (/. ) on REX (0, ) .
_ai F— ~-1f .
Indeed, observe that o +v -+ V.f=CC’!f and that, if f solves (1), we have

(recall that f20) %_’_” - Vof<Q*(f,f). We may thus expect that the set {0

<f<fon RZX [0, )| to be “invariant by the solution operator of the Bolt-
zmann's equation” as soon as (95) holds. And because of (92), we expect
(94) to hold if (95) holds and C(0) =C.

We next remark thatf is , for all =0, a Maxwellian in v and thus (see
[13] for instance) Q* (£, /) =Q (f, /) =fA *f. Therefore, (95) holds if we
have

(96) c>c? (2m) ¥ (ab) % sup [A t [exp— <|x—v2ta—xg|i+ |v;;10|2)] }

(r,v) ER™

Next, we observe that we have on R

— f— 2 —_a |2
R

|z —vt—z2 | [v—vof? 3
sy | (T R )

2 N
e (522) (et 09) B

Therefore, if we choose CEC' ([0, o)) satisfying C(0) =C, and

<|la

<A

2mab\ 25 N
L.(RN)( n;z )2" (a+bt2) "% on [0, ) |,

then (96) holds. We conclude observing that the condition (93) is precisely
the condition that ensures that (97) admits a (uniquie) solution on [0, ©0).

(97) ¢ =c2(2m) Y (ab) V2| Al
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