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Stability of Hausdorff foliations of
5-manifolds by Klein bottels

By

Kazuhiko Fukul

1. Let Fol,(M) denote the set of codimension g C”-foliations of a closed man-
ifold M. Fol, (M) carries a natural weak C"-topology (0<7< o) which is de-

scribed in [H] and [E2]. We denote this space by Fol; (M). We say a folia-

tion F is C’-stable if there exists a neighborhood V of Folj (M) such that ev-
ery foliation in V has a compact leaf. We say a foliation F' is C”"-unstable if
not. It seems to be of interest to determine if F' is C"-stable or not. In the
previous papers ([F2], [F3]), we studied the stability of foliations of closed
4-manifolds by Klein bottles. In the present paper we study the stability of
Hausdoroff foliations of closed 5-manifolds by Klein bottles, where a foliation
F of M is said to be Hausdorff if the leaf space M/F is Hausdorff. All man-
ifolds and foliations considered here are smooth (i.e., differentiable of class
c).

2. Hausdorff foliations of 5-manifolds by Klein bottles

Let M be a closed 5-manifold and F a compact Hausdorff foliation of
codimension three. Then we have a nice picture of the local behavior of F' as
follows.

Proposition 1 (Epstein [E1]). There is a generic leaf Lo with property
that there is an open dense saturated subset of M, wheve all leaves have trivial
holonomy and are diffeomorphic to Lo. Given a leaf L, we can describe a neighbor-
hood U (L) of L, together with the foliation on the neighborhood as follows. There
is a finite subgroup G (L) of O (3) such that G (L) acts freely on Lo on the vight
and Lo/G (L) =L. Let D? be the unit disk. We foliate Lo X D® with leaves of the
form LoX pt}. This foliation is preserved by the diagonal action of G (L), defined
by g (x, y) = (97!, 9°y) for g €G (L), x ELo and y € D*, where G (L) acts
linearly on D3. So we have a foliation induced on U= Lo X D%/G (L). The leaf
corvesponding to y =0 is Lo/G (L). Then there is a C*-imbedding ¢ : U— M
with @ (U) =U(L), which preserves leaves and ¢ (Lo/G (L)).=L.

Remark 2. U (L) can be considered as the total space of a normal
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disk bundle of L in M with structure group G (L) and the restriction map p: Lo
— L is a finite regular covering with the group G (L) of covering transforma-

tions.

Definition 3.
The following fact is well-known (see [S], [I] for instance).

Proposition 4.

A leaf L is singular if G (L) is not trivial.

The finite subgroups of O (3) are listed in the following

table:

G ovder of G structure of G generator
Gi(Z,) n eyclic group, Z, SO (3) u
G1(D2y) n dihedral group, D2n SO (3) u, v
Gi(A4,) 12 alternating group of degree 4, A4
G1(Ss) 24 symmetric group of degree 4, S,

G1(As) 60 alternating group of degree 5, As

Gu(Zy) 2n Z,XZs, G\(Zy) U]-G1(Zy) u,J
Gu (Dan) dn Dy X Z3, Gi(D2n) UJG1(D2n) u,v,J
Gu(A44) 24 AuXZy, Gi(As) UJ-Gi(As)

Gu (S) 48 SeX Zs, Gi(S4) UJ-G1(Sa)

Gu (4s) 120 AsX Zs, G1(As) UJ-Gi(As)

Cui(Z,) n Z,n:even), GNSO(3) =Z,,» Ju
G (Sa) 24 Si, GNSO(3) =A,

G (D3 2n D2, GNSO(3) =Z,, u, Ju
GPy (D2 n Dy, (n: even), GNSO(3) =D,
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coszn—7r —sinzn—n 0
~where u= sin%,l—n coszn—” 0 ’
0 0 1
—1 0 0 1 0 0
J= 0 —1 0 , v= 0 —1 O
0 0 -1 0 0 —1

We consider Hausdorff foliations of 5-manifolds by closed surfaces. A
free action of a finite group G on a manifold Lo is completely determined by a
covering map @: (Lo,;)—’ (L, *) corresponding to a normal subgroup N of
m1(L,*) and an epimorphism ¢ : m; (L, *)— G with Ker¢=N. Given N and ¢,
let @;: (Lo, *)— (L,*),i=1, 2, be covering maps corresponding to N. Then
there is an equivariant homeomorphism ((Lo, *), @)— ((Lo, *), @), where
((Lo,*), @;) is the G-space with the action defined by ®; and ¢. Therefore
if we identify every manifold with a standard model via a fixed homeomorph-
ism and if we fix, for each manifold L and each normal subgroup N of
7 (L, *), a covering map ®n: (Lo, ¥)— (L, *) corresponding to N, then each
epimorphism ¢: m; (L, *)— G defines a foliated neighborhood U= Lo X D*/G
defined in Proposition 1, which is diffeomorphic to U(L). For each surface L
we choose a fixed set of canonical generators for m (L, *), i.e., a set of gener-
ators (ay, by, ..., ar, by) if L is orientable of genus 7, or (dy, da, ..., dy) if L is
non-orientable of genus 7, satisfying [17; [a;, b;] =1 or d2d%.d2=1 respective-
ly. For given L and G, U(L) is completely determined by a vector (g, ..., 92,)
with g2i-1= @ (ai), 92i=¢@ (b;) or (9., ..., 9,) with g;,= ¢ (d;) respectively (Vogt
[V]). We say that U (L) is a foliated neighborhood of type (g1, ..., g2,) or
(91, ... 9,) and L is of type (g1, ..., 92,) or (g1, ..., 9,).

We consider a Hausdorff foliation F of a closed 5-manifold M by Klein
bottles and investigate the type of singular leaves of F.. Let L be a singular
leaf of F.  We take generators a (=d;), b(=did,) of m; (L, *) instead of dy, da.
The generators a and b have the relation aba™'b = 1. Note that a foliated
neighborhood U (L) is determined by a vector (¢ (a), ¢ (b)). Then we have
the following.

Theorem 5. Let F be a Hausdorff foliation of a closed S-manifold M by
Klein bottles. Then the following singular leaves can appear in F
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Name of a singular leaf Structure of G Type
G1(Zy) -leaf Z,(n:odd) W1, U n=1
Z,(n=2) 1, u)
Gu(Z,) -leaf Z,XZ> (n: odd) W' ), t,n)=1
Z, n=1) W)
Gui(Zy) -leaf Z, n=2) (1,J4)
coszn—Tr —sinz—nn— 0
~where u= sinzn—n- cos%{£ 0
0 0 1
-1 0 0 -1 0 O
J= 0 -1 0 , A= 0 —-10
0 ~1 0 0 1

2. Proof of Theorem 5

(1) Case G=G:i(Z,). We define an epimorphism ¢: m; (L, *)— G by
¢ (@) =u', ¢ (b)) =1, where (n, 1) =1. Then Ker¢ is abelian or non-abelian
according to that n is even or odd. Therefore the singular leaf L can appear
as a singular leaf of type (u', 1) if n is odd. For n =2, we define an epi-
morphism ¢ : m (L,*)— G by ¢ (a) =1, ¢ (b)) =u. Then Ker¢ is non-abelian,
so the singular leaf L can appear as a singular leaf of type (1, #). It is easy
to see that the kernels of any other epimorphisms are abelian. For example,

=y"2% where n

we define an epimorphism ¢ : m (L, *)— G by ¢(a) =u', ¢ (b)
is even and g.c.m.(l, n/2, n) =1. In this case, Ker¢ is abelian.

(2) Case G = Gi (D2y). For m = 1, We define an epimorphism ¢ :
m(L,*)— G by ¢(a) =1, ¢ (b) =v. Then Ker¢ is non-abelian, so the singu-
lar leaf L can appear as a singular leaf of type (1, v). This leaf is identified
with the leaf of type (1, u) in Case (1), n=2. It is easy to see that the ker-
nels of any other epimorphisms are abelian.

(3) Case G=Gi1(A4), Gi(S4), Gi(As). There can not appear any singu-

lar leaves with holonomy group G from the following proposition.

Proposition 6. Let G be as above. There does not exist an epimorphism
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o:m(L*)—G.

Proof. We suppose that there exists an epimorphism ¢: m (L, *)— G.
Let H denote the subgroup of m (L,*) generated by a® and b. H is an abelian
normal subgroup of m (L, *) and is isomorphic to ZXZ. Thus ¢ (H) is also
an abelian normal subgroup of G. When G=G;(A4), Gi(S4), there is a com-
position sequence Gi(Ss) DGi1(4,) DV,D {1, (1, 2) (3, 4)} D {1}, where Vi is
the Kleinian group and isomorphic to Z; X Z.. Thus ¢ (H) is isomorphic to
Vs, 11, (1, 2) (3, 4)} or {1}. Then we have the quotient epimorphism @ :
m(L,*)/H— G/¢(H). Since the order of m (L,*)/H is two and the order of
G/¢ (H) is greater than two, this is impossible. When G =G (45s), G is sim-
ple. Thus ¢ (H) = {1}. We have the quotient epimorphism @: m, (L,*)/H—
G. Since the order of G is 60, this is impossible. This completes the proof.

(4) Case G=Gu(Z,). We define an epimorphism ¢ : m (L, *)— G by
¢ (@) =u!, ¢ (b) =], where (n, I) =1. Then Ker¢ is abelian or non-abelian
according to that » is even or odd. Therefore the singular leaf L can appear
as a singular leaf of type (u', J) if n is odd. For n =1, we define an epi-
morphism ¢: m (L, *)— G by ¢(a) =1, ¢(b) =J. Then Ker¢ is non-abelian,
so the singular leaf L can appear as a singular leaf of type (1, ). It is easy
to see that the kernels of any other epimorphisms are abelian.

(5) Case G=Gu (D). For n=2, there does not exist an epimorphism
¢: m(L,*)— G since the number of generators of G is greater than two. For
n=1, we see that the kernels of any epimorphisms are abelian. For n =0,
this leaf is identified with the leaf of type (1, J) in Case (4), n=0.

(6) Case G=Gu(As), Gu(Ss), Gu(As). There can not appear any sing-
ular leaves with holonomy group G from Proposition 6 because that these
groups contain the groups in Case (3) respectively.

(7) Case G=Gmi(Z,) (n:even). For n=2, we define an epimorphism
¢:m(L*)—G by @la)=1, ¢(b) =JA. Since Ker¢ is non-abelian, the sing-
ular leaf L can appear as a singular leaf of type (1, JA).

(8) Case G=Gm(Ss). There can not appear any singular leaves with
holonomy group G from Proposition 6.

(9) Case G = G4 (D3,). For n =1, we define an epimorphism ¢ :
7 (L, %)= G by ¢ (a) =1, ¢ (b) =Jv. Since Ker¢ is non-abelian, the singular
leaf L can appear as a singular leaf of type (1, Ju). This leaf is identified
with the leaf of type (1, JA) in Case (7). It is easy to see that the kernels of
any other epimorphisms are abelian.

(10) Case G =GR (Ds,) (n: even). We easily see that the kernels of
any epimorphisms are abelian.

We complete the proof.

3. Stability of Hausdorff foliations of 5-manifolds by Klein bottles -

In this section we consider the stability of Hausdorff foliations of closed
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5-manifolds by Klein bottles. First we have the following.

Proposition 7. Let F be a Hausdorff foliation of a closed S-manifold M
by Klein bottles. Suppose that F has a Gu (Z,) -leaf m=1 or odd). Then F is
C'-stable.

Proof. Since a Gy (Z,) -leaf is of type (', J) or (1, ), the proof follows
from (ii) of Theorem A of [F2].

Theorem 8. Let F be a Hausdorff foliation of a closed S-manifold M by
Klein bottles. Suppose that F has no leaves with holonomy group isomorphic to
Z,(n=2mod4). If x (M/F)#0, then F is C'-stable.

Proof. From the assumption, F can have Gi (Z,) -leaves and Gu (Z,)
-leaves (n: odd) as singular leaves. If F has a Gu (Z,) -leaf, F is C'-stable
from Proposition 7. We suppose that F has not any Gy (Z,) -leaves. Since
every Gi(Zn) -leaf is of type (', 1), we can apply the theorem of C. Bonatti
and A. Haefliger [B-H, Theorem of IL5] to the foliated manifold (M, F).
Then we have the following diagram:

f
M — M,
lp Iy
M/F = M/F;,

where F; is a Hausdorff foliation of a closed 4-manifold M, by circles and p, p;
are the quotient maps.

Note that 1) the differential map f is a submersion (cf. Proposition 2 of [F5]),
2) a G((Z,) -1eaf of F is mapped to a leaf of type I of F, by f (see [F4] for the
definition of a leaf of type I) and 3) the leaf space M/F=M,/F, is a compact
topological 3-manifold without boundary. By Theorem 4 of [F4], we have
that if x (My/F,) =x (M/F) #0, then F, is C°-stable, hence C'-stable. Then
by following the proof of Theorem 1 of [B], we can see that F is C'-stable.
This completes the proof.

Theorem 9. Let F be a Hausdorff foliation of a closed S-manifold M by
Klein bottles. Suppose that 1) F has no leaves with holonomy group isomorphic to
Z,(n=2mod4) or Z,XZ, and 2) the associated fibre bundle over M/F whose fibre
over t EM/F is Hi (p™' (x); R) is trivial. If x (M/F) =0, then F is C"-unstable
(r=0).

Proof. From the assumption 1), we have the following diagram as in the
proof of Theorem &:

f
M — M1

Iy Ip
M/F = Ml/Fl .



Stability of Hausdorff foliations 257

From the assumption 2), it follows that 7F) is trivial, where 7F: denotes the
subbundle of the tangent bundle TM;, which consists the vectors tangent to the
foliation F1. By Theorem 5 of [F4], we have that if x (M:1/F1) = x (M/F) =0,
then F, is C"-unstable (r=0). Hence F=f*F, is C"-unstable (r=0). This
completes the proof.

4. Stability of foliations with G (Z )-leaves (n>2)

In this section we consider a Hausdorff foliation F of a closed 5-manifold
M by Klein bottles with Gy (Z,) -leaves of type (¥, 1). We denote by rot (F)
a connected component of the union of Gy(Z,) -leaves of F. Then the quotient
map p : rot (F)— S! is a fibre bundle with Klein bottle K as a fibre (see [F4]).
Thus rot (F) is considered as K X [0, 1] /h, where h: K— K is a diffeomorph-
ism and (x, 0) and (h (x), 1) (x €EK) are identified. Let hx: H, (K; R)—
H,(K: R) be its automorphism. In this case, hx is a non-zero real number.

Theorem 10. Let F be as avove. If hx <O, then F is C'-stable. In-

deed, every foliation which is sufficiently C'~close to F has a compact leaf near
rot (F).

Proof. Let U (rot (F)) denote an open saturated tubular neighborhood of
rot (F) in M. By applying the theorem of C. Bonatti and A. Haefliger [B-H,
Theorem of 11.5] to (U(rot(F)), F) as in the proof of Theorem 8, we have the
following diagram:

f
Urot(F)) ——  Ulrot(Fy))
Lp Iy
Urot(F))/F = Ul(rot(Fy))/F: ,

where F is a Hausdorff foliation of U (rot (F1)) by circles and rot (Fy) is the
union of leaves of type I of F;. The assumption A% <0 implies that rot (Fy) is
homeomorphic to a Klein bottle. Thus by the following theorem, we have that
every foliation which is sufficiently C'-close to F; has a compact leaf near
rot(F1). Hence by following the proof of Theorem 1 of [B], we can see that
every foliation of M which is sufficiently C'-close to F has a compact leaf.
This completes the proof.

Theorem 11. Let Fy be a Hausdorff foliation of Uy="U (rot (F1)) by cir
cles and rot (F1) the union of leaves of type 1 of F1. If rot (F1) is homeomorphic to
a Klein bottle, every foliation which is sufficiently C'~close to F\ has a compact leaf
near rot (F).

Proof. Note that rot (Fy) is identified with S! X [0, 1]/k, where h is a dif-
feomorphism of S'. We foliate S* X D? with leaves of the form S* X Ipt}.
This foliation is preserved by the diagonal action of Z,(CSO (2)), defined by
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g (x, y)=(xg7! g-y) for gEZ, xES* and y €ED? where Z, acts linearly on
D? and freely on S! on the right. So we have a foliation F, induced on S! X
D?*/Z,. We define a foliation F3 on (S'X D?/Z,) X [0, 1] with leaves of the
form L X {ptl, L EF,. It follows from Proposition 1 and 2 (i) of [F4] that a
saturated tubular neighborhood of a leaf of type I is diffeomorphic to such a
foliation F3 on (S*X D?*/Z,) X [0, 1]. Let N be a saturated tubular neighbor-
hood of rot (F)) in U;. Then N is diffeomorphic to ((S!XD?*/Z,) X [0, 1], F3)
/H, where H: S* X D*/Z,— S' X D?/Z, is a foliation preserving diffeomorphism
extended from h. Let (p, 0) €S* X D? be a fixed point of H. Since S'X D*Z,
is diffeomorphic to S* X D?, they are identified. We may assume that {p} X D?
is left invariant by H. Then {p} X D?*X [0, 1] is a disk transverse to F5. We
abbreviate {p} XD?X [0, 1] by D?x [0, 1]. Let w: [—¢, 1+e]— S'=R/Z be
the map defined by 7 (t) =t (mod 1), t€ [—e¢, 1+¢], for small e>0. Let F’ be
a foliation which is C'-close to F;. Then the perturbed holonomy map H (F"):
D?(0) X [0, 1]—=D?*x [—e¢, 1+¢] is defined for small 6>0, where D2(J) de-
notes the disk of radius 0 (see [F1]). Note that H (F’) is an imbedding and
C'-close to the map R (x, t) = (x*g~, t) because the holonomy group of every
leaf in rot (Fy) is isomorphic to Z,, where ¢ (€Z,) is a generator of the holo-
nomy group. We put H(F") (x, t) = (fi(x, t), t+f2(x, t)) using the coordinate
(x,t) of D?X [—¢, 1+e] (x€D? t€[0,1]). Then there exists a unique x (t)
€ D?(0) for each t with f; (x (¢t), t) =x (t) because the map R has the fixed
points (0, ). The set I= {(x(t), t); t€ [0, 1]} is a continuous curve in D?(5)
x [0, 1]. We may assume that f, (x (0), 0) >0.

(Case 1) If f,(x (1), 1) <0, then there is a t,€ (0, 1) such that £, (x (t,),
to) =0 because that £ (x, t) is continuous on I. That is, (x (ty), to) is a fixed
point of H(F’). Then the leaf L” of F’" through (x (t,), to) is compact.

(Case 2) Suppose that t; =f, (x (1), 1)>0. Since H(F) (x (1), 1) =
(x (1), 14+4), we have H(F) (x (1), t)) = (x (1), t1+f(x (1), 1)) = (& (1), 0)
from the assumption that rot (F;) is homeomorphic to a Klein bottle. Thus we
have (x(1), t;) €l and f,(x (1), t;) <0. By the similar argument in Case 1, we
complete the proof.

5. Stability of foliations with &(Z,)-leaves

In this section we consider a Hausdorff foliation F of a closed 5-manifold
M by Klein bottles with G (Z;) -leaves of type (1, #). A connected component
rot (FF) of the union of G(Z,) -leaves is consider as K X [0, 1]/h as in 4. Let
hx: (K, %)— m (K,*) be its automorphism. Then we have the following.

Theorem 12, Let F be as avove. Suppose that hx(a) =a™' and hx(b) =

b~', where a and b are generators of m (K, *) with aba™'b = 1. Then F is
Cl-stable. Indeed, every foliation of M which is sufficiently C'~close to F has a
compact leaf near rot (F).
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Proof. Let U be a saturated tubular neighborhood of rot (F) in M. Take
an appropriate double cover U of U such that the induced foliation F on U is a
foliation satisfying the following: 1) all leaves of F are homeomorphic to the
torus T? and 2) for each singular leaf L of F, a saturated tubular neighbor-
hood U (L) is completely determined by the vector (1, u), where ¢:
m (L, *)— Z, is an epimorphism as in 1, ¢ ((1, 0)) =1 and ¢ ((0, 1)) =u,
(1, 0) and (0, 1) are generators of m, (L,*) =Z X Z such that 7 ((1, 0)) =a
and 7% ((0, 1)) =b for the covering map 7: L — K. We denote by rot (F) the
union of singular leaves of type (1, u) of F. Note that rot (F) is concidered
as T2 X [0, 1]/h, where I is a diffeomorphism of the torus T? which covers h.
—1
0
H, (T?% Z)— H,(T% Z). 1f every foliation of U which is C'-close to F has a
compact leaf near rot (F), then every foliation of M which is C'-close to F has

a compact leaf near rot(F). Thus we investigate the stability for F.

We foliate S X D? with leaves of the form S*X {pt}. This foliation is pre-
served by the diagonal action of Z, (C SO (2)), defined by ¢ (x, y) = (x*¢,
—y) for ¢€Z, xr €S' and y €ED? where Z, acts freely on S! on the right. So

we have a foliation F'; on S!'X D? (=ZS'X D?/Z,). So we define a foliation F
on T2XD?X [0, 1] (=S'XS'XD?X [0, 1]) with leaves of the form S' X L X

Iptl, LEF,. Then (U, F) is diffeomorphic to (T2XD?X [0, 1], F,) /H, where
H is a foliation preserving deffeomorphism of T2 X D? extended from h. Let
(b, 0) ET*XD*(pET?) be a fixed point of H. We may assume that {p} XD? is
left invariant by H. Then {p} X D2X [0, 1] is a disk transverse to Fa. We
abbreviate |p} X D2 [0, 1] by DX [0, 1]. D?x [0, 1]/H can be considered
to be D?X S, if necessary, by taking an appropriate double covering of U.

Let a and B be loops in L, with base point (p, 0) such that a and B
represent the generators (1, 0) and (0, 1) of m, (L0, *) =Z X Z respectively.
Note that the holonomy along a (resp. B) is trivial (resp. non-trivial). Let
a (t) and B (t) be translations of @ and 8 along the curve (p, 0) X {t}, t€
[0, 1]. Let F’ be a foliation of U which is sufficiently C'-close to F. Then
we can define perturbed holonomy maps H(f’ a(t)), H(f B(t)): DixX {t} =
lyeD?; llyll<dt x |t} — D?X S! for each ¢t and some 0> 0, which are imbed-
dings (cf. [H] and [F1]). Note that 1) H (F’, a(to)) and H(F, B(ts)) are ex-
tended to maps H (F’, a,) and H(F’, 8,,): D§ X (ty—7, ty+7)— D?X S for some
small 7, which are local diffeomorphisms, 2) the extended map H (F, a;,) and
H(F, a,), H(F, B,,) and H(F’, B,,) coincide on the intersections of their do-
mains respectively if ¢ and t; are close and 3) H(F’, a(t)) and H (F’, B(t))
are C'-close to id (y, t) = (y, t) and the map R (y, t) = (—y, t) respectively be-

~ 0 ~
Then we have h x = ( _1> for the induced automorphism 4 4:
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cause F and F are C'-close. We put S'=R/2Z and let 7: S'— S! be the
double covering map defined by 71'(5 =t (mod 1), rE€S!  Then there exist the
maps Hy (F) and Hy (F): D} X S'— D? X §! extended from H (F’, @ (t)) and
H(F, B() (cf. [F1]) respectively, such that the following diagram com-
mutes;

Hy(F) (resp. Hg(F))

Dix St D?X St
it 11Xl
H(F, a(t)) (resp. H(F', B(£)))
D3 X g D2x St

where i (y, t) = (y, t) and 1X7) (y, ) = (y, 7(t)). We put Hg (F) (y, ) =
(i (y, 1), f2(y, 1)) using the coordinate (y, £) of DX S'. Then there exists a
unique y (t) for each tES! such that y @® =fily (t), 1), because the map R has
the fixed point (0, t) for each t. The set 1= {(y (), £); tESY is a loop in D
X S1. By the same argument as in the proof of Theorem 11, there exists a
point ¢= (y (t1), t:) €I such that H(F, (1)) (g) =g, that is, g is a fixed point
of Hg (F).

We consider the behavior of Hg (F') (q) (n € Z) for a fixed point ¢ of
Hz (F7). Following the argument in [F1, p.1162-1163], we can see that there
exists a point 4 in I such that 7is a fixed point of Hs (F) and H%(F") for some

n. Thus by the standard argument we see that the leaf of F’ through ¢ is
compact. This completes the proof.
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Added i proof
We should add the following in the table in Theorem 5.

Name of a singular leaf Structure of G Type
Gi(Z,) -leaf Z,n=2(mod4)) ' ud) (1 n) =1
G (Z,) -leaf Z, n=2(mod4)) ', Ju3) (1 : even)
(!, u%) (1, n) =1

Proof. (1) Case G=Gi(Z,). For n=2(mod4), we define an epimorphism ¢ : m (L,*)—G by ¢ (a)

=u', ¢ (b) =uz, (,n)=1. Then Ker¢ is non-abelian.
(2) Case G=Gw(Z,). For n=2(mod4), we define an epimorphism ¢ : 7, (L,*)—G by ¢ (a) =4’

© () =Juz(: even), or ¢ (@) =Ju', ¢ (b) =u%, (I, n) =1. Then Ker¢ is non-abelian.



