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Uniform upper bounds for hypoelliptic kernels
with drift

By

R. LEANDRE

Let G be a  nilpotentLie group and let X i be left invariant vector fields satis-
fying the Hifirmander hypothesis. W e consider the Haar measure over the Lie

1g ro u p . In  th is case, [V ] have shown that the heat kernel of .6 = -

2
E)a satis-

fies for all t, x, y:

(0.1) Pt (x, y)
( I ) N

where N  is  th e  g ra d  o f the  L ie  A lgebra . M oreover tha t th e  uniform upper

bound is relevant because in  all t, Pt (x, x)  . In  other term, the long
(j )  N

time and the small time estimates of the heat kernel are of the same type. Our
purpose is concerned with a m ore complicated phenomenon which comes from
the influence of the drift.

1Let us suppose tha t d= -

2
Exi -Ex° satisfies uniformly the weak Hbrman-

der hypothesis over Rd . T here  ex is ts  a n  r su c h  th a t th e  space  of the Lie
Bracket of Xo, Xr, i *0 of length r , Xo alone excluded, spanns uniformly in x
E R d . Moreover the vector fields X r have bounded derivatives. In this situa-
tion, [L ei] introduced a  "metric" depending on time t and solved the problem
of knowing when for t5 t (x).

(0.2)
Vol B r (x, y) Vol B r (x,

for the  balls B r (x, r )  associated with this "metric" dr. In  particular, we can
find a  family of points y t

- - - 4 x  such the  low er bound i n  (0.2) is  tru e  for p t (x,
Y t). W e show that these balls are relevant in  order to get uniform estimates
in small time 1 of p, (x, y ) .  We get:

Theorem 1. For all x, y,

(0.3) Pt (x, Y )  Vol Br (x, J)
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1L et us com pare  th e se  b a lls  w ith  th e  ba ll co rresponding  to  —

2
EX1. Their

volume is  m uch  b igger than  these  last (under w eak  HOrmander hypothesis,
the ir volume can be z e r o ) .  So in  small time, we need to change the structure
of the balls in order to get a relevant upper - bound of Pt (x, y ).

In  o rd e r  to  show  the  theorem  1, w e need  to  u se  th e  uniform estimates
established in [HL] of the volum e of the balls B r ( x ,  j )  and w e use  a  refine-
ment to techniques of [KS1] by using an  upper - bound of the  density of some
components o f  hypoelliptic kerne ls  w ith  d r if t  o v e r  n ilp o te n t g ro u p s . This
upper - bound ignores the problems which arise from the  Bismut condition and
w hich w ere deeply involved in  th e  low er bound o f  (0.2) . T h is  le ad s  to  a
change of a metric: the new metric a, (x, y )  is not comparable to  the old one d t

(x, y) . d r (x , y )  is finite when d r (x , y )  can  be  in fin ite  (see  [H ] ). Although
this, the balls for d t (x, y )  satisfy still the estimates o f  [HL].
Our second theorem  is involved with the perturbation theory  o f  a  symmetric

1
second order operator d =EX IX t over a  Riemannian m anifold . L et us  sup-

pose that Pt (x, y )  <  f o r  t 1 and that pt (x , y )  
J m  

for 1 for

Pr(x, y )  is  the density of exp [ — td ] for the R iem annian m easure. Let us sup-
pose that exp [ — td ] 1=1 . We introduce a divergence free vector field X0 and
the perturbated Laplacian lip = li +Xo .

Theorem 2. Let us suppose that exp [— tdp] 1 =- 1 and exp [ — tdt] 1=1.
exp [ — tip] h as  a heat kernel p r,p  (x , y )  which satisfies the same estimates as p t

(x , y ) .

T h e  p roof o f  th is  th e o re m  is  b a se d  u p o n  th e  N a s h  inequa lity  UCKS],
[K S 2]). The theorem 1 shows that the perturbation theory does not give the
right estimates of the perturbated semi - group, at least in small time.

W e thank S. Albeverio and L. Saloff - Coste for helpful discussions as well
as the von Humboldt foundation for financial support.

1. Proof of the first theorem

Let h be and element of the Cameron - Martin space and let Xo, X , i = 1 ,
m vector fields satisfying uniformly the weak HOrmander hypothesis over R d .

1Let x s ,t (h )  be the horizontal curve associated with the operator ,Em±xo in

time t:

d x s ,r (h )= E x i(x s ,t (h ) )d h ± tX 0 (x s ,r (h ) )d s

xo,r(h) = x .

W e suppose tha t the  vector fields have bounded derivatives. These horizontal
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curves were introduced in  [BAL1], [BAL2], [Lel]. Let dr (x, y )  be the  "dis-
tance" associated with x1,1 (h) , (ca (x, y) = infxi,r(h)=y11h 112)  and let B 1 (x, r) and
let B t (x, r) be the a ssoc ia ted  ba lls . In order to get estim ates of the volume of
these balls ( [ L e i ]  in  th e  non-uniform case, [H L ] in  the uniform case), let us
give some definitions:

If a =  (j 1 . .... j ) i s  a  multi - index, le t us write X[a] = [X11
...] . Its weight Dail is m +number of X o  in  a .  If I =  (a1, ..., ad) is  a  d-uple of
multi - indices, a i = 0 excluded, we pu t 21 (x) = det [ad (x ) )  .  The weight of I
is by definition 11/11=Ellaill. xt is xi,t (0) the  point in  (1.1) corresponding to h
= 0 .  Following [HL], we have when t. 1:

(1.2) C 12/ ( it)  IV o l B  (x,C IA1 ( x  I Artum
I/ 5 2 , 1 /  5 2 ,

If we use the lemma (2.5) o f  [NSW ], (1.2) is equivalent to:

(1.3) c 121(x) Iv o w t  (x, I A, (x) I .
s2„, IIII52r

Let us now introduce the solution of the Stratonovitch differential equation:

(1.4) dxsa d w ) J - E X 1  s,t (  dw)) dwis + t X o (Jdw)) ds

x0,1(J - d w )= x

which has a  smooth density Pt (x , y ) .  It is  a lso  the  heat kernel in  the  time t

associated with the operator W e  b e g i n  n o w  t o  p r o v e  (0.3). We

write:

(1.5) xi,t ( t d w )  exp [txo+ a  ) (x ) +Rest.=
Mat '

where r' is big enough, independent of x, and where we have taken the summa-
tion over an Hull basis, such that the F(a)(dw) have a nice density which com-
es from the Malliavin calculus ([L ei], [T a ])  . Following [Lei], it is enough
to show that the density 07 (x, y) of the measure ted,v7(x)

(1.6) f - ÷E[f(exp [tX 0 +
t

A  [a]r (a) .) )1 . 1 )  ;  Ir (a ) VIW I <
511a1]

is uniform ly bounded by  Vol /31 ( x  t )  fo r  some 5  <1 . Moreover, each F(a), 
(dw) is  a  sum  of iterated integrals o f the  length o f a and  containing exactly
the same indices as a .  From [BALI.] , appendix, we deduce that there exists
a constant C>0 such that:

(1.7) E [exp [CsuplF(a) (dw) I172` ] < œ
a
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2
If we regularize th e  function  Z a S U p a I Z a I M ,  a n d  if  w e proceed a s  in  [Le2] ,
final remark, we deduce that the d e n s ity  (z) of F( a )(dw ) satisfies:

2  

(1.8) q (z)
1

a

So we have only to give an  upper-bound of the density CIVT(x, y )  of the mea-
sure :tt:

(1.9) 2
1 / 7 ,/(exp [tX0+ X[a]zai (x))exp [ — Csup i z a lH  d z a

a

B u t in  (1.9) , w e com e back to a  finite dim ensional problem . W e follow  the
method o f  [KS1] , section 3, w ith  som e modifications w hich com e from  the
algebraic structure  of (1.9).

The first modification is that we need to modify th e  d is ta n c e . We define
J , (x , y ) by:

2
(1.10) (x, y) = inf suplz(a)[

exp W(0+ zx j (x )

-

Let us define by mr,x,y the set of lz(a)I J
(1-5)11all 

fo r a close to  zero such that
exp [tXo+ /X[aizcai] (x ) = y  and by rno,x ,x  th e  se t o f za, Iza  <

(1 ö ) IIaII

th a t exp X[a ]z(a ) ]  ( x )  = x .  W e have  a  diffeomorphism between these two
s e ts  if  a i s  close to  z e r o .  Namely,

2
 le t  u s  choose u  su c h  th a t exp [tX 0

aX ia l] (X )  =  y  and such that suplual ilall — d (x ,  y ) .  Let us write if zaEmo,x,x:

(1.11) exp {tX0 -FEuaX[all exp [Ez a X [a l ] (x) = y  .

Let us apply the Campbell - Hausdorff formula in (1 .11 ). We get

exp [tX0+ (Vta+ Za) X [al +

II
(1.12)

J.-
 X [r] 1-1 (tuaza,)] (x) +Rest =y.

II ,, ' 0Eraera'Er

where i n  (1.12) i s  a  bracket o f brackets, therefore a  sum  of L ie Brackets
w hose w eight is th e  sum  o f  w eights from  th e  component o f  1". I f  lua  <

fo r 51 c lo se  enough to zero, the remaining p a r t  is sm aller than  j N

and N  is  a  higher power than all the  powers which appear in  the  bound of za.
lai

More precisely, j -N  <  C /i  f o r  a ll a  appearing in the Campbell-Hausdorff
fo rm u la . So in  (1.12) , w e can pu t the  rest inside by using the  implicit func-
tion theorem. W e get:
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exp [tX0+ (ua+za (t))X[a]

(1.13)
X [ f ] ( t u a z a ( t ) ) 1 ( r )  =y

i'- 0 E r ,c r e r a 'E r

We write now for acf, constant:

(1.14) X [n = ceiX [a]
lia =1111

and since r is composed from at least two multi - indices, we can put:

(1.15)í a  (t) =Ua +Z a  (t) cd, tusz,,(,)
0Erper.s'er

Since only zs'  with appear in  the  product, za
--.za'  ( t )  i s  a  local dif-

feomorphism from mo,r ,x  into m t ,x ,y . Moreover:

(1.16) Iza — za (t) Iliai < Ct

i f  d  a n d  Si a re  c lo s e  enough to  zero: L e t u s  c a ll th is  diffeomorphism
(1.16) playing an important role later. Namely, we have:

2 2(t) 1 11CllZal 11a11— cdu a l414 11

(1.17) 2
C3
ii=ia,1

2   in 2  
a t Ilall—C4t

T he product r i  con ta ins a t least 2 elements a n d  does not contain  only  the
2

same type  o f va riab les. If  we make the distinction between sup luaIM Csup
2  

IZal or not for a  nice choice of C, we deduce that either:
2 2

SUP1Za' ( t )  F l/r C1SUPIZal iral

a a
2 2

— C2SUPlUai rciel — C3SUPItta F t 2q — C4t .
a

for p-1--q=1 describing a  finite set or
2 2

SUPIZa' l i r c - id>C1SUPIZaF
a a

(1.19) 2 2  
— C2SUPIllaFT— C3' SllplUal liallPt2q — C41 .

a a,P,q

for p - F q= 1 describing a  finite set and for C3 s m a ll .  Now, if we distinguish
between sup Iua 10.0 o r  n o t  a n d  if  w e m ake th e  sam e distinction in the
second case, we deduce that in  all the cases:

(1.18)
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« 2(1.20) suplia (t) I —Ci suplza l
1111 11c4— C4 (x, y) — Ct

a

under our assumption over za and ua (This is true if eit  (x, y) i g ( 1  "  for
51 close to zero).
Moreover, we have by definition since ua reachs the distance ii:

(1.21) suplz'a (t) suPlualik21(1=4 (x, y)
a a

We deduce from this an analoguous of the lemma (3.23) in  [KS1]:
2 2  

(1.22) [SUplZal " " +4 (x, y)] — Ct suplz'a (t) I"
a a

C2 [SUPIZal 
2  +cif (x, y)] -I-Ct

a

From this we deduce a s  in  [KS1] that provided 4 (x, y) . t̀ i '`)

(1.23) _supalzal]1 
igzilaiL (x , ) exp [ C td z a  .9-t(x, y )

L e t  u s  rem ark that i f  4 (x , y) > to - u , w e have  clearly a  rapid decay of

y).

(1.24)

But

(1.25)

Moreover if 4 (x , y) <t, we deduce a s  in  [KS1]that:

tl,_,S PalZai , 4

i 2

fmorx,x)( I t ( x ,  y )  1 exp[ (.;

L t(x, y)dy<1

If we denote by bt (x, r) the ball associated to cit (x, r), we deduce as in [KS 1]
3.34:

X)1   1 1 dza V o l  (x,

(1.26)
j zila , iff)Vol f3,(x, ft')  C .

We follow [KS1 ]. For 4 (x, y) <t (1 6 ' ) , we get:

tiZ(x, y) J E W . )  
r

m o  z )  exp [ C
S U P a a l ] dza

(1.27) C  1
s  e x p  [  

C
t
s21

jud+2f0
(x, s)ds

i
. C f

77
sexp[—Cs9 z Ilall 1  

0 Vol (x, 1 f  s)
d sS .

Moreover afILD , th e  volume of f i t  (x, i/F) satisfies the same extimates as
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(1.2), (1.3) for Br (x, . In particular, it satisfies the doubling property:

(1.28) Vol Ai r (x , 2 j)  C V o l É t (x, Vf) .

We conclude from this a s  in  [KS1] tha t if cl? (x, y) <t (1  5 ')

(1.29) q-t (x, y) v o i ( x , < Vol Br (x , Ad) •

Remark: Let us consider a  function g  (x )  from R  in to  [0, 1] such that g  (x ) =
1 2 o v e r  a  neighborhood of 0, equals a t 0 only in  0 with bounded derivatives.

a Let us consider the g e n e ra to r  a  + g (x) over R 2 . d r ((0, 0) , (0, y)) = coax 2a y
if y  < 0 and d r ((0 , 0 ) , (0 , y )) < 0 0  i f 0 over a  small neighborhood of 0.
Moreover, if  w e consider th e  Bismut distance dR, t a s  in  [ H L ]  ( o r  [BAL2])
over a  little neighborhood of the departure, d r ((0 , 0 ) , (0 , 0 )) differs from dR,t
((0, 0) , (0, 0)) = 0 0 . This show s us tha t the  following estimate for t 1  is
wrong:

e x p
di,t((0, 0), (0 ,y)) 

Vol B  ( (0, 0) oli) Cit
(1.30) pt ((O, 0), (0, y))

e x p  
[ di,r((0, 0) , (0, y )) 

Vol B r((0, 0) , Ad) Cit

Namely th e  right side im plies P t ( (0, 0) , (0, 0)) =  0 a n d  since di,t ((0, 0)
(0, y)) —.0 when y >0—.0, the  left side will imply Pt ( (0, 0), (0, 0)) >0 by the
continuity of the heat kernel (see [Le4] for logarithmic estimates of such ker-
nels when g (x) = x n ) -

2. Proof of the second theorem

Since A is symmetric, we have  ([CKS]) the following Nash inequality:

(2.1) f)mm+2-1--g NN+2)

where 0 I  i s  the L2 - norm, E (f, jr) the Dirichlet form o f  A  for f  of L' - norm 1.
Let P t ,p be the perturbated semi - g r o u p . Since the divergence of X0 is  null, A p
+ A 2  A .  T h e re fo re

2
2 =2g (Pt.pf, P f.p f)  •(2.2) a

at Pr,pf

   

M oreover there is no potential in A . W e  d e d u c e  a s  in  [CKS] tha t the L 1 - .2

norm o'f P t ,p is sm aller than N  f o r  t <1 and than - A,  for t > 1. It is  the same
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for Pt i, which is associated with A t. The proof follows a s  in  [CKS].

Remark. T h e  hypothesis tha t X0 h a s  no  d ivergence can  be  in ter-
preted in  the  following way, under suitable hypothesis; le t  Ot the  flow  of dif-
feomorphism associated to the equation

(2.3) dy5=X0(y5)ds

and let us write

(2.4) xt— Or (Pt)

where

(2.5)d x s = E X ; ( x s ) d w i s -  X0 (x 5 ) ds Y ( x 5 ) ds
i >0

We have ( [B u ] )

(2.6) dgs=Ec-1xi(gs )dw is+0 :-1Y , (g s )ds
i>o

since  w e  consider a  Stratonovich e q u a tio n . L e t pt ( x ,  y )  t h e  heat kernel
associated to gt and Pt (x, y ) the heat kernel associated w ith X t. W e have:

(2.7) E [f(x t)1 =  iP t(x , Y )f(Y )d y . = f f  ( Or (Y))Pt (x, y)dy

This shows us since the flow Or keeps the volume:

(2.8) p t (x ,  y )= p t (x ,  o ï  (y ) )

for all x, y, t>0 .
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