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Uniform upper bounds for hypoelliptic kernels
with drift

By
R. LEANDRE

Let G be a nilpotentLie group and let X; be left invariant vector fields satis-
fying the Héormander hypothesis. We consider the Haar measure over the Lie

group. In this case, [V] have shown that the heat kernel of A=%ZX? satis-

fies for all ¢, x, y:

C
0.1) (x, y) <
where N is the grad of the Lie Algebra. Moreover that the uniform upper
bound is relevant because in all t, p; (x, x) = (;)N . In other term, the long

time and the small time estimates of the heat kernel are of the same type. Our
purpose is concerned with a more complicated phenomenon which comes from
the influence of the drift.

Let us suppose that A=%EX?+X0 satisfies uniformly the weak Horman-

der hypothesis over R?. There exists an r such that the space of the Lie
Bracket of Xo, X;, 1 #0 of length <r, X, alone excluded, spanns uniformly in x
€R®. Moreover the vector fields X; have bounded derivatives. In this situa-
tion, [Lel] introduced a “metric” depending on time ¢ and solved the problem
of knowing when for t<t(x).

¢ ¢
Vol B, (x, +t) Vol B, (x, /t)

for the balls B, (x, r) associated with this “metric” d,. In particular, we can
find a family of points y,—x such the lower bound in (0.2) is true for p, (z,
y,), We show that these balls are relevant in order to get uniform estimates
in small time t<1 of p, (x, y). We get:

(0.2) <pe(x,y) <

Theorem 1. Forall x,y, t<1:

__c
Vol B: (x, /t) °

Communicated by Prof. S. Watanabe, July 13, 1992, Revised September 27, 1993

(03) e (l', y) <




264 R. Leandre

Let us compare these balls with the ball corresponding to %ZX? Their

volume is much bigger than these last (under weak Hormander hypothesis,
their volume can be zero). So in small time, we need to change the structure
of the balls in order to get a relevant upper-bound of p; (x, y).

In order to show the theorem 1, we need to use the uniform estimates
established in [HL] of the volume of the balls B, (x, +/t) and we use a refine-
ment to techniques of [KS1] by using an upper-bound of the density of some
components of hypoelliptic kernels with drift over nilpotent groups. This
upper-bound ignores the problems which arise from the Bismut condition and
which were deeply involved in the lower bound of (0.2). This leads to a
change of a metric: the new metric d; (x, y) is not comparable to the old one d,
(x, y). d,(x, y) is finite when d, (x, y) can be infinite (see [H]). Although
this, the balls for d, (x, y) satisfy still the estimates of [HL].

Our second theorem is involved with the perturbation theory of a symmetric

1 . . .
second order operator A=§ZX§"X,~ over a Riemannian manifold. Let us sup-

pose that p, (x, y) <—=% for t<1 and that p, (z, y) <— for t=1 for M XN.

fN Ji

pe(x, y) is the density of exp[—tA4] for the Riemannian measure. Let us sup-
pose that exp[—t4]1=1. We introduce a divergence free vector field X, and
the perturbated Laplacian 4= A4+ X,.

Theorem 2. Let us suppose that exp[—tA4,]1=1 and exp[—t4f]1=1.
exp [—t4,] has a heat kermel p,, (x, y) which satisfies the same estimates as p;
(@, y).

The proof of this theorem is based upon the Nash inequality ([CKS],
[KS2]). The theorem 1 shows that the perturbation theory does not give the
right estimates of the perturbated semi-group, at least in small time.

We thank S. Albeverio and L. Saloff-Coste for helpful discussions as well
as the von Humboldt foundation for financial support.

1. Proof of the first theorem

Let h be and element of the Cameron-Martin space and let X,o, X;, i=1, ...,
m vector fields satisfying uniformly the weak Hormander hypothesis over R®.

Let x5, (h) be the horizontal curve associated with the operator %ZX?+X0 in

time t:

400 (h) = )Xo (s () ) dhi+1Xo (s () ds
xo: () =x

We suppose that the vector fields have bounded derivatives. These horizontal

(1.1
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curves were introduced in [BAL1], [BAL2], [Lel]. Let d:(x, y) be the “dis-

tance” associated with xy, (h), (d} (x, y) =infz,m=yl?) and let B, (x, ) and
let B; (x, ) be the associated balls. In order to get estimates of the volume of
these balls ([Lel] in the non-uniform case, [HL] in the uniform case), let us
give some definitions:

If = (iy, .., in) is a multi-index, let us write X\ = [Xi [Xipeo. [Xim-1, Xim)
], Its weight ||0(|| is m+number of Xo in a. If I= (e, ..., @g) is a d-uple of
multi-indices, a; =0 excluded, we put A; (x) =det (Xqy (x)). The weight of I
is by definition = Zlell. =z is x1,,(0) the point in (1.1) corresponding to &
=0. Following [HL], we have when t<1:

12 c) IE)IVES Vol @, Vi) <C ) A ) Vi

[f<2r [<2r

If we use the lemma (2.5) of [NSW], (1.2) is equivalent to:

(1.3) CY @) V" <VoB, (x, vE) <C Y 14 @) |vE" .

n<2r n<2r

Let us now introduce the solution of the Stratonovitch differential equation:

(14) dxs: (Vidw) =Vt ZX i (s (VEdw) ) dwi+tXo (s, (VEdw) ) ds
xor (Vtdw) =x
which has a smooth density p; (x, y). It is also the heat kernel in the time ¢

associated with the operator 1 X?+X,. We begin now to prove (0.3). We
2

write:

(1.5) x1: (Vtdw) =exp [th-l- X /t_llallX[alF(a) (dw)] (x) +Rest.
lad[ <7

where r” is big enough, independent of x, and where we have taken the summa-
tion over an Hull basis, such that the F) (dw) have a nice density which com-
es from the Malliavin calculus ([Lel], [Tal]). Following [Lel], it is enough
to show that the density qv7 (x, y) of the measure ;v (x)

(1.6) imd? [f(exp [th+ S VX wF i (dw) ] (@) ) o |F i (dw) | < ﬁallall]

is uniformly bounded by m for some 0 <1. Moreover, each F
t )

(dw) is a sum of iterated integrals of the length of @ and containing exactly
the same indices as @. From [BAL1], appendix, we deduce that there exists
a constant C >0 such that:

1.7 E [exp [Csup|F e (dw) |"§"] ] <oo
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2
If we regularize the function za—>supa|za|m, and if we proceed as in [Le2],
final remark, we deduce that the density §(z) of F( (dw) satisfies:

2
(1.8) q(z) SCexp[—Csup|za|m] .

So we have only to give an upper-bound of the density §v7 (x, y) of the mea-
sure [

1
f—'w

.[|za|svr'-—~"nvf<exl) [th-l-ZX[a.za] (x))exp[—Cstiplz‘;lﬁl] H dzq .

But in (1.9), we come back to a finite dimensional problem. We follow the
method of [KS1], section 3, with some modifications which come from the
algebraic structure of (1.9).

N The first modification is that we need to modify the distance. We define
d:(x, y) by:

(1.10) d?(x, y) =

(1.9)

2
inf sup|z(a)|m
exptXot E Xzl (x) =y

Let us define by m:z,y the set of 2] < ﬁ“_w"an for 0 close to zero such that
exp tXo+ = Xiwmzw] (x) =y and by mozz the set of za, |24 < ﬁ“_ﬁ)”a" such
that exp [2 Xmzw] () =x. We have a diffeomorphism between these two
sets if 0 is close to zero. Namely,zlet us choose u such that exp [tXo+ =

#aXia] (x) =y and such that suplua|™=d?(x, y). Let us write if zaEmo s

(1.11) exp [th+ZuaX[a1] exp [ZzaX[al] (x)=y .

Let us apply the Campbell-Hausdorff formula in (1.11). We get

exp [th+ ; (ot 20) Xie+
llad < ¥

(1.12)
’X Xiri H (tuaZa’)] (xr) +Rest=y.
< O€la€El’ET

where I' in (1.12) is a bracket of brackets, therefore a sum of Lie Brackets
whose weight is the sum of weights from the component of I If lua| <
ﬂ“_dl)"au for 0, close enough to zero, the remaining part is smaller than JtV
and N is a higher power than all the powers which appear in the bound of z4.
More precisely, vtV < Cﬁllall for all @ appearing in the Campbell-Hausdorff
formula. So in (1.12), we can put the rest inside by using the implicit func-
tion theorem. We get:
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exp[th-l- X (uatzq(t)) X4
ladl <

1; Xin H (traza (t))] (x)=y .
1= oeraelra’er

We write now for af constant;

(1.13)

(1.14) Xin= ;; afXial
lel=111

and since I' is composed from at least two multi-indices, we can put:

(L15) z;(t)=ua+za(t)+;a‘f~ [T ez
le =11

OErperg'er

Since only zz with [|8’]| <|la|l appear in the product, za—> 24 (t) is a local dif-
feomorphism from moz,z into mez,y. Moreover:

2
(1.16) lza— 24 (8) W< Ct

if 0 and 0, are close enough to zero: Let us call this diffeomorphism Sz,
(1.16) playing an important role later. Namely, we have:

2 2 2
|25 (6) [Tl > C | 20| Tl — Cyfus ool

(1.17) 2
o) ] s O
IM=lel oerperpger

The product [l contains at least 2 elements and does not contain %nly the

2 2
mHtm—at :

same type of variables. If we make the distinction between sup |uq|™ > Csup

2
|za|w or not for a nice choice of C, we deduce that either:

2 2
suplza (t) [T1> Cisuplzq| ™
) a

(1.18) ) ’
— Cysuplua|™— Cssuplua|™ 12— Cyt .
a

ap.q

for p+q=1 describing a finite set or
2 2
suplzg (t) [T > Cysuplzq|T
a a

(1.19) 2 , 2
— Cosup|uq|T— Cisuplug|l 24— Cyt .
a

a,p.q

for p+q=1 descrzibing a finite set and for Cs small. Now, if we distinguish

between supIua |W<Ct or not and if we make the same distinction in the
second case, we deduce that in all the cases:
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2 2 -
(1.20) suplzy (t) [Tl > C suplza|l—Cd? (x, y) —Ct
a
under our assumption over zq and uq (This is true if d, (z, y) < JE7 for
01 close to zero).
Moreover, we have by definition since u, reachs the distance d:

2 2
(1.21) suplzy (t) [T > suplua|lT=a? (z, y) .

a a
We deduce from this an analoguous of the lemma (3.23) in [KS1]:

z 2
Tel 42 ] —Ct<suplzy () [T
(1.22) Ci [Sgp|za| +di (x, y) Ct_sgp|za )]

2 -
<G, [suplza|m+d? (x, y)] +Ct .

From this we deduce as in [KS1] that provided d2(x, y) <t" *

2
N 1 SUpPalZal|™ | I
(1.23) G (x, y) Swﬁu(rl)exp[—cj_}ﬁf_l_] dzy .

Let us remark that if d? (x, y) > ta-6), we have clearly a rapid decay of
G:(x,y). Moreover if d? (x, y) <t, we deduce as in [KS1]that:

1 a H
(1.24) gi(x, y) 2 ﬂz||a||ﬁn<r.r>eXp[_C%] H d2a .

But

R A

If we denote by B, (x, 7) the ball associated to d, (x, 7), we deduce as in [KS1]
3.34:

o 3
ﬁZII I )llzalﬂfﬂ<WH dzaVol B, (x. «/’;)

mo(x, x
(1.26) <ol -
=t "Mo(x, 4/t) Vol B:(x, v/t) <C .

We follow [KS1]. For d?(x, y) <" we get:

2
1 p Tdl
(Tt (x’ y) S ﬁzM mo(x x)exp [_Csu alzal ] H dZa

1 2
(1.27) S%ﬁ s exp[—CTS]MO (x, s)ds
1
Vol By (x, /ts)

Moreover ([HL]), the volume of B; (x, %) satisfies the same extimates as

1
SC];V'_sexp [—cs?]s™™™
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(1.2), (1.3) for B,(x, ¥/t). In particular, it satisfies the doubling property:
(1.28) Vol By (x, 24/t) <CVol B, (z, V1) .

We conclude from this as in [KS1] that if d?(x, y) <"

C
VolB,(x f) Vol B (x, V/t)

Remark: Let us consider a function ¢ (x) from R into [0, 1] such that g (zx) =
x? over a neighborhood of 0, equals at 0 only in O with bounded derivatives.

(1.29) @i (x, y) <

Let us consider the generator %-l"g (x)% over R% d,((0,0), (0,y)) =00
x

if y <0 and d,((0, 0), (0, y)) <oo if y=0 over a small neighborhood of 0.
Moreover, if we consider the Bismut distance dg, as in [HL] (or [BAL2])
over a little neighborhood of the departure, d,((0, 0), (0, 0)) differs from dg,
((0,0), (0,0)) =co. This shows us that the following estimate for <1 is
wrong:

C [~ 2hel(0.0). 0.)))
Vol B, ((0, 0) /) <P Cit
(1.30) <pt((0, 0), (0, y))
c’ _ d3.((0,0), (0,y))
Vol B, ((0, 0), &) <P Cit ] '

Namely the right side implies p, ((0, 0), (0, 0)) =0 and since d%, ((0, 0),
(0, y)) —0 when y>0—0, the left side will imply p,((0, 0), (0, 0)) >0 by the
continuity of the heat kernel (see [Le4] for logarithmic estimates of such ker-
nels when g (x) =x").

2. Proof of the second theorem

Since A is symmetric, we have ([CKS]) the following Nash inequality:
C)  W<c(evpEre pith)

where || [3 is the L?>-norm, E (f, f) the Dirichlet form of A for f of L'-norm 1.
Let P, be the perturbated semi-group. Since the divergence of X, is null, A,

+AF=2A. Therefore

@2 2ru| =28 P

Moreover there is no potential in A,. We deduce as in [CKS] that the Li_,

norm of P;, is smaller than % for t<1 and than -% for t>1. It is the same

ta e
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for Pf, which is associated with A¥. The proof follows as in [CKS].

Remark. The hypothesis that X, has no divergence can be inter-
preted in the following way, under suitable hypothesis; let @, the flow of dif-
feomorphism associated to the equation

(2.3) dys=Xo(ys)ds

and let us write

(2.4) =0, (7,)

where

(2.5) dxs=ZX,~ (€5)dws+Xo (xs)ds+Y (xs)ds .
>0

We have ([Bill])

(26)  dge= ) OFK (g dwt+ O, (g.)ds

i>0
since we consider a Stratonovich equation. Let p, (x, y) the heat kernel
associated to §; and p; (x, y) the heat kernel associated with x,, We have:

@0 EGG))=[pG ) @dy=[1(0w)p G )y .
This shows us since the flow @, keeps the volume:

(2.8) pex, y) =p:(x, O (y))

for all x, y, t>0 .
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