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Chain conditions on prime ideals
in ideal-adically complete Nagata rings

By

Yuji HIYOSHI and Jun-ichi NISHIMURA

Introduction

Throughout this paper, a ll rings are commutative w ith  id en tity . W e  use
the notation of E G A  [2], Matsumura [7] and N agata  [9 ]. Terminology and
definitions o f  [10] a n d  [11] are used freely (see also Appendix).
In  th is  note, w e m ain ly  study  Lifting Problem o n  chain  conditions of prime
ideals in ideal-adically complete Nagata r in g s .  That is:

Lifting Problem. Let A  b e  a  noetherian r in g  a n d  I  a n  ideal of A.
Suppose that A  is /-complete and that A// is un iversa lly  ca tenary . Is then  A
also universally catenary?

It w ould  be  in te resting  a n d  useful if  o n e  g o t a  p o sitiv e  answ er to  the
problem  above. H ow ever, S . G reco has found  th e  follow ing surprising and
meaningful counter-example:

Greco's Example ( [3 ] , c f .  [ 1 2 ] ) .  T h e re  e x is t  a  sem i-loca l domain
(A, m 1 , rn2) with two maximal ideals m1 and m2 and an ideal /=Pi n P2 (= the
intersection of two prime ideals P i )  of A  such that A  is /-complete and A// is
excellent, hence universally catenary, but A  itself is not universally catenary.

F urther, in  th e  sam e artic le , since neither A  i s  local n o r  / i s  prime, Greco
asked (cf. [3, Remark]):

Question 1. Is there  a  non-universally catenary local ring A  w ith an
ideal I  such that A  is /-complete and A// is universally catenary?

Question 2. Is there a  non-universally catenary noetherian domain A
w ith a prime ideal P  such that A  is P-complete and A/P is universally caten-
ary?

Incidentally, we know a  lo t o f good facts concerning Lifting Problem on
ideal-adically complete noetherian r in g s .  F irs t  of all, J . M arot found a  posi-
tive answer on Nagata rings:

Theorem 1 (  [ 5 ] ) .  Let A be a noetherian ring and I an ideal o f  A .  Sup-
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pose that A  is I-complete and that A /I is a N ag ata rin g . Then A  is also a Naga-
ta  ring . In  particu lar, any  ideal-adic com pletion o f  a N agata ring  is  ag ain  a
Nagata ring.

Next, C. Rotthaus solved local Lifting Problem for quasi - excellent rings:

Theorem 2 (  [ 1 5 ] ) .  L e t A  be a sem i-local ring  and  I  an  ideal of  A .
Suppose that A  is I-com plete and that A /I is quasi-ex cellent. T hen A  is also
quasi-ex cellent. In particular, any  ideal-adic com pletion of  a (quasi-) excellent
semi-local ring is again a (quasi-)excellent ring.

Further, she obtained Lifting Theorem for (quasi-) excellent rings which con-
ta in  a field of characteristic zero by proving the  so-called Rotthaus Hilfssatz
([16], [1 ], cf. [11] )

Theorem 3. L et A  be a noeth,erian ring, containing a f ield of  characteristic
zero, and let I be an  ideal of  A . S uppose that A  is I-com plete an d  that A /I is
quasi-ex cellent. T hen A  also quasi-ex cellent. In particular, any ideal-adic com-
pletion of  a (quasi-) excellent ring which contains a f ield of  characteristic zero is
again a (quasi-)excellent ring.

O n the o ther hand, constructing his remarkable counter-example to Rat-
liff 's Chain Conjecture, T. Ogoma observed a  good condition on formal fibres
which assures a normal Nagata ring to be universally catenary:

_
Theorem 4  (  [ 1 3 ] ) .  L et A  be a N agata local dom ain and  A  its derived

norm al ring . Then the following are equivalent:

(4.1) the generic formal f ibre of  A  is locally equidimensional.

(4.2) X is universally catenary.

Here, we collect the definitions on equidimensionality of noetherian rings:

Definition 1. A  noetherian rign A  is  equidimensional if, fo r any  p E
M in  (A ), d im  A /p  =  d im  A . A n d  a  n o e th e r ia n  r in g  A  i s  c a l le d  locally
equidimensional if Ap is  equidimensional for any P C  S pec  (A ). A local ring A
is  form ally  equidim ensional i f  its  com p le tion  X  is  equ id im ensiona l. A nd  a
noetherian ring A is said to be locally formally equidimensianal if A p is formally
equidimensional for any P E Spec (A ).

Then, thanks to Greco, Marot, Ogoma and Rotthaus, we shall show the fol-
lowing:

Proposition 1. L e t A  be a noetherian ring w ith an  id e a l  I .  I f  A  is
I-complete and A /I  is  a N agata ring whose formal fibres are locally equidimension-
al, then the formal f ibres of  A  are also locally equidimensional.

Proposition 2. L et A  be a local ring with an id e a l  I .  If  A  is I-complete
and A /I  is a  universally catenary Nagata ring, then A  is also universally catenary.
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Proposition 3. Let A  be a P-complete noetherian domain where P is  a
prime ideal. Then, if A /P is  a universally catenary N agata ring, A is also uni-
versally catenary.

Proposition 4. Let A  be a noetherian dom ain w ith a non-zero ideal I.
If A is I-complete and catenary, then A  is universally catenary.

Now we summarize the content of th is  note. B a s i c  theorem and lemmas
are  gathered a s  preliminaries in Section 1. W e om it their proofs, w hich are
not straightforw ard, because these results seem  to be w ell-know n. N ext, in
Section 2, we check that the property of being locally formally equidimensional
enjoys some axiomatic conditions, which play  key roles in  our proof of Prop-
osition 1 for semi-local rings at the beginning of next sec tio n . In  th e  last part
of Section 3, making use of Nagata's criterion due to  Greco-Marinari [4], we
shall show  the finiteness of the  se t d (x) , which completes v ia  Rotthaus Hilf-
ssatz, our p roof of P roposition  1. Then, Propositions 2 a n d  3  a re  derived
from Proposition 1 in Section 4. Section 5 contains a  few related topics, in-
cluding a  proof of Proposition 4, w hich  m ay  be  usefu l. In  Appendix, for the
reader's convenience, w e recall no ta tion  and  definitions necessary to  state
Rotthaus Hilfssatz w hose proof w e d o  no t repea t he re , because  a  complete
proof can be found in  [11].

W e end  th is  introduction by  rem ark ing  tha t the  o rig ina l Rotthaus Hilf-
ssatz w as proved  under a  stronger condition, namely, th e  universal catenary
hypo thesis . T here fo re , to  ge t Proposition 1, w e shou ld  h a v e  removed this
particular hypothesis in our Rotthaus Hilfssatz, and this is w hat w e have done
in  [11].

1. Preliminaries

Theorem 1.1 (Nagata-Ratliff, cf. [1 4 , (A 1 1 )]) . A local ring A is uni-
versally catenary and equidimensional if and only if A  is formally equidimensional.

Lemma 1.2 ( [10, (2.4) ]). Let (A , m) , (B, n) be local rings and 0: A —> B
a local homomorphism. Suppose that 0  is flat, 0 =0 0 k  ( m )  is reduced and that
A is a Nagata ring. Then 0  is also reduced.

Lemma 1.3 (cf. [13, Theorem 1 ] ) .  Let A be a local ring. If A  is caten-
ary  and no t equidimensional, there ex ists P E  Spec (A )  su c h  th at  A p is not
equidimensional and prof A p<1.

Lemma 1.4 ([4 ], c f .  [7 , (2 2 .C )]) . I f  a N agata ring A  satisf ies (S i),
then there is a non-zero-divisor y  such that A y  satisf ies (SO
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2. Formal equidimensionally

Lemma 2.1. Let A be a Nagata local domain with locally equidimension-
al formal fibres. If A  is not formally equidimensional, there is P E  Spec (A) such
that Ap is not formally equidimensional and prof Ap=1.

Proof. Since complete local rings are catenary, take I3 E Spec (A) such that
-

A is not equidimensional and prof X = 1  (cf. Lemma 1.3). Putting P = P- nA,
we claim: Ap is not formally equidimensional.

Indeed, assume the contrary, namely, X is  un iversa lly  ca tenary . Then, if
we denote by X the derived normal ring of A, all heights of the maximal ideals
of Xp a re  th e  sa m e . Thus, since X =22-14-0A  A  is A  p-flat, all heights of the
maximal ideals of X a re  a lso  the sam e, because th e  form al fib res o f A  a re
assumed to be locally equidimensional. Hence, there exists T'E Max (X) such
that A I; is not equidimensional. Therefore, we find eiE Spec (A) such that A'd
is not equidimensional and prof .A- 6 = 1 .  Putting (7)= n X, we see that A (4 is  a
D V R . Then, since 0: A -0 —> Xcj  is reduced, :21- c, is  to  b e  a  DVR, too. C o n tra -
diction.

Now we se t Eq (A) P E Spec (A)1Ap is form ally equidimensionall and
Neq (A) =Spec (A)\ Eq (A) . Then

Corollary 2.2. Let A be a reduced Nagata local ring whose formal fibres
are locally equidimensional. If P  is minimal in  Neq (A ), then prof A p = 1 .  In
particular, supposing further that Eq (A ) is open, if b = pi n n Jr is the defining
ideal of the closed set Neq (A), then prof A = 1  for any i=1, r.

Now we shall show that the property of being locally formally equidimensional
satisfies the following conditons (cf. A.3):

2 .3 . P p * : Let (A, m), (B , n )  be Nagata local rings and (,l): A —> B a local
homomorphism. Suppose that

(2.3.1) A  is formally equidimensianal,

(2.3.2) 0  is reduced, and the fibres of çl) are locally equidimensional,

(2.3.3) the formal fibres of B are locally equidimensional.

Then B is also formally equidimensional.

Proof. Assume the c o n tra ry . T h a t is, B is not form ally equidimensional.
We may assume A is  a  dom ain . L et X be the derived normal ring of A and F3
= B O A  X . Then, all heights of the maximal ideals of A are the same, because
A  is universally  catenary. Thus, since g  is X-flat, all heights of the maximal
ideals of X a re  also the same, because the closed fibre  of 0  is assumed to be
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locally equidimensional. Hence, there is ri e Max (h- -)  su c h  th a t l is  n o t fo r-
m ally equidimensional. T herefore , by  C orollary  2.2, w e  f in d  e j  E  Spec (i3- )
such that k  is not formally equidensional and prof =  1 . P u ttin g  CI= e)- n,T,
we see that 1.,T, is  a  D V R . Then, since 0:X  is reduced, 24. ,-5 is  to  b e  a
DVR, t o o .  Contradiction.

2 . 4 .  PH: Let (A, ,  (B, n) be local rings and 0: A — B a local homo-
morphism. Suppose that 0 is flat, and B is (form ally ) equidimensional. Then A
is also (form ally) equidimensional.

The following condition is an immediate consequence of Theorem 1.1:

2 . 5 .  Pm : I f  (A , IT )  is  a formally equidimensional local ring, then Ap is
formally equidimensianal for any P E  Spec (A).

Now, w e rem ark that once conditions P11 and P m  a re  verified, a  formal
argument gives:

Proposition 2.6. L e t (A , m ) be a local ring whose formal fibres are
locally equidimensional. T hen the formal fibres of Ap are locally equidimensional
for any P E  Spec (A).

W e state the  following condition w ithout proof, because its proof is standard
(cf. [2, (5.12.2)] ).

2 .7 . P iv* : L e t  (A , 111) be a catenary  loca l ring  and  bE m  a non-
z ero-div isor. Suppose that A/bA is  equidimensional and satisf ies (S k )  (k  1).
Then A  is equidimensional and satisf ies (Sk)

2 . 8 .  Pv: For a complete local ring (A, m ), Eq (A ) is  an open set.

Proof (S eyd i [1 7 ]) . F o r each P E  Eq (A ), let X1, ..., Xs be th e  irreducible
components of Spec (A) which do not contain P. P u t V=Xi U  U  X s a n d  U =
Spec (A )\ v . Then, to  get the assertion, it suffices to  show  th a t UC Eq (A ).
Indeed, take any QE U and a n y  e  M in (A) such that pc Q .  Then dim A/13=
dimAp dimA/P, because p c i P  b y  d e fin itio n . A nd dimAQ/pAQ = diinA/P —
dimA/Q. Thus, A Q is equidimensional. Therefore, Q E  Eq (A).

W e inc lude , f o r  th e  reader's convenience, th e  conditon P g e om without
proof, because its proof is clear and because it w ill not be essentially used in
the rest of th is paper.

2 .9 .  P g e o r n : Let k be a field and A a noetherian k-algebra. If A is locally
(formally) equidimensional, then A ® kk' is locally  (form ally ) equidimensianal for
any finite extension field le' of k.

Proposition 2.10. L e t (A , m ) , (B, n )  be local Nagata rings and 0:
A  B  a reduced local hamomorphism. Suppose that

(2.10.1) the closed fibre of 0 is formally equidimensional,
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(2.10.2) the formal fibres of A are locally equidimensianal,

(2.10.3) the formal fibres of B are locally equidimensional.

Then the fibres of 0 are locally formally equidimensional.

Proof. W e m ay assum e A  is  a  dom ain w ith its quotient field Q (A) =K
a n d  th e  f ib re s  o f  0 0 A in  a re  locally formally equidimensional fo r  any non-
zero ideal a. L e t  X  be the derived norm al ring of A  and g=B OA  X .  For
E Max (h) and  fo r iT t=  n A , let —> be the induced local homomorph-
i s m .  Then, since X,, :IT, and  O ' satisfy the  sam e assum ptions a s  above, we
m ay further assume that A  is  normal and universally catenary by Theorem 4.
Hence, we a re  on ly  to  show  tha t BOA K is locally formally equidimensional.
Indeed, for q E Spec (BOAK) (E Spec (B ))  and a non-zero element b Em, take Q
E Min (B /q±bB)).

Then, letting P=Q CIA, Ap/bAp, BQ/bBQ and 00Ap/bAp: Ap/bAp — >BQ/bBQ

s a t is f y  th e  c o n d it io n s  (2 .3 .1 )  -  ( 2 .3 .3 ) .  M oreover, Ap/bAp is form ally
equidimensional and  satisfies (S i ), because A p is assum ed to  be universally
catenary and  no rm al. T hen , BQ - A B Q -  is equidim ensional and  satisfies (Si).
Thus, BQ -  is also equidimensional. Therefore, Bq  is formally equidimensional.

3. Lifting Theorem (Proof of Proposition 1)

3.1. Proof of Propositon 1 (semi-local case). W e checked, in the
previous section, th a t  th e  property  o f being locally equidimensional satisfies
the conditions Pr*, P 1 1 ,  Pm, and P v . Further, w e have shown, in Proposition
2.10, the localization theorem for local equidim ensionality. Thus, the proof of
P roposition  1  for sem i-local rings, namely, local L ifting Theorem  for rings
with locally equidimensional formal fibres, can be proved in  exactly the  same
w ay a s  tha t for quasi-excellen t rings. So , w e refer th e  reader to  [15], [10 ,
Theorem], or [6 , Theorem 5.2].

Now, as direct applications of local Lifting Theorem for rings with locally

equidimensional form al fibres, by  tak ing  the  m -ad ic  completion A  o f A  and
the m B-adic completion B* o f  B in place of A  and B, respectively, we get the
following generalization of Proposition 2.10 and the property P1*.

Corollary 3.2. Let (A, m ) , (B, n )  be Nagata local rings and 0: A —> B
a reduced local h,omomorphism. Suppose that

(3.2.1) the closed fibre of 0 is formally equidimensional,

(3.2.2) the formal fibres of A are locally equidimensional.

Then the fibres of 0 are locally formally equidimensional.

3 .3 .  P r : Let (A , m ) , (B, n )  be Nagata local rings and 0: A —> B a re-
duced local homomorphism. Suppose that the fibres of 0 are locally formally
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equidim ensional. T h en , if A  is formally equidim ensianal, B  is also formally
equidimensianal.

F in a lly , w e  s h a ll sh o w  t h a t  L ifting  T heorem  f o r  r in g s  w ith locally
equidimensional formal fibres holds in general.

3 .4 .  End of the proof of Proposition 1. We use the same notation
a s  in  [11], and for the details see also Appendix.

B y noetherian induction, w e m ay assume tha t A  i s  a  norm al Nagata do-
main and  the  formal fibres of A m / a  a re  locally equidimensional fo r any  M  E

Max (A) and for any non-zero ideal a.
Choose 111 E Max (A ) and  a  non-zero  element x  I  and  fix  them . N ow

take a minimal e lem en t n*, of Neq (A t)  and let g = p n  A;.K fo r  any 1 E F(m),
where, fo r any A -algebra B, B *  denotes the xB-adic completion of B .  Then
(4 ) 0  is not formally eqidimensional (cf. 3.3).

W e shall prove 1:),' n (0). But, to get the assertion, because we check-
ed that the property of being locally formally equidimensional satisfies P i , P H ,
and Pm  and because we have just proved that local Lifting Theorem for rings
with locally equidimensional formal fibres, as rem arked in  proposition A.10, it
is enough to show:

(3.4.1) d (x ) is  a finite set (for the definition, see (A.7.2)).

Indeed, let P  A ( x ) .  Then, by  difinition, there  ex ist rEr(m) and Q E

Ass (iiir/x ifr )  such that P = Q n A .  Hence, prof 2, because prof (A.;.k ) 0 =1
for any 'I' F(111) (cf. Corollary 2 .2 , [11 , (2 .8 )], [10 , (1 .3 )]). Further, since
A  is  a  Nagata normal domain, there exists y E A  su c h  th a t (A/xA)„ satisfies
(S2)  and x , y is an A - sequence (cf. Lemma 1.4). We claim:

(3.4.2) y EP (, then d (x) c  Ass (A/ (x, y ) )  and the proof is completed).

Assume the c o n tr a r y . Then, by the choice of y, dim A p / x A p l. There-
fore, dim (A') 0 < 1 .  Contradiction.

Once Lifting Theorem for rings with locally equidimensional formal fibres
is proved, the following corollary is an easy exercise.

Corollary 3.5. Let A be a noetherian ring and I an ideal of A. Suppose
that A  is I-complete, A  satisfies (s2), and that A/I is a  universally catenary
Nagata ring. Then A  is also universally catenary.

4 .  Applications of Lifting Theorem

4 . 1 .  Proof of Proposition 2. B y  noetherian induction, we m ay
assume that A  is  a  domain a n d  A /a  is universally catenary for any non-zero
ideal a. L e t  (71, mr) be the derived norm al ring  of A . T hen , by Prop-
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osition 1 and Corollary 3.5, to get the assertion, it suffices to show:

(4.1.1) ht trii =ht m for i = 1, r

Take a  non-zero  element b E  L  Note that Spec (X /b.X.) is  connected, be-

cause X is  a  bA -complete d o m a in . Hence, if VbA =A_ (1 ... (1 Ts , for any tri,
E Max (X), there  is a  sequence of maximal ideas fri =tri f o , tri f i , tTif t =tTt' such
tha t ffifi n tri f ,-1-1 D Tg g , where f i E g  E  11, ..., si ( i  =  0 , 1 , t — 1).
Thus we are only to show:

(4.1.2) if tri, tICE Max (X) and ITi n tri'DTI , then ht tTl=ht ITC .

Indeed, ht fil = ht Ti+ht ITI/Pi and ht ni '=  h t T i± h t tri'/ . F u ther, since
A / (17 1 (1A ) is supposed to be a  universally catenary local domain and A /P i is
a finite extension of it, ht tIt/Pi =ht in-  713

i . This gives the assertion.

4.2 . Proof of Propositon 3. Let A be the  derived norm al ring . A s
above, to get the assertion, it is enough to show:

(4.2.1) ht ift =ht m for any 1-T1E Max (X) and m= fit n A  .

T ake tri E  Max (X ), ly in g  o v e r  m , su c h  th a t ht frt- =  h t  tn. Note that
Spec (X/Pil) is  connected, because X i s  a  PA -com plete d o m a in . Hence, if

\IPTI =1=7. 1 n n Tr, then Ti n A = P  and w e find a  sequence of maximal ideals
irt = trio, IT1 1, Iris =  tit' such that iTio n ni D T 'f i , n TIls DPfs, where f iE

(i = 1, ..., s). Consequently, since A  and  A / P  are  universally caten-
ary, putting frt. - n A = m i , we have:

ht tri — ht P h  =ht m/Ph = h t  m / P  ,
ht rIt i  — ht P h  =ht ffli/ = h t  m i / P
ht — h t  P f2 =ht tTli/ Pf2 =ht mi/P

ht tris _i —ht P f s

 =
h t  ms-1/171s =ht ,

ht P fs =  ht 1-11- /Th =ht m/P .

Then, ht P  = •  •  •  =  h t  f s - 1
=

 h t i
"

 fs, because ht f it  — ht ht — ht Th.i=
ht m i /P for i = 1, s — 1. Therefore, htn't = ht Th  ht m/P= • • • = ht Th + ht
m/P=ht

5. A few related results

Lemma 5.1 ( [8, Corollary 3 ) .  L et A  be a noetherian domain and B  a finite
extension of A  with a non-zero ideal b. Suppose that (0 ) c Q i'c •••  Qn—l ' C Q  is
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a  saturated chain of  prim e ideals i n  B .  Then there exists a  saturated chain of
prim e ideals in  B : (0) c Q i • •  •  c  Qn _1 (2 such that ht (Qt (1 A ) = i  and  b  Q,
(i =1, ..., n-1).

Propositon 5.2. L et A  be a noetherian domain, I  a non-zero ideal and B
a finite ex tension of  A . A ssum e that A  is I-complete. T h e n , i f  there is a maximal
chain of prime ideals of lengh n (n .1 ) in B: (0) c Q i c •-• CQ n _ i c  n, there exists
a maximal chain of prime ideals of length n in  A : (0 ) cP i c ••• cp i cm=n nA.

Proof. By Lemma 5.1, we may assume ht(Q, n A) = i and IB Cr Q, (i = 1, ...,
n — 1). Then, B /Q n-i i s  a  one-dimensional local domain, because B/Qn-i is
I (B /Qn-i) -complete and  has a  height-one maximal ideal. T h u s , le t t in g  P i=
(11 n A, dim A /Pn-i = 1. Therefore, (0) c  •  •  c  c  m  is  a maximal chain
of prime ideals of length n in A.

5 .3 .  Proof of Proposition 4. Let B be a  finite extension of A .  To
get the assertion, it is enough to show that B is catenary and ht n =ht (n n A)
for any n E Max ( B ) .  Indeed, le t  (0) cQ ic •••cQ n-ic n be a maximal chain of
prim e ideals o f  length n (n 1 )  in  B .  T hen, b y  Proposition 5.2, th e re  is  a
maximal chain of prime ideals of length n in  A : (0 ) cP i c •-•cP i c m=n n A.
Therefore, htm=n, because A  is catenary, and this completes the proof.

A .  Appendix

Let P  represent a  property of local rings, for example, being regular, Goren-
stein, CM, normal, reduced, o r  formally equidimensional, etc. For a local ring
(A, m), w e say  P (A ) is  t r u e  (, P (A ) holds, o r  simply P (A )) , when A  has
the property P.

Definition A.1. Let A, B  b e  noetherian r in g s .  A  ring- homomorph-
ism  0: A - - >B is called a  P-homomorphism if  0  is  flat, and P ((B O A V )p) is
true  fo r any  p e Spec (A ) and  any P'E  Spec (B O A V ) o f any finite  extension
field le' o v e r  (p) .

Definition A.2. A  noetherian ring A  is  ca lled  a  P -rin g  if  th e  cano-
nical map o„: A p — > A p -  is  a P-homomorphism for any p E Spec (A).

A.3. In many cases, P  satisfies (some o f) he following conditions (for
the  details, see  [2 , (7 .3 )] , [6 ]) : L e t (A, m), (B, n) be  local rings w ith  local
homomorphism 0: A —> B .  Then

P j  :  P  (A) implies P (B ), if 0 is a P-homomorphism,
P11 : P (B ) implies P (A) , if 0 is flat,
P 1 1 1 : P  (A) implies P(A) f o r  any p ESpec (A),
Prv  : P (A /aA ) implies P (A ) for any non-zero divisor a E M,

P v  :  R 1 (A ) =  p E Spec (A) IA, sa tisf ie s  P I is  open w hen (A , n i) is  a
complete local ring.
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A .4 .  Notation. When A  is  a ring, let

(A.4.1) Max (A ) = the  se t o f all maximal ideals of A

(A.4.2)F i r  c M a x  ( A )  IT is  a finite set[

(A.4.3) F(ro) = ITEFITTol for a fixed ro ET ,

(A.4.4) Ar =S771 A  with Sr = A\ U m .
m e

Further, fix  an  element x  E A .  A nd, for any A -algebra B, w e denote by B*

the xB-adic completion of B .  Then, for r'D r, A P =

Definition A.5. W ith notation as above, let be a prim e ideal of
for each TEF(r o). The set IP'rK1 rEnro) is called a prime ideal sequence if

(A.5.1) 05=pP r1A45 for any 7 / D r  (Dr()) .

Definition A.6. A prime ideal sequence il);-41 rEnno is said to be good,
if there exists nEr(ro) such that

(A.6.1) 0=P;-1W, whenever r ' D r

W hen a prim e ideal squence 101 rEnro) is given, let B A P/p , B r = the
derived normal ring of Br , and let C= n..r.nro) A - •

Definition A.7. W ith notation as above, let

(A.7.1) dr(x) =  1Q=QnAlQ EAss(Br/x Br )1
(A.7.2) A (x ) =  U  AT ( x )  .

TE nro)

Definition A.8. A  p r im e  id e a l se q u e n c e  10-1 T e n n )  is  s a id  to  b e
bounded if A (x ) is a  finite set.

Definition A.9. A prim e ideal sequence 10-1 rEr0-0) is called simple if
it is good and bounded.

W ith notation and definitions above, the next proposition shows tha t in  prac-
tice a  bounded prime ideal sequence automatically becomes a good one:

Proposition A.10. Let A be a noetherian ring and tri E Max (A ).  Fixing
an element x E A  and a minimal prime ideal pm

*  of Oip (At) ( = Spec (A:) \ 94 (At) ),
we set p;, , p,,,n A ll" for rEF(m ) (=T ( ) ). Suppose that

(A.10.1) P sa tis fies  the conditions P I , P 1 1 ,  and Pv,

(A.10.2) Local Lifting Theorem holds for P,

(A.10.3) A /x A  is  a  Nagata P-ring .
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Then, if the prime ideal sequence TE,(11,) is bounded, it is also good.

Finally, we state:

Theorem A.11 (Rotthaus' Hilfssatz). Let A be a noetherian ring with
x E A  and let To E T .  Suppose that

(A.11.1) A is an xA -adically complete Nagata ring,

(A.11.2) 141 rEnroi is a simple prime ideal sequence.

Put pr =pP nA for each T E F (T 0 ). Then, there exists r2 E F (r0 ) such that

(A.11.3) PPE Ass (AP/PrAP) for any rEr(TO .

In particular, if ht > 0  for any TE r (To), then p flA  ( 0 ) .
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