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On the initial-boundary value problems
for barotropic motions of a viscous gas
in a region with permeable boundaries

By

S. Ya. BELov

1. Introduction

The one-dimensional motion of a viscous polytropic gas is described by
the following system of equations [1], [13]:

Ouw , Ou\_ ,0% 0Op
) P(at+“ay)—"ayz By
Op, 0o, Ou_
(1.2) 5 +uay +p—ay 0,
00 00\ __ 0% ou\?_  Ou
(13) c,,p( ot +“ay)_ ayz+”<ay) pay :

The system is a simplified form of the Navier-Stokes equations. Here u, o, 8
and p are the velocity, density, absolute temperature and pressure, respective-
ly — the required characteristics of the medium; y is the Cartesian coordinate;
t is the time; g, ¢y, £ are the viscosity, specific heat capacity and thermal con-
ductivity — positive constants.

The system is supplemented with the equation of state

(1.4) p=0(p, )

We have a closed set of the equations of an ideal (perfect) gas if the equation
of state takes the form

p=Rpo0 ,

where R is the universal gas constant.
The model called the generalized Burgers’ equations of viscous gas is de-
fined by the simplest equation of state:

p=const>0 .

In our paper the main attention will be paid to the equations of a barotro-
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pic motion:
p=0", r21.

Obviously, in this case the energy equation (1.3) is separated from the system.

The transformation to the Lagrange mass variables plays a great role in
our investigation. The importance of the Lagrange formulation of problems
for viscous gas equations is based on the fact that the continuity equation
(1.2) is an equation for o with partial derivatives of first order. Characteris-
tic curves of this equation are integral curves of the ordinary differential
equation

%Zi‘=u (y, t) .
The method of characteristic curves is the basic one for equations with partial
derivatives of first order, and the Lagrange transformation has the same idea.
However, it is necessary to note that V. G. Vaigant has recently obtained the
interesting results [17], [18], using formulation of problems only in the Carte-
sian coordinates.

If we formulate the initial-boundary value problem for the system (1.1)-
(1.4), then, according to the boundary conditions for the function u, either the
side boundaries of a domain of unknowns are characteristic curves of the con-
tinuity equation or they simulate permeable walls that is characteristic curves
go into or out the domain of definition on these boundaries. In the second
case the boundary data have to be prescribed also for p if the characteristic
curves are going into.

The side boundaries are characteristic curves when the zero
(homogeneous) boundary conditions simulate fixed rigid walls or a contact of
a viscous gas with vacuum. The main formulation of such boundary value
problems for the one-dimensional differential equations of a compressible vis-
cous fluid were investigated by A. Tani [16], A. V. Kazhikhov [4], [5], A. V.
Kazhikhov and V. V. Shelukhin [8]. However, there is a great number of
physical processes which are described with nonhomogeneous boundary prob-
lems: a flow of a gas between moving rigid walls (the double piston problem),
flow of a gas through a fixed domain (the flow problem), the filling of a li-
mited volume, the pumping out of a compressible fluid, etc. It is easy to
notice that the nonlinearity of equations does not allow to obtain the global in
time existence theorems for nonhomogeneous boundary conditions as the con-
sequence of the solvability of homogeneous problems.

Besides, the double piston problem, which was studied first of all, re-
quired some additional restriction especially unexpected for the Lagrange for-
mulation.

In the absence of dissipative effect (#=0), the double piston problem was
studied by T. Nishida and J. Smoller [12]. They established that the problem
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%ﬂ)(v):O , v=p",

ov_ Ou _ ) _
ot ax—O in Q=1(0,1)x(0, T)

w(x,0),v(x 0)=wolx), volx)) 0=x<1,
w0, 0)=ui(t) , u(l,t)=ust) 0<t<T;

fails to have a solution for any positive time without the following condition:

(1.5) Wﬁméj}muwx+j:MAﬂ—m@ﬂdﬁﬂh<w.

Using properties of the solution found by N. Itaya [2], A. V. Kazhikhov
[7] constructed an example which showed that the same restriction was neces-
sary in the viscous case. Indeed, it is easy to verify that a set of functions

ulx, t)=ax , o, t)=00+at)™', a=const ,

is a solution of the system (the Lagrangian record)

Ou 6<6M>Qp_’

ot HFoxr\Por) or ¢
00, ,0u_
a T =0

which satisfies the boundary conditions

u(x, 0) =uolxr) =axr , plx, 0)=p¢lx)= 1+at)! 0<x<1
(0, t) =u; () =0, u(l,t)=uy(t)=a t=>0 .

For a <0 the condition (1.5) is not valid and the density becomes unbounded

at finite time t+ = —a~!. That is the solution is destroyed at finite time in

spite of the arbitrary smoothness of the data and the arbitrary order of the
compatibility conditions.

The example has the obvious explanation if it is reformulated in the
Cartesian coordinates: the side boundaries are characteristic curves of the
continuity equation and their intersection reduces to destruction at finite time.

The first existence theorems for nonhomogeneous boundary problems
were obtained by A. V. Kazhikhov [6], [7], N. Itaya [3], A. Matsumura and
T. Nishida [10], T. Nagasawa [11], R. E. Zarnowski [19]. All the studied
problems may be called the “characteristic boundary problems”, because in ev-
ery case the boundaries of a domain of definition are characteristic curves of
the continuity equation.

This paper deals with the noncharacteristic problems which are more de-
licate due to the additional boundary conditions for the density o and the spe-
cific Lagrangian formulations. In the next section 2 we formulate the
initial-boundary value problems simulating flows of a viscous gas in regions

’
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with permeable walls and the existence theorem for the “flow problem”. The
theorem is proved by a well-known way: a local solution is continued globally
in time by using a priori estimates. The desired a priori estimates are de-
duced in the Lagrange mass variables. The main feature of the problems is
that the side boundaries of a domain of unknowns are not characteristic
curves of the continuity equation. Then, although the Lagrange transforma-
tion gives the convenient form for the equations but, unlike the homogeneous
problems and the characteristic nonhomogeneous ones, the domain of definition
is reduced to essentially inconvenient forms. Namely, we obtain curvilinear
and unknown boundaries. The Lagrange transformation is described in sec-
tion 3. Sections 4 and 5 include the presentation of the base of our proof: the
estimate of sizes of unknown domain of definition and the step method for the
estimates of the density. The final a priori estimates are presented in the last
section 6.

2. Formulation of the problems and the existence theorem for the flow
problem

We will consider the one-dimensional barotropic motion of a viscous gas
inside a certain region with fixed permeable walls. In the first case the gas is
constantly pumped in through the left-hand wall and pumped out through the
right-hand one. The initial-boundary value problem simulating this process
(Problem 1) is called the “flow problem” and has the following formulation.

We have to find a solution of the equations

Ou ou 0%
(2.1) p(—6?+”@)= ﬁ—%(pr) ,

9o, Op, Ou_
o Ty To5, =0

in some domain Q¥= {(y, t): 0<y <Y, 0<t<T},
which takes the initial conditions

(2.2) u(y, 0)=io(y) ., oy, 0)=0(y) for 0<y<Y
and the boundary conditions

(2.3) u(0, ) =u, () >0, 00, )=0:(0) .

(2.4) u (Y, t) =u(t) X0 ~ for 0<t<T .

The additional boundary condition for the function p is consistent with the
theory of differential equations with partial derivatives of first order: it is
necessary to set a boundary condition for a desired solution on the parts with
entering characteristic curves.

If the gas is constantly pumped into the region through both of the walls
then the process is described by a solution of equations (2.1), which satisfies
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the conditions (2.2), (2.3) and the following condition
(25) u(Y, ) =us(t) <0, p(Y,t)=p.(t)  for O<i<T .

This problem will be called Problem 2.

The initial-boundary value problem modelling the process in which the
gas is pumped out of the region through both of the walls (Problem 3) has the
simplest formulation. We are to find a solution of equations (2.1) with the
condition (2.2), (2.4) and the condition

(2.6) u(0, 1) =u (1) <0 for 0<i<T .

We will use the notations of well-known functional spaces, which are in-
troduced in [1].

Definition 1. A generalized solution of Problem 1 (2, 3) is a set of
functions u, p,

Ou

u(t) €L (0, T; Wi(0, Y)) NL:(0, T: W30, ¥)) ., 5, €L(QF) |

o) eL.0.T: W30, 1) . LeL,@p

obeying equations (2.1) almost everywhere in Q¥ and taking the given initial
and boundary values in the sense of traces of the functions from the men-
tioned classes.

Theorem 1. Suppose that
HECH™*(0,Y) , pEC™(0,7) ,

(i, us) EC™*2(0, T) , ME€C*(0, T) , 0<a<l,
#0(0) =u1(0) , o (Y)=u2(0) , 60(0)=p:1(0) ,
0<mo= (u1, fo, 01) SMo< 0 |

where mo and My are some constants,
and the first order compatibility conditions are satisfied in the points (0, 0) and
(Y, 0). Then there exists a unique classical solution of Problem 1 such that

1+a

uly, ) ECT**5(QY) , ply, ) ECH35(QD) |, ply, 1)>0 .
If the data belong to a wider class:

(#o, §o) EWE0, V) , (w1, uz, p1) EWE0, T) ,
and

o (0) =u1(0) , #o(Y)=u(0) , £ (0)=p:(0) ,
0<mo=< (u1, Po, 01) SMp<o0o |

then there exists a unique genevalized solution of Problem 1 such that p>0.
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The existence of a unique classical solution over the whole time interval
[0, T] can be obtained by a known procedure: a local solution is continued
globally in time by using a priori estimates. The local existence theorem is
proved in a way combining arguments presented in [1], [14] [15]. The glob-
al in time generalized solution is constructed as a limit of a sequence of clas-
sical solutions with smooth and compatible initial and boundary data. The
proof of the uniqueness of the generalized solution does not differ from that
one which are given in [1] for a homogeneous initial-boundary value problem.

Therefore we will pay the main attention to the a priori estimates. Using
Kazhikhov's scheme we will devise the estimates for a solution of the problem
formulated in the Lagrange mass variables. The necessary estimates can be
classified into three groups:

i. initial integral (energy) relations;

ii. the strict positiveness and the boundedness of the density p;

iii. integral estimates for derivatives and bounds for Hoélder continuity
constants.

The estimates of the first group are not complicated by nonhomogeneous
boundary conditions too much. However, the proof of the strict positiveness
and the boundedness for p takes our attention.

The existence theorems for Problem 2 and Problem 3 have the same for-
mulation as Theorem 1. For these problems we will prove only the estimates
of the second group.

3. The Lagrange formulation of the problems

Suppose the conditions of the first part of Theorem 1 are satisfied and the
problem has a classical solution with 0>0. Over a small time interval this is
guaranteed by the local existence theorem.

Let us consider the Cauchy problem

(3.1) %=u(z, 7). 2=y .
where y€ [0, Y], t€ [0, T].
The solution z=2z (r; y, t) defines a characteristic curve passing through a
point (y, t). The domain of unknowns is divided into two parts by the char-
acteristic curve z=z(t) passing through the “initial” point (0, 0): zo(t) =2z (¢;
0, 0). The right-hand part is transformed by a routine procedure [1]. But
the mass Lagrange variables for the points of the left-hand part are defined
by an original method [6].

If we take a point (y, t) €Q¥ and y<z,(t) then there exists a number §>
0 such that

(3.2) z2(&;y,1)=0.

At first we will use new variables & and . The Jacobian of the transforma-
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tion J= —§ is obtained from (3.1) and (3.2) by the formula

]=—u1“(5)eXp{—fel%%(z(T; Yy, b)), r)dz'] .

On the other hand, the continuity equation

can be written along the curve z (7, y, t) as

1 Ou
d—dnT‘Q=—‘a‘;(2(T, y, 1), 7 .

Hence,

pE == Ou(O)J(E 1) .

Thus, in the new variables system (2.1) assumes the form

QB0 L0
O (owy)? 0E\P9E) T puy 0E 0
Op_ 0 Ou_
ot pwm, 0§

Let us set

—01@u(©dé=dz . z®=— 0(Du @4

In the variables x and ¢ the equations take the usual Lagrangian record:

ou_ 0 ( ou

(33) E‘”m( o5e)- ax( o
B0, ,0u

(34) o +pza =0 .

Finally, we have to find an image of the boundaries. The left-hand boundary
is transformed to a known curve:

=== [ 0/@u (Ddr

Let us consider a point (Y, t). The characteristic curve z (z: Y, t) may in-

tersect the boundary of domain Q¥ by two ways. In the first case there ex-
ists a number yo € [0, Y] such that z (0; Y, t) =y, and the mass Lagrange
variable is equal to

x (Y, t) =j;wﬁo(s)ds .
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However, integrating the continuity equation over domain
{y, 0):0<z<t,z (z; Y, t) <y <Yl
we see

[ 60as= ["an0)as— ["ov, Dus(lar

In the second case, there exists a number £>0.such that z (§ Y, t) =0,
and the mass Lagrange variable is defined by the formula:

(v, 0 =— [ (@Du (D .

Integrating the continuity equation over domain
{(y, 0): 0<y<Y, 0<c<E U {(y, 0): <<t z (; ¥, t) <y <Y},
we have

_foepl(r)ul(r)d‘r=j;yﬁo(s)ds—j:p(y, Dus(Ddr .

Thus, the right-hand boundary is transformed to an unknown curve:

x=j;YPo(s)ds—j;‘p(Y, Tuz(t)dt .

We have obtained the following Lagrange formulation of the problems with
“permeable boundaries”.

Problem 1. We are to find a solution of equations (3.3), (3.4) in the do-
main

Q= {(x, t): 0<t<T,a:(t) <x<b, (1)} ,
where

al(t)=—f(:pl(r)u1(r)dr .

by (t) =X—j:p(b1(r), TDuz(7)dT

¥
X=j; 0o (s)ds ,
taking the initial conditions
(3.5) u(x, 0) =uolx) , o, 0)=po(x) for 0<x<X
v
@) =nw . p@=6) i z=[66)ds)

and the boundary conditions

(3.6) wla @), ) =ui(t) >0, o (t), t) =p0:1(t) for 0<i<T ,
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(3.7 u(b (t), t) =us(t) 20 for 0Zt<T .

Problem 2. We are to find a solution of equations (3.3), (3.4) in the do-
main

Q4= 1(x, 1): 0<t<T, a, (t) <z <b ()} ,

where

t
b0 =X~ [ 020w (Dar
taking the initial conditions (3.5) and the boundary conditions (3.6) and

(38) u (bz (t), t) :uz(t) <0 y p(bz (t), t) :pz(t) for 0Zt<T .

Problem 3. We are to find a solution of equations (3.3), (3.4) in the do-
main

Q3= 1{(x, t): 0<t<T, a,(t) <x<b, ()} ,

where

t
a0 =—[ 0@, 9 u@ar,
taking the initial conditions (3.5) and the boundary conditions (3.7) and

(3.9) ulaz(t), t) =u(t) <0 for 0<:<T .

4. Auxiliary constructions

We will use the Lagrange formulation of the flow problem to prove initial
a priori estimates. The constants which depend only on the data of the prob-
lems and T will be denoted by C, m, M (with a subscript).

Integrating equation (3.4), written in the form (0™!),=u,, over the region
Qi={(x, 7): 0<1<t, a,(7) <x<b (D}
we obtain the following relation:

b1(t) X
(4.1) f“)p‘l(x, t)dx=j; 0ol (x)dx=Y for 0<t<T .
ai

To derive the first integral estimate, we substitute » =w—+# into equations
(3.1), (3.2), where

42 T =6e® - [ 07 Dastin @) |

multiply the first equation by w and the second equation by (1—p"), and then
integrate their sum over Q}. After simple reduction, estimating the right side
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with the help of the Cauchy inequality and using Gronwall's inequality, we
can deduce

(4.3) maijlm[u x, t)+¢(x, t)]dx-l-ffp( )dxdtSCI ,

o< a1(t)

where

¢, 1) = fl T — 574520

If we followed to Kazhiknov's scheme [1] we should obtain a known rep-
resentation for p (x, t) as the next step. However, in our case the domain of
definition of the problem is a curvilinear one and we cannot deduce the neces-
sary equality at once.

In what follows, we will use the Lagrange and the Cartesian formulations
of the problem simultaneously.

The Lagrange image of any characteristic curve of the continuity equation
is a segment of a vertical line x =const, which intersects the left-hand bound-
ary at the point (b'(t"), t’) if and only if the characteristic curve reaches to
the point (Y, t). Thus, to estimate the unknown boundary we have to under-
stand “how long” a characteristic curve must be inside the domain.

Using the formula of inverse transformation to the Cartesian variables,
for £20 and >0 such that §+¢t<T we have

(4.4) y(E+E 0,8 = f w(a:(8), Ddr<
S @ g oo nazve oG ) axfac

Let e= then

4C

v (E+60,8) <tMo+C) +Y

where M, is the constant listed in Theorem 1. Hence, if tS%Y(MO-i-CI) 1 we

obtain

(4.5) y &+t 0, E)— 5

i.e. the characteristic curve “entering” into the domain of definition at the mo-
ment £2>0 cannot “pass” through the domain by the moment

t°<min[E+%Y(M0+Cl)“, T].

Let us introduce the notations
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F=max{t: t<min {T, %(M0+Cl) -1 %: [%H ‘
L=k, k=01, .. % _

Then the result obtained above can be formulated by the following way.

Lemmal. If0<t*<T—21 0<¢<],
then

a (%) <b, (t*+t+1) |
by (B 4t41) —ar (*+6) =mit |

. bl (t) Z%W'Loy .

where myg 1s the constant listed in Theorem 1.
Note. To prove the third inequality of the lemma we have to trace for the

characterestic curve y=y (z; %Y, 0)

5. The strict positiveness and boundedness of the density

At first we consider the strip
Qlorn={(x, 1): 0<t<ty, a1 (t) <z <b1 (1)}
Integrating equation (3. 4), written in the form (p‘l),=u1. over the region

Q%O,t): {(1‘, T)Z 0<T<t, 0<1‘<b1 (T)’ y
we obtain
bi(e) t
o7, az=v— [0 (0, D .
Keeping in mind relations (4.4), (4.5), for 0<t<t, we have

b1()

1 . 3
(5.1) Zys , o (x, t)deZY.

Using the third inequality of Lemma 1 we see that for each t€ [0, ¢1] there ex-
ists at least one number x;(t) € [0, b, (t)] with the property

(5.2) %moé ol (1), 1) <2XV1 |

Now we may use Kazhikhov's arguments [1] for the region
Q= 1{(x, 1): 0<t<t;, 0<x<p' (1)}
Let us rewrite equation (3.4) as
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Ou _ _0Olnp
Por~ ot -

and substitute p% into equation (3.3):

ouw__ 0 _ 0
(5.3) = Hopa Uno) 5 (0")

We integrate (5.3) over (x,(t), ) X (0, t) CQi .y and, taking the exponential,
obtain

64 ol el [re D =ru0BuE 1 .

where

ru @) =220 oo (L [0, ), D] |

B (x, t) =00 (x) exp {%fmn (o (s) —u (s, t)]ds} .

Using (4.3), (5.2) and the properties of the initial data, we have
(5.5) CZSBII (x, t) SCs ,
(5.6) Ce<Yu () .

We will show that Yy, (t) is bounded from above as well. The following
equality holds

dexolL [0, 0ar| =TI WG |

which implies

exp[%f::p’(x' r)dr}=(1+£j:Yh (7) Bli (x, r)dz'ﬁ :

Hence, (54) can be rewritten as

6D o)=Y W0 1+ L[ V@G, Dar) 7
and
68) o0 ¥u®=5i @ 0 (1L [ Th@Bn @ Dar)

Integrating (5.8) with respect to x from O to b; (¢) and using (5.1), (5.5), we
obtain inequality

1 )
Vu® <14, 7@, a7)"
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from which the estimates from above for Y7, (t) and for Yi;(t) follow by Gron-

wall’s inequality. Therefore the bounds for p (x, t) are directly derived from
(5.7):

(5.9) m<p(x, t) <M for 0<t<t;, 0<x<b,(¢) .
Now we are able to estimate the density in a region
QRuw=1(x, t): 0<t<ty, a, (t) <z <0} .

We integrate (5.3) over (x, 0) X (t* (x), t), Where t =t* (x) is the inverse
function for x=a;(t), and, taking the exponential, obtain

(5.10) oz, t) exp[% j: :mp’ (, r)dr] =Yl )Bulx. 1)
where
=——-Q—(0' t) X l ! 7
Ve, 1) 0(0, t*(x)) ¢ p[ﬂj:*mp ©, Z')dz'] ’

Bz, t) =p, (t* (r))eXD[%j;I[u (s, t*(x)) —u (s, t)]ds] .

We have

¢ t 1

610 ew{tf oG Oad=(1+1[ vu@BLG dar) .
and

. 1

612 o )=VYul 0Bl ) (1+L [ Vu@ B dar)”

Using (4.3), (5.9), we see

(5.13) Cé<Biz(x, t) <C7 ,
Css Y12 (l', t) SCQ ,

Then equality (5.12) guarantees the strict positiveness and the boundedness
of the density in Q...
Thus, we obtain the necessary estimates in the first strip:
m<p(x, ) <M, for (z,t) EQlom
On the second step we will consider the next strip

Qln= 1z, t): 1 <t<ty, a:(t) <x<b, (1)} .

Similarly to the first step we obtain

bi(t)

t
o x, t)d.r=Y—j:u(a1(t1), 7)dT for H<t<t, .

ai(ty)
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Hence,

1 bu(®)

=Y< o Nz, Hdx<

2 Y for t1<tSt2 .
ai(t)

Do

Using Lemma 1, we see that for each t € (¢, t,) there exists at least one num-
ber x2(t) € [a;(t1), b1 (t)] with the property

%m%tlY'lSp(xz W), ) <2X+uM) Y.

Repeating the arguments of the first step for the regions
Qtha= 1(x, 1): 1 <t<ts, a1 (1) Sz <b: (1)}
and
Q= 1z, 1): i <t<t3, 0, (t) <x<a:(tr)}
we obtain the desired estimates for the density in the second strip:
me<p(x, t) <M, for (x,t) €EQ4ur .

On every following step the arguments are similar to the second one.
One n'" step we obtain

ma<p(x, t) <M,

for (x, t) €EQliprm= 1(x, 1)1 tac1 <t <t, a1 (t) <z <by (1)} .

However, n S%.
Therefore we find the bounds for the density in the whole domain:

(5.14) m<p(x, t) <M for (x, 1) €Q) .

In conclusion of the section, let us consider Problem 2 and Problem 3.
Our attention will be paid only to the bounds for the density.
If we use the Lagrange variables then Problem 2 is defined in the domain

Q%= {{(x, 1): O<t<T, a,(t) <z <b, (1)} .

The first auxiliary relations have the known form:

b2(t)

Y
(5.15) " o0, t)dx=j; oot (x)dx=Y for 0<t<T ,
a

bt (Qu_)z
(5.16) Orgixij;lmu (x, t)dr+j;;[p o dr dt<Cio .

We can introduce the quantities similar to the case of Problem 1. But we
have to make more narrow decomposition of the domain Q%:
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r=max {t: t<min {T, %Y(ZCIO‘I‘MO)‘I{ , [%] :%] i

te=kt , k=0, 1, %

ceny

When we consider the strip

Qb= 1, ): ;i1 <t<t;, a, (t) <z <b,(t)}

we have already known the bounds for o (x, t;i-1), (a,(tis1) Sx<b,(t;i-1)).
We see

ba(ti-1) t t
f s o (x, t)dxr= Y—j: u (a1 (ti-1), T)dT+ft u (b2 (tich), T)dt
ai1ti-1 i-1 i-1

for ;1 <t<¢; ,
and

1 ba(ti-1)

Y< o e, t)d.rSéY for ., <t<t; .
2 ai(ti-1) 2

Therefore for each t € (t;_y, t;] there exists at least one number x; (t) € [a;
(ti—1), ba(ti—1) ] with the property
2

3Y-1xﬁp(xi(t), t) SZY-1<X+ﬂr[p1(T)u1(T) _pz(T)Mz(T)]dT> )

After this we can obtain the known representation for o (x, ¢) in the region

QU= 1@, ): tis1<t=<t;, ar (ti=1) <x<by (t;-1)}

and can find the bounds for the density. Considering the subdomains

Q¥ =1, ) ti.1<t<t;, ay (t) <z <a; (t;-1)
and

QB =1, t): tisa <t=<ty, ba(ti1) <z <bs (1)}

and using the arguments presented for Problem 1, we have the desired esti-
mates in the whole strip:

mi—<—P(I. t) SM! in Q%M—l,h’]

The number of the strips is bounded. Thus we obtain the estimates for
the density from above and from below in the whole domain Q%.

After obtaining the first auxiliary relations for a solution of Problem 3 it

is also possible to decompose the domain Q%. But we have to use the most
narrow strips:

Quiren= 1@, ): tim1<t<t;, a(t) <x <b,; (1)} ,

~ . . 1 -y | LT
t=max {t: t<min {T, 16 (M+4Cu) 7', [t]_ t* ’
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5 T
o

Here Cy; is the constant from the first energy estimate for a solution of Prob-
lem 3.

When we start to consider the strip @Q%,._,:1 we have already known bounds
for o(x, ti_y):

mio1<p(x, ti)) <M, for az(ti—1) <x<b,(t;i-y) .

Moreover, there exist the numbers xi € [az (ti-1), b1 (ti-1)] and 2} € [az (ki) ,
by (ti-1)] such that

fx; -1 ) _1 fbl(n_n =y Vds= 2
az(ti-l)p S, Li-)ds= 3 Y 22 1% s, ti-1)ds= 3 Y

and
az(t) >z}, 2i<bi(t)  for tE€ (i ti] .
Obviously,
L0165, b as=4
J“p S, tic1 ds—3Y ,
and
1 < 2 1<l
§Ym,-_1_x¢ .”I,','_BYM,‘_l .
Thus,
x? 1 t t
07 (s, t)ds=§Y+f u (2}, T)dT—f u(x? 7)dt
xt ti-1 ti-1
and

ly<fﬂ (s, t)d <Ly
121=J,0 S vas=s7alb .
Hence, we can successively consider the following subregions

Q= 1(x, t): ;o <t<t;, x}<x<x¥ ,
Q= {(x, t): ti1<t<t, az(t) <x <z} ,
=1z, 1) i<t <t;, 2 <x<b; (t)} ,

and deduce the desired estimates for the density in the i-th strip. After finite
number of the steps we obtain the bounds for o in the whole domain Q%.
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6. Final a priori estimates

The next integral estimate also has some peculiarities connected with
nonhomogeneous boundary conditions and curvilinearity of our domain.
At first, we substitute » =w—+# into equations (3.3), (3.4), where

T, )=V 0= @) [ 07, Dds+u )

and differentiate the second equation, written in the form

a_lar?g=_ gz_(uz_ul) Yy,
with respect to x. We obtain the system
Oow 0 ( ow Oln
60 G=ugeloge) o B K@)
0(0np\_ 0 ( ow
62) i 52) =02 .
where

K, t)=Y1(u%{) —u’(t) )j::mp'l (s, )ds+ur(t) +FY Y (uy—uy) w+a) .

We multiply equation (6.1) by %(P%) and equation (6.2) by —Qa(;r; and

then we integrate their sum over @}. After simple reductions we see

63 o fo (o) + () Jaa| +ef, [ [ (o3 o ar=
=%j:)' [2%0% —upz(%z-)z— p(ag; )]I=almdr
f fb::) 3 (0 o e+ f f,,m) 1) 52 2 (094 az ar—

1(1)

fj::::) (Gx) dx dT+ v fj;m) “1)0(%;—)2& t .

1(8)

z=b1(7)

Let us note that the integral

J %)

is non-negative and

T=b1(1)

Ow)| __ ,Oow — ow|
ot J:=a1(t)_ a lal' .t=a1(t)_—plu1 ox z=a1(
Ot lz=trey Bz lzenin \P"8x ) |ampin
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Olnp __1 < , 0o >:
0r lz=aiv a1’01 01 Ot lz=arty
__1 <zaw N _ ,)
ulpl plax.r =ai(t) Y (‘uz ul)pl 01) -

Therefore, using the Cauchy inequality, we can estimate the right-hand side of
(6.3):

0 LIHET ol [ o
B e

0 4, (r) Sz <b(
+f max
0 4, (r) <x<b,(7)

1) 6!!’
fbl ( ) ] ‘
ai(t) 6-r

ol < 3
ax

Combining (6.4), (6.5) and using the Cauchy inequality, Gronwall’s inequality,

the representation for w(x, t) and equations (3.3), (3.4), we obtain the follow-

ing relation

L2(@1,by) " Oox
66 max [(50)+(52) +(5) o+

S J1G) + (@& + (5 Jawarsca

In the Cartesian variables for any classical solution we have the same global
estimates as (4.3), (5.14), (6.6), which are sufficient to construct a general-
ized solution by the closure method.

Finally, we can estimate Holder continuity constants for a classical solu-
tion.
At first, using (6.6), we deduce

(67) “p"(ri(ol,) <Cu .

1

ow |2

(6.5) max

a,(t) Sx<by(t)

L2(a1,b1) Lz(a, b1)> '

The next desired bounds will be proved only for the first strip Qtor1. Other
strips are considered by the same way.
For our further considerations it is important to have the exact representation

for the partial derivative gﬁ

Using relations (5.7), (5.12), we see

t -1
(6.8) %Q OB1; ‘agx" 1p<1+-§j; YT (7) B, (x, T)dr) X
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t
Xf Y1 () Bl (x, ©) ag” (x, )dt
0 X
for 0<t<t,, 0<x<p,(¢) ,

where
aBll ( ’ —1 l — .
x, t) =p%(x) 05" (x) Bu (x, 1) +ﬂBu(x. t) luo (@) —u(x, t)];
and
t -1
(69) _g'e lez aaY12+ Blz aaB;l.z ip(l-l—-ﬁft*mﬁz (T)B{z (x. T)dT) X
t
X%(ft*mﬁz (x, 7) Blz (x, r)dr>
for 0<t<t;, a1 (t)<x<0,
where

aLIm( =Y, [o7(, t*(x))%%(o, t*(x)) +

IPN * 1
aBlZ
_<x

P (2, 1) =Bu [l (o, 1% @) =, 1)) —

O (5, 1% () ds| -

1 _
01 (t* (x))uy (% (x))

= lu:t: *x)) —u — 1
=B e 14@) e, )

x (02 (s @) =7 s.1% @) ]—

— B (t*(x)) o1 (t* (x))

o1 (¢* (r))ul (t* (x))f
— B0t (t* (x)) o (t* (x))

o1 (t* (x))ul(t* @)

Now we will use the Shauder estimates for a solution of a linear parabolic
equation. We would not like to be concerned about the smoothness of the

right-hand boundary of the domain Q%. Therefore we will use the Cartesian
variables. Then we can rewrite the first equation (2.1) in the following form

Ou _ 0%u Ou
(6.10) 5 =0 " : )ay +f(y. t) .

where

aly, ) =po™ (@, 1) , by, )=—uly, ), fly, t)——!)_laay7 .
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Obviously, a (y. t) is a continuous and bounded function, and
bly, ) €ELQF) , fly, ) EL.(QF) .

Using the Shauder estimates, we have
e (y, )]

By embedding theorem ([9], p.80) W%'(Q¥%) CC*iE Q%)
e (. ©)

witign SCis

cettion =Cie -

and

e (x, ) st gy <Cur -

Then representations (6.8), (6.9) help to obtain the following relation

0
||5£ ot =Cus

where 8=min % al .
Hence, equation (6.10) has the coefficients with the properties:
”a (y. t)lc’-‘}(@',’) +"b (y, t) ”aé(o%)_‘_"f(y, t) "cﬂé(Q%) <Cy ,

and the Shauder estimates for the Holder continuity constants of a solution of
a linear parabolic equation give

(6.11) e (y. £)

If B=a, than we have the desired estimates. If B<a, than we use representa-
tions (6.8), (6.9) again.
We see

lo (. t)

C“"”g((ﬂ) SCZO ’

Cnv.n-l-;‘-(oxr) S CZl

and

lo (y, t)

C"“"‘%&(Q;) Ssz )

. [1+
where v=m1n{—2§, a} .
Therefore we can repeat the relation (6.11) with v for B. If v <a we poss-
ibly repeat the last arguments several times and complete the proof of the a
priori estimates.
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