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Mappings of domains connected with the
Dirichlet problem for the
equation of vibrating string

By

A. A. Lyashenko

1. Introduction

In the present paper we continue investigations we have begun in [L-S].
In paper [L-S] we studied solvability of the Dirichlet problem for the vibrat-
ing string equation

0 uz—uytf (@, y,u) =0, (x,y) €L

ulag=0

for a class of bounded domains £ C R? with piecewise smooth boundaries.
Under some symmetry and smoothness assumptions on the boundary 0%,
which will be described in section 2, it was shown that there exist piecewise

smooth increasing functions 4, 9: R = R such that
@ e={0Get)+eG—0. G+ —g6—1) |26 0, 1), 1€ 0, T)]

for some T>0 with % rational. Therefore problem (1) can be rewritten in the

following equivalent form

w,,—wu-i-f(z, t,w) =0, (z1)€l;=(0, )% (0,7T)

(3)
w|anr=0
where
(4) wlz, t)=u(z+t) +9(z—t), h(z+t) —g (z—1))

We notice that F. John [Jo] was among the first who suggested to use a change
of variables of the form

un=hx+ty)+9@—y), y1=h@ty) —9@—y)
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to reduce problem (1) to a problem of the same form in a simpler domain.

Applying the results of [Ra], [B-N], [Sm] we obtained existence, unique-
ness and regularity of weak solutions of (3) under some assumptions on
f [L-S]. Because of (4), the regularity of a solution u (x, y) of problem (1)
is determined by regularity of the solution w (2, t) of problem (3) and by reg-
ularity properties of the functions 4, 9. Our main goal in the present work is
to derive necessary and sufficient conditions for existence of functions h, 9 €
CH(R) satisfying (2).

The outline of the paper is as follows. In section 2 the class of domains
we consider is introduced. In section 3 we show existence and describe gener-
al structure of functions h, g satisfying (2) . A necessary condition for the
functions £, g to belong C* (R) are derived in section 4. Finally, in section 5
we obtain a necessary and sufficient condition for existence h, g€ C*(R) satis-
fying (2).

2. A class of domains

For the sake of convenience we rewrite problem (1) in the characteristic
form

uwtf(x, y,u) =0, (x,y) €N
ulag=0

We will be interested in existence and regularity of increasing functions &, ¢
such that

(5) Q={(h(x),9 @) | 0<er+y<Ty, 0<xr—y<T:}

for some Ty, T.>0.
The domain 2 C R? is assumed to be bounded, with a boundary I'= 08
satisfying:

4
(A1) I'=0Q2=UTl;, Ii={(z, y; @) |x<x<z}}, y; (&) EC*[x?, x}] for any
i=1

j=1,2, 3,4 and for some k=>2;

(A2) |y;(x)|>0,x€x? x}1,j=1, 2,3, 4;

(A3) The endpoints P;= (x?, y; (x))) of the curves I3,..., I'y are the ver-
tices of I" with respect to the lines x =const, y =const. By this we mean
that for any j=1, ..., 4 one of the two lines r=x?, y=y;(x?) has emp-
ty intersection with £ and there are no other points on I with this
property.

Conditions (A1)-(A3) imply that the domain £ is strictly convex relative
to the lines x = const, y = const. Therefore, following [Jo], we can define
homeomorphisms T*, T~ on the boundary I as follows: T* assigns to a point
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v P

]

FIGURE 1

on the boundary the other boundary point with the same y coordinate; T~
assigns to a point on the boundary the other boundary point with the same x
coordinate. Notice that each vertex P; is a fixed point of either T* or T~. We
set F=T o T*. It is easy to see that F preserves the orientation of the bound-
ary (see Figure 1).

Let I'={(x(s), y (s))| 0<s <1} be the parametrization of I" by the arc
length parameter, so that [ is the total length of I'. For each point PETI we de-
note its coordinate by S (P) €[0, I). Then the homeomorphism F can be lifted
[Ni] to a continuous map f; - R—R, which is an increasing function onto R
such that 0<f,(0) <1,

fils+1) =fi(s)+I,s€R, and S(FP)=f(S(P)) (mod ), PET.

The function fi (s) is called the lift of F [Nil. If we inductively set fi (s) =
f1(fe-1(s)) for integer k=2, then it is known [Ni] that the limit

I{im%f) dga(F) e [0, 1]

exists and is independent of s € R. The number a (F) is called the rotation
number of F [Ni]. The following cases are possible:

(A) a(F) =—:% is a rational number, and F"=1I where I is the identity map-

ping of I onto itself;
(B) a(F) =% is a rational number, F” has a fixed point on I', but F"#I;

(C) a(F) is an irrational number, and F* has no fixed points on I for any
EEN.
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Here we will consider only case (A), and so we make a fourth assumption on

£2:
(A1) a(F) =% is a rational number and F*=].

Henceforth we consider the class of bounded domains £ C R? such that the
boundary I'= 082 satisfies conditions (A1) - (A4) . This class of domains will
be denoted by 2.

We point out that condition (A4) can be regarded as a symmetry condi-
tion on the boundary. If (A4) holds then the boundary I” can be divided into
two parts I'!, I'? in such a way that I'? is completely determined by I'* and

the number a (F) =~::l—. This follows, for example, from the results of [Jo] (see

also section 3).

3. Existence and general structure

Notice that the collection of domains X satisfying (Al)- (A4) is composed
of classes E (m, n, k), where for a given triple of natural numbers m, n, k we
denote by E (m, n, k) the set of domains £ satisfying (A1) - (A4) with smooth-

ness k, rotation number a (F) Z%, and F"=1. Correctness of the definition of
classes E (m, n, k) follows from the following lemma.

Lemma 1 ([S-L]). 1) E(mj,wnj, k) =E (m,n, k) for any m, n, k, jEN,;
2) E(m,n k)=0 forany m,n, REN, m>n.

Henceforth we will always assume that m <n and (m, n) =1. The simplest

representative of the class E (mm,k) is the rectangle

m— _m_ _ n—m
117 {(x,y)|0<x+y<ﬁ,o<x y< ﬁ}

Indeed, it is easy to see that the length | of I'7*=0II" is equal to n and f; (s)

=s+m is the lift of F. Thus fix (s) =km+s and a (F) =%. Therefore E (m, n,

k) #F @ if m<n.
The following theorem implies that for any QE€E (m, n, k) there exist in-
creasing functions h, ¢ satisfying

(6) Q={h @), gW) | &, y) €M

Theorem 1 ([L-S]). Let £y, 2,€E (m, n, k) for some m, n, k EN, m
<n, k=2. Then theve exist functions h (x), g (y) such that
) 2:={(h(x), 9 W)z, y) €L}

and
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n—2

h(x) EC(R) NCH(—o0, 2] NCHxp-y, +0) n C*lx;, xj41]

ji=1
n—2

) g (y) ECR) NC*(— 00, yy] NC¥ynr, +0) [) C¥lys, ysn

ji=1
0<6<h' (x), g (y) <C x&klxy, ..., 2o}, yE{yr, ..., yn-t)

for some points X1, ..., Tn-1, Y1, ..., Yn-1 Salisfymg x;i <xjs1, Yi<yi+, j=1,...
n—2 and for some positive constants 0, C.

Although Theorem 1 was proved in [L-S] we will give the complete proof
here because it will be used further, and because it contains description of
general structure of the functions 4, 4.

Proof of Theorem 1. We shall use the notations T*, F introduced in
section 2. Observe that from the definitions it follows that TYT*=T"T"=1, so
that F=T"T"* has inverse F"=T*T". Let 2€ E(m, n, k); thus F*=1I, a(F) =

%. Without loss of generality we assume that the vertices Pi,..., Py (see

(A3)) are numbered such that P; (P;) has minimal (maximal) x coordinate on

I'=08, and P, (P,) has minimal (maximal) y coordinate on I" (see Figure 1).
Then

T+P2=P2, T+P4=P4, T P,=P,, T_P3=P3
and there are no other fixed points of T* and T~. For any PEI we set
O(P)={P, T*P, FP, T*FP, F?P, ..., F"'P, T*F"'P}

Because of (A4) the set O (P) is invariant with respect to the homeomorph-
isms T*, F,i.e. T (O(P))=T-(0(P)) =F(0(P)) =0 (P). Following [Fo]l we
call the set O (P) the cycle generated by PET It is easy to see that for any
P, QET either 0(P) NO(Q) =¥ or O(P)=0(Q), and if QEO(P) then O (Q)
=0(P).

Consider the vertex P.. Since T*P;=P; and T*F'=F ~'T* for any integer
I, we have

T*F'P,=F"'P,=F""'p,
If n is even the choice I=ZL2— shows that F%Pz is a fixed point of T*, and conse-

quently F2P,E {P,, Py}. Since (mm) =1 the minimal period of any point P €'

is n (otherwise a (F) =1:ll7 for some m’ <m, n' <n), and so we must have F2P,

=P, and F"zlP4=P2. Using the same arguments we obtain F%P1=P3, F%P3=P1.
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If n is odd then the choice |= n;l shows T‘F%&:T'T*F "51P2=FnT+l

P,. Thus F25'P,€ (P, P;}. Applying the same arguments we obtain F™3 P, €
{P,, P3} and Fn_EIPl, F n51P3€ {P,, Py}. We have shown that

9) F%P2=P4, F"ZLP1=P3. % even
Pn;lezPl, Fn;1P4=P3 or F n;le=P3, F n;lP4:P1, n odd

From (9) it follows that O (Py) =0 (P,), O (P1) =0O(Ps) if n is even; O(P;) =0
(Py), 0(P)) =0(Ps) or O(P;) =0(Ps), 0(Py) =0(Py) if n is odd.

If n is even then O (P2) NO (P1) = @ . Indeed, if O (Pz) NO (P;) # @ then O
(P,) =0(P;) and there exists [ <u such that F'P,=P; or T*F'P,=P,. If T*F'P,
=P, then F'*'P,=T P,=P;. Hence we only need to consider the case F'P,=P,
for some [<u, and in this case we have

Fp,=F'Py=F'T"P,=T F'P\=T P,=T T*P,=FP,

Hence F?~'P,=P,. But then 2l—1=jn for some j €N which is impossible since
n is even. Therefore O (P;) N O(P)) = @ when #n is even. Using the same argu-
ments we obtain O (P;) NO (Ps) = @ if n is odd. Thus

O(Pl) =O(P3), O(Pz) =O(P4), O(Pl) nO(Pa) = ﬂ, 7n even
0(P)) =0(P5), 0(Ps) =0(Py), O(P) NO(P3) = 0
or , n odd
0(P) =0(P,), 0(P;)=0(P;3), 0(P1) NO(P3) =0

(10)

Following [ Ze]l] we next define the so-called generating set for the
homeomorphisms T*, F. For any points P, Q € I" we denote by (P, Q) r the
open arc of I" from P to @ according to the positive orientation on I, we also
denote (P, Qlr= (P, Q) rU{Q}. If n is even then we denote by Px the point
from the finite nonempty set O (Pz) N (Py, Pz]r with the property (Pi, Px)rNO
(P;) = @.1f n is odd then we denote by Px the point from the finite nonempty
set O (P3) N (Py, P21 such that (P, Px) rN O (Ps) = @. By the generating set
for homeomorphisms T*, F' we shall mean the arc Mo= [P1, Pxlr.

Lemma 2 ([L-S]). 1) Forany P, QE Mo, with P*Q, we have O (P)

nNowW)=9;
I) U OoWP)=I,i.e.0(P) \M¢# @ for any PET.
PeMo

We define, for =0, ..., n—1, the sets
0
My =F'(Mo) =[F'Py, F'Pslr, Mau= (F'Py, F'Px) r
M21+1:T+F’ (Mo) =[T*F'Ps, T*F'P\]r, A9I21+1: (T+F1P*, T*F'Py)r

Then Lemma 2 can be written as follows.
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Lemma2.' I) ﬁlln]&h:ﬂ.ll. IZE{O,...,Zn—l}.ll#lz;
2n—1
[[) U Mj:F.
j=1
Let us now introduce the constants

a=minlx| (x, y) €N, b=max{z| (x, y) €N
c=minly| (x, y) €M, d=maxly|(x, y) €N

and the functions X (P): I'> [a, b], Y(P): ra [c, d], such that
(X(P),v(P)=pP, VPET

Next we define intervals

X,=x(M,) =X (P)|lPEM;}, X,=X(M,), j=0,..., 2n—1

[¢]

Y,=Y(M,) ={Y(P)|PEM;}, YV,=Y(M,), j=0,..., 2n—1

)
Clearly X, Y;(X;, Y;) are closed (open) intervals satisfying the properties

0 0 ) 0 0 )
X2i=Xaj-1, X2i=Xoj—1, X=Xom—1, Xo=Xan-1,7=1,...,n—1

0 0 .
Y2i=Yaj1, Y2; =Y, =0, ..., n—1

n—1 n—1

U Xoi= [a, b], U Yzj:[C, dl
=0 =0

[0} [0} 0 [0}
ijnXglz ﬂ, Yzjn Y21= ﬂ,]*l

o1\ (U £)= U x0@) = U x@lpeoe)
. a\(U %)= U roen=U r®elreor)

on on i
We define functions 7;(x) :Xo— Xaj, B;(x): Xo— Y2; by the following formulae
(X (P))=X(F'P), B;(X(P))=Y(FP),PEM, j=0,..., n—1

where F*=1I. Since A%;ﬂO(P,) =¢,;=0,..., 2n—1,1=1, 2, 3, 4 then because
of (A1), (A2) we have

75 BIECH(Xo), 0<Ci<|rlIBiI<Ce 7=0,...,n—1

for some positive constants C;, C,. In addition, for any PEM,

Fip=(r,(x(P)), B X (P)), T*F'P= (i (X (P)), B (X(P))),1=0,... ., n—1
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Proposition 1 ([L-S]). Let Q€E (m, n, k), (m, n) =1, m<u, and the
arcs M; be defined as above. Let us define a permutation j;=0 (i) of the numbers 0,
1,..., 2n—1 according to the order of arcs Mo, My, . . ., Mzu—1 on I', so that

M;<M;y lf and only ifji<]'d
0 o
where M;<M, if Py (P, Q) r for any PEM;, QEM,.
Then
(11) j2i=0(2i) =2mi (mod 2n), i=0,...; n—1

Corollary 1. The order of the intervals X (resp. Yo;) om [a,b]l (resp.
le, d]) depends omnly on the numbers n, m.

Using the fact that F preserves orientation on I" we have 7 (x) >0 (resp.
7; () <0) if and only if My C [Py, Psly (resp. Ms; C[Ps, Pilr); Bi (x) >0 (resp.

B (x) <0) if and only if My C[Ps, Pi]r (resp. My C[Ps, Pslr). Hence from
Proposition 1 and Corollary 1 we obtain a second result.

Corollary 2. The sign of the functions 1; (x), B; (x) depends only on the
numbers m, n, j and does not depend on the shape of the domain QEE (m, n, k).

Let ), ,€E(m, n, k), I;=08;, j=1, 2. According to the formulae above
we define for each boudary I, I'; intervals

xro xr o ovP, vk oj=0,..., m—1

and functions

X (P) i NS [ay, b, YT(P) D > [en, di]
X7(P) i T35 lag, bal, Y™2(P) : I35 [ey, dsl
Foxh S XH BR xRS YE, j=0,....n—1
il P Xk Bl xRS vR j=0,..., n—1
Let ho(x) be an arbitrary function ho(x) : X3 5 X satisfying the conditions

ho€EC*(XEY): holx) =26>0, xEXH
We define

n@) =rF(ne () @))). zext
9 w) =B (no( BN W))). very

Then using the properties of the functions 7/, B* we obtain

(12)
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n—1

h(l’) . [ah b1]in’[f12, bz], he& n C* (ngl
j=0
n—1

gly) : [Cl,dl]in’[cz, d.], g€ n CH(Y%)
=0

n—1 n-1

W @)l @)|=6>0, ze |J Ry ye J Ty
j=0

i—0

.

From Corollary 2 it follows that 7/ 7/? are either both increasing or both de-

creasing. The same is true for B/, B2 Therefore

n—1 n—1
[0}
W), g y)26>0, ze Xy yel 75
j=0 j=0

From Corollary 1 it follows that h (x) is continuous at the points [a;, b1] \

a1 n—-1

o [0}
U X #}, and g (y) is continuous at the points [¢;, d;] \ U Y 4
j=0 =

Thus
h (@) €Clay, b uck(xg;), i=0,.. . n—1

) €Clen 60 UC{rE). 1=0.....nm1
n-1

n—1
W(x), 9 (y)=6>0 xe U XO{; y€E U )951;
i=0 j=0

Extending 4 (x), 9 (y) to x €ER\lay, b1], y ER\ ey, d1] as functions from C*
we obtain that &, g satisfy (8) where

{T1, . 2ot = (@, b) U X (P)IPE | 071 (PI))

j=1
4
Wi .. yni = (e d) ULV (P IPE | 07 (P)
ji=1
It remains to prove (7). Since for any j=1, 2, [=0,...,n—1, Peﬁ b
Fhp=(r0 ™ (), B (X7 (P)) ),
TH Fp=(rlt (X7 (P)), B (X (P)) )

it follows from (12) that if PEM*, QEML? and
(13) X"(Q) =ho(X™(P))
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then
FrQ= X" (FRP)), 9 (Y™ (FLP)))
TH Fr, Q= (h (X" (TH FiP)), g (Y™ (TH FF.P)))

for any 1=0, ..., n—1. Thus mapping (12) transforms any cycle O™ (P),

PE M}, into a cycle O™ (Q), where Q € M}? is uniquely determined by (13).
Since

(XT) (o (XT* (P))) @ MET > M

it follows from Lemma 2 that mapping (12) transforms I, onto I3 Since £2,
Q, are convex relative to the lines x =const, y =const and h (x), g (y) are in-

creasing continuous functions (7) holds. This completes the proof of Theorem
1.

It easy to see that any functions h, g satisfying (7) can be determined by

(12) where ho(x) =h (x), x €X' Therefore the proof of Theorem 1 gives us
the general structure of functions &, g satisfying (7).

4. A necessary condition

From Theorem 1 it follows that for any 2 €E (m, n, k) there exist in-
creasing functions h, ¢ satisfying (8) and such that

(14) m={(h(x), 9 W), y) €

In the present section we derive a necessary condition for the functions k, g to
belong to C*¥ (R).

Let h, g satisfy (8),(14). From the definition of rectangle [I} it follows

%, PET, |P—P)<e
(15) h(X(P))+h(X(T*P)) = _% PET |P—PJ<e

0, PET |P—P|<e
(16) g (Y (P)) +g9(Y(TP))= z—szf—” PEL |P—Pij<e

for £>0 small enough. Using (A1) we rewrite (15), (16) as follows

h(yit(y)) +h(yzt(y)) =n;§m, yEle, ctel

(17)
h(ys(y)) +h(yit(y)) =%, yEld—e, dl
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91 (@) +9 (ys(x)) =0, xEla,atel
(18)

90y (@) +9 (o (&) =222 e lb—e, b]

V2
where

a=minflx| (z, y) €1, b=max{z| (x, y) €N
c=minly| (x, y) €I, d=max{y| (x, y) €N

Equalities (17), (18) imply some necessary conditions for the functions 4, g to
belong to C*. To derive these conditions we consider the following auxiliary
problem.

Assume functions w, (x), w, (x) satisfy

i) w, w€CHO, 1],

1) 0<0<wi(x), (—wz(x))<C, z€I0, 11,

Assume there exists a real-valued function g €C*(R), g’ (0) >0 satisfying
(19) 9w (@) +9 w:(x))=C,, z€I[0,1]

for some constant C; €ER. Equality (19) implies

@ L) o)) =0 =1k

We set for j=1,...k
_1 d_jg_ -1 d’w, _1 d'w,

and define functions a;; (7), 7= (71,....7%) €ER* by the following formula

(22) <Zk:r;x’)j= Zaf;(?)x‘, i=1,..., k, rE€R
=1

iSi<jk
Then (20) can be written in the form
gienn=0

gica1+9gac22=0
(23) g1 tgac32tgsc33=0

............

gt 9okt gschkst o Hgic=0

where
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(24) cii=cii (@, B) =ay (@ +ay(B), 1<j<i<tk

It is easy to check that

ci=(a;+B;), cy=(ad+Bl), j=1,..., k
cig-v=(G—=1) (e az+B{?B2), j=2,... k

(25) ci-n=(G—2) (i *as+B{7Bs)

+j%(ﬂ (a3 +Bi*p%), j=3,...k

Since g'(0) >0 then g,>0. Using (23),(25) we obtain ¢1;= (a;+ ;) =0. Hence
(26) .31 =
From 1ii) it follows a;#0. Therefore

0, jis odd
2af, jis even

Cjj

Let £>3. Consider the second and the third equation of (23). Since ¢,#0 then
using (25), (26) we obtain

0=ca1c32—Co2c31= 201 ( (ag—ﬁf) - ((13"‘/33) )
Hence
(27) a, (as+Bs) = (a5 —p3)
Let k=>5. Consider the fourth and the fifth equation of (23)

gicart9acaztgscast9acaa=0
gicsiF9acsa 9353+ 9ac54=0

Using (25),(26) we obtain

643654_653644:3af (az +.32) < dai (az‘Bz) —2at [361’21 (a3+.33)
+3a, (af—B3) 1 =6ai (a3 —B3) —6ai (as+B5) =0

by force of (27). Hence
91 (ca12 (az—B2) —aucs:) +92 (ca22 (a2 —B2) —rcsz) =0
Since 9;#0 then using the second equation of (23) we obtain
0= (ca12 (az—PB2) —aucs1) * c2— (car2 (02— B2) —icsa) * e
One can check that the last equation can be written as follows

(28) 2af (Clz_ﬁz) (a4 +.34) —ai (a's"‘lgs) +at (a'4_.34) (az +.Bz)
+ay (a2a3+132.33) (az‘i'ﬁz) - (ag_ﬁé") —2af (a:%_ﬂg) =0
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Let #>5. Then for any [=>2, 2]+1<Fk we have by force of (25)-(27)

C2121-1) C2121

det(¢(21+1)(21-1) C(z:+1)21): Q=1 a2 (a2 +B2) * 2iad " (az—B2)

—2a8'[ 2I=1) af'*(az+Ba) + (21—1) (1 —1) o} (af—B3)]
=2@2—1Dat (- —22—1)at" 2 (a;+Bs) =0

Since a;#0 then the system of two equations

gicant - +92c22=0
gicaem T Fgaucrna=0

is equivalent to

9i€e-mt F9a-260-201-2=0
gicontoeeeee +92162120=0

where
(29) Car-pi=cujl (@z—B2) —carvics, j=1,...,21—2

Assume (26)-(28) hold and consider the system

gica1+92c22=0
gicat - +gacaa=0
g1t +9gucu=0

(30) gican oo +921¢2120=0
Grilanteeeee +921622=0

............

if k is even, or the system

gica1tg2022=0
gt tgacas=0
giéat - +9gi€u=0

............

31

(81) grcan oo +926220=0
1ot +92162121=0
gic-m T For1cu-vk-n=0

if k is odd.

Since c212:>>0 and solvality of (30),(31) does not depend on the magnitude
of 9:> 0 then we can assume ¢, =1 and rewrite (30), (31) in the following
equivalent form
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god2e= —da
gadsrt9sdss= —dan
92dszt9sdast9sdu=—da

(30') ............
god (k—pat oo +0i—ad k-0 k-0 = —d (k-1
giCtk-p1F oo FGk-20thk-2k-2 = —Ck-21
[/2V7% S ERLIEE F9ck= —cn
God22= —da
gadsrt9sdss= —da

, + + =—d

(31) ?fi.fz....gsd“ G4ds4 41
God (k—zr2 o0 F9k-3d k-3 k- = —d k-31
g1 k-p1 e F9r-1cGh-1 k-0 = —Ck-11

where

(32) daj=cauj, dei-ni=Ccaj * Cu2—Caj * Cuz

Consider the system

g2d22: _d21
gxdstgsdss= —da
(33) Godazt93dastgadsus= —da
g2d12+ ...... +g1du= —dy
where
(34) 1=1(k) = (k—4), kiseven

(k—3), kisodd

Then system (30") (resp. (31")) is solvable if and only if (33) is solvable. In-
deed, if k is even and (gz, ..., gxk—4) satisfy (33) then for arbitrary gs_s, gx—1
€R the values of gx—2, gx are uniquely determined by the last two equations
of (30"). If k is odd and (g2, ..., gx—s) satisfy (33) then for any arbitrary gi_s,
g« ER the value of gx—1 is uniquely determined by the last equation of (31").

For any k=5, a= (au, ..., ). B=(Bu ..., Bi) we denote

dyz 0 - 0
Gs)  p@pwn=|T T
diz diz ** du
whe(re §iji=d,-,~ (a, B) are determined by (24), (29), (32), 1=1(k) is determined
by (34).
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We have obtained that if there exists g €C*(R), ¢’ (0) >0 satisfying (19)
then (26)-(28) hold and there exists X € R*®~! such that

D(a B k) - X=—d (@, B. k)

where
d=z (@, B)
(36) d(@ B k)= :
din (@, }_9)
Let us determine a (P;) = (ay (P), ..., ar (P)), BP) =B P),...,

Bx(P;)),7=1, 2, 3, 4 by the following formulae

aP) =7 G0, g = T et
dx
aP) =gy LU 40, piey = L 0
(37) |
1 d'y, _ 14!
a; (Ps) =11 #(b_())' Bi(Ps) = I ;yT(b 0)
ae) =17 LU -0, sy = LU -0

The next theorem follows from the above arguments.

Theorem 2.  Let QEE (m, n, k) for some m, n, kEN, m <n, k=5 If
there exist functions h (x) €C*[a, b], g (y) EC*[c, d] satisfying (8), (14) then
forany j=1, 2, 3, 4 vectors a(P;), B(P;) satisfy (26)-(28) and there exists X;€
R'®~1 satisfying

D(a(Py), B(P), k) - X;=—d(a(P;), B(P), k)

where D (@, B, k) is determined by (35), d;i (@, B) are determined by (24), (29),
(32), 1 (k) is determined by (34),d (@, B, k) is determined by (36).

5. A necessary and sufficient condition

In the present section we derive a necessary and sufficient condition for
existence h €C*[a, b, g =C*[c, d] satisfying (8), (14).
Let QEE (m, n, k) for some mmu,k EN, k> 2. Denote I'=0Q,I7=0all2.

It is easy to see that from the proof of Theorem 1 it follows that if kg : X(’;in'

X5"™ ho€ C* (XF) is chosen such that function & (x), g (y) defined by (12)
satisfy for some €>0 ,
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hECH (X (P2) —e, X(P2) +e) NC* (X (Py) —¢, X (P4) +e)
gECH(Y (P) —¢, Y(P1) +¢) NC*(Y (Py) —¢, Y (Ps) +e)

then h € C*[a, b], g EC*lc, d]. Because of (8) conditions (38) are equivalent
to

(38)

1

h (x (p) —0) = ((P,)+o) j=2,4,1=1,.. .k
(39) y

Z—j(Y(Pi)—0)=3—;(Y(P;)+0), j=1,3,1=1,...k

Consider the rectangle [I2. It is easy to see that the vertices of [

(40) e =y )
P = (2‘"F Zgnfn>' Pet= (2f 2[)

and for any 1=0,...,n—1,7=0,...,2n—1, P, QEMI™"

(41) | X" (P) —XT"™ (Q) | =|X"" (FhymP) — X" (FlmQ) |
=Y (FpmP) — Y™ (Frm@Q) |=| Y™™ (P) — YT (Q) |

Let h (x), g (y) satisfy (8), (14). Since the mapping (x1, y1) = (h (x), g (y))

transforms any cycle O (P) into the cycle O™" (Q) where Q@ = (h (X (P)),
g (Y(P))) then for any IEZ

X" (Frm (W (X (P)), g (Y(P)))) =h (X (F'P)), PET

42
42) Y™ (Fham (W (X (P)), 9 (Y (P)))) =g (Y(F'P)), PET

Consider two cases: 1) #n is even, II) # is odd.

I). Let n be an even number. By force of (9) we have F%P, = P,
Py P =PI
Using (40) - (42) we obtain

n—2m

(43) 0—g(Y(P)) =g (Y (Fz(P)))+ 52

for any PE I such that [P—Py| is sufficiently small.
Since FzP,=P,, Fzr » P5""=P{*™ then employing (40) - (42) we obtain

@) ) =R (G P)

for any PE I such that |P— P3| is sufficiently small.
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Besides, in a neighborhood of each vertex Py, ..., P4+ we have one extra
functional equation: (15) or (16). We note that if (16) holds then it is suf-
ficient to consider (43) only for PE I such that Y (P) <Y (Py). Indeed, let |P—

P\|<e, Y(P) <Y (P, for a small €>0. Consider points P, T"P, FzP, T"FzP=

F2T~P. Assume that g (Y (P)) +g (Y (FZ(P))) =—"2_ ‘/zém' Then using (16) we

obtain

9 (Y (TP) +9 (¥ (F3 (17P))) = =g (v () +(— 22— (Y (%))

N
=__<n;§m

0 (v (P)) +o (Y (FiP) )= 20

Since Y (P) <Y (Py) if and only if Y (T"P)>7Y (P)) then we obtain that it
suffices to consider (43) only for P € I" satisfying [P—P,|<e, Y (P) <Y (P))
provided (16) holds and ¢ is sufficiently small. Using the same arguments we
obtain that it suffices to consider (44) only for P € I’ satisfying |P—P,|<¢,
X (P) £X(P,) provided (15) holds and ¢ is sufficiently small

For x €[X (Py) —¢, X (Py)], y €LY (P1) —¢, Y (P1)] we define functions
¢ (x), ¢ (y) using the following formulae

(45) ¢ (X (P)=Xx(FzP), X(P)E[X(P:)—¢, X(P)], PE
(46) ¢(Y(P)=Y(FzP), Y(P)E[Y(P)—e Y(P)], PEI

From (Al), (A2) and Lemma 3’ it follows that for & sufficiently small

¢(x) 1 [X(P) —e, X (P)] S [X(Py), X (Py) +e1

Gy) 1 [Y(P) —e Y(P)] = [Y(Py), Y(Ps) +e,]

P @) ECHIX(Pr) —e, X (P)], ¢ (y) ECHY(P) —e, Y(P)]

¢ (x), ¢ (y) <—0<0, x€[XP)—¢ X(P)], yEIY(P)—¢ Y(P)]

for some constants €;, €, 6>0. Equations (43), (44) can be written as follows

an ) telgw) ="t yely(P) —e V(P)]
(48) hix)+h(p))= Zj}z. rE[X(P;) —e, X (P3)]
Define g'* = (gI*,. .., gi*) 7, g% = (g3*, ... g¥) T, n¥* = (n3*, ..., h3*) T,

F: (hir . ni) T, E): (Pr,..., 00, ¢=(¢,..., ¢x) as follows
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ji—ig_lg_ + P —
w9) pE= E @RI 20), =18 1=1.
1
h§*=l—llz—xh,()((P,-)iO) i=2.4, 1=1.. .k

) = R0, = R e -0, =1

Equations (47), (48) imply

6D =A@ -7
(52) W=A (@) + h**
where
au (7) o = 0
(3 —a@=|m @ PP g

: : : 0
an (7 arz(7) - an(¥)

and a;; (7) are determined by (22). It is easy to see that

ai (M =(r)’, j=1,...k
Since ¢, ¢'< —0<0 then
(54) a;; (@) #0, aj(9) #0, j=1,... k
Hence

det A (¢) #0, detA (¢)#0
As it was shown above, there exists gEC*(Y (P;) —¢, Y (Py)'+e) NC* (Y (Ps) —
e, Y (Ps) te) satisfying (16) if and only if g™~ =g =g, g~ =g3* =¢3 satisfy
(55) cla(py), Bp)) -9=0, j=1,3

where for any a= (ay, .. ., ax), B= B, ..., B

Cu(C_Y‘ B) 0 0

(56) C(Zr B) —| €21 (a, B) C22 (a', B)
’ . . 0

Ckl (a, /_9) Ck2 (a, B) *tt Ckk ((_1'. B)
and ¢j; (@, B) are defined by (24), a(P;), B(P;) are defined by (37).
Analogously, there exist h (x) €EC* (X (P,) —¢, X (P,) +¢) NC* (X (P,) —e,
X (Ps) +¢) satisfying (15) if and only if K2~ =h?**=hn? h* =n** =n* satisfy
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(57) Cla(py),BP)) - hi=0, j=24
Because of (51), (52) we can rewrite (55), (57) as follows

C(a(Pl). B(Pl)) * 51:0

58) {c(a(P3>,B<P3)) - AN () - §'=0
C@(pPy), B(P2)) + K?=0

(59) {c(a(a), B(Py)) + A7H(@) - h?=0

Thus we obtained that if there exist & (x) €C*[a, bl, g (y) EC*[c, d] satisfying
(8), (14) then (58), (59) hold for some K%, G'ERF, hi, gi>0.

Let us assume that there exist G, HER¥, Gy, H;>0 such that G satisfies
(58) and H satisfies (59). Since n is even then P« €0 (P,). Hence there exists

1€{0,..., n—1} such that P,=F'Ps. We define A(x), rE€Xo=1[a, X (Px)] as
follows

(60) AxP)=x(F'P), X(P)EX, PEl

From (A1), (A2) it follows that A (x) © Xo— Xz =X (F'P,), X (P,)],
Alx) €Ck(X,), A’ =0>0. Consider

(61) h*=—AQ*) - H, h®=AQ° -G

Since
AF=2 (X (Py) —0) >0, A¢=y}(a+0) <0
an()=n, H,G>0
then
(62) h¥, h$>0
Let ho(x), x€Xe=[a, X (Px)] be an arbitrary function satisfying

ho(x) :Xo rm"_ [O Zf] hoeck(Xo);
holx) =20>0, xE€X, for some §>0:

1 d'h
1! drl

1 d'ho
I

(63) (a+0) =h?, " (X (Ps) —0) =h¥, 1=1,-k
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Such function exists because of (62). Let h(x), g (y) be defined by (12) where
I=T=0RQ, I,=I"=03II". Then h, g satisfy (8), (14). Consider g'%, g3, n2t,

h** defined by (49). Because of (12), (41), (42), (60) we have
(64) ho(X (Px)) —ho(x) =h (X (P)) —h (A(x)), zE€X,
Hence, by force of (22), (53), (63), (64)
1 dh
1! dx
p*= 5 =—AQ*) -~

1 d*n
21 gt X (P —0)

(X (Px) —0

From (61) it follows

(65) n=H

Consider g (y), y € Y,. According to (12) and definition of the functions f; :

on
—Y,; we have

BoX(P))=Y(P), PEMy B (X™(P))=Y""(P), PEM™
Hence, according to (Al)

Bo(x) =y1(x), B§™(x)=—

Therefore from (12) it follows

g(y) =B (ho(Ba* (y))) = —holyT' (y)), yEYe=[Y(Px),Y(P)]
Last equation can be written in the form
(66) ho(x) = =g (y1(x)), x€Xo
Using (22), (49), (53), (61), (63), (66) we obtain

dho

11 dz @0
AQ®) - G=h"= 1 dkh; =A%) - 9"
o1 gk @t0)
Hence
(67) 9"=G

According to (51), (52) we have

(68) FT=A"1(Q) - g, Wr=A"1(g) -+ h*

Xo
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As it was mentioned above, to prove h €C*[a, bl, g EC*lc, d] it is sufficient to
show that (39) holds. Equations (39) can be rewritten as follows

(69) WE=RY R =pt git=gt | g =gt

Consider equations (17), (18). Using (17), (18), (22), (37), (49), (53) we
obtain

A@Py)) - h=+A@P)) - B2 =0
A@PY) - +ABP)) - ht =

ABPY) -g+A@Py)) - g =
ABPY)) g7 +A@(Py) <9 =0

From (24) it follows

(71) Cla,B)=A(@+AB), a BER*

(70)

Since G satisfies (58) and H satisfies (59) then using (65), (67), (68), (70),
(71) we obtain

ABEP)) - (W~ —h*) =0

ABP)) - W —h*) =0

A@P)) - (g=—¢") =0

A@(Py) - @ —g*) =0

By force of (A2) we have Bi(P;) #0,j=2, 4; a; (P;) #£0,i=1, 3. Then det 4

(B(P;)) *0,7=2, 4; det A (@(P;)) #0,i=1, 3. Therefore (69) holds and h&C*
la, b], g EC* ¢, d].
Thus we verified the following result.

(72)

Theorem 3. Let QEE (m, n, k) for some m, n, k EN, m <n, k=2, and
n be even. Then there exist h (x) €C*[a, bl, g (y) EC*le, d] satisfying (8), (14)

if and only if there exist vectors H, G ER*, Hy, G,>0 such that G satisfies (58),
H satisfies (59).

[I). Letn be an odd number. Then by force of (9) we have FnT_lP1=P2,

F™ Py =P, or F* 5 Py =P,, F*3 Py =P,. Using (40) - (42) we obtain for suf-
ficiently small e>0

n—m
2J2
h(X(F'TP) ., |P—Py|<e

0—g(Y(P)) =h (X (F*3P)) — |P—P| <e

(73)

_2m—mn_ m

if F%5P,=P;, or
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0—g (Y(P)) =%—h(X(F”—E—1P)) . |P—Pif<e
(74) - -
0 (v ()~ =h (X (PP~ [P <e

if F*3p,=P,.
We define functions ¢ (y), w(y)
p(Y(P)=XF"ZP), Y(P)E[Y(P)—¢ Y(P)], PET
w(Y(P)=XF"7P), Y{P)E[Y(P:), Y(Ps) +el, PET;
From (A1), (A2) and Lemma 3’ it follows that for €>0 sufficiently small
[X(P), X(P) +&], F*7P,=P,

uly) DY (P) —e Y(P)] = { o
[X(P) —e, X(P)], FzP=P,

X (P) —e, X(Py)], F'TP,=P,
X (Py), X(Py) +el, FTP=P,
LECHY (P) —e, Y (P1)], wE€CHY(Ps), Y (Ps) +el
#2620, yEY(P)—e Y(P)];

lw (y)|=020, yelY(Ps), Y(Ps)+el

w(y) : [Y(Py), Y(P;) t+el = {

for some constants &;, 0 >0. Equations (73), (74) can be written as follows

g(y)+h(u(y))="2?/1", yELY(P) —e, Y(P)], F7P,=P,
(75) 3Im—n n-1

9@ +h(wly)) = 273 yEY(Py), Y(Ps) +el, FzPi=P,

W) —hw) =—37 vElY(P)—e Y(P)]. F7P=P,
(76) v X

g(y)—h(w(y))=3;"ﬁ", yELY(Py), Y(Ps) +el, F'zP=P,

We define = (s, . . ., ), o= (w, ..., wy) as follows

_14 _1dw _
ﬂl*ﬂ;y%(Y(Pﬂ_O), wl—l_':l'y—I(Y(Ps)""O)» l—l,...,k

au

Equations (75), (76) imply

— Toa n—1
ny  gr={AW W Frh=r
_A(ﬁ) ’h4_, FJlTP1=P4
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(78) F:{A(E)'h—‘:, FZP] P2
—A (@) - k¥, F'TP =P

If hz__h2+_h2 h4__h4+_h4 g'-=g"=7", > =g%*=g° then using (55), (56)
, (77), (78) we obtain

Cl@(Py),BPy) + 3 =0

79 {C(a(Pz).B(Pz)) AT () +3 =0
C@(ps), B(Ps)) - 3°=0

(80) {c@(m, B(P)) - A" (@) -3 =0

if F'ZP,=P,, or

cla),BP)) +g*=0
81 {c(am) BP)) A () +g* =0

Cl@(pPy), B(Psy)) +3°=0
(82 {c<c‘r(Pz>, BP)) A (@) - g°=0

if F*z P, =P,

Thus we verified that if there exist h (x) €C*[a, b], g (y) €C*lc, d] satis-
fying (8), (14) then there exist !, 7€ R¥, g1, 93>0 satisfying (79), (80) or
(81), (82) according to whether F*z Py=P, or F*3 P,=P,.

Using the same arguments as in the case 1) we obtain that if there exist
G!, G3ERK, G), G3>0 such that G! satisfies (79) or (81) according to whether

F*2P,=P, or F “7'P =P, G* satisfies (80) or (82) according to whether F7

Pi=P, or F*z P1 P, then there exist h (x) € C*la, bl, 9 (y) €C*lc, d] satis-
fying (8), (14). Thus we verified the following result.

Theorem 4. Let QEE (m, n, k) for some m, n, kREN, m<n, k22, and n
be odd. Then there exist h (x) €EC*[a, b, g (y) EC*lc, d] satisfying (8), (14) if

and only if there exist vectors G', GER¥, G, GI>0 such that G satisfies (79)
or (81) according to whether F*3 Py =P, or F*5 P,=P,, G® satisfies (80) or (82)
according to whether F*2 Py=P; or F"2 Py =P,,
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