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On the initial-boundary value problems
for barotropic motions of a viscous gas
in a region with permeable boundaries

By

S . YA. BELOV

1. Introduction

T he one - dimensional m otion of a viscous polytropic gas is described by
the following system of equations [1] , [13] :
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The system  is a  simplified form of the Navier-Stokes equations. H ere  u, p,
and p are the velocity, density, absolute temperature and pressure, respective-
ly — the required characteristics of the medium; y is the Cartesian coordinate;
t is the time; tt, cv, K  are  the viscosity, specific heat capacity and thermal con-
ductivity — positive constants.

The system is supplemented with the equation of state

(1.4) P=P(P, 0)

We have a closed set of the equations of an idea l (perfect) gas if the equation
of state takes the form

p= Rp0 ,

where R is the universal gas constant.
The model called the generalized Burgers' equations of viscous gas is de-

fined by the simplest equation of state:

P=const>0 .

In our paper the main attention will be paid to the equations of a barotro-
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pic motion:

p r>

Obviously, in this case the energy equation (1.3) is separated from the system.
The transformation to  the Lagrange m ass variables plays a  great ro le  in

o u r  investigation. The im portance of the Lagrange form ulation of problems
fo r  v iscous gas equations is based  o n  th e  fa c t th a t  th e  continuity equation
(1.2) is an equation for p  with partial derivatives of first o rder. C haracteris-
tic  c u rv e s  o f  th is  equa tion  a r e  in tegra l curves o f  th e  ordinary differential
equation

The method of characteristic curves is the basic one for equations with partial
derivatives of first order, and the Lagrange transformation has the same idea.
However, it is necessary to note tha t V . G . Vaigant has recently obtained the
interesting results [17], [18], using formulation of problems only in the Carte-
sian coordinates.

If we formulate the initial - boundary value problem for the system (1.1) -
(1.4), then, according to the  boundary conditions for the function u, either the
side boundaries of a domain of unknowns are  characteristic curves of the con-
tinuity equation o r they simulate permeable walls that is characteristic curves
go  in to  o r  o u t th e  domain o f  definition o n  th e se  b o u n d a rie s . In the second
case the boundary data  have to  be prescribed also for p  if  the  characteristic
curves are going into.

T h e  s id e  b o u n d a r ie s  a r e  c h a r a c te r is t ic  c u r v e s  w h e n  th e  z e r o
(homogeneous) boundary conditions simulate fixed rigid walls or a contact of
a  v iscous gas w ith  vacuum . T he m ain  form ulation  of such boundary value
problems for the one-dimensional differential equations of a compressible vis-
cous fluid were investigated by A. Tani [16], A. V. Kazhikhov [4], [5], A . V.
K azh ikhov  and  V . V . S he lukh in  [8 ]. H ow ever, there  is a  great num ber of
physical processes which a re  described with nonhomogeneous boundary prob-
lems: a flow of a gas between moving rigid walls (the double piston problem),
flow  of a  gas through a  fixed dom ain (the flow  problem ), th e  filling o f  a  li-
m ited volum e, the pum ping ou t o f a  com pressib le  flu id , etc. I t  i s  e a s y  t o
notice that the nonlinearity of equations does not allow to obtain the global in
time existence theorems for nonhomogeneous boundary conditions as the con-
sequence of the solvability of homogeneous problems.

Besides, the  double  p iston  problem , w hich  w as studied  first o f  a ll, re-
quired some additional restriction especially unexpected for the Lagrange for-
mulation.

In the absence of dissipative effect (p=-0), the double piston problem was
studied by T. Nishida and J. Sm oller [12]. They established that the problem
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at
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av au 
at ax = o in Q= (0, 1) x  (0, T )

(x, , v (x, 0)) = (u o (x) , v 0 (x)) 0 ,
u (0, t) = u i ( t )  , u  ( 1 ,  t) =u2(t) () t T;

fails to have a solution for any positive time without the following condition:

(1.5) 0  <m  f  v  ( x )  d x  t r [ 7 ,2 ( t ) - u ,  (t)] dt œ

Using properties of the solution found by N. Itaya  [2], A . V . Kazhikhov
[7] constructed an example which showed that the same restriction was neces-
sary in the viscous c a s e .  Indeed, it is easy to verify that a set of functions

u  (x , t )  =ax  , p (x , t) = (1 +at) - 1  ,  a •= const

is a solution of the system  (the Lagrangian record)

au a  ( au) a p r  
at ax \P  ax ax

ati9 4_ 2 19U( -1
at . P  a x

which satisfies the boundary conditions

u 0) = u0 (x ) =ax  , p (x , 0) =po (x) = (1 +at) - 1 0 x 1 ,
u (0, t) u1  (t)  =0 , u  (1 , t)  =u2(t) = a t__O .

For a < 0  the condition (1.5) is not valid  and the density becomes unbounded
at fin ite  tim e t* = — a - 1 . T h a t is  the solution is destroyed  a t fin ite  tim e in
spite o f the  arbitrary sm oothness o f the  da ta  and  the  a rb itra ry  o rde r of the
compatibility conditions.

T h e  exam ple  has th e  obvious explanation i f  it  is  re fo rm u la te d  in  the
Cartesian coordinates: th e  side  boundaries a r e  characteristic  curves of the
continuity equation and their intersection reduces to destruction at finite time.

T h e  f i r s t  existence theorem s f o r  nonhomogeneous boundary problems
were obtained by A . V . Kazhikhov [6], [7], N. Itaya [3], A . Matsumura and
T . Nishida [10], T . Nagasawa [11], R . E . Z arnow sk i [19 ]. A ll th e  studied
problems may be called the "characteristic boundary problems", because in ev-
ery  case the boundaries o f  a  domain of definition a re  characteristic curves of
the continuity equation.

This paper deals w ith the  noncharacteristic problems which are more de-
licate due to the  additional boundary conditions for the density p  and the spe-
c if ic  Lagrangian fo rm u la t io n s . In  th e  n e x t  se c tio n  2  w e  fo rm u la te  the
initial - boundary value problems simulating flows o f  a  viscous gas in  regions
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with permeable walls and the existence theorem for the "flow  p ro b lem ". The
theorem is proved by a well-known way: a local solution is continued globally
in  tim e by using a  p r io r i e s tim a te s . T h e  desired a  p r io r i estim ates a re  de-
duced in  the  L agrange m ass variab les. T he m ain  feature o f the  problems is
th a t  th e  side  boundaries o f  a  dom ain o f  unknow ns a r e  not characteristic
curves o f the  continuity  equation . Then, although the Lagrange transforma-
tion gives the  convenient form for the  equations bu t, unlike the  homogeneous
problems and the characteristic nonhomogeneous ones, the domain of definition
is reduced to essentially inconvenient form s. N am ely, w e obtain curvilinear
and  unknow n boundaries. The Lagrange transformation is described in  sec-
tion 3. Sections 4 and 5 include the presentation of the base of our proof: the
estimate of sizes of unknown domain of definition and the step method for the
estimates of the d e n s ity . The final a priori estimates are  presented in  the last
section 6.

2. Formulation of the problems and the existence theorem for the flow
problem

W e will consider the one - dimensional barotropic motion of a viscous gas
inside a certain region w ith fixed perm eable w alls. In the first case the gas is
constantly pumped in  through the left-hand w all and  pumped out through the
right - hand o n e . T h e  initial - boundary value problem simulating this process
(Problem 1) is called the "flow problem" and has the following formulation.

We have to find a solution of the equations

( au au 1 0 2u a  (2.1) r
P kW- 4 -vtt t  a y a y  (P )

.E +  au—oat u ay
 P  ay

in some domain (g= 1(y, t) : 0<y < Y, 0<t<T1,
which takes the initial conditions

(2.2) u (y, 0) =170(y) , p ( y ,  0 )  =  ( y ) f o r  0<y < Y

and the boundary conditions

(2.3) u(0, t) u1 (t) >0 , p (0, t) =  (t)

(2.4) u (Y, t)=u 2 (t). 0 f o r  0 < t< T  .

T he  additional boundary condition for the function p  i s  consistent w ith  the
theory o f  differential equations w ith p a rtia l derivatives o f  f irs t o rd e r: it  is
necessary to set a  boundary condition for a desired solution on the parts with
entering characteristic curves.

If the gas is constantly pumped into the  region through both of the walls
then the process is described by a solution of equations (2.1), which satisfies



Initial-boundary value problems 373

the conditions (2.2), (2.3) and the following condition

(2.5) u (Y, t) -=--u2(t) < 0  ,  p (Y , =P2(t) f o r  0_1- T .

This problem will be called Problem 2.
T he  initial - boundary value problem modelling th e  process in  which the

gas is pumped out of the region through both of the walls (Problem 3) has the
simplest fo rm ula tion . W e a re  to  f ind  a  solution of equations (2.1) w ith  the
condition (2.2), (2.4) and the condition

(2.6) u (0, t) =ui (t) 0 f o r  O t . T  .

W e will use the notations of well-known functional spaces, which a re  in-
troduced in  [1] .

Definition 1. A  generalized solution of Problem  1 (2, 3) is  a  set of
functions u, p ,

u (t) EL.(0, T; 141(0, Y)) fl L 2(0, T; W3(0, Y))

p (t) E L - (0 , T; 141 (0, Y)) , T E L 2 ((2 )

a f t /  y\

a t
E L 2 (Q t )

obeying equations (2.1) almost everywhere in  QY,  a n d  taking the  given initial
and  boundary v a lu e s  in  th e  sense  o f  tra c e s  o f  th e  functions from  th e  men-
tioned classes.

Theorem 1. Suppose that

170E 0 + " (0, Y ) ,  & E C '  (0, Y)

(vti, u2) EC1 + 1-  (0, T )  ,  p1EC2 (0, , 0 < a < 1
iro (0) = 141(0) , 170(Y ) = u 2 (0) , 0 (0) = (0) ,
0<m 0 (u i ,  o , p i) ,

where mo and M o are some constants,
and the f irst order compatibility  conditions are satisf ied in the points (0, 0) and
( Y, 0) . Then there exists a unique classical solution of Problem 1 such that

(y ,C 2 + a , 1 + 1 M ) p (y ,  E  c l+ a ,1 + 1 +
2

a p  (y , t )  >0

If the data belong to a wider class:

(fro, (5o) E (0, Y )  , (U 1 , 142 , pi) E (0 , ,

and

=ui (0) , 270(Y) =u2 (0) , #0(0) =p i (0)
0<m 0 (u i, po, pi) ,

then there exists a unique generalized solution of Problem 1 such that p >0.
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The existence of a unique classical solution over the  whole time interval
[0, T ]  can be obtained by a  known procedure: a  local solution is continued
globally in  tim e by using a  p r io r i e s tim a te s . The local existence theorem is
proved in a way combining arguments presented in  [1 ], [14 ] [15 ]. The glob-
a l in  time generalized solution is constructed a s  a  limit o f  a  sequence of clas-
sica l solutions w ith sm ooth and com patible initial and boundary d a ta . T h e
proof o f the  uniqueness of the  generalized solution does not differ from  that
one which are given in  [1] for a homogeneous initial-boundary value problem.

Therefore we will pay the main attention to the a  priori estim ates. U sing
Kazhikhov's scheme we will devise the estimates for a solution of the problem
formulated in  the  L agrange  m ass variab les. T he  necessary estimates can be
classified into three groups:

i. initial integral (energy) relations;
ii. the strict positiveness and the boundedness of the density p;
iii. integral estim ates fo r derivatives and  bounds fo r  HOlder continuity

constants.
The estimates of the first g roup  are  not complicated by nonhomogeneous

boundary conditions too m uch. H ow ever, the  proof o f the  s tr ic t positiveness
and the boundedness for p takes our attention.

The existence theorems fo r Problem 2 and Problem 3 have the same for-
mulation as Theorem 1 . F or these problems we will prove only the estimates
of the second group.

3. The Lagrange formulation of the problems

Suppose the conditions of the first part of Theorem 1 are satisfied and the
problem has a  classical solution with p > O . O v e r  a  small time interval this is
guaranteed by the local existence theorem.

Let us consider the Cauchy problem

dz (3.1) d r  = u  (z, 7- ) ,  zir=t=Y

where y E [0, Y], tE [0, T ].
The solution z = z (2- ; y ,  t )  defines a  characteristic  curve passing through a
po in t (y, t). The domain of unknowns is divided into two parts  by the char-
acteristic curve z=zo (t) passing through the "initial" point (0, 0): zo(t) =z (t;
0 , 0 ). The right-hand p a rt is transform ed by a  routine procedure [1 ] .  But
the m ass Lagrange variables for the points of the left-hand p a r t a re  defined
by an original method [6].

If we take a  poin t (y, t) EQY and y < zo (t) then there exists a  number
0 such that

(3.2) z ( e ; y, t) =0 .

A t first w e w ill use  new variables a n d  t. The Jacobian of the transforma-
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tion J=
a y  

is obtained from (3.1) a n d  (3.2) by the formula

J =  — 140 exp f (r; y, ,  r ) d r i

On the other hand, the continuity equation

a u
— 0at U 3  a y

can be written along the curve z  (r ; y , t ) as

d  ln p a u  , z ( r t ) ,

dro z \ '

Hence,

( ) ( ,  t )  =  1 9 1 ()1 4 1 ().a  t )

Thus, in the new variables system  (2.1) assumes the form

au _  0 1  au\  1   a
at —  (plyti) 2 a V 9 a 0 + a ( P r )  •

p 2

at pivti a

Let us set

— p i ( i ( )d dx , x =
0

(r)ni (r )d r

In the variables x  and t the equations take the usual Lagrangian record:

_  a (  au\ a ( ,(3.3) at P Y T \ P • I  a x  \Pr)
E_,_„2014 (3.4) at • - ax

Finally, we have to find an image of the b o u n d a r ie s . The left - hand boundary
is transformed to a  known curve:

x —fpi (r)ui (r)dr .0

L et us consider a  po in t (Y , t). T he characteristic curve z  (r: Y , t )  may in-
tersect the  boundary of dom ain O r, b y  tw o  w a y s . In  the  f irs t case there ex-
is ts  a  number yo E [0, Y ] such that z  (0; Y, yo, and the mass Lagrange
variable is equal to

x (Y, = fio(s)ds .
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However, integrating the continuity equation over domain
1(y, r): 0<r <t, z (r; Y , 0 Gy <Y1 ,

we see

f Yo
o (S)dS=1.0

Y 
#0(S)dS — f o p(Y, 1- ) u2(r)dz -  .

In the second case, there  ex ists a  number >0 such t h a t  ( ;  Y, t) = 0,
and the mass Lagrange variable is defined by the formula:

x (Y, =  — f  jo]. (r)ui(r)dz -  .0

Integrating the continuity equation over domain
1(y, r): 0<y<Y, 0<z- 1 U 1(y, -r): z (r; Y , 0 <y ,

we have

Y
f o p i(r )u i(r )d r=  f0 150(s)ds —  f o p(Y, 7- )u2(1- )dr .

Thus, the right - hand boundary is transformed to an  unknown curve:

X = f
Y

o Po(S)dS — f o p(Y, z- )u2 (1- )d r  .

W e have obtained th e  following Lagrange form ulation of the problems with
"permeable boundaries".

Problem  1. W e are  to find a solution of equations (3.3), (3.4) in  the  do-
main

0= 1(x, 0:0<t<T,a 1 (0<x<b i (01
where

(t) = f  (r)vti (r)d r0

b1 (t) = X — f tp(bi(r), z")u2(r)dr

X= f 0 50(s)ds

taking the initial conditions

(3.5) u (x, 0) =uo (x) p (x, 0) = po (x) f o r  0

(uo (x) =170 (y ) , p o (x ) -= fio(y) i f  x = 150 (s) ds)

and the boundary conditions

(3.6) 14. (al (t) , = u (t) >0 , p (ai (0 , = Pi (t) f o r  O t T  ,
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(3.7) u (b1 (t),= 1 4 2  (t) for 0 t T .

Problem 2. W e are  to  find a solution of equations (3.3), (3.4) in  the  do-
main

Q2
7-= 1(1 , t): 0<t<T, cti(t)<x<b2(t)1

where

62(0 = X  — f p2(r) u2 (2- ) d 1-

0

taking the initial conditions (3.5) and the boundary conditions (3.6) and

(3.8) u (b2 (t), t) = u 2 (t) < 0  ,  p (62(0 , t) = P2 (t) f o r  0 .

Problem 3. W e are  to  find a solution of equations (3.3), (3.4) in  the  do-
main

Q 3T =  I , : 0<t<T, a 2 (t) <x<b1(t)}

where

a2 (t) = — f p (a2 (r) , T ) U 1 (T ) d  ,0

taking the initial conditions (3.5) and the boundary conditions (3.7) and

(3.9) u (a 2 ( t ) ,  t )= u i( t )  0 f o r  0  t T  .

4. Auxiliary constructions

W e will use the Lagrange formulation of the flow problem to prove initial
a  priori e s tim a te s . The constants which depend only on the data of the prob-
lems and T will be denoted by C, m, M  (w ith a subscript).

Integrating equation (3.4), written in the form  (p -
1) t =ux, over the region

(21= 1(x, o < z- < t, a i (T) <x<bi (r)

we obtain the following relation:

r bi(t)
(4.1) P  1 (x , t)dx= p o

- 1 (x)dx= Y f o r  0 1- ' T .
a i(t)

To derive the first integral estimate, we substitute u= w - HT into equations
(3.1), (3.2), where

( 4.2) ir(x, t) = (u2 (t) —141 (t) ) Y- 1  f  p - 1  (s, d s - Fui(t)
a i(t)

multiply the first equation by to and the second equation by (1 — pr), and then
integrate their sum  over ( g  After simple reduction, estimating the right side
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w ith  th e  help of the C auchy inequality a n d  using  Gronwall's inequality, we
can deduce

(4.3) max
osts ai(t)i f [u2 (x, +0(x, tndx+ f f p(

x
)

2

 dx dt Ci
him 

where

p-i(x,t)
(x, t) = — .

If we followed to Kazhiknov's scheme [1] we should obtain a  known rep-
resentation for p (x, t) as the  next s t e p .  However, in  o u r case the domain of
definition of the problem is a  curvilinear one and we cannot deduce the neces-
sary equality at once.

In what follows, we will use the Lagrange and the Cartesian formulations
of the problem simultaneously.

The Lagrange image of any characteristic curve of the continuity equation
is  a segment of a vertical line x=const, which intersects the left - hand bound-
a ry  a t  the  po in t (1)1- ( t ') , t ')  if  and  only if the  characteristic curve reaches to
the point (Y , O .  Thus, to estimate the unknown boundary we have to under-
stand "how long" a characteristic curve must be inside the domain.

Using the form ula of inverse transform ation to  th e  Cartesian variables,
for and t>0 s u c h  th a t  d-t T  we have

(4.4) ( -F t; 0 , 0 = f: + tu (a i ( ), 1") cl.r
f ee+t r Ydx _11[U1 (r) .f  b i ( r )  —

4E ai(r) P
1 ( r )d x  E f p  

Jai(r)

Y 
Let E= 4G1

, then

y ( + t ;  0, (Mo+Ci) Y ,4

1
where Mo is  the constant listed in Theorem 1. Hence, if t Y(Mo +C i ) -1 , we

obtain

(4.5)

i.e. the characteristic curve "entering" into the domain of definition at the mo-
ment cannot "pass" through the domain by the moment

1t° < min k + -

4
Y (Mo +CO -1 , T1.

Let us introduce the notations
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-t-= max It: t < min IT, (M o+ C i) 1I ,

tk=k-t- , k  =  0 , 1, ..., .

Then the result obtained above can be formulated by the following way.

Lemma!.I f  O t* T - 2-t-,
then

ct i (t * ) bi (t * - Ft7H- t)
(t * - I-T-Ft) — ai (t* - F75

.-2 1n017 •

where m o is the constant listed in  Theorem 1.

N o te . To prove the third inequality of the lemma we have to trace for the
1characterestic curve y = y ( r; Y ,  0)

5. The strict positiveness and boundedness of the density

At first we consider the strip

(X0,ti, =  I (x , t): 0 ai (t) .

Integrating equation (3. 4), w ritten in the form  (to- 1 ) t = ux, over the region

(A,t) -= r): 0< r< t, 0< x< bi ( r ) i

we obtain

f o bi(t)
(x, t)dx = Y — f  u  (0 ,  r ) d r  .

Keeping in mind relations (4.4), (4.5), for 0 < t_ t 1 w e  have

bict)
(5.1) —p - 1 ( x ,  t)dx < -3 Y .2 o 2

Using the third inequality of Lemma 1 we see that for each t E [0, t i ]  there ex-
ists at least one number xi (t) E [O, bi ( t ) ]  with the property

1(5.2) p (x i(t) , t) .

Now we may use Kazhikhov's argum ents [1] for the region
(AN = .

Let us rewrite equation (3.4) as
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au  _ alnp 
P  ax — at

au .and substitute Lo-
-  into equation (3.3):

(5.3)
aua 2 a
at —  Pax& ( i n P )  -a7z.  ( P 7 )

W e integrate (5.3) o v e r  (x 1 (t) , x) X (0, t) C 04, t1 ) and , taking the exponential,
obtain

(5.4) p x , t) exp {i f  t pr (x, d r i  =  Yu  (t) B11 ( x ,  t)P

where

(t) = P
p

(
o
r(xl (

i
t )(;) t))  exp {,+-jotp ,  (x i , 2-) d ,

Bil (x , t) = po (x) exp Ife i x
x
i ( t )  [uo (s) — u (s , t) ds} .

Using (4.3) , (5.2) and the properties of the initial data, we have

(5.5) C2 (X , t) C 3  ,

(5.6) C 4  Y ll

W e w ill show  th a t  Y11 ( t )  is  bounded  from  above  a s  w e l l .  T h e  following
equality holds

A -ex p liftp r  (x, d z 1 (x, ,d t o

which implies

expf — f  pr(x , d r i  =  (1  +  f  Y l i ( r )B i i (x, 2-) ,
g  0 P

Hence, (5.4) can be rewritten as

(5.7) P =  Y11 (t)B11 (x, (1 - F i f (r) 1311(x , z-) d z-)
g

and

(5.8) p-1(x, t) Yl l  (t) =t31
-

1
1 (x, (1 ± - r f (r) Bri(x , Z") d'O ri .0

Integrating (5.8) w ith  respect to x  from 0 to  b1 ( t )  and u sin g  (5.1), (5.5) , we
obtain inequality

1.1 (t) C —1f (r) , dr) r

ft o
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from which the estimates from above for Yll ( t )  and for Yll ( t )  follow by Gron-
w all's inequality . Therefore  the bounds for p  (x , t) are  directly derived from
(5.7):

(5.9) ni - p (x ,t) ._ M f o r  0 < t t 1 ,  0 .< x b i ( t )  .

Now we are able to estimate the density in a region

Qti =  1 (x , t) : 0< t t 1 , al (t) <x <01 .

W e in tegra te  (5.3) o v e r  (x , 0) X  (t* (x ) , t), W here t = t * (x )  is  the inverse
function for x= ai (t), and, taking the exponential, obtain

(5.10) p (x, expi-1 f  pr
,

— Y12 (x, OBI2 (X , ,
t.(x)

where

p (0  , 

Y 12(x
' 

= 
p  ( 0  ,  t *  ( x ) )

expl iTe f t: (x)pr (0, d ,

1312(x , t) = pi(t*  (x)) expl i  f  [u  (s, t* (x)) — u (s, tn d s i  .
It o

We have

1(5.11) exp1 pr(x , 7-)d ri= (1 -1--' „ f
t

 Y12 (r)BI2 (X ,  r)d r ) r

fi t*Cr) *(x)

and

t
(5.12)p = Y 12(x , t) B12 (X , t) (1 ± - L f 1/12 (Z)BI2 (X ,  1-) d r  ,

f.t t*(x)

U sing (4.3), (5.9), we see

(5.13) t) ,
Y12 (X , t) C9 ,

T hen equality  (5.12) guarantees th e  s tr ic t positiveness an d  th e  boundedness
of the density in Qikui.

Thus, we obtain the necessary estimates in the first strip:

(x , t ) /1/1 for (x, t)

On the second step we will consider the next strip

Q4 , , tz] = 1(x, t): t 1 <t t2, ai (t) b i( t ) I  .

Similarly to the first step we obtain

I
h(t)

(x ,  t)dx = Y — f u (ti), d r f o r  ti <t •t2 •
1(11) 11
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Hence,

a i ( t i )

fb i(t)
—

2
Y< (x , t )d x < 1 1.f o r  t 1 < t < t 2 .

Using Lemma 1, w e see that for each tE (t1, t2 )  there  exists a t least one num-
ber x2(t) E  [a (t1), b 1  ( t ) ]  with the property

2Tngt i r l < p (x2  (t) , t) < 2 (x + t1M8)17 - ' .

Repeating the arguments of the first step for the regions

Q1L,t2] = I (x, t): t i  <t <t 2 , ai (t1) -<x <1)1 (t)

and

= j(x, t): tl < t < t2 , a  (t) <x <a l (1-1) j ,
we obtain the desired estimates for the density in the second strip:

(x, t) <M 2f o r  (x, E Oti,t21

O n every follow ing step the  a rgum en ts  a re  s im ila r  to  the second one.
One n t h  step we obtain

m<p (x, t)

fo r  (x, t) EQtr,,--litn] =
 j  (x, t): tn_i<t<tn, a i  (t) b1.

However,

Therefore we find the bounds for the density in the whole domain:

(5.14) m <p (x , t) <M for (x, E(21
7
, .

In  conclusion  of the  section , le t us consider Problem  2 a n d  Problem 3.
Our attention will be paid only to the bounds for the density.

If we use the Lagrange variables then Problem 2 is defined in the domain

Q22-= 1(x, t ): 0 < t< T , ai  (t) <x <b2(t)1

The first auxiliary relations have the known form:

r 12(t) Y
(5.15) P-1 (X , t)dx = f (x) dx= Y f o r  0 .< t < TLila)

au
(5.16) maxj

b2(t) u
2 (x , t )d x + f f p(

2 
dx dt <C10

osts ax

W e can introduce th e  quantities sim ilar to  th e  c a se  o f  Problem 1. B ut we
have to make more narrow decomposition of the domain Q2T:
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t7= max it: t< min IT, -1-
Y (2Cio+Mo) -1 1 , [ T i T 18 t t '

k=0, 1, ..., I

When we consider the strip

Oh- L td =  I (x, t): ti-i < t  t ,  ai (t) x  b2 (t)

we have already known the bounds for p (x , (ai x"b2 (t1-1)).
We see

rb2(r,-1)
P  1 (x, t)dx= Y —  f  u (al , z- )  d r +  f  u  (b  ( t_ ) ,  7- ) d r

6-1
f o r  t,_1 < t t ,

and

1 b2(t,-1)
— Y < p - 1(x , t)dx f o r  ti _i < t t i .2  — fai(ti-i) —  2

Therefore fo r each t E t i ]  th e re  ex is ts  a t lea st one  number x i (t) E  [ a i

b2 ( t_ ) ] with the property

4Y-
1)C  p (x i (t) , t) 2 Y -

1 ( X  f  
0

[p i (r)u, i (r )  —  p 2 (r) 14,2 (r)] dr) .

After this we can obtain the known representation for p (x , t) in the region

QM-1,m — I (x, < (ti-i) ..x-b2(1-i-1) I
and can find the bounds for the density . C onsidering the subdomains

I (x, t) : ai (t) <x <ai (ti_i) I
and

0,-1,t1 =  I (x, 6_ 1 < t t i ,  b2(ti-1) <x< b2 (t)

and using the argum ents presented fo r  Problem 1, w e have  the  desired esti-
mates in the whole strip:

in

The number o f the  strip s is  bounded . T hus w e  ob ta in  the  estimates for
the density from above and from below in the whole domain Q2

T .
After obtaining the  first auxiliary relations for a solution of Problem 3 it

is  a lso  possible to decompose the  domain 0 .  B ut w e have to  u se  the  most
narrow strips:

Qu,-14,1= j (x, ti _ i  < t  t ,  a2 (t) (t) j ,

i=max It: t <m in IT, -i+6 (M+4Cii) ,  [ T] =TI
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k=0, 1, ...,

Here CH is the constant from the first energy estim ate for a solution of Prob-
lem 3.

W hen w e start to  consider the  strip w e have already known bounds
for p(x,ti - i):

t1- 1) f o r  az (t1-1) bi (t1-1)

Moreover, there exist the  numbers xi E  [az (t1-1), 61 (t1-1)] and xi E  [a2  (1 - 1-1)
b1 (t1-1)] such that

r71

2(t,-1)
1 rbi(t,-1) 2p - 1 (s, ti_i)ds=

J
—

3
Y P-1 (s, t,-i)ds= -

3
YJa 7?

and

az (t) , x  < b1 (t) f o r  t E ti]

Obviously,

7? 1p- 1 (s, t i _ i )ds= -

3
Y

and

1 2 l <  1
— Ym i•  — x • - - YMi3 - 3 -  •

Thus,

7? 1
p- 1  (s, t)ds = -

3  
Y - f- f  tf u d u (x?, d  t -I1 1 - 1

and

1 _Tx
—  

°— Y < p- 1  (s
'
 t)ds_.< - 7 Y12 xi 1 2

Hence, we can successively consider the following subregions

Ql= I (x, t): xi ,
Qf= 1(x, t): a2 (t) < x il
(g= Rx, <x b1(t)1

and deduce the desired estimates for the density in the i-th  s t r i p .  After finite
number of the steps we obtain the bounds for p in the whole domain
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6. Final a priori estimates

T h e  next in tegral estim ate  a lso  has som e peculiarities connected w ith
nonhomogeneous boundary conditions and curvilinearity of our domain.

At first, we substitute u =w+f,i- into equations (3.3), (3.4), where

= (142 (t) — ui (t)) f axi(t) p- 1 (s, t)ds +u 1 (t)

and differentiate the second equation, written in the form

alnpa w
at =  P Y z . ( u 2 — u l )  Y

with respect to x .  W e obtain the system

aw a (  awa l n p  _(6.1) — a x  p a x ) r p r  a x  K  ( x ,  t )

(6.2) atk ax I ax\PYrl •
a  _  a  ( a w \

where

K (x, t) = Y -1 (u'2 (t) (0) f  p - 1 (s, t )d s+u 'i( t)  Y - 1  (u2 — vti) .
al(t)

ainxpW e m ultiply equation (6.1) b y  axa a x )  a n d  equa tion  (6.2) b y  
a  

a n d

then w e in tegrate  their sum  over Q . A fter simple reductions we see

(6.3) fab1:::[,0(3 ivax) 2+ ( a lani q l d d to+ [ aax (Pt)] 2d x  d v =

_ 1  r , [ 2  aw aw 2 (aWV P in /  lx=b1(r)
d r+2 4 1  at f ) x. u p  k ax up \ lix=a1(r)

r t r01(t)  a (  a w ) amp a aw d  d  +  ff b i ( r ) (r#07 1 )   a . )ct d  —-1 ai(t) ax \P ux x fo  ai(r) ax  ax  P  ax r
1 r t 2(awv 1 j -bi(t) ,  2

\

p

2 .  c  a 1 U )  
  dax )  dx dz-- (u2 x d r .2 o al(t)

Let us note that the integral

alnp\2 1[up ( J d rIs=121(r)

is non-negative and

aw  I ,  awa w l
at ix=ai(t) =  a

=
l ax Is=a1(0 P 1 U 1 l x = a 1 ( t )

aW aW)1=at tx=b,(0 u.xx=b1(0= \Pu ax ilx=biu)
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amp =I 1   ( , 
1 
_ p _

p aax lx=ai(t) ai
,
 pi ut L a i(t ))

1   (  2aW 
= p l  a2 +17 1 0 vt42— i) p i

—
 p 'i)

uipi ux x =ai(t)

Therefore, using the Cauchy inequality, we can estimate the  right-hand side of
(6.3):

( 6 .4 )
rbi,t) r p o wa x ) 2 ± ( aalxnp)21

d x +  r
t  rb i( ,) [  a

al(t) \ 11..1 0 al(r) LAX
(p

a w
ax )1 dx d2 z-

C12 - F

../ 0 J a i ( r )  L  ( I x 0 a, (r) S.r b,(r) ( 1 `4 '
n dx dr - F f  m a x  P a

n
iv_ 2d r - F[1 r t  rbi(r) [ ain l  2

J°
awl r t n ( t ) ato'\2

(r)1115raS)6,(r) P axIJ al( t) P \ax)
By the embedding inequality we see

dx dz. ]

 

awm a x  lp
” ,(05 .rS b ,(1 ) X 2

( )o
< C (IIP °wax I L 2(cn,b1) aax \  awax/

   

aw
PYx

 

(6.5)
L2(a1,111))

  

Combining (6.4), (6.5) and using the Cauchy inequality, Gronwall's inequality,
the representation for w (x ,  t )  and equations (3.3), (3.4), we obtain the follow-
ing relation

(6.6)m a x ! 

r bi(t) [( ajs)2 + (t) 2± (t)21 dx +

ax05t5TJ al(t)  \ /

-Ff i R xaa2142)2 ±(sal2aPx)2 ±(w) 21 d x d tc , 3

In  the  Cartesian variables for any classical solution w e have the same global
estimates a s  (4.3), (5.14), (6.6), which a re  sufficient to construct a  general-
ized solution by the closure method.

Finally, we can estimate Holder continuity constants for a  classical solu-
tion.
At first, using (6.6), we deduce

(6.7) 11P116(0) C14 •

The next desired bounds will be proved only for the
strips are considered by the same way.
For our further considerations it is important to  have

. ap for the partial derivative ax .

Using relations (5.7), (5.12), we see

firs t s tr ip  00.ti:. Other

the exact representation

ap _  _,aBii (6.8)
-1

ax  —p/3 1 i a x t t  0 r yr) r )d r ) x



ax(.1:*(x)
for , a i(t )< x < 0

YT, (x, r)Bir 2 (x, r)d-r)
at
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aB 1 1 x f t n. (r)BiT1 (x, ax 
t x

 , r a
f o r  0 < t t 1 ,  0 < x < b i( t )

where

aB 
ôx t) = p(x) p(7 1 (x )13,(x , t) + 'B 1 1 (x, t) [u o (x) — u (x, t)];

and

(6.9)
aB 

— 12 ax P l i r b  121 n2. 2 1 „ p (1+
f
t Y12 (r)B12(x, r) d r)

1

 x
-

(Lc [2. rt .(x)

where

aY, 
ax  (x , t ) = Y12 (x, t) Lo - 1  (O, t* (x)) (0, t* (x)) +

1 1  + —19r (0 t* (x))]
(t* (x) ) ui (t* (x) ) •

aaBx12 ( x , _  [B (x, t *  (x)) — u (x, t)) —

1 fjxt  (s, t* (x))ds]
(t* (x) )141 (t* (x ))

(t * (x) )to'i (t *  (x))
1 

(t* (x))vti (t*  (x) )
r 1 =f31,[—(u (x, t* (x)) — u(x , l))

p ' 4* (x)) u14*) )<

s =
x  (s, t* (x )) —  (s, t* (x ))

s=0

— /312W  (t * (x ))p 'i (t* (x))
(t* (x) ) ( t *  (x ) )  •

Now we will use the Shauder estimates for a solution of a linear parabolic
equa tion . W e w ou ld  no t like  to  be  concerned  ab o u t th e  smoothness of the
right - hand boundary of the domain (21 T. Therefore w e w ill use the Cartesian
v a r ia b le s . Then we can rewrite the first equation (2.1) in the following form

(6.10) a;  = a  , t)  a 2 b (vt t) — ±a y  2Y a y  +f (y, ,

where

1

a (Y, t) = ItP- 1  (Y , t) b (Y  , t) = (y, t )  ,  f  , =  P- 1  aaP
y

r •
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Obviously, a (y, t )  is  a continuous and bounded function, and

b(y, t) E L4( 0 )  ,  f  (y , t) EL4 (QD .

Using the Shauder estimates, we have

ks (y, OLT  (0 )  C l 5 .

By embedding theorem ([9], p.80) (Qr.) c c 1+11(Qn

Ilu (y, t) 11c.+4(Qn .<C16 .
and

Plu (x,

Then representations (6.8), (6.9) help to obtain the following relation

ap<ax 0.1420

where 13= min 1-
1 

' al8
Hence, equation (6.10) has the coefficients with the properties:

la (y, t) 1104 (0) + Ilb (y, t) 1104 (QD + Iii (y, IIcP4(Q n,
and the Shauder estimates for the  W ilder continuity constants of a solution of
a  linear parabolic equation give

(6.11) Ilu (y, t) 110.0•■+f (421') d2o

If 13=  a, than we have the desired  estim ates. If P < a, than we use representa-
tions (6.8), (6.9) again.
We see

IIP (x, <-C 21

and

lI ( y , ( Q n " - .  C22

v =  m i n  
I  1 +13 

w h e r e  2 ' '

Therefore w e can repeat the  re la tion  (6.11) w ith  2) for [3. If  2) G a  we poss-
ibly repeat th e  la s t arguments several tim es and  complete th e  proof of the a
priori estimates.
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