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Chain conditions on prime ideals
in ideal-adically complete Nagata rings

By

Yuji HiyosH! and Jun-ichi NISHIMURA

Introduction

Throughout this paper, all rings are commutative with identity. We use
the notation of EGA [2], Matsumura [7] and Nagata [9]. Terminology and
definitions of [10] and [11] are used freely (see also Appendix).

In this note, we mainly study Lifting Problem on chain conditions of prime
ideals in ideal-adically complete Nagata rings. That is:

Lifting Problem. Let A be a noetherian ring and I an ideal of A.
Suppose that A is I-complete and that A/I is universally catenary. Is then A
also universally catenary?

It would be interesting and useful if one got a positive answer to the
problem above. However, S. Greco has found the following surprising and
meaningful counter-example:

Greco’s Example ([3], cf. [12]). There exist a semi-local domain
(A, my, my) with two maximal ideals m; and m; and an ideal I=P; NP, (=the
intersection of two prime ideals P;) of A such that A is I-complete and A/I is
excellent, hence universally catenary, but A itself is nof universally catenary.

Further, in the same article, since neither A is local nor I is prime, Greco
asked (cf. [3, Remark]):

Question 1. Is there a non-universally catenary local ring A with an
ideal I such that A is I-complete and A/I is universally catenary?

Question 2. Is there a non-universally catenary noetherian domain A
with a prime ideal P such that A is P-complete and A/P is universally caten-
ary?

Incidentally, we know a lot of good facts concerning Lifting Problem on
ideal-adically complete noetherian rings. First of all, J. Marot found a posi-
tive answer on Nagata rings:

Theorem 1 ([5]). Let A be a noethevian ring and I an ideal of A. Sup-
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pose that A is I-complete and that A/I is a Nagata ring. Then A is also a Naga-
ta ring. In particular, any ideal-adic completion of a Nagata ring is again a
Nagata ring.

Next, C. Rotthaus solved local Lifting Problem for quasi-excellent rings:

Theorem 2 ([15]). Let A be a semi-local ving and I an ideal of A.
Suppose that A is I-complete and that A/I is quasi-excellent. Then A is also
quasi-excellent. In particular, any ideal-adic completion of a (quasi-) excellent
semi-local ving is again a (quasi-)excellent ving.

Further, she obtained Lifting Theorem for (quasi-) excellent rings which con-
tain a field of characteristic zero by proving the so-called Rotthaus Hilfssatz

([16], [1], cf. [11]):

Theorem 3. Let A be a noetherian ring, containing a field of characteristic
zevo, and let I be an ideal of A. Suppose that A is I-complete and that A/I is
quasi-excellent. Then A also quasi-excellent. In particular, any ideal-adic com-
pletion of a (quasi-) excellent ring which contains a field of chavacteristic zevo is
again a (quasi-)excellent ring.

On the other hand, constructing his remarkable counter-example to Rat-
liff’s Chain Conjecture, T. Ogoma observed a good condition on formal fibres
which assures a normal Nagata ring to be universally catenary:

Theorem 4 ([13]). Let A be a Nagata local domain and A its derived
normal ring. Then the following ave equivalent:

(4.1) the genevic formal fibre of A is locally equidimensional.

(4.2) A is universally catenary.
Here, we collect the definitions on equidimensionality of noetherian rings:

Definition 1. A noetherian rign A is equidimensional if, for any p €
Min(4), dimA/p = dimA. And a noetherian ring A is called locally
equidimensional if Ap is equidimensional for any PESpec (4). A local ring A
is formally equidimensional if its completion A is equidimensional. And a
noetherian ring A is said to be locally formally equidimensional if Ap is formally
equidimensional for any PESpec(4).

Then, thanks to Greco, Marot, Ogoma and Rotthaus, we shall show the fol-
lowing:

Proposition 1. Let A be a noetherian ring with an ideal I. If A 1is
I-complete and A/I is a Nagata ring whose formal fibres are locally equidimension-
al, then the formal fibres of A are also locally equidimensional.

Proposition 2. Let A be a local ring with an ideal 1. If A is [-complete
and A/l is a universally catenary Nagata ring, then A is also universally catenary.
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Proposition 3. Let A be a P-complete noetherian domain where P is a
prime ideal. Then, if A/P is a universally catenary Nagata ving, A is also uni-
versally catenary.

Proposition 4. Let A be a noetherian domain with a non-zevo ideal 1.
If A is I-complete and catenary, then A is universally catenary.

Now we summarize the content of this note. Basic theorem and lemmas
are gathered as preliminaries in Section 1. We omit their proofs, which are
not straightforward, because these results seem to be well-known. Next, in
Section 2, we check that the property of being locally formally equidimensional
enjoys some axiomatic conditions, which play key roles in our proof of Prop-
osition 1 for semi-local rings at the beginning of next section. In the last part
of Section 3, making use of Nagata's criterion due to Greco-Marinari [4], we
shall show the finiteness of the set 4 (x), which completes via Rotthaus Hilf-
ssatz, our proof of Proposition 1. Then, Propositions 2 and 3 are derived
from Proposition 1 in Section 4. Section 5 contains a few related topics, in-
cluding a proof of Proposition 4, which may be useful. In Appendix, for the
reader’s convenience, we recall notation and definitions necessary to state
Rotthaus Hilfssatz whose proof we do not repeat here, because a complete
proof can be found in [11].

We end this introduction by remarking that the original Rotthaus Hilf-
ssatz was proved under a stronger condition, namely, the universal catenary
hypothesis. Therefore, to get Proposition 1, we should have removed this
particular hypothesis in our Rotthaus Hilfssatz, and this is what we have done
in [11].

1. Preliminaries

Theorem 1.1 (Nagata-Ratliff, cf. [14, (A11)]). A local ring A is uni-
versally catenary and equidimensional if and only if A is formally equidimensional.

Lemma 1.2 ([10, (24)]). Let(A, m), (B, n) be local rings and . A — B
a local homomorphism. Suppose that ¢ is flat, p=PQk (m) is reduced and that

A is a Nagata ring. Then ¢ is also reduced.

Lemma 1.3 (cf.[13, Theorem 1]). Let A be a local ving. If A is caten-
ary and not equidimensional, there exists P € Spec (A) such that Ap is not
equidimensional and prof Ap<1.

Lemma 1.4 ([4], cf. [7, (22.C)]). If a Nagata ring A satisfies (S)),
then there is a non-zevo-divisor y such that A, satisfies (Ss).
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2. Formal equidimensionally

Lemma 2.1. Let A be a Nagata local domain with locally equidimension-
al formal fibres. If A is not formally equidimensional, theve is P € Spec (A) such
that Ap is not formally equidimensional and prof Ap=1.

Proof. Since complete local rings are catenary, take pPe Spec (ZD such that

—~

Ap is not equidimensional and prof E,;=l (cf. Lemma 1.3). Putting P=f’\ﬂA,
we claim: Ap is not formally equidimensional.

Indeed, assume the contrary, namely, A is universally catenary. Then, if
we denote by A the derived normal ring of A, all heights of the maximal ideals
of Ap are the same. Thus, since A =A;®4 A4 is Ap-flat, all heights of the
maximal ideals of A are also the same, because the formal fibres of A are
assumed to be locally equidimensional. Hence, there exists PE Max (4) such
that Az is not equidimensional. Therefore, we find Q ESpec (4) such that AVO-
is not equidimensional and prof ngl. Putting Q=Q N A, we see that Z@ is a
DVR. Then, since ¢: Ag— Ag is reduced, 25 is to be a DVR, too. Contra-
diction.

Now we set Eq (4) = {P € Spec (4) |Ap is formally equidimensional} and
Neq (A) =Spec(4)\ Eq(4). Then

Corollary 2.2. Let A be a reduced Nagata local ving whose formal fibres
ave locally equidimensional. If P is minimal in Neq (A), then prof Ap=1. In
particulay, supposing further that Eq (A) is open, if b=p, N ...Np, is the defining
ideal of the closed set Neq(A), then prof A,=1foranyi=1, .., r.

Now we shall show that the property of being locally formally equidimensional
satisfies the following conditons (cf. A.3):

2.3. Pz Let(4, m), (B, n) be Nagata local vings and ¢ A — B a local
homomorphism. Suppose that

(2.3.1) A is formally equidimensional,
(2.3.2) ¢ is reduced, and the fibres of ¢ are locally equidimensional,
(2.3.3) the formal fibres of B ave locally equidimensional.

Then B is also formally equidimensional.

Proof. Assume the contrary. That is, B is not formally equidimensional.
We may assume A is a domain. Let A be the derived normal ring of A and B
=B®.A. Then, all heights of the maximal ideals of A are the same, because
A is universally catenary. Thus, since B is A-flat, all heights of the maximal
ideals of A are also the same, because the closed fibre of ¢ is assumed to be
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locally equidimensional. Hence, there is 1 € Max (B) such that §ﬁ is not for-
mally equidimensional. Therefore, by Corollary 2.2, we find Qe Spec (B)
such that EE)’ is not formally equidensional and prof §5= 1. Putting Q=QNA,

we see that Z@ is a DVR. Then, since ¢: Zg_’ 25 is reduced, Ava is to be a
DVR, too. Contradiction.

2.4. P Let (A, m), (B, n) be local rings and ¢ A — B a local homo-
morphism. Suppose that ¢ is flat, and B is (formally) equidimensional. Then A
is also (formally) equidimensional.

The following condition is an immediate consequence of Theorem 1.1:

2.5. Pur If (A, m) is a formally equidimensional local ring, then Ap is
formally equidimensional for any P € Spec (A).

Now, we remark that once conditions P and Py are verified, a formal
argument gives:

Proposition 2.6. Let (A, m) be a local ring whose formal fibres are
locally equidimensional. Then the formal fibres of Ap ave locally equidimensional
for any PESpec (A).

We state the following condition without proof, because its proof is standard
(cf. [2, (5.12.2)]).

2.7. Prys Let (A, m) be a catenary local ving and b € m a non-
zevo-divisor. Suppose that A/bA is equidimensional and satisfies (Sp) (B>1).
Then A is equidimensional and satisfies (Sk).

2.8. Py: For a complete local ring (A, m), Eq(A) is an open set.

Proof (Seydi [17]). For each PEEq(A), let Xi, ..., X5 be the irreducible
components of Spec (4) which do not contain P. Put V=X;U..UX; and U=
Spec (4)\V. Then, to get the assertion, it suffices to show that UCEq 4).
Indeed, take any QE U and any p <€ Min (A) such that pCQ. Then dim A/p=
dimAp + dimA /P, because p C P by definition. And dimAg¢/pAe=dimA/p —
dimA/Q. Thus, Ag is equidimensional. Therefore, Q €EEq (4).

We include, for the reader’s convenience, the conditon Pgeom without
proof, because its proof is clear and because it will not be essentially used in
the rest of this paper.

2.9. Pgeom: Let k be a field and A a noetherian k-algebra. If A is locally
(formally) equidimensional, then AQ ¢k’ is locally (formally) equidimensional for
any finite extension field k’ of k.

Proposition 2.10. Let (A, m), (B, n) be local Nagata rings and ¢:
A — B a reduced local homomorphism. Suppose that

(2.10.1) the closed fibre of ¢ is formally equidimensional,
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(2.10.2) the formal fibves of A ave locally equidimensional,
(2.10.3) the formal fibves of B are locally equidimensional.
Then the fibves of ¢ are locally formally equidimensional.

Proof. We may assume A is a domain with its quotient field Q (4) =K
and the fibres of ¢&A/a are locally formally equidimensional for any non-
zero ideal a. Let A be the derived normal ring of 4 and B=B®,A. For i
EMax (EAI) and for M=fNA, let ¢ Z,ﬁ—* Eﬁ be the induced local homomorph-
ism. Then, since A -, gﬁ and ¢’ satisfy the same assumptions as above, we
may further assume that A is normal and universally catenary by Theorem 4.
Hence, we are only to show that B& 4K is locally formally equidimensional.
Indeed, for q€ Spec (B&4K) (CSpec(B)) and a non-zero element bEm, take Q
€Min (B/q+bB)).

Then, letting P=Q N A, Ap/bAp, Bo/bBg and ¢QAp/bAp: Ap/bAp— Be/bBg
satisfy the conditions (2.3.1) - (2.3.3). Moreover, Ap/bAp is formally
equidimensional and satisfies (S;), because Ap is assumed to be universally
catenary and normal. Then, Bg"/bBq” is equidimensional and satisfies (S;).
Thus, Be ™ is also equidimensional. Therefore, B, is formally equidimensional.

3. Lifting Theorem (Proof of Proposition 1)

3.1. Proof of Propositon 1 (semi-local case). We checked, in the
previous section, that the property of being locally equidimensional satisfies
the conditions Py, Py, Py, and Py.  Further, we have shown, in Proposition
2.10, the localization theorem for local equidimensionality. Thus, the proof of
Proposition 1 for semi-local rings, namely, local Lifting Theorem for rings
with locally equidimensional formal fibres, can be proved in exactly the same
way as that for quasi-excellent rings. So, we refer the reader to [15], [10,
Theorem], or [6, Theorem 5.2].

Now, as direct applications of local Lifting Theorem for rings with locally

equidimensional formal fibres, by taking the m-adic completion A of A and
the mB-adic completion B* of B in place of A and B, respectively, we get the
following generalization of Proposition 2.10 and the property P

Corollary 3.2. Let (A, m), (B, n) be Nagata local rings and ¢. A — B
a reduced local homomorphism. Suppose that

(3.2.1) the closed fibre of ¢ is formally equidimensional,
(3.2.2) the formal fibves of A are locally equidimensional.
Then the fibves of ¢ are locally formally equidimensional.

3.3. P Let (A, m), (B, n) be Nagata local vings and ¢: A — B a re-
duced local homomorphism. Suppose that the fibres of ¢ ave locally formally
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equidimensional. Then, if A is formally equidimensional, B is also formally
equidimensional.

Finally, we shall show that Lifting Theorem for rings with locally
equidimensional formal fibres holds in general.

3.4. End of the proof of Proposition 1. We use the same notation
as in [11], and for the details see also Appendix.

By noetherian induction, we may assume that A is a normal Nagata do-
main and the formal fibres of A, /a are locally equidimensional for any m &
Max (4) and for any non-zero ideal a.

Choose m € Max (A) and a non-zero element x €/ and fix them. Now
take a minimal element b¥ of Neq (4*) and let p¥=p*NA¥ for any yEI(m),
where, for any A-algebra B, B* denotes the xB-adic completion of B. Then
(AF),s is not formally eqidimensional (cf. 3.3).

We shall prove p¥NA+# (0). But, to get the assertion, because we check-
ed that the property of being locally formally equidimensional satisfies Py, Py,
and P;;; and because we have just proved that local Lifting Theorem for rings
with locally equidimensional formal fibres, as remarked in proposition A.10, it
is enough to show:

(3.4.1) A(x) is a finite set (for the definition, see (A.7.2)).

Indeed, let PE A (x). Then, by difinition, there exist yE€I'(m) and Q€

Ass(B,/x B,) such that P=QNA. Hence, prof Ap<2, because prof (A¥) w=1
for any y€I'(m) (cf. Corollary 2.2, [11, (2.8)], [10, (1.3)]). Further, since
A is a Nagata normal domain, there exists y €A such that (A/xA), satisfies
(Sz) and x, y is an A-sequence (cf. Lemma 1.4). We claim:

(34.2) yE€P (, then A (x) CAss(4/(x,y)) and the proof is completed).

Assume the contrary. Then, by the choice of y, dim Ap/xAp<1. There-
fore, dim (A7) ,.<1. Contradiction.

Once Lifting Theorem for rings with locally equidimensional formal fibres
is proved, the following corollary is an easy exercise.

Corollary 3.5. Let A be a noetherian ving and I an ideal of A. Suppose
that A is I-complete, A satisfies (S2), and that A/I is a universally catenary
Nagata ring. Then A is also universally catenary.

4. Applications of Lifting Theorem

4.1. Proof of Proposition 2. By noetherian induction, we may
assume that A is a domain and A/a is universally catenary for any non-zero

ideal a. Let (A4, my, .., mM,) be the derived normal ring of A. Then, by Prop-



280 Y. Hiyoshi and J. Nishimura

osition 1 and Corollary 3.5, to get the assertion, it suffices to show:

(4.1.1) ht m;=ht m for i=1, .., v .

Take a non-zero element b €1. Note that Spec (A/bA) is connected, be-
cause A is a bA-complete domain. Hence, if YbA =P;N ...NPs, for any m, m’
€ Max (Z) there is a sequence of maximal ideas M=y, My, ..., M;,=Mm" such

that iy, N M4 D P,, where i€ 11, ., 1, 9,€ 11, ..,sl G=0,1, .., ¢—1).
Thus we are only to show:

(4.1.2) if M, M €EMax (4) and M N DP;, then ht M=ht @~ .

Indeed, ht ffi=ht P, +ht ii/P; and ht m’=ht P,+ht @/P;. Futher, since
A/ (P1NA) is supposed to be a universally catenary local domain and A/P; is
a finite extension of it, ht M/P,=ht M/P;. This gives the assertion.

4.2. Proof of Propositon 3. Let A be the derived normal ring. As
above, to get the assertion, it is enough to show:

(4.2.1) ht Mi=ht m for any MEMax(A) and m=mNA .

Take '€ Max (4), lying over m, such that htfi "= ht m. Note that
Spec (A /PA) is connected, because A is a PA -complete domain. Hence, if
\/P_Z=P_’1 N..NP, then P;NA=P and we find a sequence of maximal ideals
i =1, My, ..., M=  such that Mo N, DPy, ..., Mgy N ﬁlsgﬁfs, where f; €
1, .., 7 G=1, .., s). Consequently, since A and A/P are universally caten-
ary, putting m; NA=m;, we have:

ht i—htP;, =htm/P, =htm/P ,
ht M, —ht P, =htm,;/P;, =htm,/P,
ht M, —ht P, =htm,/P;, =htm/P

ht fis_y—ht Py, =ht fis_1/ Py, =ht m_,/P
ht M —ht P;, =ht@m/P;, =htm/P .

Then, ht Pj, = --- = ht P;,_, = ht P, because ht fii; — ht P;,=ht f; — ht P, =

ht m;/P for i=1, .., s—1. Therefore, htfi =ht P;,+ht m/P=...=ht P;,+ht
m/P=ht fi".

5. A few related results

Lemma 5.1 ([8, Corollary 3). Let A be a noetherian domain and B a finite
extension of A with a non-zero ideal b. Suppose that (0) CQ,'C - CQ,,'CQ is
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a saturated chain of prime ideals in B. Then there exists a saturated chain of
prime ideals in B: (0) CQ,C ++* C Qn1Q such that ht (Qi N A) =i and b< Q;
(=1, .,n—1).

Propositon 5.2. Let A be a noethevian domain, I a non-zero ideal and B
a finite extension of A. Assume that A is I-complete. Then, if there is a maximal
chain of prime ideals of lengh n mW>1) in B: (0) CQIC - CQu-1Cn, there exists
a maximal chain of prime ideals of length n in A: (0) CP,C---CPiCm=nNA.

Proof. By Lemma 5.1, we may assume ht(Q;NA) =i and IBEQ; (i=1, ..,
n—1). Then, B/Qs_1 is a one-dimensional local domain, because B/Qx-1 is
I (B/Qn-1) -complete and has a height-one maximal ideal. Thus, letting P;=
Q;NA, dim A/P,—1=1. Therefore, (0) CP;C:+CP, 1Cm is a maximal chain
of prime ideals of length » in A.

5.3. Proof of Proposition 4. Let B be a finite extension of A. To
get the assertion, it is enough to show that B is catenary and ht n=ht (nNA)
for any n€Max (B). Indeed, let (0) CQiC***CQu-1Cn be a maximal chain of
prime ideals of length  ®>1) in B. Then, by Proposition 5.2, there is a
maximal chain of prime ideals of length # in A: (0) CP,C+--CP,.;Cm=nNA.
Therefore, htm=n, because A is catenary, and this completes the proof.

A. Appendix

Let P represent a property of local rings, for example, being regular, Goren-
stein, CM, normal, reduced, or formally equidimensional, etc. For a local ring
(A, m), we say P (4) is true (, P (A) holds, or simply P (A)), when A has
the property P.

Definition A.1. Let A, B be noetherian rings. A ring-homomorph-
ism ¢: A — B is called a P-homomorphism if ¢ is flat, and P ((BQ4k') p) is
true for any p € Spec (A4) and any P’E€ Spec (B® 4k") of any finite extension
field & over k(p).

Definition A.2. A noetherian ring A is called a P-ring if the cano-
nical map p,; A,— A" is a P-homomorphism for any p&Spec ).

A.3. In many cases, P satisfies (some of) he following conditions (for
the details, see [2, (7.3)], [6]): Let (4, m), (B, n) be local rings with local
homomorphism ¢: A — B. Then

P; : P(A) implies P(B), if ¢ is a P-homomorphism,

P;; : P(B) implies P(A4), if ¢ is flat,

P : P(A) implies P(A,) for any pESpec (4),

P;v : P(A/aA) implies P(A4) for any non-zero divisor a€Em,

Py : R, (4) = IpESpec (4) |4, satisfies P} is open when (4, m) is a
complete local ring.
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A.4. Notation. When A is a ring, let

(A4.1) Max (4) =the set of all maximal ideals of A ,
(A4.2) r = {yCMax (A)|y is a finite set} ,
(A4.3) I'(yo) =1{r€r|y>rd for afixed €I,
(A4.4) Ay =S;!' A with S;=A\Um .

meEy
Further, fix an element x €A. And, for any A-algebra B, we denote by B*
the xB-adic completion of B. Then, for 7’27, A¥=(S7'A¥)*.

Definition A.5. With notation as above, let p; be a prime ideal of A¥
for each 7€ (70). The set [pFl ;erqo is called a prime ideal sequence if

(A5.1) pF=pFNAF for any 727 (Do) .

Definition A.6. A prime ideal sequence {p¥ ;erge is said to be good,
if there exists 7, €1(7) such that

(A6.1) p¥=pFA¥ whenever Y271 (D11) .

When a prime ideal squence {pF ;ergo is given, let B, =AF/p¥, B,=the
derived normal ring of B,, and let C= N ;cruo Er.

Definition A.7. With notation as above, let

(A7.1) A;(x) = 1Q=QNAIQ EAss(B,/x B)I |
(A7.2) A @)= U A (@) .
rerl (o)
Definition A.8. A prime ideal sequence {PF} ;er¢o is said to be

bounded if A(x) is a finite set.

Definition A.9. A prime ideal sequence {pFl yeruo is called simple if
it is good and bounded.

With notation and definitions above, the next proposition shows that in prac-
tice a bounded prime ideal sequence automatically becomes a good one:

Proposition A.10. Let A be a noetherian ring and mEMax (A). Fixing
an element x EA and a minimal prime ideal P of & (A¥) (=Spec UH\R,U4F)),
we set pF=p*NAF for yEI'(m) (=I(Im})). Suppose that

(A.10.1) P satisfies the conditions Pr, Py, and Py,
(A.10.2) Local Lifting Theovem holds for P,

(A.10.3) A/xA is a Nagata P-ring .
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Then, if the prime ideal sequence {p3} rerm) S bounded, it is also good.
Finally, we state:

Theorem A.11 (Rotthaus’ Hilfssatz). Let A be a noetherian ving with
TE€A and let 70E€T. Suppose that

(A11.1) A is an xA-adically complete Nagata ving,

(A11.2) IpF rerge is a simple prime ideal sequence.

Put p,=p¥NA for each YEI(7,). Then, theve exists 1,E 1 (o) such that
(A.11.3) pF € Ass(AF/p.ATY) for any YEI(12) .

In particular, if ht pF >0 for any Y€ (10), then pFNA# (0).
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